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Abstract

The rapid advancement of large language models (LLMs) has enabled the devel-
opment of multi-agent systems where multiple LLM-based agents collaborate on
complex tasks. However, existing systems often rely on centralized coordination,
leading to scalability bottlenecks, reduced adaptability, and single points of failure.
Privacy and proprietary knowledge concerns further hinder cross-organizational
collaboration, resulting in siloed expertise. We propose AgentNet, a decentralized,
Retrieval-Augmented Generation (RAG)-based framework that enables LLM-based
agents to specialize, evolve, and collaborate autonomously in a dynamically struc-
tured Directed Acyclic Graph (DAG). Unlike prior approaches with static roles or
centralized control, AgentNet allows agents to adjust connectivity and route tasks
based on local expertise and context. AgentNet introduces three key innovations:
(1) a fully decentralized coordination mechanism that eliminates the need for a
central orchestrator, enhancing robustness and emergent intelligence; (2) dynamic
agent graph topology that adapts in real time to task demands, ensuring scalability
and resilience; and (3) a retrieval-based memory system for agents that supports
continual skill refinement and specialization. By minimizing centralized control
and data exchange, AgentNet enables fault-tolerant, privacy-preserving collabora-
tion across organizations. Experiments show that AgentNet achieves higher task
accuracy than both single-agent and centralized multi-agent baselines.

1 Introduction
By leveraging collective intelligence through parallel decision-making or workflow collaboration,
LLM-based Multi-Agent Systems (MAS) have emerged as a promising framework for tackling com-
plex real-world problems [7, 20, 26, 27]. However, most MAS following the workflow collaboration
paradigm rely heavily on a centralized controller or a static, predefined workflow to allocate tasks
among agents with fixed roles [2, 9, 22, 25, 29]. While such designs simplify orchestration, they also
introduce inherent constraints—including limited scalability, a single point of failure, and challenges
to cross-organizational collaboration due to privacy and proprietary knowledge concerns.

A more critical drawback arises from the inability of these systems to adapt to real-time fluctuations
in agent performance or rapidly changing task requirements. Relying on a central controller inflates
deployment complexity and restricts dynamic role reassignment, rendering the system vulnerable
when the controller fails or becomes overloaded. Furthermore, rigid role definitions prevent agents
from flexibly leveraging their full expertise in dynamic environments, ultimately undermining both
efficiency and scalability. Taken together, these limitations highlight the need for more decentralized,
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Figure 1: Conceptual comparison between traditional Pre-Defined Multi-Agent Systems and the proposed
Self-Evolving AgentNet. While conventional systems rely on hierarchical and static structures with centralized
control, AgentNet features adaptive, decentralized coordination and dynamic expertise evolution, enabling robust
and scalable performance.

fault-tolerant approaches that support dynamic task allocation, enhance adaptability, and safeguard
privacy across organizational boundaries.

Beyond the scalability and failure-tolerance issues previously discussed, centralized architectures
become even more problematic when organizations attempt to collaborate at scale [27, 19]. Each
institution—be it an enterprise, research lab, or government agency—typically holds proprietary
expertise, sensitive data, or both. In a centralized setup, concerns over data ownership, privacy regu-
lations, and inconsistent governance often create barriers that prevent free exchange of knowledge.
As a result, LLM-based agents contributed by multiple organizations remain siloed, unable to fully
capitalize on each other’s specialized capabilities or datasets. This fragmentation not only hampers
collective intelligence but also highlights the urgency of developing secure, decentralized collabora-
tion mechanisms. By enabling each participant to maintain and share only the minimal necessary
information, these mechanisms address data confidentiality requirements while still allowing for a
richer, more collaborative multi-agent ecosystem.

To address these challenges in multi-agent systems, we propose AgentNet, a novel framework
designed to foster adaptive agent evolution, optimize task coordination, and preserve privacy. In
real-world deployments, each agent in a multi-agent system may have its own role, along with
private databases, tools, and other unique resources. The quality and domain of these databases
directly influence the agent’s capability through training parameters or demonstrations. In AgentNet,
we model this reality using a RAG-based mechanism, enabling each agent to maintain distinct
knowledge, perform unique updates, and retrieve information effectively. By eliminating the reliance
on a central orchestrator, AgentNet enables agents to dynamically reconfigure their connections and
redistribute tasks, forming a self-organizing, fault-tolerant architecture. Within this architecture,
tasks are efficiently routed via a Directed Acyclic Graph (DAG) [11, 1], which supports flexible
collaboration and prevents cyclic dependencies.

Unlike traditional MAS frameworks that fix each agent’s role (as shown in Figure 1), AgentNet
incorporates a retrieval-based RAG [13, 6, 34] memory mechanism to refine agent expertise over
time. In real-world deployments, each agent in a multi-agent system may have its own role, along
with private databases, tools, and other unique resources. The quality and domain of these private
data sources directly influence the agent’s capability through training parameters or demonstrations.
To model this reality, each agent in AgentNet maintains a limited-capacity pool of successful task
trajectories and domain-specific knowledge. When a new task arises, the agent retrieves the most
relevant trajectories through few-shot learning to improve its decision-making and adapt its expertise.
To prevent memory overflow, agents autonomously prune less pertinent trajectories, ensuring the
retention of valuable knowledge. This dynamic specialization strategy not only streamlines task
allocation and agent adaptation but also supports a highly scalable and privacy-preserving environment
for multi-agent collaboration.

2



Figure 2: Illutration of AgentNet. Initially, agents are fully connected and equipped with executors and routers.
The system eliminates the need for a central controller, using a DAG for dynamic task routing and agents
leveraging RAG pools and few-shot learning. In the evolved phase, the network adapts with agents developing
private trajectories and diversified abilities.

AgentNet’s core design is built upon several key innovations:

• Fully Decentralized Paradigm: By removing the need for a central orchestrator, AgentNet
fosters emergent collective intelligence. Decision-making authority is distributed across all
agents, thereby eliminating single points of failure and allowing each agent to coordinate,
delegate, and specialize as conditions evolve. This approach leads to a self-organizing
and fault-tolerant architecture that can rapidly respond to new tasks and unforeseen chal-
lenges. This decentralized setup also encourages emergent collective intelligence—in other
words, agents can collectively discover and refine optimal strategies rather than waiting for
instructions from a central controller.

