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Abstract

Most previous work on controlled text genera-
tion have concentrated on the style transfer task:
modifying sentences with regard to markers of
sentiment, formality, affirmation/negation. Dis-
entanglement of generative factors over Vari-
ational Autoencoder (VAE) spaces has been a
key mechanism for delivering this type of style
transfer control. In this work, we focus on a
more general form of controlled text genera-
tion, targeting the modification and control of
more general semantic features. To achieve
this, we introduce a flow-based invertible neu-
ral network (INN) mechanism plugged into
the Optimus-based AutoEncoder architecture
to deliver better properties of separability. Ex-
perimental results demonstrate that the model
can conform the distributed latent space into a
better semantically disentangled space, result-
ing in a more general form of language inter-
pretability and control when compared to the
recent state-of-the-art language VAE models
(i.e., Optimus).

1 Introduction

Most previous work on controlled text generation
have concentrated on the style transfer task: mod-
ifying sentences with regard to markers of senti-
ment, formality, affirmation/negation (John et al.,
2019; Bao et al., 2019; Hu and Li, 2021; Vasilakes
et al., 2022; Gu et al., 2022; Liu et al., 2023; Gu
et al., 2023) (Figure 1 top). Disentanglement of
language generative factors over Variational Au-
toencoder (VAE) spaces has been a key mechanism
to deliver this type of control (John et al., 2019;
Bao et al., 2019; Vasilakes et al., 2022). How-
ever, it has been mainly contained in disentangling
task-specific(coarse-grained) linguistic factors, es-
pecially in style transfer tasks.

Recently, Zhang et al. (2022) demonstrated that
a more general form of semantic control can be
achieved in the latent space of Optimus (Li et al.,
2020b), the first standard transformer-based VAE,
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Figure 1: Top: attribute space geometry. Bottom: gen-
eral semantic geometry, where left: distributional se-
mantic space of Optimus (Li et al., 2020b), right: our
compositionality-induced semantic space where the sen-
tence vectors can be located by the intersection of role-
content clusters.

where a BERT (Devlin et al., 2018) encoder and
a GPT2 (Radford et al., 2019) decoder are con-
nected within a VAE setting. Using representa-
tions of conceptually dense explanatory sentences
(Jansen et al., 2018b), they showed that sentences,
such as animal requires oxygen for survival', can
be represented within a space which can be or-
ganised around the associations between predi-
cate, arguments and their associated token content:

"Inflections are absent from the dataset’s sentences.



ARGO-animal or VERB-requires, is geometrically
resolved to a hypersolid over the latent space. Nev-
ertheless, the ability to learn and control such sep-
aration is still limited as different token-level se-
mantics are still overlapped and entangled in the
latent space (e.g., V-eats and V-requires in Figure
1 bottom left), indicating distributional sentence
semantics cannot be currently localised and con-
trolled from the perspective of formal semantics
(i.e., compositionality) (Marcus, 2003; Nefdt, 2020;
Dankers et al., 2022).

This work aims to improve the localisation and
semantic control of latent sentence spaces, by deliv-
ering a model which can better separate and control
predicate-argument structures and their associated
content. This type of representation can provide
the foundation to shorten the gap between deep
latent semantics and formal/symbolic representa-
tions (Gildea and Jurafsky, 2000; Banarescu et al.,
2013), bridging the flexibility of distributional-
neural models with the properties of linguistic
grounded representations (e.g. frame/symbolic
representations), facilitating both inference inter-
pretability and safety controls.

To deliver this semantic/symbolic control via
the distributional sentence space, following the
methodological framework introduced by (Zhang
et al., 2022), we focus on improving the semantic
separability of sentences by focusing on explana-
tory sentences 2, rather than synthetic or style trans-
fer datasets (Hupkes et al., 2020; Yanaka et al.,
2021), in which compositionality can be ensured
and isolated. Inspired by the work of (Esser et al.,
2020), we integrate a flow-based invertible neu-
ral network (INN) (Dinh et al., 2014) as a plug-in
control component to learn the bijective transfor-
mation between the distributional hidden space of
the AutoEncoder (BERT-GPT?2) and the smooth
Gaussian space of the INN bottleneck (Figure 3).
Specifically, we first pre-train an AutoEncoder to
learn sentence representations. Then, we freeze
the AutoEncoder and train the INN with sentence
representations. Since INN models a bijective trans-
formation, we can control the offline AutoEncoder
generation by manipulating the INN latent spaces,

The rationale for choosing explanatory sentences is that
they are designed for formal/localised/symbolic semantic in-
ference task in natural language form (Zhang et al., 2023a),
which provides a semantically complex and yet controlled ex-
perimental setting, containing a both well-scoped and diverse
set of target concepts, sentence structures, providing a seman-
tically challenging yet sufficiently well-scoped scenario to
evaluate the syntactic and semantic organisation of the space.

which is more efficient and has lower computa-
tional demand than re-training a large VAE.

More importantly, we propose a supervised train-
ing strategy within the INN setting to learn a latent
space with improved semantic separability, namely:
the semantic role-content pairs and associated clus-
ters can be better separated over the latent space
modelled by the INN (Section 4.1). In this case,
we can improve localised control over the decoding
process due to the reduction of overlapping (am-
biguous) regions. Since the approach leads to a
more separable and geometrically consistent sen-
tence space, it can be later operated over to improve
the control of the generation of the autoencoder
using geometric operators, such as traversal (Hig-
gins et al., 2017) and interpolation (Bowman et al.,
2016) (Section 4.2). The contributions of this work
are summarised below:

1. We frame the sentence semantic disentan-
glement from a definition of compositionality for
bridging formal semantics and distributional repre-
sentations. 2. We find that integrating a flow-based
INN mechanism into the Optimus architecture is an
effective mechanism for transforming the hidden
space of the autoencoder into a smooth multivariate
Gaussian latent space for representing sentences.
3. We propose a supervised training strategy for
INNSs to learn a controllable semantic space with
higher disentanglement than previous work. 4. We
use this representation to support semantically co-
herent data augmentation (controllably generating
sentences with well-defined semantic and syntactic
properties).

