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ABSTRACT1

Foundation models are increasingly applied to MIR tasks,2

yet their performance on music cognition problems re-3

mains underexplored. In this work, we investigate how4

state-of-the-art audio-language models and large language5

models (LLMs) perform on timbre-related cognitive tasks.6

We focus on music emotion recognition which captures7

listeners’ perceived and induced emotions in response to8

instrument tones, and run additional tests on instrument9

recognition. We evaluate contrastive audio-language mod-10

els (CLAP variants and MuQ-MuLan) in both zero-shot11

and probe-based settings, and compare their performance12

with Centaur, a recent LLM fine-tuned on human decision13

patterns. We further propose a novel inference pipeline14

that integrates CLAP descriptors as intermediate textual15

prompts for LLMs. Results show that LLMs, especially16

Centaur, outperform both zero-shot and probe-trained con-17

trastive models, while the hybrid pipeline yields the best18

performance overall. Our findings suggest that combin-19

ing audio-language and language-only models provides a20

promising direction for modelling music-related cognition,21

with implications for applications such as music recom-22

mendation, generation, and adaptive audio interfaces.23

1. INTRODUCTION24

Foundation models have been applied to music in a variety25

of domains, including representation learning, multimodal26

integration, and music generation in both symbolic and au-27

dio formats [1]. Though these models have been evalu-28

ated on various general music information retrieval tasks,29

they haven’t yet been extensively tested on music cogni-30

tion tasks. Music is a fundamentally cognitive activity [2]31

therefore computational models of music should be able to32

capture the perceptual and experiential aspects that music33

psychology investigates.34

In this paper, we evaluate foundation models of music35

on timbre-related tasks, focusing on music emotion recog-36

nition as a case study. Timbre is a musical features that can37

be described as not pitch, rhythm, or loudness and is often38

described in natural language by both researchers and prac-39
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titioners (e.g., audio engineers and producers). Many foun-40

dation models of music rely on audio representations such41

as mel spectrograms, which retain timbral information [1],42

making timbre a compelling target for evaluation. From a43

music cognition perspective, our goal is to test how well44

these models reproduce listeners’ perceptual and affective45

responses, thereby moving beyond purely formal or struc-46

tural accounts of music understanding.47

This study addresses two research questions:48

1. How well do foundation models capture human re-49

sponses to timbre in emotion recognition and instru-50

ment identification tasks?51

2. Does combining audio-language models with LLMs52

improve performance on music emotion recogni-53

tion?54

Our contributions are threefold:55

• We conduct a systematic evaluation of language-56

audio contrastive-learning models on timbre-related57

cognitive tasks, comparing zero-shot inference with58

probe-based regression approaches.59

• We assess the performance of LLMs on an timbre-60

emotion association task, and introduce a novel hy-61

brid pipeline in which semantic descriptors are in-62

jected into LLM prompts.63

• We provide empirical evidence that this hybrid ap-64

proach yields the closest alignment with human re-65

sponses, outperforming both traditional baselines66

and audio foundation models.67

2. BACKGROUND68

The few works that look into evaluation of foundation69

models on music cognition tasks have provided promising70

results [3,4]. This is the line of inquiry that this work aims71

to extend.72

In addition to the other music-related tasks for which73

foundation models have been employed, music question74

answering is a relatively new task that leverages their gen-75

eral music understanding. Despite the impressive perfor-76

mance of LLMs and other foundation models in ques-77

tion answering, significant drawbacks have been identified,78

most importantly the limited influence of the audio encoder79

on the answers compared to the text encoder [5]. To coun-80

teract this, we propose an alternative pipeline (see figure81



Figure 1. Proposed pipeline: CLAP extracts descriptors
from a pool of 20 used in Reymore et al. [6]. These are
then included in the prompt to Centaur.