• Dynamically Evolving Graph Topology: AgentNet employs a network structure in which
both nodes (agents) and edges (agent-to-agent connections) adapt in real time based on
task demands and agent performance. Rather than relying on fixed workflows, the system
continuously reconfigures its topology to optimize information flow and task distribution,
ensuring scalability and resilience in complex, changing environments.

• Adaptive Learning Mechanism for Expertise Refinement: AgentNet’s third innovation is
its retrieval-based memory system, enabling agents to capture and update knowledge from
successful task trajectories. This mechanism continuously refines each agent’s specialized
skills without altering the network’s topology, allowing agents to avoid over-reliance on
outdated information and sustain high performance in dynamic scenarios.

Moreover, each of these three innovations inherently enhances data privacy. By eliminating a central
orchestrator, every agent stores and processes knowledge locally, sharing only minimal task-relevant
metadata. The dynamic graph topology further confines data flow to necessary agent-to-agent
interactions, reducing the exposure of sensitive information. Meanwhile, the retrieval-based memory
mechanism restricts how much and how long data is retained, pruning outdated trajectories so that
only high-value knowledge persists. Together, these design choices safeguard privacy and intellectual
property, particularly crucial for cross-organizational collaborations.

Our experimental evaluation shows that AgentNet significantly outperforms traditional LLM-based
multi-agent frameworks in dynamic environments, demonstrating improved task efficiency, specializa-
tion stability, and adaptive learning speed. These results highlight the effectiveness of decentralized
evolutionary coordination in large-scale AI ecosystems.

2 Related Work
2.1 LLM-based Multi-Agent Systems
LLM-based multi-agent systems (LaMAS) have rapidly evolved, with early frameworks like AutoGen
[25] and MetaGPT [9] establishing structured, centralized workflows. These systems enabled effective
coordination but suffered from scalability issues, single points of failure, and limited adaptability.
Subsequent work, such as AgentScope [5] and MegaAgent [22], introduced modular and hierarchical
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designs to improve robustness. However, they remain centrally orchestrated and typically rely on
single LLMs, with static task workflows that hinder dynamic adaptation. AgentNet departs from this
centralized paradigm by introducing a fully decentralized architecture. Agents specialize dynamically,
collaborate via a DAG-structured network, and evolve their expertise through retrieval-based memory,
enabling scalable, fault-tolerant coordination.

2.2 Evolutionary and Adaptive Agent Systems
Inspired by biological evolution, several frameworks optimize agent behaviors through prompt
evolution [4, 12], topology adaptation [35, 15], and role specialization [3, 16]. While promising,
most operate under centralized control and focus on individual agents rather than system-level
decentralization. Recent advances such as AgentSquare [18] and EvoMAC [10] explore automated
workflow design and self-adaptive strategies, yet often lack mechanisms for scalable, decentralized
coordination. AgentNet addresses this gap by combining evolutionary learning with decentralized
control. It enables heterogeneous agents to adapt roles and strategies in real time, supporting scalable
and dynamic collaboration across large agent networks.

3 Methodology
3.1 Preliminary of AgentNet
Unlike traditional MAS frameworks with fixed agent roles and rigid workflows using central co-
ordinators, AgentNet creates a privacy-preserving, collective intelligence multi-agent system with
high scalability and failure-tolerance by leveraging an innovative framework, consisting of a fully
decentralized network architecture, a dynamic task allocation mechanism, and an adaptive agent
learning method, as illustrated in Figure 2.

We begin with a brief introduction of AgentNet, including notation and basic architectures of agents
employed. Formally, we define AgentNet as a tuple G = (A,E), where A = {a1, a2, ..., an}
represents the set of autonomous agents, C = {c1, c2, ..., cn} represents each agent’s ability, and
E ⊆ A × A represents the communication connections between agents, specifically ei,j ∈ E
referring to a unidirectional connection from Agent ai to Agent aj . For each agent ai ∈ A contains
two key components. roui is an agent router, responsible for analyzing received routing queries
and making routing decisions. exei is an agent executor, responsible for responding to executing
queries through operations and tools. The two components mentioned above are underpinned
by a substantial LLM that leverages its extensive knowledge and understanding to solve specific
problems. Furthermore, both roui and exei in ai maintain fixed-size memory modules Mrou

i and
Mexe

i , respectively, providing ai with powerful adaptive evolutionary capabilities by storing and
utilizing the agent’s experiences through the RAG mechanism.

For optimization, AgentNet will be given a series of tasks denoted as T = {t1, t2, ..., tM} to resolve,
along with an evaluation function Eval(·). The optimization goal of AgentNet is to maximize the
evaluated score by Eval(·) for the solution output by AgentNet, specifically optimizing A and E , as
the following formula:

G∗ = (A∗,E∗) = argmax
A,E

Eval(G,T ). (1)

3.2 Decentralized Network Topology

Mathematically, we represent the architecture of AgentNet as Gm = (Am,Em) when given the
m+ 1-th task tm+1 after completing task tm, where Am = {am1 , am2 , ..., amn } represents the states
of agents after task tm and Em ⊆ Am ×Am represents the set of directed edges between agents
and each edge emi,j means a directed edge from ami to amj . A weight matrix wm will be maintained
throughout all the tasks before tm+1 to weight the connection between agents, namely wm(i, j).
After completing tm+1, wm+1 can be updated using the following formula from wm:

wm+1(i, j) = α · wm(i, j) + (1− α) · S(am+1
i , am+1

j , tm+1), (2)

where α ∈ [0, 1] is a decay factor that balances historical performance with recent interactions, and
S(am+1

i , am+1
j , tm+1) is a success metric for task tm+1 routed from agent am+1

i to am+1
j . This

adaptive weighting mechanism ensures that the network continuously refines its structure based on
operational experience.
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As shown in Figure 3, AgentNet employs a dual-
role architecture where each agent ai consists of
a router roui for task distribution and an executor
exei for task execution. Details about these mod-
ules will be discussed in the following sections.
Crucially, the router enables AgentNet’s decentral-
ized structure, as each agent independently makes
routing decisions without relying on any central-
ized coordinator. This decentralized approach con-
trasts traditional LLM-based multi-agent systems,
which typically rely on a central controller for task
allocation. In AgentNet, agents autonomously de-
cide task routing based on local information and
specific task requirements. This ensures distributed
decision-making, eliminates single control points,
and achieves full decentralization.