2 Preliminaries

In this section, we first define sentence semantics
disentanglement and then illustrate the flow-based
INN mechanism and the rationale for its selection.

Sentence semantic disentanglement In view of
the principle of compositionality (Frege’s princi-
ple), sentence semantics can be seen as consist-
ing of word-level semantics, which can be jointly
represented by word content and its correspond-
ing syntactic/semantic role. In the context of this
work, we simplify and particularise this relation-
ship as (role-content pair), where the structural
syntactic/semantic relationship is defined by its
shallow semantics, i.e. as the composition of the
content of tokens and their semantic role labels
(SRLs). Therefore, this work uses the notion of
sentence semantic disentanglement as the cluster



separation of the content under SRLs, rather than
the notion of feature-dimension binding, common
in image disentanglement (Bengio, 2013).
Formally, a sentence s consists of a sequence of
different semantic roles (predicate-argument struc-
tures and associated types) and word content as-
sociations. After encoding in latent space, the se-
mantics of each sentence representation can be de-
scribed from general linguistic compositionality:
sem(s) = wi(er,r1)
N——

i.e., ARGO—animal

® @ wilcir)
——

PRP—survival

where w;(¢;, ;) represents the semantics of word
1 with content ¢; (i.e., animal) and SRL r; (i.e.,
ARGO) in context s (i.e., animal requires oxygen
for survival), @ represents compose operation. If
the sentence representation can be semantically
disentangled, the sem(s) can be decomposed into:

sem(s) = {wi(ci,mi)}
+{wi(c1,m) @ - B wi(ci1,rim1)}
= {w;(ci, )} ® {wi(e1,m1)}
@ {wa(ca,m2) ® -+ - +wi(cim1,7i-1)}

where each set represents a specific role-content
cluster (as illustrated in Figure 2), in this case,
given a set of NV sentences with the same w(c, r)
(i.e., V-requires) but different sem(s), those sen-
tence vectors can represent w(c, r) features inde-
pendently of other features (i.e., ARGO-animal),
forming w(c,r) cluster. That is, this set of sen-
tence semantics can be composed as:

{sem(s1),...,sem(sn)} = {w(e,r)}xn D {... }

Therefore, we can evaluate the disentanglement
(separability) of sentence semantics by evaluating
the density within {w(c,r)} set(cluster) (classi-
fier recall) and the separation between different
{w(e,r)} set(clusters) (classifier accuracy) (as il-
lustrated in section 4.1). Next, we will introduce
the INN-based mechanism to learn this semanti-
cally disentangled space.

Invertible Neural Networks Flow-based INNs
(Dinh et al., 2014, 2016) are a class of neural net-
works that model the bijective mapping between
the observation distribution p(z) and latent distri-
bution p(z). We use T to represent the forward
mapping (from p(z) to p(z)) and T” to represent
the backward mapping (from p(z) to p(x)), respec-
tively. Unlike VAEs that approximate the prior
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Figure 2: In semantically disentangled space, sentence
vectors, ®, can be located by the intersection of role-
content clusters.

distribution to multivariate Gaussian distributions,
INNSs use multivariate Gaussian exactly. They can
be trained by the following objective function:

L=y [T(x)} * log|T(@)|

where T'(x) learns the transformation from z to

N(0,1). |T'(x)| is the determinant of the
Jacobian for T'(x), which indicates the extent in
which the transformation locally expands or con-
tracts the space. The term — log |T”(z)| ensures
the integration of the probability density function
to be one. The forward and reversed mapping can
be easily performed via the coupling layer (Dinh
et al., 2014; Kingma and Dhariwal, 2018).

The rationale for choosing flow-based INN is
that since it learns the bijective transformation be-
tween latent and observed spaces, we can plug-
and-play the offline autoencoder generation by ma-
nipulating the INN latent space, which is more
efficient and has lower computational demand than
re-training a large language VAE. Besides, flow-
based INNs that learn the prior distribution (i.e.,
Gaussian) exactly can avoid the information loss
from variational inference (ELBO in VAE) where
the prior is approximated from posterior P(z|z).

3 Proposed Approach

We encode each sentence x with a frozen autoen-
coder (i.e., Bert-GPT?2) and consider its sentence
representation F(z) as the input of INNs (Figure
3). Next, we propose two training strategies to map
the hidden representations into Gaussian space.

3.1 Training Strategy

Unsupervised INNs Firstly, we train the INN-
based model in an unsupervised fashion, which
minimises the negative log-likelihood of the
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Figure 3: Transforming the representations of ex-
planatory sentences from AutoEncoder, specifically
using the same setup as Optimus (Bert-GPT?2), into
compositionality-induced semantically separable latent
space of INN, where a sentence representation can be
decomposed into token-level semantics (role-content).

marginal distribution of latent representation z =
E(z):

Eunsup = Emwp(x) |:T(E(l‘))] i — log ‘T,(E(:B))’

As the minimisation leads to a bijective mapping be-
tween the distributed representation and the disen-
tangled latent representation (multivariate Gaussian
space), it allows for a more semantically consistent
of geometric clustering property of its latent space
by traversal and interpolation (Li et al., 2020b).

Cluster-supervised INN According to the find-
ings of (Zhang et al., 2022), the content of the
predicate-argument structure/semantic roles can be
disentangled over the latent space approximated
to multivariate Gaussian learned using the Opti-
mus autoencoder setting. Using the same founda-
tion, we next train the INN component to learn
the embeddings, by minimising the distance be-
tween points in the same role-content regions and
maximising the distance between points in differ-
ent regions, based on the explanation embeddings
and their corresponding central point from the Op-
timus model. For example, given a sentence "an
animal requires food for survival" and its central
vector of ARG I-animal, the training moves the sen-
tence representation closer to the ARGI-animal
region centre in the INN latent space. Specifically,
during the calculation of the posterior, we replace
the mean and variance of standard Gaussian dis-
tribution by the centre point of its cluster and a
hyper-parameter, which should be less than one,
respectively. In this case, each role-content cluster
in the latent space will be mapped to a space where

each cluster will have its embeddings more densely
and regularly distributed around its centre. The
objective function can be described as follows:

[T(B () ~ petuser]
2

Lsup == Em"’pcluster(z) 1—0o

— log ’T’(E(ac))‘

where T'(E(x)) learns the transformation from x
to 2z ~ N(tetuster, 1 — 02). The o2 is a parameter
which can be empirically determined (in this par-
ticular context the optimal value was found be 0.6).
More details are provided in Appendix A.

