AgentNet: Decentralized Evolutionary Coordination for LLM-based Multi-Agent Systems

Yingxuan Yang¹; Huacan Chai¹; Shuai Shao¹, Yuanyi Song¹, Siyuan Qi¹, Renting Rui¹, Weinan Zhang^{1,2†}
¹Shanghai Jiao Tong University, ²Shanghai Innovation Institute {zoeyyx, fatcat, wnzhang}@sjtu.edu.cn

Abstract

The rapid advancement of large language models (LLMs) has enabled the development of multi-agent systems where multiple LLM-based agents collaborate on complex tasks. However, existing systems often rely on centralized coordination, leading to scalability bottlenecks, reduced adaptability, and single points of failure. Privacy and proprietary knowledge concerns further hinder cross-organizational collaboration, resulting in siloed expertise. We propose **AgentNet**, a decentralized, Retrieval-Augmented Generation (RAG)-based framework that enables LLM-based agents to specialize, evolve, and collaborate autonomously in a dynamically structured Directed Acyclic Graph (DAG). Unlike prior approaches with static roles or centralized control, AgentNet allows agents to adjust connectivity and route tasks based on local expertise and context. AgentNet introduces three key innovations: (1) a fully decentralized coordination mechanism that eliminates the need for a central orchestrator, enhancing robustness and emergent intelligence; (2) dynamic agent graph topology that adapts in real time to task demands, ensuring scalability and resilience; and (3) a retrieval-based memory system for agents that supports continual skill refinement and specialization. By minimizing centralized control and data exchange, AgentNet enables fault-tolerant, privacy-preserving collaboration across organizations. Experiments show that AgentNet achieves higher task accuracy than both single-agent and centralized multi-agent baselines.

1 Introduction

By leveraging collective intelligence through parallel decision-making or workflow collaboration, LLM-based Multi-Agent Systems (MAS) have emerged as a promising framework for tackling complex real-world problems [7, 20, 26, 27]. However, most MAS following the workflow collaboration paradigm rely heavily on a centralized controller or a static, predefined workflow to allocate tasks among agents with fixed roles [2, 9, 22, 25, 29]. While such designs simplify orchestration, they also introduce inherent constraints—including limited scalability, a single point of failure, and challenges to cross-organizational collaboration due to privacy and proprietary knowledge concerns.

A more critical drawback arises from the inability of these systems to adapt to real-time fluctuations in agent performance or rapidly changing task requirements. Relying on a central controller inflates deployment complexity and restricts dynamic role reassignment, rendering the system vulnerable when the controller fails or becomes overloaded. Furthermore, rigid role definitions prevent agents from flexibly leveraging their full expertise in dynamic environments, ultimately undermining both efficiency and scalability. Taken together, these limitations highlight the need for more decentralized,

^{*}These authors contributed equally to this work.

[†]Weinan Zhang is the corresponding author.

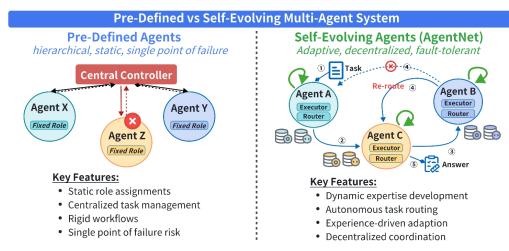


Figure 1: Conceptual comparison between traditional Pre-Defined Multi-Agent Systems and the proposed Self-Evolving AgentNet. While conventional systems rely on hierarchical and static structures with centralized control, AgentNet features adaptive, decentralized coordination and dynamic expertise evolution, enabling robust and scalable performance.

fault-tolerant approaches that support dynamic task allocation, enhance adaptability, and safeguard privacy across organizational boundaries.

Beyond the scalability and failure-tolerance issues previously discussed, centralized architectures become even more problematic when organizations attempt to collaborate at scale [27, 19]. Each institution—be it an enterprise, research lab, or government agency—typically holds proprietary expertise, sensitive data, or both. In a centralized setup, concerns over data ownership, privacy regulations, and inconsistent governance often create barriers that prevent free exchange of knowledge. As a result, LLM-based agents contributed by multiple organizations remain siloed, unable to fully capitalize on each other's specialized capabilities or datasets. This fragmentation not only hampers collective intelligence but also highlights the urgency of developing secure, decentralized collaboration mechanisms. By enabling each participant to maintain and share only the minimal necessary information, these mechanisms address data confidentiality requirements while still allowing for a richer, more collaborative multi-agent ecosystem.

To address these challenges in multi-agent systems, we propose AgentNet, a novel framework designed to foster adaptive agent evolution, optimize task coordination, and preserve privacy. In real-world deployments, each agent in a multi-agent system may have its own role, along with private databases, tools, and other unique resources. The quality and domain of these databases directly influence the agent's capability through training parameters or demonstrations. In AgentNet, we model this reality using a RAG-based mechanism, enabling each agent to maintain distinct knowledge, perform unique updates, and retrieve information effectively. By eliminating the reliance on a central orchestrator, AgentNet enables agents to dynamically reconfigure their connections and redistribute tasks, forming a self-organizing, fault-tolerant architecture. Within this architecture, tasks are efficiently routed via a Directed Acyclic Graph (DAG) [11, 1], which supports flexible collaboration and prevents cyclic dependencies.

Unlike traditional MAS frameworks that fix each agent's role (as shown in Figure 1), **AgentNet** incorporates a retrieval-based RAG [13, 6, 34] memory mechanism to refine agent expertise over time. In real-world deployments, each agent in a multi-agent system may have its own role, along with private databases, tools, and other unique resources. The quality and domain of these private data sources directly influence the agent's capability through training parameters or demonstrations. To model this reality, each agent in AgentNet maintains a limited-capacity pool of successful task trajectories and domain-specific knowledge. When a new task arises, the agent retrieves the most relevant trajectories through few-shot learning to improve its decision-making and adapt its expertise. To prevent memory overflow, agents autonomously prune less pertinent trajectories, ensuring the retention of valuable knowledge. This dynamic specialization strategy not only streamlines task allocation and agent adaptation but also supports a highly scalable and privacy-preserving environment for multi-agent collaboration.

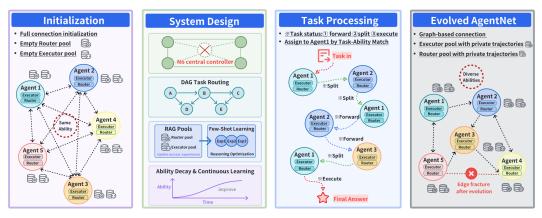


Figure 2: Illutration of AgentNet. Initially, agents are fully connected and equipped with executors and routers. The system eliminates the need for a central controller, using a DAG for dynamic task routing and agents leveraging RAG pools and few-shot learning. In the evolved phase, the network adapts with agents developing private trajectories and diversified abilities.

AgentNet's core design is built upon several key innovations:

- Fully Decentralized Paradigm: By removing the need for a central orchestrator, AgentNet fosters emergent collective intelligence. Decision-making authority is distributed across all agents, thereby eliminating single points of failure and allowing each agent to coordinate, delegate, and specialize as conditions evolve. This approach leads to a self-organizing and fault-tolerant architecture that can rapidly respond to new tasks and unforeseen challenges. This decentralized setup also encourages emergent collective intelligence—in other words, agents can collectively discover and refine optimal strategies rather than waiting for instructions from a central controller.
- Dynamically Evolving Graph Topology: AgentNet employs a network structure in which both nodes (agents) and edges (agent-to-agent connections) adapt in real time based on task demands and agent performance. Rather than relying on fixed workflows, the system continuously reconfigures its topology to optimize information flow and task distribution, ensuring scalability and resilience in complex, changing environments.
- Adaptive Learning Mechanism for Expertise Refinement: AgentNet's third innovation is its retrieval-based memory system, enabling agents to capture and update knowledge from successful task trajectories. This mechanism continuously refines each agent's specialized skills without altering the network's topology, allowing agents to avoid over-reliance on outdated information and sustain high performance in dynamic scenarios.