Figure 3: Dual-role agent architecture.

Over tasks, the weight matrix wm will evolve based on collaborative success, and the edges with a
lower weight than a hyper-parameter threshold θw are periodically pruned:

Em+1 = {(am+1
i , am+1

j ) | wm+1(i, j) > θw}. (3)

This pruning mechanism ensures that the network maintains efficient pathways while eliminating
unproductive connections, optimizing both communication overhead and routing efficiency.

3.3 Adaptive Learning and Specialization

AgentNet’s adaptive learning mechanism allows agents to continuously improve and naturally
specialize through task experiences, without explicit role assignments. This capability distinguishes
AgentNet from static multi-agent systems, enabling it to adapt dynamically to evolving requirements.
Agents utilize the ReAct (Reasoning + Acting) framework [28, 34], reasoning carefully about task
queries and contexts before executing actions. To enhance their reasoning, agents employ Retrieval-
Augmented Generation (RAG) [13, 6, 34], retrieving relevant fragments from past experiences stored
in memory.

Specifically, each agent ai ∈ A maintains two dedicated memory modules: Mrou
i for routing and

Mexe
i for execution. These modules store fragments of trajectories corresponding only to steps

involving the agent itself, rather than full task trajectories involving all agents. For each memory type
r ∈ {rou, exe}, each memory fragment fr = (or, cr, ar) consists of an observation or (task query),
context cr (partial task history), and action ar (agent’s response). Upon receiving a new task tm+1,
the agent retrieves the k most relevant fragments from each memory module, formally defined as:

Select(Mr
i , tm+1, k) = argmax

F⊂Mr
i

|F|=k

∑
f∈F

sim
(
embed(orf , c

r
f ), embed(ortm+1

, crtm+1
)
)

(4)

Here, embed(·) is a semantic embedding function that projects the input context into a high-
dimensional vector space, and the fragments with the highest relevance are retrieved to inform
the agent’s reasoning or action for both routing and execution processes.

Both the reasoning and acting processes are enhanced by the retrieval of historical task fragments,
allowing the agent to make better decisions based on prior experiences. The reasoning function for
each module type is modeled as:

Rai(tm+1, r) = Freason(otm+1 , ctm+1 , {fr
j }kj=1), (5)

where Freason represents the large language model that serves as the backbone of the LLM Agent,
processing the inputs to generate reasoned decisions. The reasoning functionRai

takes the current
observation and question otm+1

, the historical context ctm+1
representing the partial task trajectory

and interactions up to the current point, and the retrieved fragments {fr
j }kj=1 as input to generate the

reasoning output. The fragments allow the agent to reason based on prior experiences that are most
relevant to the current situation.
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Figure 4: Details of Dynamic Task Allocation.

Once the reasoning process has been completed, the agent executes the chosen action. The action is
informed by the reasoning output, which can be expressed as:

Aai
(tm+1, r) = Fact(otm+1

, ctm+1
,Rai

(tm+1, r), {fr
j }kj=1), (6)

where Fact represents the large language model that serves as the backbone of the LLM Agent,
translating reasoning into concrete operations. The Aai(tm+1, r) function utilizes the reasoning
outputRai(tm+1, r) along with the retrieved memory fragments to determine the appropriate action.
The specific action depends on the module type: for r = rou, the router module may produce actions
such as forwarding the task to another agent or splitting it into subtasks; for r = exe, the executor
module generates a single-step operation or response to directly address the final answer.

Agents employ a dynamic memory management strategy, evaluating stored trajectories based on
task context, historical usage, frequency, recency, and uniqueness. When a memory module reaches
capacity (Cmax), agents remove the least useful trajectories to maintain a high-quality memory
pool through a prompt-based reasoning process. This adaptive process enables agents to naturally
specialize over time, optimizing performance across diverse tasks.

3.4 Dynamic Task Allocation
The dynamic task allocation mechanism in AgentNet enables efficient distribution of tasks without
centralized coordination, creating a responsive system that optimizes both performance and load
balancing. Each task t ∈ T is formally represented as a tuple t = (ot, ct, pt), where ot contains the
task description in natural language, ct is a vector of capability requirements, and pt denotes the
priority level. To efficiently process a new task tm+1 after completing task tm, AgentNet employs a
sophisticated mechanism to select the most suitable initial agent. Agent capability representation and
matching form the foundation of task allocation. Each agent ami , after completing task tm, possesses a
capability vector cvmi that is dynamically updated through task performance during system operation.
In the initial allocation phase, the system selects an entry agent for tm+1 using the following formula:

ainitial = argmax
ai∈Am

{sim(ctm+1 , cv
m
i )}, (7)

where ctm+1
= Φ(otm+1

) represents the capability requirements of task tm+1, cvmi denotes the
capability vector of agent ai, and sim(·, ·) is a similarity function measuring the match between task
requirements and agent capabilities. The capability requirements are determined through different
methodologies depending on task complexity:

ctm+1 =

{
Φatomic(tm+1), for atomic tasks
Φcompound(tm+1), for compound tasks.

(8)

For atomic tasks, the system uses a function Φatomic that maps task properties to capability re-
quirements based on predefined heuristics. For compound tasks, the function Φcompound utilizes an
instruction set with carefully designed prompts to guide the large language model in analyzing task
descriptions and inferring the required capability vectors. Agents are then ranked by their capability
matching scores, and the highest-scoring agent is selected as the initial executor.

Once a task is assigned to the initial agent, the agent determines how to process it based on the
reasoning results from its router module roui. As shown in Figure 4, the agent can perform one of
three operations:

1. Forward (Ofwd): Transfer the task unchanged to another more suitable agent, maintaining
the task’s original state and preserving the Directed Acyclic Graph (DAG) property of the
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Table 1: Performance comparison of different methods across various tasks. In all multi-agent methods, we set 3
agents for each method to ensure a fair comparison. The best result is in bold, while the second is underlined.