3.2 Data Augmentation

To better capture the different features between dis-
tinct role-content clusters, more training sentences
are needed in those clusters. Therefore, we con-
sider vector arithmetic and traversal as a systematic
mechanism to support data augmentation, which is
described in Equations 1.

vec = average(E(s;), E(s;))
vec[i| = N(0,1) Vi€ {0, .., size(vec)} (1)
s = D(vec)

where s;, € S (corpus), E(s) : S — R" is the en-
coder (embedding) function, and D(e) : R” — §
is the decoder function. The term vec[i] = N (0, 1)
is introduced to resample each dimension and
s = D(vec) generates a new sentence. Table 1 lists
some randomly selected examples from augmented
explanations. Full details on the augmentation al-
gorithm are provided in Appendix A.

Role-content ~ Augmented sentences

an animal requires energy to move

some adult animals lay eggs

an animal requires shelter

an animal can use its body to breathe
humans travel sometimes

humans usually use gasoline

humans use coal to make food

humans depend on pollinators for survival
wheels are a part of a car

toxic chemicals are poisonous

green plants are a source of food for animals
copper and zinc are two metals

summit mean the top of the mountain

colder mean a decrease in heat energy
cleaner mean ( less ; lower ) in pollutants
friction mean the product of a physical change

ARGO-animal

ARGO-human

PRED-are

PRED-mean

Table 1: Example of augmented explanations.

4 Experiments

For the experiments, we start by focusing on the
effect of the supervised INN mechanism to exam-
ine its impact on the sentence semantic separability



of the distributional latent space defined in Section
2 (detailed in Section 4.1). Next, we examine the
localised/symbolic generation control enabled by
such semantic separability via latent interpolation
(Section 4.2). Further details of the AutoEncoder
model and dataset are provided in Appendix A.

4.1 Disentanglement Encoding Evaluation

We examine the latent space separability of our
supervision approach on different semantic roles,
including ARGO, ARG1, PRED(V), where each cat-
egory has four different word contents, and the
same content (i.e., animal) with different semantic
roles, including ARGO,1,2. Reconstructed exam-
ples for both unsupervised and cluster-supervised
INNSs are provided in Appendix D.

Disentanglement between ARGO0 clusters For
ARGO, we choose human, animal, plant, and some-
thing according to their frequency in the original
dataset, and evaluate model performance from two
directions, including forward and backward map-
ping. Within forward mapping, we assess the dis-
entanglement of the latent space of the INN model
from two aspects (visualisation and classification
metrics). Figure 4 displays the distributions of four
role-content clusters over the latent space. As we
can observe, after the cluster-supervised training
strategy, the embeddings are more concentrated
on the center of their cluster, and there is a clear
boundary between clusters, indicating better dis-
entanglement than the baseline models (Optimus,
unsupervised INNs).

Figure 4: ARGO: t-SNE plot, different colour represents
different content regions (blue: animal, green: human,
red: plant, purple: something) (left: Optimus, middle:
unsupervised, right: cluster supervised). Supervised
embeddings concentrate on the respective cluster center.

It is also observable that there are low-density
embedding regions at the transition (connection)
between two clusters. We decode the middle dat-
apoints between animal and human clusters and
list them in Table 2. From those examples, we can
observe that such explanations are related to both
animal and human. This result implies that the ex-

planations may be geometrically represented in a
similar way as they were originally designed in the
WorldTree corpus (maximising lexical overlaps for
pred-arg alignments within an explanation chain)
for supporting multi-hop inference tasks.

Cluster connection

1. humans sometimes hunt animals that are covered
in fur

2. animals / human habitats require food

3. an animal may be bred with a human for food

4. animals eat humans

5. a human can not eat algae and other animals

Table 2: Middle explanations between ARGO-animal
and ARGO-human.

Next, we quantitatively evaluate the disentan-
glement of ARGO-content clusters. We consider
classification task metrics (accuracy, precision, re-
call, f1) as proxies for evaluating region separabil-
ity, effectively testing cluster membership across
different clusters. Our proxy disentanglement ex-
periments measured the capacity of the classifier to
fit the datapoints, thus assessing model separability
in-distribution (minimal separability). Therefore,
they were evaluated only on the training data. As
shown in table 3, all classifiers trained over su-
pervised latent representations outperformed un-
supervised INN and Optimus, indicating that the
cluster-supervised approach leads to better disen-
tanglement.

ARGQO: disentanglement proxy metrics
classifier train accuracy precision recall fl score

O 0983 0.983 0.983 0.983
KNN U 0972 0972 0972 0.972
C 0986 0.986 0.986 0.986
O 0936 0.936 0.936 0.936
NB U 0961 0961 0961 0.961
cC 0979 0.979 0.979 0.979
o 0979 0.979 0979 0.979
SVM U 0975 0975 0975 0975
Cc 0981 0.981 0.981 0.981

Table 3: Disentanglement of ARGO between Optimus
(O), unsupervised INN (U), and cluster-supervised INN
(C) where KNN: k-neighbours, NB: naive bayes, SVM:
support vector machine. The abbreviations are the same
for the remaining tables. Cluster supervision displays
consistent improvement with different classifiers.

As for the evaluation of the backward mapping,
we calculate the ratio of generated sentences that
hold the same role-content as the inputs (hence-
forth called the invertibility ratio). We randomly



selected 100 embeddings as inputs and showed the
corresponding ratios in Table 4. We can observe
that both unsupervised and supervised cases can
achieve high invertibility ratios, indicating that the
INN mechanism provides the means to control the
sentence decoding step precisely by operating the
vector over its transformed latent space.