8) where an audio-language model processes audio and ex-82

tracts an intermediate language description, that is then fed83

into an LLM as part of the prompt.84

3. METHOD85

3.1 Data86

We first focused on a dataset of human timbre-emotion as-87

sociations (Experiment 1 by Korsmit et al. [7]). This con-88

sists of 59 music tones (each lasting for 3 seconds) played89

by 26 instruments across different types/families. Listen-90

ers (total N = 263) were split into four groups, each asked91

to report induced (felt) vs perceived (expressed in music)92

emotion and whether they had to choose between a di-93

mensional emotion representation (consisting of valence,94

tension and energy plus their liking of each sample) ver-95

sus a discrete emotion representation (consisting of five96

affective descriptors: happiness, sadness, anger, tender-97

ness and fear). Therefore this dataset comprises four sub-98

experiments: Induced Dimensional (IDim), Perceived Di-99

mensional (PDim), Induced Discrete (IDisc) and Perceived100

Discrete (PDisc).101

Additionally, we performed initial tests on a recent102

dataset of human timbre recognition responses (Experi-103

ment 1 by McAdams et al. [8]). This includes 151 mu-104

sic tones, played by 11 instruments of different families,105

at different pitch ranges (each lasting less than a second).106

Listeners (N = 25) had to select which of the 11 instru-107

ments produced each of the 151 audio files.108

3.2 Models109

Two types of foundation models were used in this work:110

audio-language contrastive learning based models and111

LLMs. More specifically, CLAP [9] variants with differ-112

ing audio encoder sizes and training datasets, and the re-113

cent MuQ-MuLan model [10] were used (see table 3.2 for114

details). In addition, Centaur (an instance of Llama 3.1115

70B fine-tuned on human decisions) [11] was also evalu-116

ated, and compared to Llama 3.1 70B instruct 1 , which we117

found to be performing much better and closer to Centaur118

compared to the non-instruct version.119

3.3 Experiments120

For the timbre-emotion association data [7], we tested the121

contrastive learning models using two different methods:122

(1) Zero-shot inference: The audio stimuli were in-123

putted to the audio encoder and text prompts were created124

and inputted to the text encoder (see section 3.4). Similar-125

ity scores were computed for each audio-text pair by taking126

the dot product between the audio and text embeddings.127

Then, the cosine similarity scores were normalised to the128

continuous range of 1-9, corresponding to the responses129

listeners gave during the experiment.130

(2) MLP probe training: We also split the human re-131

sponses into train and test subsets and trained MLPs to132

perform regression over the output values, using the au-133

dio embeddings of each of the models as input. We trained134

both univariate regressor MLPs (which output one emo-135

tion value at a time) as well as multivariate regressor MLPs136

(which output all the emotion values of either the induced137

or perceived category simultaneously).138

For each of the above methods, we evaluated their out-139

puts against averaged human responses using multiple re-140

gression metrics. Additionally, we converted the ratings of141

the models and the averaged human responses to rankings142

and evaluated them using multiple ranking metrics.143

We used two baselines: a random one and an MLP144

trained on the human responses of each sub-experiment145

using standard timbral features used in the literature and146

taken from the repository provided by Korsmit et al. [7].147

For the timbre recognition data [8], we run zero-shot148

inference using CLAP variants to test whether it could149

1 https://huggingface.co/meta-llama/Llama-3.
1-70B-Instruct

2 https://github.com/LAION-AI/CLAP
3 https://github.com/tencent-ailab/MuQ

https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://github.com/LAION-AI/CLAP
https://github.com/tencent-ailab/MuQ


Model Name Audio Encoder (type/size) Embedding size Training data

Unfused HTSAT 768 LAION-Audio-630K, AudioSet
Fused HTSAT 768 LAION-Audio-630K, AudioSet
General HTSAT 1024 Music, Speech, LAION-Audio-630K, AudioSet
Music and Speech HTSAT 1024 Music, Speech, LAION-Audio-630K
Music HTSAT 1024 Music, AudioSet, LAION-Audio-630K
MuQ-MuLan MuQ 1024 Music4all [12]

Table 1. The audio-language models under evaluation. Information gathered from the github pages of CLAP 2 and MuQ-
MuLan 3 .