Backbone Category Method MATH(Acc/%) BBH(Acc/%) API-Bank(Acc/%)

DeepSeek-V3

Single Agent

Direct 47.86 69.00 26.00
React 77.14 88.00 29.00

Synapse 89.28 92.00 28.00
Self-Consistency 88.00 85.00 29.00
Self-Refinement 87.14 84.00 25.00

Multi-Agent
MorghAgent 39.29 56.00 16.00

MetaGPT 92.14 64.00 22.00
AFLOW 91.67 88.00 28.00

GPTSwarm 72.14 90.00 21.00
AgentNet 92.86 94.00 30.00

GPT-4o-mini

Single Agent

Direct 31.43 59.00 15.00
React 55.71 80.00 24.00

Synapse 77.14 79.00 22.00
Self-Consistency 54.28 85.00 22.00
Self-Refinement 68.57 81.00 23.00

Multi-Agent
MorghAgent 80.71 56.00 16.00

MetaGPT 73.57 53.00 19.00
AFLOW 85.00 75.00 21.00

GPTSwarm 85.00 86.00 13.00
AgentNet 85.00 86.00 29.00

Qwen-turbo

Single Agent

Direct 37.85 57.00 27.00
React 53.57 69.00 23.00

Synapse 67.14 68.00 24.00
Self-Consistency 64.28 70.00 28.00
Self-Refinement 76.43 74.00 23.00

Multi-Agent
MorghAgent 16.43 56.00 9.00

MetaGPT 63.57 51.00 20.00
AFLOW 82.14 57.00 22.00

GPTSwarm 79.29 75.00 30.00
AgentNet 81.43 92.00 32.00

routing path. Forwarding decisions are based on analyzing the gap between the current
agent’s capabilities and the task requirements, as well as evaluating the capability vectors of
other agents in the network.

2. Split (Osplit): Decompose the task into subtasks, execute portions matching the agent’s
expertise, and route the remaining subtasks to an appropriate agents. Subtask routing follows
this formula:

anext = argmax
ak∈Am\{ai}

{sim(Φ(otm+1
), cmk )}, (9)

where Φ(otm+1
) represents the capability requirements derived from the observation of

subtask j, determined through the current agent’s task decomposition reasoning, and Am \
{ai} denotes the set of all agents excluding the current one.

3. Execute (Oexec): Complete the entire task without further delegation.

A key design feature in the system is that when an agent chooses to split a task, it only forwards
the results of the subtasks it has completed, and not the reasoning behind the decomposition. This
prevents the transfer of unnecessary information and ensures that task decomposition errors made by
one agent do not propagate to other agents in the network.

The agent capability vector cvmi is updated based on task execution history and success rates, using
the following formula:

cm+1
i = β · cvmi + (1− β) ·∆cm+1

i , (10)
where β ∈ [0, 1] is a decay factor balancing historical capabilities with newly acquired ones, and
∆cm+1

i represents the new capability contribution demonstrated by the agent in task tm+1, calculated
by analyzing the types of operations successfully executed by the agent and the quality of results.

The task state updates only when an agent completes a part—by executing or splitting it. Upon
subtask completion, the agent updates the context and passes it to the next agent:

contextupdated = contextoriginal ⊕ result(aj , ti). (11)
While the task is simply forwarded from one agent to another, its state remains unchanged, preserving
the Directed Acyclic Graph (DAG) structure of the routing path. This prevents infinite loops and
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ensures effective task progression across agents. Through this dynamic task allocation mechanism,
AgentNet adaptively optimizes task flow based on task characteristics and evolving agent capabilities.

4 Experiment
4.1 Main Results
Table 1 summarizes performance across Math, Coding, Logical QA tasks and API-Calling tasks,
detailed settings and implementation details are provided in Section C. For Math, Logical QAs and
API-Calling tasks, accuracy is reported; for Coding, we report average test case pass rate and full
problem pass ratio. Compared to single-agent methods (e.g., Synapse, ReAct), AgentNet achieves
competitive or superior performance across all tasks. While ReAct performs well on Math and
Logic, its static prompting strategy limits generalization to more complex tasks. Against multi-agent
baselines, AgentNet consistently outperforms centralized frameworks such as MetaGPT, which suffers
from limited scalability—e.g., only 53.00% accuracy on Logical QA. MorphAgent underperforms
on Coding tasks, as it generates self-constructed test cases during training, resulting in invalid or
uncompilable outputs. AgentNet’s decentralized coordination and retrieval-augmented memory
contribute to its robustness across domains, particularly in tasks requiring contextual understanding
and adaptive role specialization.

4.2 Experiments on Heterogeneous Agents

To investigate the impact of agent diversity on performance, we designed a heterogeneity experiment
across different settings on the BBH task. Agents were tested under four configurations: fully
homogeneous (identical models and capabilities), LLM heterogeneity (different language models,
same capabilities), skill heterogeneity (same model but varied capabilities), and a combination of
both. This design allows us to isolate and analyze how model-level and capability-level diversity
influence multi-agent collaboration.

Table 2: BBH Accuracy under Different Heterogeneity Settings (Acc%)
Setting Fully Homogeneous Skill Hetero. LLM Hetero. Both Hetero.

3 Agents 0.86 0.84 0.81 0.81
5 Agents 0.79 0.86 0.85 0.85

Results in Table 2 show that the impact of heterogeneity on performance depends on team size. With 3
agents, the fully homogeneous setting performs best, while introducing either model or skill diversity
reduces accuracy, suggesting uniform reasoning is more effective in small teams. However, with
5 agents, heterogeneous configurations outperform the homogeneous one, indicating that diversity
enhances collaboration and complementary reasoning in larger teams. Overall, heterogeneity may
introduce coordination overhead in small groups but offers clear benefits at larger scales.

4.3 Ablation Study

Router Effectiveness in AgentNet To evaluate AgentNet’s decentralized router, experiments
were conducted comparing AgentNet with ablation configurations: "Totally Random", "Random
Operations", "Random Next Agent ID" and a centralized "Global Router". Each router manages
external routing (selecting the next agent) and internal routing (deciding to forward, split, or execute).
Performance was tested on the BBH task (train-
ing: 627 problems, testing: 100 problems), with
results in Figure 5. AgentNet outperforms ran-
domized methods, achieving 82.14% accuracy
during training and 86.00% during testing. Ran-
domizing operations (forward/split/execute) af-
fects task execution more directly, randomizing
next agent ID primarily results in suboptimal task
delegation but does not disrupt task completion
as severely. These results underscore the critical
role of effective routing and suggest that optimiz-
ing routing decisions can significantly enhance
multi-agent system performance.