Moreover, each of these three innovations inherently enhances data privacy. By eliminating a central orchestrator, every agent stores and processes knowledge locally, sharing only minimal task-relevant metadata. The dynamic graph topology further confines data flow to necessary agent-to-agent interactions, reducing the exposure of sensitive information. Meanwhile, the retrieval-based memory mechanism restricts how much and how long data is retained, pruning outdated trajectories so that only high-value knowledge persists. Together, these design choices safeguard privacy and intellectual property, particularly crucial for cross-organizational collaborations.

Our experimental evaluation shows that AgentNet significantly outperforms traditional LLM-based multi-agent frameworks in dynamic environments, demonstrating improved task efficiency, specialization stability, and adaptive learning speed. These results highlight the effectiveness of decentralized evolutionary coordination in large-scale AI ecosystems.

2 Related Work

2.1 LLM-based Multi-Agent Systems

LLM-based multi-agent systems (LaMAS) have rapidly evolved, with early frameworks like AutoGen [25] and MetaGPT [9] establishing structured, centralized workflows. These systems enabled effective coordination but suffered from scalability issues, single points of failure, and limited adaptability. Subsequent work, such as AgentScope [5] and MegaAgent [22], introduced modular and hierarchical

designs to improve robustness. However, they remain centrally orchestrated and typically rely on single LLMs, with static task workflows that hinder dynamic adaptation. AgentNet departs from this centralized paradigm by introducing a fully decentralized architecture. Agents specialize dynamically, collaborate via a DAG-structured network, and evolve their expertise through retrieval-based memory, enabling scalable, fault-tolerant coordination.

2.2 Evolutionary and Adaptive Agent Systems

Inspired by biological evolution, several frameworks optimize agent behaviors through prompt evolution [4, 12], topology adaptation [35, 15], and role specialization [3, 16]. While promising, most operate under centralized control and focus on individual agents rather than system-level decentralization. Recent advances such as AgentSquare [18] and EvoMAC [10] explore automated workflow design and self-adaptive strategies, yet often lack mechanisms for scalable, decentralized coordination. AgentNet addresses this gap by combining evolutionary learning with decentralized control. It enables heterogeneous agents to adapt roles and strategies in real time, supporting scalable and dynamic collaboration across large agent networks.

3 Methodology

3.1 Preliminary of AgentNet

Unlike traditional MAS frameworks with fixed agent roles and rigid workflows using central coordinators, AgentNet creates a privacy-preserving, collective intelligence multi-agent system with high scalability and failure-tolerance by leveraging an innovative framework, consisting of a fully decentralized network architecture, a dynamic task allocation mechanism, and an adaptive agent learning method, as illustrated in Figure 2.

We begin with a brief introduction of AgentNet, including notation and basic architectures of agents employed. Formally, we define AgentNet as a tuple $\mathcal{G} = (\mathcal{A}, \mathcal{E})$, where $\mathcal{A} = \{a_1, a_2, ..., a_n\}$ represents the set of autonomous agents, $\mathcal{C} = \{c_1, c_2, ..., c_n\}$ represents each agent's ability, and $\mathcal{E} \subseteq \mathcal{A} \times \mathcal{A}$ represents the communication connections between agents, specifically $e_{i,j} \in \mathcal{E}$ referring to a unidirectional connection from Agent a_i to Agent a_j . For each agent $a_i \in \mathcal{A}$ contains two key components. rou_i is an agent router, responsible for analyzing received routing queries and making routing decisions. exe_i is an agent executor, responsible for responding to executing queries through operations and tools. The two components mentioned above are underpinned by a substantial LLM that leverages its extensive knowledge and understanding to solve specific problems. Furthermore, both rou_i and exe_i in a_i maintain fixed-size memory modules \mathbb{M}_i^{rou} and \mathbb{M}_i^{exe} , respectively, providing a_i with powerful adaptive evolutionary capabilities by storing and utilizing the agent's experiences through the RAG mechanism.

For optimization, AgentNet will be given a series of tasks denoted as $T = \{t_1, t_2, ..., t_M\}$ to resolve, along with an evaluation function $Eval(\cdot)$. The optimization goal of AgentNet is to maximize the evaluated score by $Eval(\cdot)$ for the solution output by AgentNet, specifically optimizing \mathcal{A} and \mathcal{E} , as the following formula:

$$\mathcal{G}^* = (\mathcal{A}^*, \mathcal{E}^*) = \underset{\mathcal{A}, \mathcal{E}}{\operatorname{arg max}} \ Eval(\mathcal{G}, T). \tag{1}$$

3.2 Decentralized Network Topology

Mathematically, we represent the architecture of AgentNet as $\mathcal{G}_m = (\mathcal{A}_m, \mathcal{E}_m)$ when given the m+1-th task t_{m+1} after completing task t_m , where $\mathcal{A}_m = \{a_1^m, a_2^m, ..., a_n^m\}$ represents the states of agents after task t_m and $\mathcal{E}_m \subseteq \mathcal{A}_m \times \mathcal{A}_m$ represents the set of directed edges between agents and each edge $e_{i,j}^m$ means a directed edge from a_i^m to a_j^m . A weight matrix w_m will be maintained throughout all the tasks before t_{m+1} to weight the connection between agents, namely $w_m(i,j)$. After completing t_{m+1} , w_{m+1} can be updated using the following formula from w_m :

$$w_{m+1}(i,j) = \alpha \cdot w_m(i,j) + (1-\alpha) \cdot S(a_i^{m+1}, a_j^{m+1}, t_{m+1}), \tag{2}$$

where $\alpha \in [0,1]$ is a decay factor that balances historical performance with recent interactions, and $S(a_i^{m+1},a_j^{m+1},t_{m+1})$ is a success metric for task t_{m+1} routed from agent a_i^{m+1} to a_j^{m+1} . This adaptive weighting mechanism ensures that the network continuously refines its structure based on operational experience.

As shown in Figure 3, AgentNet employs a dualrole architecture where each agent a_i consists of a router rou_i for task distribution and an executor exe_i for task execution. Details about these modules will be discussed in the following sections. Crucially, the router enables AgentNet's decentralized structure, as each agent independently makes routing decisions without relying on any centralized coordinator. This decentralized approach contrasts traditional LLM-based multi-agent systems, which typically rely on a central controller for task allocation. In AgentNet, agents autonomously decide task routing based on local information and specific task requirements. This ensures distributed decision-making, eliminates single control points, and achieves full decentralization.

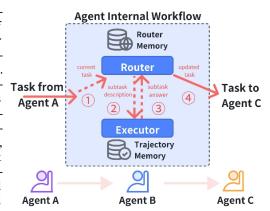


Figure 3: Dual-role agent architecture.

Over tasks, the weight matrix w_m will evolve based on collaborative success, and the edges with a lower weight than a hyper-parameter threshold θ_w are periodically pruned:

$$\mathcal{E}_{m+1} = \{ (a_i^{m+1}, a_j^{m+1}) \mid w_{m+1}(i, j) > \theta_w \}.$$
(3)

This pruning mechanism ensures that the network maintains efficient pathways while eliminating unproductive connections, optimizing both communication overhead and routing efficiency.