ARGO: invertibility ratio (backward: T")

train  human animal plant something
U 0980  0.890  0.990 1.000
C 1.000  0.860  0.990 0.950

Table 4: Invertibility test for ARGO, Both INNs with
AutoEncoder setup can achieve high ratios, indicating
stable invertibility with or without cluster supervision.

Disentanglement between ARGI clusters Next,
we consider four ARG clusters, including ARG -
food, ARG1-oxygen, ARGI-sun, ARGI-water, and
evaluate model performance following the same
procedure. Figure 5 displays the distributions of
four role-content clusters over the latent space.
With similar observations as before, the INN
cluster-supervised training strategy can learn better
disentanglement between ARG1 clusters. Table

Figure 5: ARG1: t-SNE plot (blue: food, green: oxy-
gen, red: sun, purple: water) (left: Optimus, middle:
unsupervised INN, right: cluster-supervised INN). Su-
pervision induces separability comparable with ARGO.

5 and 12 show the disentanglement metrics and
invertibility ratio, respectively. With similar obser-
vations as the previous experiment: all classifiers
trained over the supervised latent representation
outperform both the unsupervised INN model and
Optimus, and both unsupervised and supervised
cases can achieve higher ratios (at least 0.95).

Disentanglement between PRED clusters
Moreover, we analyze the disentanglement
between predicate(PRED) clusters. Figure 6
shows the distribution of four PRED clusters,
including is, are, cause, and require, over latent
space. Although the disentanglement of PRED
clusters is not as high as ARGO, the latent space
with cluster supervision still performs better than
both the unsupervised case and the Optimus model.

ARGTH: disentanglement proxy metrics (forward: T")
classifier train accuracy precision recall fl score

O  0.958 0.958 0.958 0.958

KNN U 0951 0951 0.951 0.951
C  0.969 0.969 0.969 0.969

O  0.907 0.907 0.907 0.907

NB U 0926 0.926 0.926 0.926
C  0.956 0.956 0.956 0.956

O  0.956 0.956 0.956 0.956

SVM U  0.953 0.953 0.953 0.953
C 0958 0.958 0.958 0.958

Table 5: Forward evaluation for ARG1, consistent re-
sults on different classifiers indicate that supervision
can perform better semantic disentanglement.

In Table 6, the supervised INN model achieves
better disentanglement and both unsupervised and
supervised could obtain a higher ratio. We also
evaluate the results for ARG/ clusters. The same
observation holds for both ARGO and PRED, with
details provided in Appendix B.

Figure 6: PRED: t-SNE plot (blue: are, green: cause,
red: is, purple: require) (left: Optimus, middle: unsu-
pervised, right: cluster supervised).

PRED: disentanglement proxy metrics (forward: T")
classifier train accuracy precision recall fl score

O 0.964 0.964 0.964 0.964

KNN U 0959 0.959 0.959 0.959
CcC 0972 0972 0972 0.972

O 0923 0.923 0923 0.923

NB U 0927 0.927 0.927 0.927
C 0951 0951 0.951 0.951

O 0956 0.956 0.956 0.956

SVM U  0.950 0.950 0.950 0.950
C 0958 0.958 0.958 0.958

Table 6: Forward evaluation for predicate clusters, the
invertibility ratio is provided in Table 13.

Disentanglement between ARGO,1,2 clusters
The experiments up to this point investigated the
separation between the same semantic roles but dif-
ferent content clusters. Next, we explore separating
different semantic roles with the same content. We
thus focus on the animal cluster, and investigate
the disentanglement between ARGO-animal, ARG -



animal, and ARG2-animal. As illustrated in Figure
7, the animal clusters with different semantic roles
can be separated after cluster-supervised training,
which indicates that the INN model can capture the
difference between the same content with different
semantic roles in the case of similar topic. That
is to say, the INN-based approach could jointly
learn separable embeddings w.r.t. role-content and
content alone. Table 7 and 14 show the disentan-

Figure 7: Animal: t-SNE plot (blue: ARGO-animal,
green: ARGl1-animal, red: ARG2-animal) (left: Opti-
mus, middle: unsupervised, right: cluster-supervised).

glement metrics and the invertibility ratio, respec-
tively. Similarly to the previous experiment, the
supervised case outperforms both the unsupervised
and the Optimus models. Both unsupervised and
supervised cases can achieve an invertibility ratio
of at least 90%.

Animal: disentanglement metrics (forward: T")
classifier train accuracy precision recall fl score

«ny_ O 0968 0968 0968 0968
U 0960 0960 0960 0.960
C 0968 0968 0968 0963
g O 0929 0929 0929 0929
U 0915 0915 0915 0915
C 0940 0940 0940 0.940
O 0951 0951 0951 0051
SVM' g 0931 0931 0931 0931
C 0952 0952 0952 0952

Table 7: Forward evaluation for Animal, the invertibility
ratio is reported in Table 14. Results indicate consistent
separation improvement across role clusters.

4.2 Disentanglement Decoding Evaluation

Finally, we evaluate the localised/symbolic genera-
tion control of our approach via latent interpolation.
It interpolates a path z; = z1 - (1 — ) + 22 - t with
t increased from O to 1 by a step size of 0.1 where
z1 and zo represent the latent representations of
source and target sentences. As a result, 9 sen-
tences are generated on each interpolation step. On
a latent space with better token-level role-content
separation, given two sentences with the same role-
content as endpoints, we can observe that the inter-

mediate sentence can hold the same role-content
during interpolation. In this experiment, we chose
the unsupervised INN and Optimus as baselines®.

In terms of a qualitative characterisation, Table
8 provides the interpolation path of unsupervised
INN, cluster-supervised INN, and Optimus, as for
the unsupervised INN, we can observe that the in-
termediate explanations could transition smoothly
from source to target for argument. E.g., moving
from humans to nonhumans to marine animals to
animals. However, the predicate is changed re-
dundantly, indicating less predicate-content disen-
tanglement (i.e., predicate-require and predicate-
eat). Instead, supervised INN can fix the predicate-
require during interpolation, indicating better sepa-
rability between different predicate-content results
in better generation control. More examples are
provided in Table 17 and 18.

Interpolation Controllability
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Figure 8: Interpolation control evaluation, we can ob-
serve that supervised INN with better semantic separa-
bility can lead to better localised semantic control.