Totally Random
Random Operations

Random Next Agent IDGlobal Router AgentNet40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

54.86

69.00

81.49 81.18
82.14

55.00

71.00

82.00 83.00
86.00

AgentNet's Router Performance on BBH
Test Trend
Train (627ps)
Test (100ps)

Figure 5: AgentNet’s Router Performance on the BBH
(Backbone: gpt-4o-mini)
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Impact of Evolution Phase Results in Ta-
ble 3 clearly indicate that AgentNet significantly
improves performance compared to the non-
evolution baseline. On the MATH task, Agent-
Net achieves a score of 85.00 versus 77.86. For
the function-calling task, performance improves
notably from 23.00 to 32.00, and BBH task ac-
curacy rises from 76% to 86%.

Table 3: Performance Comparison of AgentNet vs.
Without evolution (Backbone: gpt-4o-mini)

3 Agents MATH API-Bank BBH

(Acc) Acc (Acc)
w/o evolution 77.86 23.00 76.00

AgentNet 85.00 32.00 86.00

These results confirm that AgentNet’s adaptive learning during the evolution phase effectively
enhances agent specialization and task performance, demonstrating its essential role in the system’s
optimization and overall efficiency.

4.4 Analysis
Scalability and Robustness of the System As shown in Figure 6, both training and testing
performance of AgentNet improve slightly with an increased number of agents and a larger executor
pool on the BBH task. Training accuracy rose from 80.38 (3 agents, 30 executors) to 81.18 (9 agents,
40 executors), while testing performance ranged from 80 to 86, peaking with 40 executors. These
incremental gains highlight AgentNet’s ability to scale efficiently through decentralized coordination.
While performance improves with more resources, the diminishing returns suggest an optimal
configuration exists. Overall, the experiment confirms that AgentNet’s adaptive design supports
scalable, efficient, and fault-tolerant multi-agent systems.

Figure 6: AgentNet Performance with Different Net Parameters. Experiments were conducted with routers
without pool limit, where (A, B) represents A as the number of agents and B as the upper limit of the executor
pool, with performance evaluated on the BBH.

Evolution of Agents Networks The evolution of the agent network in our experiment is illustrated
in Figure7, which demonstrates the transition of a multi-agent system composed of 5 agents running
on the BBH (627 pieces) benchmark. The figure captures the network at three key stages: the initial
state, an intermediate state, and the final evolved state.

Figure 7: Evolution Example of Agents Networks.

In the initial state, the network is fully connected with uniform connection values of 1.00, indicating
equal capabilities among all agents. At this stage, there is no specialization, and all agents are equally
equipped to handle tasks. As the network evolves, agents begin to specialize, and connection values
vary, reflecting the strength of collaboration. Stronger connections indicate tighter cooperation, while
weaker ones suggest less interaction. This evolution shows how agents naturally adapt and form
more efficient collaboration patterns. By the final stage, the network exhibits clear specialization,
with agents taking on distinct roles. The connection values further emphasize the growing cooper-
ation between specialized agents, improving task performance. This progression demonstrates the
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effectiveness of decentralized coordination, where evolving collaboration enhances task allocation,
scalability, and fault tolerance.

Autonomous Specialization of Agents Based on the observed results in Figure 8, the experiments
demonstrate that AgentNet’s multi-agent system can naturally specialize agents in a decentralized
environment.

Figure 8: Autonomous Specialization under Different Agent Sets. The upper limit of the executor pool is fixed at
40, regardless of the number of agents. Figure shows agents’ fabilities after training on 627 questions on BBH.

With varying numbers of agents and a fixed executor pool of 40 pieces, the ability scores across
different tasks such as reasoning, language, knowledge, and sequence showed significant variation.
As the number of agents increased, specialization became more evident, particularly in complex
tasks, with certain agents excelling in specific areas while others focused on different abilities. This
highlights AgentNet’s capacity to dynamically refine agent expertise and optimize performance in a
decentralized, task-driven system.

Case Studies This case study is presented to illustrate the differences between the two methods,
based on results obtained using GPT-4o-mini on the BBH dataset. The left image shows the trajectory
produced by the ReAct method, while the right image illustrates the trajectory generated by AgentNet.
In the case of ReAct, the lack of collective reasoning results in an incorrect response after a single-step
inference, highlighting the limitations of the method in handling tasks that require more complex
reasoning. In contrast, AgentNet uses a multi-step workflow where agents without the necessary
expertise are bypassed, while those with the relevant skills divide the task into smaller steps, leading
to a more accurate final solution.

Question:
Which sentence has the correct adjective order?
Options:
A. old-fashioned circular green cardboard exercise
computer
B. old-fashioned green exercise circular cardboard
computer

ReAct
Reasoning: (B) was selected because it follows a
common pattern in English, where opinion
adjectives (e.g., "old-fashioned") precede color
adjectives (e.g., "green") and shape adjectives
(e.g., "circular").

Action: (B) Ground
Truth:(A)

Figure 9: ReAct Response with Reasoning

AgentNet (5 Agents)
Agent 0: Decision: Forward Next Agent: Agent 1
Agent 1: Decision: Forward Next Agent: Agent 2
Agent 2: Decision: Forward Next Agent: Agent 3
Agent 3: Decision: Split
Executable: Adjective order analysis
Delegate: Final answer to another agent
Findings:

Correct order: Quantity, opinion, size, age, shape,
color, origin, material, purpose Correct Option: (A)
Next Agent: Agent 4
Agent 4: Decision: Execute Action: Confirmed option
(A)
Final Outcome: (A) Ground
Truth:(A)

Figure 10: AgentNet Task Breakdown

5 Conclusion
In conclusion, AgentNet provides an effective approach to addressing the limitations of traditional
centralized multi-agent systems. With its decentralized architecture, dynamic task allocation, and
adaptive learning mechanisms, AgentNet improves scalability, fault tolerance, and task efficiency in
collaborative environments. Its privacy-preserving features further ensure secure cooperation across
organizations. Our experimental results highlight the advantages of this approach, demonstrating im-
provements in task efficiency, adaptability, and specialization. AgentNet offers a practical framework
for developing more flexible and secure multi-agent systems in dynamic, real-world settings.
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A Algorithm of AgentNet

A.1 Pseudocode of AgentNet

The AgentNet System is designed to optimize task allocation and agent coordination within a multi-
agent environment. This algorithm orchestrates the interaction between tasks and agents, aiming to
efficiently distribute tasks based on agent capabilities and historical performance.