3.3 Adaptive Learning and Specialization

AgentNet's adaptive learning mechanism allows agents to continuously improve and naturally specialize through task experiences, without explicit role assignments. This capability distinguishes AgentNet from static multi-agent systems, enabling it to adapt dynamically to evolving requirements. Agents utilize the *ReAct* (Reasoning + Acting) framework [28, 34], reasoning carefully about task queries and contexts before executing actions. To enhance their reasoning, agents employ Retrieval-Augmented Generation (RAG) [13, 6, 34], retrieving relevant fragments from past experiences stored in memory.

Specifically, each agent $a_i \in \mathcal{A}$ maintains two dedicated memory modules: $\mathbb{M}_i^{\mathrm{rou}}$ for routing and $\mathbb{M}_i^{\mathrm{exe}}$ for execution. These modules store fragments of trajectories corresponding only to steps involving the agent itself, rather than full task trajectories involving all agents. For each memory type $r \in \{\mathrm{rou}, \mathrm{exe}\}$, each memory fragment $f^r = (o^r, c^r, a^r)$ consists of an observation o^r (task query), context c^r (partial task history), and action a^r (agent's response). Upon receiving a new task t_{m+1} , the agent retrieves the k most relevant fragments from each memory module, formally defined as:

$$\operatorname{Select}(\mathbb{M}_{i}^{r}, t_{m+1}, k) = \underset{\mathbb{F} \subset \mathbb{M}_{i}^{r}}{\operatorname{arg\,max}} \sum_{f \in \mathbb{F}} \operatorname{sim} \left(\operatorname{embed}(o_{f}^{r}, c_{f}^{r}), \operatorname{embed}(o_{t_{m+1}}^{r}, c_{t_{m+1}}^{r}) \right) \tag{4}$$

Here, $embed(\cdot)$ is a semantic embedding function that projects the input context into a high-dimensional vector space, and the fragments with the highest relevance are retrieved to inform the agent's reasoning or action for both routing and execution processes.

Both the reasoning and acting processes are enhanced by the retrieval of historical task fragments, allowing the agent to make better decisions based on prior experiences. The reasoning function for each module type is modeled as:

$$\mathcal{R}_{a_i}(t_{m+1}, r) = \mathcal{F}_{\text{reason}}(o_{t_{m+1}}, c_{t_{m+1}}, \{f_j^r\}_{j=1}^k), \tag{5}$$

where $\mathcal{F}_{\text{reason}}$ represents the large language model that serves as the backbone of the LLM Agent, processing the inputs to generate reasoned decisions. The reasoning function \mathcal{R}_{a_i} takes the current observation and question $o_{t_{m+1}}$, the historical context $c_{t_{m+1}}$ representing the partial task trajectory and interactions up to the current point, and the retrieved fragments $\{f_j^r\}_{j=1}^k$ as input to generate the reasoning output. The fragments allow the agent to reason based on prior experiences that are most relevant to the current situation.

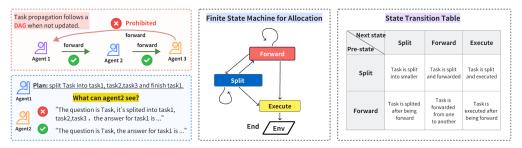


Figure 4: Details of Dynamic Task Allocation.

Once the reasoning process has been completed, the agent executes the chosen action. The action is informed by the reasoning output, which can be expressed as:

$$\mathcal{A}_{a_i}(t_{m+1}, r) = \mathcal{F}_{act}(o_{t_{m+1}}, c_{t_{m+1}}, \mathcal{R}_{a_i}(t_{m+1}, r), \{f_i^r\}_{i=1}^k), \tag{6}$$

where \mathcal{F}_{act} represents the large language model that serves as the backbone of the LLM Agent, translating reasoning into concrete operations. The $\mathcal{A}_{a_i}(t_{m+1},r)$ function utilizes the reasoning output $\mathcal{R}_{a_i}(t_{m+1},r)$ along with the retrieved memory fragments to determine the appropriate action. The specific action depends on the module type: for r=rou, the router module may produce actions such as forwarding the task to another agent or splitting it into subtasks; for r=exe, the executor module generates a single-step operation or response to directly address the final answer.

Agents employ a dynamic memory management strategy, evaluating stored trajectories based on task context, historical usage, frequency, recency, and uniqueness. When a memory module reaches capacity ($C_{\rm max}$), agents remove the least useful trajectories to maintain a high-quality memory pool through a prompt-based reasoning process. This adaptive process enables agents to naturally specialize over time, optimizing performance across diverse tasks.

3.4 Dynamic Task Allocation

The dynamic task allocation mechanism in AgentNet enables efficient distribution of tasks without centralized coordination, creating a responsive system that optimizes both performance and load balancing. Each task $t \in T$ is formally represented as a tuple $t = (o_t, c_t, p_t)$, where o_t contains the task description in natural language, c_t is a vector of capability requirements, and p_t denotes the priority level. To efficiently process a new task t_{m+1} after completing task t_m , AgentNet employs a sophisticated mechanism to select the most suitable initial agent. Agent capability representation and matching form the foundation of task allocation. Each agent a_i^m , after completing task t_m , possesses a capability vector cv_i^m that is dynamically updated through task performance during system operation. In the initial allocation phase, the system selects an entry agent for t_{m+1} using the following formula:

$$a_{initial} = \underset{a_i \in \mathcal{A}_m}{\operatorname{argmax}} \{ \operatorname{sim}(c_{t_{m+1}}, cv_i^m) \}, \tag{7}$$

where $c_{t_{m+1}} = \Phi(o_{t_{m+1}})$ represents the capability requirements of task t_{m+1} , cv_i^m denotes the capability vector of agent a_i , and $sim(\cdot, \cdot)$ is a similarity function measuring the match between task requirements and agent capabilities. The capability requirements are determined through different methodologies depending on task complexity:

$$c_{t_{m+1}} = \begin{cases} \Phi_{atomic}(t_{m+1}), & \text{for atomic tasks} \\ \Phi_{compound}(t_{m+1}), & \text{for compound tasks}. \end{cases} \tag{8}$$

For atomic tasks, the system uses a function Φ_{atomic} that maps task properties to capability requirements based on predefined heuristics. For compound tasks, the function $\Phi_{compound}$ utilizes an instruction set with carefully designed prompts to guide the large language model in analyzing task descriptions and inferring the required capability vectors. Agents are then ranked by their capability matching scores, and the highest-scoring agent is selected as the initial executor.

Once a task is assigned to the initial agent, the agent determines how to process it based on the reasoning results from its router module rou_i . As shown in Figure 4, the agent can perform one of three operations:

 Forward (O_{fwd}): Transfer the task unchanged to another more suitable agent, maintaining the task's original state and preserving the Directed Acyclic Graph (DAG) property of the

Table 1: Performance comparison of different methods across various tasks. In all multi-agent methods, we set 3
agents for each method to ensure a fair comparison. The best result is in bold, while the second is underlined.