Next, we quantitatively evaluate the localised
controllability of interpolation. We randomly se-
lect 200 sentence pairs from the dataset holding
the same role-content and report the ratio of inter-
mediate sentences with the same role-content as
inputs. In Figure 8, we can observe that the inter-
mediate sentences from supervised INN can better
hold the same role-content as inputs, especially for
predicate(verb) which usually has a lower effect
on distributional sentence semantics (Zhang et al.,
2022), indicating our supervision can lead to bet-
ter latent space separability and localised/symbolic
semantic control.

3the standard transformer-based VAE(Optimus) with sin-
gle sentence representation (i.e., the prior is standard Gaussian
distribution). Some variant large VAEs, such as Della (Hu
et al., 2022), DPrior (Fang et al., 2022), (Li et al., 2022), etc.,
were not included due to differing training objectives. Addi-
tionally, Li et al. (2020b) have illustrated that Optimus can
induce smoother interpolations than the Bert-GPT2 autoen-
coder. Therefore, we don’t compare it in our work.



interpolation control: predicate-require

source: humans require freshwater for survival

Optimus:

1. humans require water and food through fossil fuels
2. humans require water for survival

3. humans produce small amounts of consumer food
4. human has a positive impact on a plant’s survival
5. humans convert food into animal prey

6. humans make food for themselves by eating

7. animals require food for survival

8. animals require nutrients from the air

9. humans eat plants for food

10. animals require food for survival

Unsupervised INN:

1. nonhumans require water to survive

2. marine animals require food for survival
3. animals must breath to survive

4. animals require water for survival

5. animals require water from their ecosystems
6. animals require water for survival

7. animals must eat food for survival

8. animals require food for survival

9. animals require food for survival

10. animals require food for survival

Cluster-supervised INN:

1. humans require water for survival
2. nonhumans require water for survival
3. animals require water and food
4. animals require water to survive
5. animals require water to live

6. animals require food for survival
7. animals require food for survival
8. animals require food for survival
9. animals require food for survival
10. animals require food to survive

target: animals require food to survive

Table 8: Interpolation examples, indicating the cluster-
supervised INN can provide better localised/symbolic
semantic control. We also report the interpolations of
AutoEncoder in Table 16.

5 Related Work

Sentence Disentanglement In the domain of nat-
ural language generation, most previous investi-
gations explored the disentanglement of natural
language between two specific linguistic perspec-
tives, such as sentiment-content (John et al., 2019),
semantic-syntax (Bao et al., 2019; Zhang et al.,
2023b), and negation-uncertainty (Vasilakes et al.,
2022), or syntactic-level disentanglement (Mer-
catali and Freitas, 2021; Felhi et al., 2022), In this
work, we focus on general sentence semantics dis-
entanglement from compositionality with the target
of formal semantic control. This work is the first

integration of flow-based INN to support sentence
semantics disentanglement.

INNs in NLP Sahin and Gurevych (2020) con-
centrate on modelling morphological inflection and
lemmatization tasks, utilizing INN to learn a bi-
jective transformation between the word surface
and its morphemes. Li et al. (2020a) focused on
sentence-level representation learning, transform-
ing sentences from a BERT sentence space to stan-
dard Gaussian space, which improves sentence em-
beddings on a variety of semantic textual similarity
tasks. Ding and Gimpel (2021) deployed flow-
based INN to enrich VAE prior distribution. Gu
et al. (2023) use flow to control attributes in style
transfer task. This work proposes a supervised
training strategy to improve semantic separabil-
ity, geometrical operations and control over the
distributed representation of sentences. Moreover,
this work is the first to explore this mechanism to
support semantically coherent data augmentation.

6 Conclusions and Future Work

This work focused on the localised/symbolic se-
mantic control of latent sentence spaces, aiming
to bridge formal and distributional semantics. We
define the sentence semantic disentanglement from
the perspective of compositionality mapping to
the invertibility and bijection properties of INNs.
Experimental results indicate that the invertibility
mechanisms can transform the distributed hidden
space of an autoencoder into one where syntactic
and semantic transformations can be localised, in-
terpolated and controlled. Secondly, we propose a
supervision approach, which leads to an improved
disentangled and separated space. This property
can facilitate localised interpolation control. Lastly,
we utilize these geometric properties and seman-
tic controls to support a semantically coherent and
controlled data augmentation.

Since our work connects distributional and for-
mal semantics via semantic disentanglement, one
possible direction is to apply the same mecha-
nism to explore the safety and control of the for-
mal semantic properties of Large Language Mod-
els(LLMs). Besides, recent work (Liu et al., 2023)
revealed that disentangled factors can be composed
by modelling the moving of latent vectors via ordi-
nary differential equations, which can be adapted
in explanatory sentences to explore semantic infer-
ence control (i.e., polarity in natural logic (Angeli
and Manning, 2014)).



7 Limitations

This work explores how flow-based INN autoen-
coders can support better formal semantic separa-
tion for sentence representations over continuous
sentence spaces from the perspective of compo-
sitionality. While this work is motivated by pro-
viding more localised distributed representations,
which can positively impact the safety and coher-
ence of generative models, 1. the specific safety
guarantees of these models are not fully established,
which we will focus on next. 2. Additionally,
the efficient traversal (sampling) of latent sentence
spaces to exert control over generation remains a
challenge, particularly given the discrete properties
of sentence spaces. 3. Moreover, the unsuper-
vised INN exhibits a distinct learning pattern for
semantic distribution, a topic that requires further
explanation in future research. 4. Furthermore,
this study exclusively focused on explanatory sen-
tences, as detailed in (Dalvi et al., 2021), effectively
capturing formal semantics for multi-hop natural
language inference. However, the exploration of its
performance on other types of natural languages is
yet to be undertaken.
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A Experiment setting

Datasets Table 9 displays the statistical informa-
tion of the datasets used in the experiment. The
data of the two data sets partially overlap, so only
the non-repetitive explanations are selected as the
experimental data.