Algorithm 1 AgentNet System

Require: Task set T = {t1, t2, . . . , tM}
Ensure: Optimized network G∗ = (A∗,E∗)

1: Initialize A = {a1, a2, . . . , an}, E , C = {c1, c2, . . . , cn}, w0, Mrou
i and Mexe

i ∀ai ∈ A
2: for each task tm+1 ∈ T do
3: // 1. Task allocation and processing
4: ctm+1

← Φ(otm+1
), acurr ← argmaxai∈Am

sim(ctm+1
, cvmi )

5: task_state← (otm+1
, ∅, ptm+1

), visited← ∅, finished← false
6: while not finished and acurr /∈ visited do
7: visited← visited ∪ {acurr}
8: fragmentsrou ← Select(Mrou

curr, tm+1, k)
9: action← Fact(otm+1 , ctm+1 ,Freason(otm+1 , ctm+1 , fragmentsrou), fragmentsrou)

10: if action = Ofwd then
11: acurr ← argmaxak∈Am\{acurr} sim(ctm+1

, cmk )
12: else if action = Osplit then
13: subtasks← DecomposeTask(tm+1)
14: task_state.context ← task_state.context ⊕

ProcessSubtasks(subtasks, acurr,Am)
15: finished← AllSubtasksCompleted(subtasks)
16: else
17: task_state.context ← task_state.context ⊕

ExecuteTask(acurr, tm+1,Select(Mexe
curr, tm+1, k))

18: finished← true
19: end if
20: end while
21: // 2. Network update
22: for each interacting pair (ai, aj) do
23: wm+1(i, j)← α · wm(i, j) + (1− α) · S(am+1

i , am+1
j , tm+1)

24: end for
25: Em+1 ← {(am+1

i , am+1
j ) | wm+1(i, j) > θw}

26: // 3. Agent capability and memory update
27: for each participating agent ai do
28: cm+1

i ← β · cvmi + (1− β) ·∆cm+1
i , Update Mrou

i and Mexe
i

29: end for
30: end for
31: return G∗ = (A,E)

This algorithm provides a systematic approach to managing agent-task interactions, enhancing coordi-
nation efficiency, and supporting adaptive learning and specialization within complex environments.

A.2 Scalability Analysis of AgentNet

We analyze the scalability and computational efficiency of AgentNet when deployed with a large
number of agents. As shown in Figure 6, AgentNet maintains high and stable performance as the
scale of the multi-agent network increases, demonstrating its strong scalability and robustness under
network expansion.

After each round of task execution, AgentNet updates its parameters through several lightweight
operations. Assuming there are k agents and each agent’s memory contains m entries (while ignoring
asynchronous parallelism), the computational costs are as follows:
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• Agent memory updates: Updating each agent’s memory requires O(m) time, leading to a
total cost of O(km).

• Capability vector updates: Each agent’s capability vector update takes O(1) time, resulting
in a total cost of O(k).

• Topology updates: If a task execution trajectory involves t agents (i.e., (t− 1) edges), only
the communication edges among these t agents need to be updated, which costs O(t), and
typically t≪ k.

• Communication overhead: Each agent only communicates with directly connected agents,
avoiding expensive global broadcast operations.

Taken together, the overall time complexity of AgentNet’s memory and parameter updates is O(km)
in large-scale applications, which highlights its high scalability.

Moreover, thanks to its fully decentralized design, each agent in AgentNet can be deployed on
separate devices, enabling asynchronous execution of subtasks and independent updates of memory
and capability vectors. This design substantially reduces both time and bandwidth overhead in
large-scale distributed environments.

B Supplementary Review of Related Literature

B.1 LLM-based Multi-Agent Systems

The development of LLM-based multi-agent systems (LaMAS) [27] has advanced rapidly in recent
years. Early frameworks, such as AutoGen [25] and MetaGPT [9], made significant strides in
establishing foundational architectures for orchestrating multiple LLM agents through structured
workflows. AutoGen provided a flexible framework for defining agent interactions, while MetaGPT
incorporated software development principles to enhance collaboration. These centralized frameworks
proved effective for managing multi-agent interactions. However, they also faced inherent challenges,
including limited scalability, single points of failure, and difficulty in dynamically adapting to
evolving tasks or incorporating new expertise.

In response to these limitations, more recent frameworks such as AgentScope [5] and MegaAgent
[22] have focused on improving robustness and scalability. AgentScope introduced modular de-
sign patterns to enhance system reliability, while MegaAgent employed hierarchical structures to
scale agent interactions. Although these frameworks offer improvements, they still operate under
centralized control paradigms, with a master agent delegating tasks, which continues to lead to
scalability bottlenecks and single points of failure. Moreover, existing LaMAS implementations
predominantly utilize single-source LLMs, lacking the integration of heterogeneous models. Their
workflows are typically static, unable to dynamically allocate resources based on task complexity,
further constraining adaptability.

In contrast, AgentNet introduces a novel decentralized approach, addressing these challenges by
enabling agents to autonomously refine their expertise and dynamically allocate resources. AgentNet
supports scalable, fault-tolerant collaboration without reliance on a central orchestrator, overcoming
the limitations of centralized frameworks.

B.2 Evolutionary Agent Systems

Inspired by natural evolution, recent researchers have explored evolutionary approaches to automate
and optimize agent behaviors and workflows in LaMAS. Existing efforts can be broadly categorized
into the following areas:

• Prompt Evolution and Optimization – Techniques such as PromptBreeder [4], DsPy [12]
and AgentPrune [30] apply evolutionary algorithms to iteratively refine prompt generation,
improving task performance through better input design.