Backbone	Category	Method	MATH(Acc/%)	BBH(Acc/%)	API-Bank(Acc/%)
DeepSeek-V3	Single Agent	Direct React Synapse Self-Consistency Self-Refinement	47.86 77.14 89.28 88.00 87.14	69.00 88.00 92.00 85.00 84.00	26.00 29.00 28.00 29.00 25.00
	Multi-Agent	MorghAgent MetaGPT AFLOW GPTSwarm AgentNet	39.29 92.14 91.67 72.14 92.86	56.00 64.00 88.00 90.00 94.00	16.00 22.00 28.00 21.00 30.00
GPT-4o-mini	Single Agent	Direct React Synapse Self-Consistency Self-Refinement MorghAgent MetaGPT	31.43 55.71 77.14 54.28 68.57	59.00 80.00 79.00 85.00 81.00 53.00	15.00 24.00 22.00 22.00 23.00 16.00 19.00
	Multi-Agent	AFLOW GPTSwarm AgentNet	85.00 85.00 85.00	75.00 86.00 86.00	21.00 13.00 29.00
Qwen-turbo	Single Agent	Direct React Synapse Self-Consistency Self-Refinement	37.85 53.57 67.14 64.28 76.43	57.00 69.00 68.00 70.00 74.00	27.00 23.00 24.00 28.00 23.00
	Multi-Agent	MorghAgent MetaGPT AFLOW GPTSwarm AgentNet	16.43 63.57 82.14 79.29 81.43	56.00 51.00 57.00 75.00 92.00	9.00 20.00 22.00 30.00 32.00

routing path. Forwarding decisions are based on analyzing the gap between the current agent's capabilities and the task requirements, as well as evaluating the capability vectors of other agents in the network.

2. **Split** ($\mathcal{O}_{\text{split}}$): Decompose the task into subtasks, execute portions matching the agent's expertise, and route the remaining subtasks to an appropriate agents. Subtask routing follows this formula:

 $a_{next} = \underset{a_k \in \mathcal{A}_m \setminus \{a_i\}}{\operatorname{argmax}} \{ \operatorname{sim}(\Phi(o_{t_{m+1}}), c_k^m) \}, \tag{9}$

where $\Phi(o_{t_{m+1}})$ represents the capability requirements derived from the observation of subtask j, determined through the current agent's task decomposition reasoning, and $\mathcal{A}_m \setminus \{a_i\}$ denotes the set of all agents excluding the current one.

3. **Execute** (\mathcal{O}_{exec}): Complete the entire task without further delegation.

A key design feature in the system is that when an agent chooses to split a task, it only forwards the results of the subtasks it has completed, and not the reasoning behind the decomposition. This prevents the transfer of unnecessary information and ensures that task decomposition errors made by one agent do not propagate to other agents in the network.

The agent capability vector cv_i^m is updated based on task execution history and success rates, using the following formula:

$$c_i^{m+1} = \beta \cdot cv_i^m + (1-\beta) \cdot \Delta c_i^{m+1}, \tag{10}$$

where $\beta \in [0,1]$ is a decay factor balancing historical capabilities with newly acquired ones, and Δc_i^{m+1} represents the new capability contribution demonstrated by the agent in task t_{m+1} , calculated by analyzing the types of operations successfully executed by the agent and the quality of results.

The task state updates only when an agent completes a part—by executing or splitting it. Upon subtask completion, the agent updates the context and passes it to the next agent:

$$context_{updated} = context_{original} \oplus result(a_j, t_i). \tag{11}$$

While the task is simply forwarded from one agent to another, its state remains unchanged, preserving the Directed Acyclic Graph (DAG) structure of the routing path. This prevents infinite loops and

ensures effective task progression across agents. Through this dynamic task allocation mechanism, AgentNet adaptively optimizes task flow based on task characteristics and evolving agent capabilities.

4 Experiment

4.1 Main Results

Table 1 summarizes performance across Math, Coding, Logical QA tasks and API-Calling tasks, detailed settings and implementation details are provided in Section C. For Math, Logical QAs and API-Calling tasks, accuracy is reported; for Coding, we report average test case pass rate and full problem pass ratio. Compared to single-agent methods (e.g., Synapse, ReAct), AgentNet achieves competitive or superior performance across all tasks. While ReAct performs well on Math and Logic, its static prompting strategy limits generalization to more complex tasks. Against multi-agent baselines, AgentNet consistently outperforms centralized frameworks such as MetaGPT, which suffers from limited scalability—e.g., only 53.00% accuracy on Logical QA. MorphAgent underperforms on Coding tasks, as it generates self-constructed test cases during training, resulting in invalid or uncompilable outputs. AgentNet's decentralized coordination and retrieval-augmented memory contribute to its robustness across domains, particularly in tasks requiring contextual understanding and adaptive role specialization.

4.2 Experiments on Heterogeneous Agents

To investigate the impact of agent diversity on performance, we designed a heterogeneity experiment across different settings on the BBH task. Agents were tested under four configurations: fully homogeneous (identical models and capabilities), LLM heterogeneity (different language models, same capabilities), skill heterogeneity (same model but varied capabilities), and a combination of both. This design allows us to isolate and analyze how model-level and capability-level diversity influence multi-agent collaboration.

Table 2: BBH Accuracy under Different Heterogeneity Settings (Acc%)

Setting	Fully Homogeneous	Skill Hetero.	LLM Hetero.	Both Hetero.
3 Agents	0.86	0.84	0.81	0.81
5 Agents	0.79	0.86	0.85	0.85

Results in Table 2 show that the impact of heterogeneity on performance depends on team size. With 3 agents, the fully homogeneous setting performs best, while introducing either model or skill diversity reduces accuracy, suggesting uniform reasoning is more effective in small teams. However, with 5 agents, heterogeneous configurations outperform the homogeneous one, indicating that diversity enhances collaboration and complementary reasoning in larger teams. Overall, heterogeneity may introduce coordination overhead in small groups but offers clear benefits at larger scales.

4.3 Ablation Study

Router Effectiveness in AgentNet To evaluate AgentNet's decentralized router, experiments were conducted comparing AgentNet with ablation configurations: "Totally Random", "Random Operations", "Random Next Agent ID" and a centralized "Global Router". Each router manages external routing (selecting the next agent) and internal routing (deciding to forward, split, or execute).

Performance was tested on the BBH task (training: 627 problems, testing: 100 problems), with results in Figure 5. AgentNet outperforms randomized methods, achieving 82.14% accuracy during training and 86.00% during testing. Randomizing operations (forward/split/execute) affects task execution more directly, randomizing next agent ID primarily results in suboptimal task delegation but does not disrupt task completion as severely. These results underscore the critical role of effective routing and suggest that optimizing routing decisions can significantly enhance multi-agent system performance.

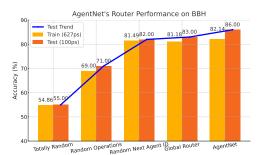


Figure 5: AgentNet's Router Performance on the BBH (Backbone: gpt-4o-mini)

Impact of Evolution Phase Results in Table 3 clearly indicate that AgentNet significantly improves performance compared to the non-evolution baseline. On the MATH task, AgentNet achieves a score of 85.00 versus 77.86. For the function-calling task, performance improves notably from 23.00 to 32.00, and BBH task accuracy rises from 76% to 86%.

Table 3: Performance Comparison of AgentNet vs. Without evolution (Backbone: gpt-4o-mini)

3 Agents	MATH	API-Bank	BBH
	(Acc)	Acc	(Acc)
w/o evolution	77.86	23.00	76.00
AgentNet	85.00	32.00	86.00

These results confirm that AgentNet's adaptive learning during the evolution phase effectively enhances agent specialization and task performance, demonstrating its essential role in the system's optimization and overall efficiency.

4.4 Analysis

Scalability and Robustness of the System As shown in Figure 6, both training and testing performance of AgentNet improve slightly with an increased number of agents and a larger executor pool on the BBH task. Training accuracy rose from 80.38 (3 agents, 30 executors) to 81.18 (9 agents, 40 executors), while testing performance ranged from 80 to 86, peaking with 40 executors. These incremental gains highlight AgentNet's ability to scale efficiently through decentralized coordination. While performance improves with more resources, the diminishing returns suggest an optimal configuration exists. Overall, the experiment confirms that AgentNet's adaptive design supports scalable, efficient, and fault-tolerant multi-agent systems.