achieve the 75% pass threshold that humans had to in order150

to participate in the experiment.151

3.4 Prompt engineering152

It has been shown in previous work [13] that foundation153

models are very sensitive to text input. Accordingly, for154

the timbre-emotion association data, text inputs were ei-155

ther tags or captions, constructed based on the original156

task instructions to listeners. Specifically, tags represented157

the two sets of emotion axes of each sub-experiment (di-158

mensional, discrete). Captions were constructed to fur-159

ther specify whether the emotion was induced/felt or per-160

ceived/expressed. Multiple variants were tested until we161

converged to the following captions:162

• Induced: "This sound makes me feel <tag>"163

• Perceived: "I perceive this sound as <tag>"164

We further evaluated Centaur and Llama-3.1 Instruct165

using two prompt designs, both of which mirrored the in-166

structions given to human participants, but differed in the167

type of information provided about each musical tone. The168

first prompt included only metadata, the instrument and169

pitch range, so the models’ outputs were not influenced170

by audio-derived information. The second prompt incor-171

porated five semantic descriptors, characterising each tone172

selected from a pool of 20 descriptors used in Reymore173

et al. [6]. These were chosen as the top-5 most similar174

descriptors according to the unfused CLAP model, which175

we selected for its consistently strong performance without176

reliance on larger audio encoders or music/speech-specific177

training. In this way, the second prompt conveyed timbral178

information indirectly, via CLAP’s semantic processing.179

This approach represents a novel combination of foun-180

dation models: rather than projecting audio embeddings181

directly into an LLM, we first extract intermediate textual182

descriptors with CLAP and then embed them within the183

LLM’s prompt (Figure 8). This design allows the LLM to184

leverage cognitively meaningful, language-based descrip-185

tions of timbre while retaining the benefits of CLAP’s au-186

dio understanding.187

4. RESULTS188

4.1 Audio-language models in emotion recognition189

Across all sub-experiments, contrastive audio-language190

models outperformed the random baseline in the zero-shot191

setting, with the exception of CLAP Music (Figure 2). This192

finding is notable given the musical nature of the task:193

models trained on broader and more heterogeneous data194

(e.g., CLAP General or CLAP Music and Speech) were195

better aligned with listeners’ judgments than those trained196

exclusively on music. This suggests that diversity of train-197

ing data enhances generalisation, even for timbre-specific198

tasks.199

When training MLP probes on top of audio embed-200

dings, performance improved consistently across models.201

R2 values were relatively stable (around 0.2), indicating202

that the audio encoders reliably captured features relevant203

to listeners’ affective ratings. The lowest R2 was observed204

for CLAP Music (0.167), again confirming the limitations205

of music-only training. As shown in Figure 2, probe-based206

results (dark blue bars) generally reduced MAE compared207

to zero-shot inference (light blue bars).208

Interestingly, the fused CLAP model underperformed209

relative to unfused variants. Since all stimuli were shorter210

than 10 seconds, fusion of multiple audio segments pro-211

vided little benefit, and may have introduced unnecessary212

complexity. This points to an important caveat: fusion is213

not advantageous for short timbral stimuli.214

4.2 LLMs and hybrid pipeline in emotion recognition215

Turning to the LLMs, both Llama-3.1 Instruct and Centaur,216

substantially outperformed all CLAP variants and MLP217

probes in terms of MAE (orange and green bars in Fig-218

ure 2). Moreover, the proposed hybrid pipeline, where219

CLAP descriptors were inserted into the LLM prompts,220

consistently outperformed the version using only instru-221

ment and pitch range information. This demonstrates that222

intermediate semantic descriptions derived from audio-223

language models can serve as more effective cues for224

LLMs than symbolic metadata.225

Between the two LLMs, Centaur achieved the best226

performance overall, outperforming Llama-3.1 Instruct in227

both prompt configurations. This supports the hypothe-228

sis that Centaur’s fine-tuning on human decision patterns229

makes it particularly well-suited for music cognition tasks.230

4.3 Instrument recognition231

In modeling this experiment, CLAP general was used, as it232

was one of the best performing variants, and also showed233

promising results: on a subset of C4 tones across instru-234

ments, it achieved 82% accuracy in instrument recogni-235



Figure 2. Overall comparison of the best variants per method across models in terms of MAE.