• Inter-Agent Topology Optimization – Systems like GPTSwarm [35], DyLAN [15], and
G-Designer [31] focus on evolving the structural organization of agent interactions. These
works aim to optimize communication patterns, task allocation, and collaboration efficiency
within multi-agent networks.
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• Agent Role and Persona Specialization – Frameworks such as AgentVerse and Mor-
phAgent [3, 16] refine agent roles and profiles, enabling more effective specialization and
coordination among agents in complex tasks.

While these evolutionary approaches have shown promise, they primarily focus on individual agent
adaptation rather than collective coordination. Additionally, they still tend to operate within central-
ized control structures, which limits their scalability and dynamic adaptability. Recent frameworks
like AgentSquare [18] and AFlow [32] have begun to formalize automated design processes for agen-
tic systems, improving system-level orchestration and workflow automation. Another key direction is
self-adaptive agent architectures, where agents adjust their strategies in real-time based on feedback
and accumulated experience. For example, EvoMAC [10] combines reinforcement learning with
evolutionary algorithms to optimize agent decision-making and policy updates.

However, these approaches are often limited to single-agent adaptation and lack mechanisms for
decentralized specialization and coordination across large-scale agent collectives. While EvoMAC and
other systems focus on optimizing individual agents, they are not designed for scalable, multi-agent,
decentralized collaboration. In contrast, AgentNet integrates evolutionary learning with decentralized
control, enabling heterogeneous agents to dynamically evolve their roles, adapt their strategies
in real-time, and collaborate flexibly across a large-scale multi-agent system. This integration of
evolutionary learning with decentralized control makes AgentNet a more suitable framework for
real-time, adaptive, and scalable multi-agent collaboration.

C Experimental Setup

Tasks and Benchmarks We evaluate methods using several benchmarks across three task cate-
gories, along with custom constructed training and test sets for each benchmark:

• Mathematics: This task involves mathematical problem and is evaluated using MATH [8],
which includes problems with 7 different types. The training set consists of 100 examples
per type (total of 700 problems), while the test set consists of 20 examples per type (total of
140 problems).

• Logical Question Answering: This task tests reasoning and logical question answering
abilities using the BBH (Big-Bench Hard) benchmark [21]. The training set follows the
MorphAgent setup, selecting 627 examples from 20 tasks. For testing, each task has 5
examples of varying difficulty, totaling 100 test problems.

• Function-Calling: This benchmark evaluates the agent’s ability to perform tool-augmented
task planning and API usage, based on the API-Bank dataset [14]. We construct a training
set of 100 tasks and a test set of 100 tasks, randomly sampled from the full API-Bank corpus.
Since the original dataset does not include category labels, we annotate each task using
GPT-4o-mini to assign one of the seven task types: health, account, schedule, information,
housework, finance, and others. Each task is further categorized into one of three difficulty
levels, determined by prompt complexity and required toolchain length.

Metrics A range of evaluation metrics have been adopted for different tasks. For the Mathematics
and the Logical Question Answering tasks, the accuracy metric is utilized to evaluate the consistency
of the output answer with the true answer within the specified format. For the Coding task, the
average test case pass rate (i.e., the ratio of the number of passed test cases to the total number of test
cases) and the ratio of problems passed across all test cases have been employed as the evaluation
metrics.

Baselines We compare AgentNet with two categories of baselines: single-agent and multi-agent
frameworks:

• Single-agent frameworks: These methods involve a single agent solving tasks indepen-
dently without collaboration or coordination with other agents.

– Direct: A baseline approach where the LLM directly generates outputs.
– Chain of Thought: A prompting technique that elicits step-by-step reasoning from

language models [24].
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Figure 11: Illustration of the execution process (passing and forwarding) of tasks in AgentNet

– Synapse: A trajectory-as-exemplar prompting method, which prompts the LLM with
complete trajectories of the abstracted states and actions to improve multi-step decision-
making. [33]

– Self-Consistency: A decoding strategy that samples multiple reasoning paths and
selects the most consistent answer through majority voting, enhancing reliability [23].

– Self-Refinement: An iterative approach where models critically evaluate and improve
their own solutions over multiple passes, progressively enhancing solution quality [17].

• Multi-agent frameworks: These methods involve multiple agents working collaboratively
to solve tasks, each contributing to different aspects of the task-solving process.

– MetaGPT: A software development framework where specialized agents (like product
manager, architect, engineer) collaborate in a waterfall workflow to complete complex
engineering tasks [9].

– AFLOW: A framework that optimizes agent workflows using Monte Carlo Tree Search
over code-represented workflows with execution feedback [32].

– GPTSwarm: A framework modeling agents as computational graphs with automatic
optimization of both prompts and agent collaboration patterns [35].

– MorphAgent: A framework featuring self- evolving agent profiles that dynamically
optimize individual expertise in the profile through three metrics [16].

Parameter Configuration In our implementation, we configure the LLM API with a temperature of
0.0, a maximum token limit of 2048, and a top-p value of 1.0, ensuring consistent results throughout
our experiments and enabling reliable comparisons and analysis. For the memory pool experiment,
we utilize the "BAAI/bge-large-en-v1.5" model to compute the similarity between task queries and
database trajectories.

D AgentNet Experiment Configuration

D.1 Task to Ability Mapping in AgentNet

This table illustrates the mapping between a diverse set of cognitive tasks and their corresponding
core cognitive abilities. Each task is linked to one or more foundational abilities—such as reasoning,
inference, mathematical competence, or linguistic understanding—which are represented using
distinct color encodings to enhance visual clarity and interpretability.

Task in BBH Abilities
boolean_expressions reasoning

logical_deduction_three_objects reasoning

logical_deduction_five_objects reasoning

logical_deduction_seven_objects reasoning
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Task Abilities
causal_judgement reasoning, inference

formal_fallacies reasoning, inference

tracking_shuffled_objects_three_objects reasoning, sequence

tracking_shuffled_objects_five_objects reasoning, sequence

tracking_shuffled_objects_seven_objects reasoning, sequence

multistep_arithmetic_two mathematical

geometric_shapes mathematical, spatial

object_counting mathematical, spatial

word_sorting mathematical

date_understanding mathematical, language

dyck_languages mathematical, language

disambiguation_qa language

hyperbaton language

salient_translation_error_detection language

movie_recommendation knowledge

sports_understanding knowledge

penguins_in_a_table knowledge

reasoning_about_colored_objects knowledge

ruin_names language, knowledge

temporal_sequences sequence

navigate spatial

web_of_lies inference

snarks inference

The construction of this task-ability mapping is motivated by the objective of optimizing agent-task
alignment within a multi-agent system. By adopting a single-level ability classification, we establish
a tractable yet expressive abstraction of agent competencies that facilitates efficient task routing and
capability differentiation.