Figure 6: AgentNet Performance with Different Net Parameters. Experiments were conducted with routers without pool limit, where (A, B) represents A as the number of agents and B as the upper limit of the executor pool, with performance evaluated on the BBH.

Evolution of Agents Networks The evolution of the agent network in our experiment is illustrated in Figure 7, which demonstrates the transition of a multi-agent system composed of 5 agents running on the BBH (627 pieces) benchmark. The figure captures the network at three key stages: the initial state, an intermediate state, and the final evolved state.

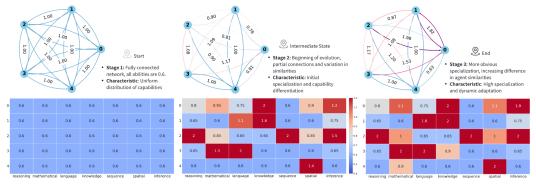


Figure 7: Evolution Example of Agents Networks.

In the initial state, the network is fully connected with uniform connection values of 1.00, indicating equal capabilities among all agents. At this stage, there is no specialization, and all agents are equally equipped to handle tasks. As the network evolves, agents begin to specialize, and connection values vary, reflecting the strength of collaboration. Stronger connections indicate tighter cooperation, while weaker ones suggest less interaction. This evolution shows how agents naturally adapt and form more efficient collaboration patterns. By the final stage, the network exhibits clear specialization, with agents taking on distinct roles. The connection values further emphasize the growing cooperation between specialized agents, improving task performance. This progression demonstrates the

effectiveness of decentralized coordination, where evolving collaboration enhances task allocation, scalability, and fault tolerance.

Autonomous Specialization of Agents Based on the observed results in Figure 8, the experiments demonstrate that AgentNet's multi-agent system can naturally specialize agents in a decentralized environment.

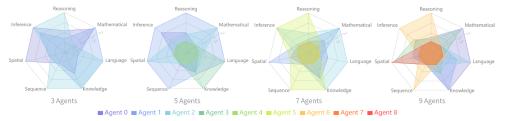


Figure 8: Autonomous Specialization under Different Agent Sets. The upper limit of the executor pool is fixed at 40, regardless of the number of agents. Figure shows agents' fabilities after training on 627 questions on BBH.

With varying numbers of agents and a fixed executor pool of 40 pieces, the ability scores across different tasks such as reasoning, language, knowledge, and sequence showed significant variation. As the number of agents increased, specialization became more evident, particularly in complex tasks, with certain agents excelling in specific areas while others focused on different abilities. This highlights AgentNet's capacity to dynamically refine agent expertise and optimize performance in a decentralized, task-driven system.

Case Studies This case study is presented to illustrate the differences between the two methods, based on results obtained using GPT-4o-mini on the BBH dataset. The left image shows the trajectory produced by the ReAct method, while the right image illustrates the trajectory generated by AgentNet. In the case of ReAct, the lack of collective reasoning results in an incorrect response after a single-step inference, highlighting the limitations of the method in handling tasks that require more complex reasoning. In contrast, AgentNet uses a multi-step workflow where agents without the necessary expertise are bypassed, while those with the relevant skills divide the task into smaller steps, leading to a more accurate final solution.

Which sentence has the correct adjective order? Options: A. old-fashioned circular green cardboard exercise computer B. old-fashioned green exercise circular cardboard computer ReAct Reasoning: (B) was selected because it follows a common pattern in English, where opinion adjectives (e.g., "old-fashioned") precede color adjectives (e.g., "green") and shape adjectives (e.g., "circular"). Action: (B) Ground Truth:(A)

Figure 9: ReAct Response with Reasoning

AgentNet (5 Agents) **Agent 0:** Decision: Forward Next Agent: Agent 1 **Agent 1: Decision:** Forward Next Agent: Agent 2 **Agent 2:** Decision: Forward Next Agent: Agent 3 Agent 3: Decision: Split Executable: Adjective order analysis Delegate: Final answer to another agent Findings: Correct order: Quantity, opinion, size, age, shape, color, origin, material, purpose Correct Option: (A) Next Agent: Agent 4 Agent 4: Decision: Execute Action: Confirmed option (A) Final Outcome: (A) Ground Truth:(A)

Figure 10: AgentNet Task Breakdown

5 Conclusion

Ouestion:

In conclusion, AgentNet provides an effective approach to addressing the limitations of traditional centralized multi-agent systems. With its decentralized architecture, dynamic task allocation, and adaptive learning mechanisms, AgentNet improves scalability, fault tolerance, and task efficiency in collaborative environments. Its privacy-preserving features further ensure secure cooperation across organizations. Our experimental results highlight the advantages of this approach, demonstrating improvements in task efficiency, adaptability, and specialization. AgentNet offers a practical framework for developing more flexible and secure multi-agent systems in dynamic, real-world settings.

6 Acknowledgment

This research was supported by Bytedance through a sponsored project that facilitated the execution and completion of this work. The Shanghai Jiao Tong University team is partially supported by National Natural Science Foundation of China (62322603).

References

- [1] Ravindra K Ahuja, Thomas L Magnanti, James B Orlin, et al. *Network flows: theory, algorithms, and applications*, volume 1. Prentice hall Englewood Cliffs, NJ, 1993.
- [2] Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Sesay Jaward, Karlsson Börje, Jie Fu, and Yemin Shi. Autoagents: The automatic agents generation framework. *arXiv preprint*, 2023.
- [3] Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia Qin, Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and exploring emergent behaviors in agents. *arXiv* preprint arXiv:2308.10848, 2(4):6, 2023.
- [4] Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktäschel. Promptbreeder: Self-referential self-improvement via prompt evolution. *arXiv preprint arXiv:2309.16797*, 2023.
- [5] Dawei Gao, Zitao Li, Xuchen Pan, Weirui Kuang, Zhijian Ma, Bingchen Qian, Fei Wei, Wenhao Zhang, Yuexiang Xie, Daoyuan Chen, Liuyi Yao, Hongyi Peng, Zeyu Zhang, Lin Zhu, Chen Cheng, Hongzhu Shi, Yaliang Li, Bolin Ding, and Jingren Zhou. Agentscope: A flexible yet robust multi-agent platform, 2024.
- [6] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey. *arXiv preprint arXiv:2312.10997*, 2, 2023.
- [7] Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, N. Chawla, Olaf Wiest, and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and challenges. In *International Joint Conference on Artificial Intelligence*, 2024.
- [8] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*, 2021.
- [9] Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for a multi-agent collaborative framework, 2024.
- [10] Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu, Zijie Yu, Yuchen Hou, Shuo Tang, and Siheng Chen. Self-evolving multi-agent collaboration networks for software development. *arXiv preprint arXiv:2410.16946*, 2024.
- [11] Arthur B Kahn. Topological sorting of large networks. *Communications of the ACM*, 5(11):558–562, 1962.
- [12] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy: Compiling declarative language model calls into self-improving pipelines. *arXiv preprint arXiv:2310.03714*, 2023.
- [13] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:9459–9474, 2020.
- [14] Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms, 2023.