Corpus Num data.  Avg. length
WorldTree (Jansen et al., 2018a) 11430 8.65
EntailmentBank (Dalvi et al., 2021) 5134 10.35

Table 9: Statistics from explanations datasets.

Table 10 illustrates the semantic, structure, and
topic information of explanatory sentences over
the latent space (Zhang et al., 2022). Compared
with other datasets, such as Wikipedia and Wordnet,
that focus on word knowledge, it is more limited,
leading to better semantic and structure separability.
Table 11 the annotated semantic role categories and
corresponding statistic information.

Data Augmentation Algorithm 1 illustrates the
detailed process of data augmentation. The key
aspect of data augmentation is to keep the data dis-
tribution unchanged while increasing the size of the
dataset. Therefore, during traversal, we only sam-
ple the value whose probability density is between
0.495 and 0.505. In other words, for each original
explanation, we only traverse its neighbours over
the latent space.

Algorithm 1 Data Augmentation

Define: R as the role-content set (e.g., ARGI1-
animal).
Define: S as the explanation corpus (sentences).
Define: V' as mapping {R — (5,5)}.
Define: E(s) : S — R as encoder (embed-
ding) function.
Define: D(e) : R™ — S as the explanation
decoded from Decoder D.
for all (s;,s;) € V do

vec = average(E(s;), E(s;))

for all vec[i] € vec do

vecli] = N(0, 1) # resample each dimen-

sion
s = D(vec) # new sentence
end for
end for

Autoencoder In this work, we employ an autoen-
coder architecture with the same configuration as
described in (Li et al., 2020b)*. The encoder com-

4https ://github.com/ChunyuanLI/Optimus
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ponent is based on BERT (Devlin et al., 2018),
while the decoder component is based on GPT2
(Radford et al., 2019). The latent space dimension
is set to 32 (low-dimension) as Michlo et al. (2023)
revealed that strong compression, such as strong
KL regularization term in ELBO, can lead to the
phenomenon of disentanglement of images.

To establish the connection between the encoder
and decoder, the input sentence z is first encoded
by BERT into the latent space, denoted as N (u, X3).
The parameters p and X are trainable and deter-
mine the mean and covariance of the Gaussian dis-
tribution.

Next, a sample z ~ N (u, X2) is passed through a
multi-layer perceptron called W. This step expands
the dimensionality of z to obtain a fixed-length
embedding h € RP*EXH where D represents the
dimensions of the heads, L is the number of heads,
and H is the number of hidden layers. The latent
space injection can be described as:

Qlz; K
Vd
Figure 9 provides a visual representation of the

connection between BERT and GPT?2 within the
AutoEncoder architecture.

]T

Attention(Q, K, V') = softmax( )z V]

Animal is a kind of living thing

LM head

a a . A

[CLS]

BERT

Animal is a kind of living thing

Figure 9: Latent sentence injection.

INN The INN consists of 10 invertible blocks.
Each is built from three layers, including an affine
coupling (Dinh et al., 2016), permutation layer,
and ActNorm (Kingma and Dhariwal, 2018). Fig-
ure 10 displays one single invertible block. The
model was implemented using the FrEIA library
(Ardizzone et al., 2018-2022) °. As for training
hyperparameters of INN, firstly, both input and out-
put have the same dimensions as the latent space
dimension of the autoencoder. Secondly, inside

Shttps://github.com/VLL-HD/FrEIA
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Cluster | Theme and Pattern

0 Theme: physics and chemistry. Pattern: if then and as. E.g., if a substance is mixed with another substance then
those substances will undergo physical change.

1 Theme: country, astronomy, and weather. E.g., new york state is on earth

2 Theme: physics and chemistry. Pattern: is a kind of. E.g., light is a kind of wave.

3 Theme: biology. E.g., a mother births offspring.

4 Theme: synonym for verb. Pattern: means and is similar to. E.g., to report means to show.

5 Theme: astronomy. E.g., the solar system contains asteroids.

6 Theme: animal/plant. Pattern: is a kind of. E.g., a seed is a part of a plant.

7 Theme: item. E.g., a telephone is a kind of electrical device for communication.

8 Theme: synonym for life. Pattern: means and is similar to. E.g., shape is a kind of characteristic.

9 Theme: geography. Pattern: is a kind of. E.g., a mountain is a kind of environment.

10 Theme: animal and plant. Pattern: if then and as. E.g., if a habitat is removed then that habitat is destroyed.

11 Theme: scientific knowledge. Pattern: (;), number and /. E.g., freezing point is a property of a ( substance ;
material ).

12 Theme: item. Pattern: is a kind of object. E.g., a paper is a kind of object.

13 Theme: chemistry and astronomy. E.g., oxygen gas is made of only oxygen element.

14 Theme: general about science. Pattern: (;). E.g., seed dispersal has a positive impact on ( a plant ; a plant ’s
reproduction).

15 Theme: item. Pattern: is a kind of. E.g., fertilizer is a kind of substance.

16 Theme: physics and chemistry. Pattern: (;). E.g., the melting point of oxygen is -3618f ; -2188c ; 544k.

17 Theme: animal. E.g., squirrels live in forests.

18 Theme: nature. E.g., warm ocean currents move to cooler ocean regions by convection.

19 Theme: life. E.g., pond water contains microscopic living organisms.

Table 10: Semantic, structure, topic information of explanatory sentences, where the cluster is the categories of

k-means classifier.

the affine coupling block, the sub-network is MLP
with 512 as the hidden dimension. Thirdly, we use
AdamW (Loshchilov and Hutter, 2017) to optimize
the model where the learning rate is 5e-04 in the
experiment.

“71 Affine Coupling |-

ActNorm
Shuffling

Figure 10: INN one single block.

The forward process of the affine coupling layer
can be described as follows:
Ta, Ty = split(x)
log s,t = mg(xp)
s = exp(log s)
Yo =85O xq+1
Yp = Tp
y = concat(yq, Yp)

2

Where myg is a two-layer neural network. = and y

are the input and output. The reversed process is:

Yar Yp = split(y)
log 5, t = mo(yy)
)

s = exp(log s
(3)

Tg = (ya - t)/S

Lo = Yb

y = concat(xq, p)
B Additional supervised INN results

Table 12, 13, and 14 report the invertibility test for
argumentl, predicate, and Animal clusters, respec-
tively.