This initial flat taxonomy serves as a foundational layer for scalable skill orchestration. It provides
a principled basis for agent coordination and lays the groundwork for future extensions toward a
hierarchical ability framework—enabling finer-grained specialization and more precise agent-task
matching in complex environments.

D.2 Initial Configuratio

The initial configuration specifies the setup for each experiment conducted within the AgentNet
framework. This YAML-based configuration file defines global experimental parameters, default
agent initialization, and the structure of the agent communication network.

experiment_config:
LLM: gpt-4o-mini
dataset: bigbenchhard
task_num: 100
agent_num: 3
forward_path_max_length: 3
max_execution_times: 5 ## for tuning
user_react: True

18



default_agent_config: &default_agent_config
LLM: gpt-4o-mini
abilities:
reasoning: 0.6
mathematical: 0.6
language: 0.6
knowledge: 0.6
sequence: 0.6
spatial: 0.6
inference: 0.6

executor_memory_limit: 40
embedding_cache_limit: 1000
router_memory_limit: -1
decay_rate: 0.1
decay_interval: 10
router_retrieval_num: 3
executor_retrieval_num: 3

agent_graph_config:
graph_type: complete

Listing 1: Experiment Initial Configuration YAML

The configuration includes three primary components:

• Global Experiment Settings (experiment_config) This section controls the overall
experiment, including:

– The underlying LLM used by agents (LLM).
– The evaluation dataset (dataset).
– Number of tasks to be dispatched (task_num) and number of agents (agent_num).
– Routing and execution limits (forward_path_max_length,
max_execution_times).

– Whether the React output format (user_react) is enabled, as it allows for reasoning
before taking action.

• Default Agent Parameters (default_agent_config) All agents are initialized with
this shared configuration unless overridden. It includes:

– A uniform initialization across all ability dimensions (e.g., reasoning, language,
spatial, etc.).

– Memory and caching limits (executor_memory_limit,
embedding_cache_limit).

– Temporal dynamics of memory decay (decay_rate, decay_interval).
– Retrieval settings for routing and execution modules.

• Agent Communication Graph (agent_graph_config) Defines the topology of inter-
agent communication. In this example, a complete graph is used, enabling each agent to
communicate with all others.

D.3 AgentNet Prompt Specification

The Agent Prompt Specification defines the structured input schema received by each agent in the
AgentNet system. This schema ensures that all relevant contextual, historical, and task-specific
information is explicitly provided before an agent begins reasoning or execution.

Rather than free-form prompts, AgentNet adopts a structured prompt interface, where each field
conveys a distinct aspect of the task environment. This design improves interpretability, modularity,
and control, making it easier to route tasks, compare decisions, and analyze agent behavior.
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Table 5: Schema definition for AgentNet prompting.

Field Description
major_problem The overarching goal or task shared among agents in the system.

experiences Past task examples or performance records relevant to the current
task.

task_context Previously completed subtasks and results, used to determine
next steps.

current_agent_info Information about the current agent, including its abilities and
status.

task_type The category or nature of the task (e.g., reasoning, language,
etc.).

task_description A detailed description of the specific problem to be addressed.

agent_info Information about other agents in the system, including their
abilities and prior performances.

constraints Format or structural requirements for the expected result output.

thought Reasoning or intermediate planning used to guide execution of
the task.

This input schema acts as the interface contract between the system and each agent, standardizing
how agents perceive their operating context. It also lays the foundation for future work on agent
generalization, multi-agent coordination, and prompt optimization.

E Limitations and Future Work

Despite AgentNet implementing a fully distributed, adaptive learning multi-agent system (MAS)
with dynamic task allocation, several important limitations remain that require further exploration in
future work.

One key challenge is how to improve task performance in heterogeneous agent environments. In real-
world applications, agents often vary significantly in terms of model capabilities, workflow structures,
tools, and available data. The impact of such heterogeneity on AgentNet’s performance, especially
in terms of task coordination and resource allocation, remains an open question. Understanding
how to adapt the system to handle such variations efficiently will be crucial for its scalability and
effectiveness in complex environments.

Secondly, the decision-making process of the router within each agent, particularly in relation to
exploration and discovery, requires more in-depth study. Currently, the router selects agents from a
relatively small pool of predefined candidates. However, in larger-scale systems involving hundreds
or potentially thousands of agents, the challenge of accurately identifying the most suitable agent
for task delegation becomes significantly more complex. This problem is further compounded in
heterogeneous settings, where different agents may possess distinct strengths and weaknesses. To
address this, future research could focus on developing more sophisticated routing mechanisms that
can autonomously identify and delegate tasks to the most appropriate agents, even in large and diverse
agent pools.

Additionally, a promising direction for future work involves designing incentives that encourage the
router to explore agents beyond the predefined candidate set. By enabling AgentNet to dynamically
discover new agents or specialized capabilities, such an approach would enhance its adaptability and
scalability, ultimately improving the system’s overall performance and autonomy.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we have thoroughly detailed the background,
motivation, scope, main experimental results, and contributions of our work.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The limitations of the work are provided in Section E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The derivations of the theoretical result are adequately presented.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper has disclosed all the information in the method and experiment
section. The data and code are also publicly accessible and provided with detailed procedures
to reproduce the results reported in this paper.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code and data are provided.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details of both training and test are disclosed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We adopt standard evaluation datasets, LLM agents, and metrics, which are
accompanied by statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The experiments are sufficiently discussed to be run by others.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The conducted research conforms in every respect with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Both potential positive societal impacts and negative societal impacts of the
work have been discussed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: The paper has discussed safeguards for responsible release of data or models
that have a high risk for misuse.
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the mentioned previous work are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:[NA]

Justification: The code will be made public upon acceptance.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer:[NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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