- [15] Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic llm-powered agent network for task-oriented agent collaboration, 2024.
- [16] Siyuan Lu, Jiaqi Shao, Bing Luo, and Tao Lin. Morphagent: Empowering agents through self-evolving profiles and decentralized collaboration. arXiv preprint arXiv:2410.15048, 2024.
- [17] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with self-feedback, 2023.
- [18] Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Automatic llm agent search in modular design space. *arXiv preprint arXiv:2410.06153*, 2024.
- [19] Zitong Shi, Guancheng Wan, Wenke Huang, Guibin Zhang, Jiawei Shao, Mang Ye, and Carl Yang. Privacy-enhancing paradigms within federated multi-agent systems, 2025.
- [20] Chuanneng Sun, Songjun Huang, and Dario Pompili. Llm-based multi-agent reinforcement learning: Current and future directions. *ArXiv*, abs/2405.11106, 2024.
- [21] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-bench tasks and whether chain-of-thought can solve them, 2022.
- [22] Qian Wang, Tianyu Wang, Qinbin Li, Jingsheng Liang, and Bingsheng He. Megaagent: A practical framework for autonomous cooperation in large-scale llm agent systems. *arXiv* preprint *arXiv*:2408.09955, 2024.
- [23] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models, 2023.
- [24] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
- [25] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation, 2023.
- [26] Yingxuan Yang, Bo Huang, Siyuan Qi, Chao Feng, Haoyi Hu, Yuxuan Zhu, Jinbo Hu, Haoran Zhao, Ziyi He, Xiao Liu, Zongyu Wang, Lin Qiu, Xuezhi Cao, Xunliang Cai, Yong Yu, and Weinan Zhang. Who's the mvp? a game-theoretic evaluation benchmark for modular attribution in llm agents, 2025.
- [27] Yingxuan Yang, Qiuying Peng, Jun Wang, Ying Wen, and Weinan Zhang. Llm-based multi-agent systems: Techniques and business perspectives, 2024.
- [28] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models, 2023.
- [29] Rui Ye, Shuo Tang, Rui Ge, Yaxin Du, Zhenfei Yin, Siheng Chen, and Jing Shao. Mas-gpt: Training llms to build llm-based multi-agent systems, 2025.
- [30] Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, Guancheng Wan, Kun Wang, Dawei Cheng, Jeffrey Xu Yu, and Tianlong Chen. Cut the crap: An economical communication pipeline for llm-based multi-agent systems, 2024.
- [31] Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang, Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topologies via graph neural networks. *arXiv preprint arXiv:2410.11782*, 2024.
- [32] Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow generation. *arXiv preprint arXiv:2410.10762*, 2024.

- [33] Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar prompting with memory for computer control, 2024.
- [34] Ruiwen Zhou, Yingxuan Yang, Muning Wen, Ying Wen, Wenhao Wang, Chunling Xi, Guoqiang Xu, Yong Yu, and Weinan Zhang. Trad: Enhancing llm agents with step-wise thought retrieval and aligned decision, 2024.
- [35] Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen Schmidhuber. Gptswarm: Language agents as optimizable graphs. In *Forty-first International Conference on Machine Learning*, 2024.

A Algorithm of AgentNet

A.1 Pseudocode of AgentNet

The AgentNet System is designed to optimize task allocation and agent coordination within a multiagent environment. This algorithm orchestrates the interaction between tasks and agents, aiming to efficiently distribute tasks based on agent capabilities and historical performance.

Algorithm 1 AgentNet System

```
Require: Task set T = \{t_1, t_2, ..., t_M\}
Ensure: Optimized network \mathcal{G}^* = (\mathcal{A}^*, \mathcal{E}^*)
 1: Initialize \mathcal{A} = \{a_1, a_2, \dots, a_n\}, \mathcal{E}, \mathcal{C} = \{c_1, c_2, \dots, c_n\}, w_0, \mathbb{M}_i^{rou} \text{ and } \mathbb{M}_i^{exe} \ \forall a_i \in \mathcal{A}\}
 2: for each task t_{m+1} \in T do
            // 1. Task allocation and processing
            \begin{array}{l} c_{t_{m+1}} \leftarrow \Phi(o_{t_{m+1}}), a_{curr} \leftarrow \arg\max_{a_i \in \mathcal{A}_m} \sin(c_{t_{m+1}}, cv_i^m) \\ task\_state \leftarrow (o_{t_{m+1}}, \emptyset, p_{t_{m+1}}), visited \leftarrow \emptyset, finished \leftarrow false \\ \textbf{while not } finished \text{ and } a_{curr} \notin visited \textbf{ do} \end{array}
 4:
 5:
 6:
                  visited \leftarrow visited \cup \{a_{curr}\}\
fragments^{rou} \leftarrow \text{Select}(\mathbb{M}_{curr}^{rou}, t_{m+1}, k)
 7:
 8:
                  action \leftarrow \mathcal{F}_{act}(o_{t_{m+1}}, c_{t_{m+1}}, \mathcal{F}_{reason}(o_{t_{m+1}}, c_{t_{m+1}}, fragments^{rou}), fragments^{rou})
 9:
10:
                  if action = \mathcal{O}_{fwd} then
                        a_{curr} \leftarrow \arg\max_{a_k \in \mathcal{A}_m \setminus \{a_{curr}\}} \sin(c_{t_{m+1}}, c_k^m)
11:
                  else if action = \mathcal{O}_{split} then
12:
                        subtasks \leftarrow \text{DecomposeTask}(t_{m+1})
13:
                        task\_state.context
14:
                                                                                                                 task\ state.context
                                                                                                                                                             A
      ProcessSubtasks(subtasks, a_{curr}, \mathcal{A}_m)
                        finished \leftarrow AllSubtasksCompleted(subtasks)
15:
                  else
16:
17:
                        task state.context
                                                                                                                 task state.context
                                                                                                                                                             \oplus
      finished \leftarrow true
18:
19:
                  end if
            end while
20:
            // 2. Network update
21:
            for each interacting pair (a_i, a_j) do
22:
                   w_{m+1}(i,j) \leftarrow \alpha \cdot w_m(i,j) + (1-\alpha) \cdot S(a_i^{m+1}, a_i^{m+1}, t_{m+1})
23:
24:
25:
            \mathcal{E}_{m+1} \leftarrow \{ (a_i^{m+1}, a_j^{m+1}) \mid w_{m+1}(i, j) > \theta_w \}
26:
            // 3. Agent capability and memory update
27:
            for each participating agent a_i do
                  c_i^{m+1} \leftarrow \beta \cdot cv_i^m + (1-\beta) \cdot \Delta c_i^{m+1}, Update \mathbb{M}_i^{rou} and \mathbb{M}_i^{exe}
28:
29:
            end for
30: end for
31: return \mathcal{G}^* = (\mathcal{A}, \mathcal{E})
```

This algorithm provides a systematic approach to managing agent-task interactions, enhancing coordination efficiency, and supporting adaptive learning and specialization within complex environments.

A.2 Scalability Analysis of AgentNet

We analyze the scalability and computational efficiency of **AgentNet** when deployed with a large number of agents. As shown in Figure 6, AgentNet maintains high and stable performance as the scale of the multi-agent network increases, demonstrating its strong scalability and robustness under network expansion.

After each round of task execution, AgentNet updates its parameters through several lightweight operations. Assuming there are k agents and each agent's memory contains m entries (while ignoring asynchronous parallelism), the computational costs are as follows:

- Agent memory updates: Updating each agent's memory requires O(m) time, leading to a total cost of O(km).
- Capability vector updates: Each agent's capability vector update takes O(1) time, resulting in a total cost of O(k).
- Topology updates: If a task execution trajectory involves t agents (i.e., (t-1) edges), only the communication edges among these t agents need to be updated, which costs O(t), and typically $t \ll k$.
- Communication overhead: Each agent only communicates with directly connected agents, avoiding expensive global broadcast operations.

Taken together, the overall time complexity of AgentNet's memory and parameter updates is O(km) in large-scale applications, which highlights its high scalability.

Moreover, thanks to its fully decentralized design, each agent in AgentNet can be deployed on separate devices, enabling asynchronous execution of subtasks and independent updates of memory and capability vectors. This design substantially reduces both time and bandwidth overhead in large-scale distributed environments.