Table 15 shows the decoded explanations tra-
versed around the central point of each cluster in
the latent space of cluster-supervised INN.

C Controlled Interpolation

In table 17 and 18, we provide more controllable
interpolation examples. Those examples reveal that
the latent space with better role-content separation
from supervised INN can provide better interpola-
tion control, indicating better latent space geometry.



Semantic Tags Prop. % Description and Example

ARGM-DIR 0.80 Directionals. E.g. all waves transmit energy from one place to another

ARGM-PNC 0.08 Purpose. E.g. many animals blend in with their environment to not be seen
by predators

ARGM-CAU 0.05 Cause. E.g. cold environments sometimes are white in color from being
covered in snow

ARGM-PRP 1.30 Purpose. E.g. a pot is made of metal for cooking

ARGM-EXT 0.04 Extent. E.g. as the amount of oxygen exposed to a fire increases the fire will
burn longer

ARGM-LOC 4.50 Location. E.g. a solute can be dissolved in a solvent when they are combined

ARGM-MNR 2.00 Manner. E.g. fast means quickly

ARGM-MOD 9.80 Modal verbs. E.g. atom can not be divided into smaller substances

ARGM-DIS 0.07 Discourse. E.g. if something required by an organism is depleted then that
organism must replenish that something

ARGM-GOL 0.20 Goal. E.g. We flew to Chicago

ARGM-NEG 1.20 Negation. E.g. cactus wrens building nests in cholla cacti does not harm the
cholla cacti

ARGM-ADV 6.70 Adverbials

ARGM-PRD 0.20 Markers of secondary predication. E.g.

ARGM-TMP 7.00 Temporals. E.g. a predator usually kills its prey to eat it

O - Empty tag.

v 100 Verb.

ARGO 32.0 Agent or Causer. E.g. rabbits eat plants

ARGl 98.5 Patient or Theme. E.g. rabbits eat plants

ARG2 60.9 indirect object / beneficiary / instrument / attribute / end state. E.g. animals
are organisms

ARG3 0.60 start point / beneficiary / instrument / attribute. E.g. sleeping bags are designed
to keep people warm

ARG4 0.10 end point. E.g. when water falls from the sky that water usually returns to the

soil

Table 11: Semantic Role Labels that appear in explanations corpus. The annotation is done via pretrained model
(Shi and Lin, 2019), which can be implemented via AllenNLP library (Gardner et al., 2018).

ARG1: invertibility ratio (backward: T")

Traversing Animal clusters

train food oxygen sun water
U 0990 0.980 0.950 1.000
C 0.960 0.950 0.960 1.000

—_

: animals must escape from predators
2: animals require air to breathe

Table 12: backward evaluation for ARG1 clusters. un-
supervised INN (U), and supervised INN (S).

3: an animal requires warmth for survival

: animals are small in size
: animals usually are not carnivores
: animals are a part of an environment

W N =

PRED: invertibility test (backward: T")

train  is are cause  require
U 1.000 0.950 0.970 0.800
C 1.000 0.880 0.900 0.820

Table 13: backward evaluation for predicate clusters.
unsupervised INN (U), and supervised INN (S).

Animal: invertibility ratio (backward: 7")

train ARGO ARGI ARG2
U 0.990 0.990 0.900
C 0970 0.960 0.920

Table 14: Backward evaluation for Animal.

—

: arabbit is a kind of animal
2: an otter is a kind of animal
3: a horse is a kind of animal

Table 15: Traversal in each cluster (top: ARGO-Animal,
middle: ARGI-Animal, bottom: ARG2-Animal).

D INNs: Explanation Reconstruction

Table 19 shows some generated explanations from
AutoEncoder and unsupervised INN. As we can
see, they can reconstruct the explanations with
good quality.

Table 20 shows some reconstructed explanations



Interpolation control: predicate-require

source: humans require freshwater for survival

1. humans require water to survive

2. marine mammals require great amounts of water
3. animals require oxygen to survive

4. animals require water for survival

5. animals must eat water to survive

6. animals require water and food

7. animals require water for survival

8. animals must eat to survive

9. animals require food for survival

10. animals must eat food to survive

target: animals require food to survive

Table 16: AutoEncoder: interpolation examples where
top and bottom sentences are source and target, respec-
tively.

Interpolation control: predicate-is

source: the sun is in the northern hemisphere

1. the sun is located in the northern hemi-
sphere

2. the sun is in the northern hemisphere

3. the sun is made of air around the sun

4. the sun is a source of sunlight for organisms

5. the sun is a source of sunlight for birds

6. the sun is a source of energy for organisms living
in an arctic environment

7. the sun is a source of food for plants

8. food is a source of oxygen ; water for plants

9. food is a source of energy for plants by producing
heat

10. food is a source of energy for a plant or animal /
living thing

1. the sun is the dominant star in the night sky

2. the sun is closer to the earth than it is to the sun
3. the sun is a star in the night sky

4. the sun is good for the environment by providing
sunlight to plants

5. the atmosphere is an environment for intensive
farming

6. the respiratory system carries oxygen to the rest of
the body

7. food contains nutrients ; water ; food energy

8. food is the nutrient for ( plants ; animals )

9. producers are a source of energy for producers by
weathering

10. food is a part of a plant / animals / living things
target: food is a source of energy for animals / plants

Table 17: Interpolation examples (top: supervised INN,
bottom: Optimus).

from AutoEncoder, unsupervised INN, and super-
vised INN, respectively.
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Interpolation control: argument-animals

and predicate-require

source: animals require food to survive

1. animals require water to survive

2. animals require food for survival

3. animals require food for survival

4. animals require nutrients from food

5. an animal requires food for survival

6. an animal requires food for survival

7. an animal requires nutrients from producers
8. an animal requires nutrients for survival

9. an animal requires nutrients from food

10. an animal requires nutrients from producers

. animals need sunglasses for protection

. animals live in an environment

. animals need food to thrive

. animals require energy for survival

. a consumer uses some of the food that is available
. only a producer eats plants

. @ human produces its own food

. an animal requires nutrients in a source of food to
survive

9. an animal requires energy to perform photosynthe-
sis

10. an animal requires nutrients to grow

(eI e WU, U SOV I O R

target: an animal requires nutrients from producers

Table 18: Interpolation examples (top: supervised INN,
bottom: Optimus).