B Supplementary Review of Related Literature

B.1 LLM-based Multi-Agent Systems

The development of LLM-based multi-agent systems (LaMAS) [27] has advanced rapidly in recent years. Early frameworks, such as AutoGen [25] and MetaGPT [9], made significant strides in establishing foundational architectures for orchestrating multiple LLM agents through structured workflows. AutoGen provided a flexible framework for defining agent interactions, while MetaGPT incorporated software development principles to enhance collaboration. These centralized frameworks proved effective for managing multi-agent interactions. However, they also faced inherent challenges, including limited scalability, single points of failure, and difficulty in dynamically adapting to evolving tasks or incorporating new expertise.

In response to these limitations, more recent frameworks such as AgentScope [5] and MegaAgent [22] have focused on improving robustness and scalability. AgentScope introduced modular design patterns to enhance system reliability, while MegaAgent employed hierarchical structures to scale agent interactions. Although these frameworks offer improvements, they still operate under centralized control paradigms, with a master agent delegating tasks, which continues to lead to scalability bottlenecks and single points of failure. Moreover, existing LaMAS implementations predominantly utilize single-source LLMs, lacking the integration of heterogeneous models. Their workflows are typically static, unable to dynamically allocate resources based on task complexity, further constraining adaptability.

In contrast, AgentNet introduces a novel decentralized approach, addressing these challenges by enabling agents to autonomously refine their expertise and dynamically allocate resources. AgentNet supports scalable, fault-tolerant collaboration without reliance on a central orchestrator, overcoming the limitations of centralized frameworks.

B.2 Evolutionary Agent Systems

Inspired by natural evolution, recent researchers have explored evolutionary approaches to automate and optimize agent behaviors and workflows in LaMAS. Existing efforts can be broadly categorized into the following areas:

- **Prompt Evolution and Optimization** Techniques such as PromptBreeder [4], DsPy [12] and AgentPrune [30] apply evolutionary algorithms to iteratively refine prompt generation, improving task performance through better input design.
- Inter-Agent Topology Optimization Systems like GPTSwarm [35], DyLAN [15], and G-Designer [31] focus on evolving the structural organization of agent interactions. These works aim to optimize communication patterns, task allocation, and collaboration efficiency within multi-agent networks.

• Agent Role and Persona Specialization – Frameworks such as AgentVerse and MorphAgent [3, 16] refine agent roles and profiles, enabling more effective specialization and coordination among agents in complex tasks.

While these evolutionary approaches have shown promise, they primarily focus on individual agent adaptation rather than collective coordination. Additionally, they still tend to operate within centralized control structures, which limits their scalability and dynamic adaptability. Recent frameworks like AgentSquare [18] and AFlow [32] have begun to formalize automated design processes for agentic systems, improving system-level orchestration and workflow automation. Another key direction is self-adaptive agent architectures, where agents adjust their strategies in real-time based on feedback and accumulated experience. For example, EvoMAC [10] combines reinforcement learning with evolutionary algorithms to optimize agent decision-making and policy updates.

However, these approaches are often limited to single-agent adaptation and lack mechanisms for decentralized specialization and coordination across large-scale agent collectives. While EvoMAC and other systems focus on optimizing individual agents, they are not designed for scalable, multi-agent, decentralized collaboration. In contrast, AgentNet integrates evolutionary learning with decentralized control, enabling heterogeneous agents to dynamically evolve their roles, adapt their strategies in real-time, and collaborate flexibly across a large-scale multi-agent system. This integration of evolutionary learning with decentralized control makes AgentNet a more suitable framework for real-time, adaptive, and scalable multi-agent collaboration.

C Experimental Setup

Tasks and Benchmarks We evaluate methods using several benchmarks across three task categories, along with custom constructed training and test sets for each benchmark:

- Mathematics: This task involves mathematical problem and is evaluated using MATH [8], which includes problems with 7 different types. The training set consists of 100 examples per type (total of 700 problems), while the test set consists of 20 examples per type (total of 140 problems).
- Logical Question Answering: This task tests reasoning and logical question answering abilities using the BBH (Big-Bench Hard) benchmark [21]. The training set follows the MorphAgent setup, selecting 627 examples from 20 tasks. For testing, each task has 5 examples of varying difficulty, totaling 100 test problems.
- Function-Calling: This benchmark evaluates the agent's ability to perform tool-augmented task planning and API usage, based on the API-Bank dataset [14]. We construct a training set of 100 tasks and a test set of 100 tasks, randomly sampled from the full API-Bank corpus. Since the original dataset does not include category labels, we annotate each task using GPT-40-mini to assign one of the seven task types: health, account, schedule, information, housework, finance, and others. Each task is further categorized into one of three difficulty levels, determined by prompt complexity and required toolchain length.

Metrics A range of evaluation metrics have been adopted for different tasks. For the Mathematics and the Logical Question Answering tasks, the accuracy metric is utilized to evaluate the consistency of the output answer with the true answer within the specified format. For the Coding task, the average test case pass rate (i.e., the ratio of the number of passed test cases to the total number of test cases) and the ratio of problems passed across all test cases have been employed as the evaluation metrics.

Baselines We compare AgentNet with two categories of baselines: single-agent and multi-agent frameworks:

- **Single-agent frameworks:** These methods involve a single agent solving tasks independently without collaboration or coordination with other agents.
 - Direct: A baseline approach where the LLM directly generates outputs.
 - Chain of Thought: A prompting technique that elicits step-by-step reasoning from language models [24].

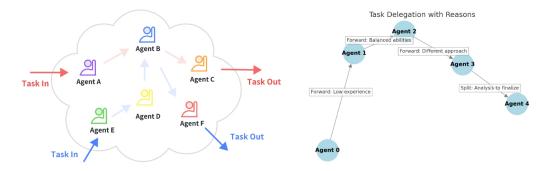


Figure 11: Illustration of the execution process (passing and forwarding) of tasks in AgentNet

- Synapse: A trajectory-as-exemplar prompting method, which prompts the LLM with complete trajectories of the abstracted states and actions to improve multi-step decisionmaking. [33]
- Self-Consistency: A decoding strategy that samples multiple reasoning paths and selects the most consistent answer through majority voting, enhancing reliability [23].
- **Self-Refinement**: An iterative approach where models critically evaluate and improve their own solutions over multiple passes, progressively enhancing solution quality [17].
- Multi-agent frameworks: These methods involve multiple agents working collaboratively to solve tasks, each contributing to different aspects of the task-solving process.
 - MetaGPT: A software development framework where specialized agents (like product manager, architect, engineer) collaborate in a waterfall workflow to complete complex engineering tasks [9].
 - **AFLOW**: A framework that optimizes agent workflows using Monte Carlo Tree Search over code-represented workflows with execution feedback [32].
 - GPTSwarm: A framework modeling agents as computational graphs with automatic optimization of both prompts and agent collaboration patterns [35].
 - MorphAgent: A framework featuring self- evolving agent profiles that dynamically optimize individual expertise in the profile through three metrics [16].

Parameter Configuration In our implementation, we configure the LLM API with a temperature of 0.0, a maximum token limit of 2048, and a top-p value of 1.0, ensuring consistent results throughout our experiments and enabling reliable comparisons and analysis. For the memory pool experiment, we utilize the "BAAI/bge-large-en-v1.5" model to compute the similarity between task queries and database trajectories.

D AgentNet Experiment Configuration

D.1 Task to Ability Mapping in AgentNet

This table illustrates the mapping between a diverse set of cognitive tasks and their corresponding core cognitive abilities. Each task is linked to one or more foundational abilities—such as reasoning, inference, mathematical competence, or linguistic understanding—which are represented using distinct color encodings to enhance visual clarity and interpretability.

Task in BBH	Abilities
boolean_expressions	reasoning
logical_deduction_three_objects	reasoning
logical_deduction_five_objects	reasoning
logical_deduction_seven_objects	reasoning

Task	Abilities
causal_judgement	reasoning, inference
formal_fallacies	reasoning, inference
tracking_shuffled_objects_three_objects	reasoning, sequence
tracking_shuffled_objects_five_objects	reasoning, sequence
tracking_shuffled_objects_seven_objects	reasoning, sequence
multistep_arithmetic_two	mathematical
geometric_shapes	mathematical, spatial
object_counting	mathematical, spatial
word_sorting	mathematical
date_understanding	mathematical, language
dyck_languages	mathematical, language
disambiguation_qa	language
hyperbaton	language
salient_translation_error_detection	language
movie_recommendation	knowledge
sports_understanding	knowledge
penguins_in_a_table	knowledge
reasoning_about_colored_objects	knowledge
ruin_names	language, knowledge
temporal_sequences	sequence
navigate	spatial
web_of_lies	inference
snarks	inference

The construction of this task-ability mapping is motivated by the objective of optimizing agent-task alignment within a multi-agent system. By adopting a single-level ability classification, we establish a tractable yet expressive abstraction of agent competencies that facilitates efficient task routing and capability differentiation.

This initial flat taxonomy serves as a foundational layer for scalable skill orchestration. It provides a principled basis for agent coordination and lays the groundwork for future extensions toward a hierarchical ability framework—enabling finer-grained specialization and more precise agent-task matching in complex environments.

D.2 Initial Configuratio

The initial configuration specifies the setup for each experiment conducted within the AgentNet framework. This YAML-based configuration file defines global experimental parameters, default agent initialization, and the structure of the agent communication network.

```
experiment_config:
  LLM: gpt-4o-mini
  dataset: bigbenchhard
  task_num: 100
  agent_num: 3
  forward_path_max_length: 3
  max_execution_times: 5 ## for tuning
  user_react: True
```

```
default_agent_config: &default_agent_config
 LLM: gpt-4o-mini
 abilities:
  reasoning: 0.6
  mathematical: 0.6
  language: 0.6
  knowledge: 0.6
  sequence: 0.6
  spatial: 0.6
  inference: 0.6
 executor_memory_limit: 40
 embedding_cache_limit: 1000
 router_memory_limit: -1
 decay_rate: 0.1
 decay_interval: 10
 router_retrieval_num: 3
 executor_retrieval_num: 3
agent_graph_config:
 graph_type: complete
```

Listing 1: Experiment Initial Configuration YAML

The configuration includes three primary components:

- Global Experiment Settings (experiment_config) This section controls the overall experiment, including:
 - The underlying LLM used by agents (LLM).
 - The evaluation dataset (dataset).
 - Number of tasks to be dispatched (task_num) and number of agents (agent_num).
 - Routing and execution limits (forward_path_max_length, max_execution_times).
 - Whether the React output format (user_react) is enabled, as it allows for reasoning before taking action.
- **Default Agent Parameters** (**default_agent_config**) All agents are initialized with this shared configuration unless overridden. It includes:
 - A uniform initialization across all ability dimensions (e.g., reasoning, language, spatial, etc.).
 - Memory and caching limits (executor_memory_limit, embedding_cache_limit).
 - Temporal dynamics of memory decay (decay rate, decay interval).
 - Retrieval settings for routing and execution modules.
- Agent Communication Graph (agent_graph_config) Defines the topology of interagent communication. In this example, a *complete graph* is used, enabling each agent to communicate with all others.

D.3 AgentNet Prompt Specification

The Agent Prompt Specification defines the structured input schema received by each agent in the AgentNet system. This schema ensures that all relevant contextual, historical, and task-specific information is explicitly provided before an agent begins reasoning or execution.

Rather than free-form prompts, AgentNet adopts a structured prompt interface, where each field conveys a distinct aspect of the task environment. This design improves interpretability, modularity, and control, making it easier to route tasks, compare decisions, and analyze agent behavior.

Table 5: Schema definition for AgentNet prompting.

Field	Description
major_problem	The overarching goal or task shared among agents in the system.
experiences	Past task examples or performance records relevant to the current task.
task_context	Previously completed subtasks and results, used to determine next steps.
current_agent_info	Information about the current agent, including its abilities and status.
task_type	The category or nature of the task (e.g., reasoning, language, etc.).
task_description	A detailed description of the specific problem to be addressed.
agent_info	Information about other agents in the system, including their abilities and prior performances.
constraints	Format or structural requirements for the expected result output.
thought	Reasoning or intermediate planning used to guide execution of the task.

This input schema acts as the interface contract between the system and each agent, standardizing how agents perceive their operating context. It also lays the foundation for future work on agent generalization, multi-agent coordination, and prompt optimization.

E Limitations and Future Work

Despite AgentNet implementing a fully distributed, adaptive learning multi-agent system (MAS) with dynamic task allocation, several important limitations remain that require further exploration in future work.

One key challenge is how to improve task performance in heterogeneous agent environments. In real-world applications, agents often vary significantly in terms of model capabilities, workflow structures, tools, and available data. The impact of such heterogeneity on AgentNet's performance, especially in terms of task coordination and resource allocation, remains an open question. Understanding how to adapt the system to handle such variations efficiently will be crucial for its scalability and effectiveness in complex environments.

Secondly, the decision-making process of the router within each agent, particularly in relation to exploration and discovery, requires more in-depth study. Currently, the router selects agents from a relatively small pool of predefined candidates. However, in larger-scale systems involving hundreds or potentially thousands of agents, the challenge of accurately identifying the most suitable agent for task delegation becomes significantly more complex. This problem is further compounded in heterogeneous settings, where different agents may possess distinct strengths and weaknesses. To address this, future research could focus on developing more sophisticated routing mechanisms that can autonomously identify and delegate tasks to the most appropriate agents, even in large and diverse agent pools.

Additionally, a promising direction for future work involves designing incentives that encourage the router to explore agents beyond the predefined candidate set. By enabling AgentNet to dynamically discover new agents or specialized capabilities, such an approach would enhance its adaptability and scalability, ultimately improving the system's overall performance and autonomy.

F Ethics Statement

This study did not involve human participants, animal subjects, or the use of personal data. All datasets and benchmarks employed are publicly available and used in accordance with their respective licenses. Therefore, no ethics approval was required.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer [Yes], [No], or [NA].
- [NA] means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "[Yes]" is generally preferable to "[No]", it is perfectly acceptable to answer "[No]" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "[No]" or "[NA]" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- Delete this instruction block, but keep the section heading "NeurIPS paper checklist",
- · Keep the checklist subsection headings, questions/answers and guidelines below.
- Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we have thoroughly detailed the background, motivation, scope, main experimental results, and contributions of our work.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the work are provided in Section E.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The derivations of the theoretical result are adequately presented.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper has disclosed all the information in the method and experiment section. The data and code are also publicly accessible and provided with detailed procedures to reproduce the results reported in this paper.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The code and data are provided.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Details of both training and test are disclosed.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We adopt standard evaluation datasets, LLM agents, and metrics, which are accompanied by statistical significance.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The experiments are sufficiently discussed to be run by others.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.

- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The conducted research conforms in every respect with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. **Broader Impacts**

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: Both potential positive societal impacts and negative societal impacts of the work have been discussed.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper has discussed safeguards for responsible release of data or models that have a high risk for misuse.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All the mentioned previous work are properly cited.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The code will be made public upon acceptance.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.