Explanations

BERT-GPT2

unsupervised INN

a fish is a kind of organism

a fish is a kind of organism

a fish is a kind of organism

a galaxy is a kind of celestial body

a galaxy is a kind of celestial body

a galaxy is a kind of celestial body

water is the solvent

water is the solute

water is the solvent

metal fork is made of metal for eating

metal fork is made of metal and usually
made of metal

metal fork is made of metal for cooking

to carry something means to contain
something

to carry something means to bring some-
thing

to carry something means to transport
that something

a tape measure is a kind of tool for (
measuring distance ; measuring length )

a tape measure is a kind of tool for mea-
suring ( length ; distance )

a scale is a kind of tool for measuring
weight / length

riding something is a kind of movement

walking is a kind of moving

riding is a kind of movement

if a living thing is destroyed then the
resources used by that living thing will
become available

if something is dead then that something
can rest in the environment

if a living thing is destroyed then the
resources it uses will be available

The chemical symbol for argon is Ar

The chemical symbol for argon is Ar

The chemical symbol for argon is Ar

exercise has a positive impact on a the
strength of a body

strength has a positive impact on a hu-
man’s survival

strength has a positive impact on a per-
son’s health

laying eggs is a kind of property of an
animal

laying an egg is a kind of inherited char-
acteristic in birds

laying eggs is a kind of adaptation for
reproducing

bears eat berries ; insects ; animals

bears eat berries / insects / animals / food

bears eat berries / insects / animals /
berries

pollutants have a negative impact on the
(‘environment ; air quality )

pollution has a negative impact on the (
environment ; the environment’s water
quality ; the environment’s resources

pollution has a negative impact on the (
environment ; human health )

if an object touches something then one
is exposed to that something

if an object touches something then one
is exposed to that something

if an object touches something then one
is exposed to that something

a stopwatch is a kind of tool for measur-
ing time

a stopwatch is a kind of tool for measur-
ing time

a stopwatch is a kind of tool for measur-
ing time

Table 19: Explanation reconstruction (left: original explanations from WorldTree corpus, middle: explanations from
AutoEncoder, right: explanations from unsupervised INN).
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Augmented explanations

BERT-GPT2

unsupervised INN

supervised INN

a animal requires water for
survival

a animal requires water for
survival

a animal requires water for
survival

a animal requires water for
survival

an animal requires a mate for
survival

an animal requires a mate to
reproduce

an animal requires a mate to
reproduce

an animal requires a repro-
ductive system for survival

some animals sometimes
hunt for prey

some animals prey on other
animals

some animals sometimes
catch prey

some animals sometimes
hunt for prey

an animal requires energy of
its own to move

an animal requires energy
from somewhere to move

an animal requires energy to
move

an animal requires energy for
movement

an animal requires energy to
run

an animal requires energy to
run

an animal requires energy to
run

an animal requires energy to
run

animals live in their habitats

animals live in their habitats

animals live in their habitat

animals live in their habitat

animals must eat animals to
survive

animals must eat to survive

animals must eat other ani-
mals to survive

animals must eat to survive

animals taste flavors

animals taste flavors

animals taste flavors

animals taste flavors

animals eat plants

animals eat plants

animals eat plants

animals eat plants

an animal requires nutrients
to grow and heal

an animal requires nutrients
in soil for survival

an animal requires nutrients
to grow and repair

an animal needs to store fat
to grow

animals require oxygen to
grow

animals require oxygen to
grow

animals require oxygen to
breath

animals require oxygen for
survival

an animal needs to breathe in
order to survive

an animal requires food for
survival

a animal needs to breathe to
survive

an animal requires water and
food to survive

humans cause the disease

humans cause the disease

humans cause the disease

humans cause the disease

humans have a negative im-
pact on the environment

humans have a negative im-
pact on the ecosystem

humans have a negative im-
pact on the environment

humans have a negative im-
pact on the environment

humans require water to sur-
vive

humans require water to sur-
vive

humans require water for sur-
vival

humans require water for sur-
vival

humans produce offspring

humans produce offspring

humans eat plants

humans produce offspring

humans have lived on earth

humans live in the solar sys-
tem

humans live in the solar sys-
tem

humans live in the biosphere

humans use fossil fuels for
energy

humans use fossil fuels to
make energy

humans use fossil fuels to
make energy

humans use natural gas to
make energy

humans eat green plants

humans eat green plants

humans eat green plants

humans eat green plants

humans eat fruit

humans eat fruit

humans eat fruit

humans eat fruit

humans sometimes eat plants
or animals

humans sometimes eat plants
and animals

living things sometimes eat
insects / animals

animals sometimes eat seeds
from trees

a plant absorbs light energy
for photosynthesis

a plant absorbs sunlight for
photosynthesis

an flower requires energy to
grow and provide warmth to
the skin

a plant absorbs light for pho-
tosynthesis

a plant absorbs water from
the air into its roots

a plant absorbs water from
the air into its body

a leaf absorbs water from the
air through the leaves

a plant absorbs water and nu-
trients from the air

a plant uses energy to grow

a plant requires energy for
growth

a plant requires energy to
grow

a plant requires energy to
grow

plant reproduction occurs in
the spring

plant reproduction occurs in
the spring

plant reproduction begins
during seed dispersal

plant reproduction begins in
spring

plants require water and sun-
light to grow

plants require water and sun-
light to grow

plants require sunlight to
grow and survive

plants require water and sun-
light to grow

a plant requires a habitat for
survival

a plant needs a habitat for sur-
vival

a plant requires a habitat for
survival

a plant requires a habitat for
survival

Table 20: Explanation reconstruction. From left to right are augmented explanations, decoded explanations from
AutoEncoder, explanations from unsupervised INN, and that from supervised INN, respectively.
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