tion without any task-specific training, exceeding the 75%236

minimum accuracy that was required of human partici-237

pants. This highlights the potential of foundation mod-238

els to generalise beyond emotion recognition into related239

timbre-based cognitive tasks.240

5. CONCLUSION241

We evaluated foundation models on timbre-related cogni-242

tive tasks, focusing on emotion recognition and instrument243

identification. Contrastive audio-language models cap-244

tured some aspects of human responses, but LLMs, partic-245

ularly Centaur, achieved superior accuracy. Our proposed246

hybrid pipeline that integrates CLAP-generated descriptors247

into LLM prompts further improved performance, suggest-248

ing a promising strategy for bridging perceptual and lin-249

guistic aspects of music. Timbre is among the most chal-250

lenging musical features to model—arguably more so than251

pitch, rhythm, or loudness—because it is more difficult to252

represent computationally, yet the tested models handled253

the tasks impressively well.254

Future work will extend these experiments to other255

cognition-oriented tasks, evaluate additional music-256

specific LLMs (e.g. MusiLingo [14]), and explore person-257

alisation through individual listener data. These directions258

could help utilise foundation models in a way that more259

closely reflects the cognitive and experiential dimensions260

of music listening.261
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7. APPENDIX328

7.1 Additional results for Korsmit et al.329

The provided figures (3-6) offer a detailed view into the330

performance of different foundation models on the timbre-331

related emotion recognition tasks. A thorough analysis of332

the results reveals several key findings.333

The graphs illustrate that while a zero-shot approach334

with foundation models is a good starting point, fine-335

tuning with a probe MLP significantly boosts performance336

in both rating and ranking tasks. This is likely because337

the MLP learns to better map the general-purpose audio338

embeddings to the specific, nuanced human emotional re-339

sponses in the dataset. The use of captions also provides340

a small but consistent improvement over simple tags in341

the zero-shot setting. Finally, the graphs highlight that the342

foundation models are capable of learning representations343

that are as effective as, or in some cases even more effec-344

tive than those derived from traditional handcrafted timbral345

features, validating their use for these cognitive tasks.346

• Tags vs. Captions: The performance difference be-347

tween models using simple tags versus full captions348

is not uniform. While captions generally provide a349

slight advantage by adding context, the effect varies350

significantly between the two displayed models (as351

well as the other CLAP variants), suggesting some352

are more sensitive to prompt nuance than others.353

• Rankings and MLP Performance: MLP probes,354

trained for regression, did not consistently outper-355

form zero-shot models on the ranking task. This356

suggests that the zero-shot approach, leveraging357

the models’ pre-trained semantic understanding, is358

sometimes better at capturing the relative order359

of human preferences than a fine-tuned regression360

model.361

• Dimensional vs. Discrete Emotions: The mod-362

els generally found the dimensional emotion sub-363

experiments (IDim, PDim) easier to predict than the364

discrete emotion sub-experiments (IDisc, PDisc).365

The continuous nature of the dimensional axes may366

be better aligned with the latent space of the founda-367

tion models, leading to more accurate predictions.368

• Perceived vs. Induced Emotions: Performance369

was consistently higher for perceived emotion tasks370

compared to induced emotion tasks. This could be a371

direct consequence of the models’ training data (e.g.,372

AudioSet, LAION-Audio), which often contains ob-373

jective descriptions of sounds rather than subjective,374

induced feelings.375

7.2 Additional results for McAdams et al.376

We further evaluated the zero-shot performance of CLAP377

on an instrument recognition task from McAdams et al. [8],378

using confusion matrices to compare its predictions against379

both the objective ground truth and human consensus data.380

The total accuracy was 63.58% when measured against the381

objective labels, but dropped to 56.95% when measured382

against the human-aligned labels. This divergence high-383

lights a crucial finding: the model’s internal representa-384

tions are better aligned with the objective source of the385

sound than with the patterns of human perception and con-386

fusion.387

The matrices revealed both strengths and weaknesses388

of the model. On one hand, CLAP demonstrated high-389

confidence recognition for instruments with distinct tim-390

bres, such as the Guitar, Tuba, and Marimba. On the other391

hand, it exhibited common confusions that are known to392



also challenge human listeners, such as distinguishing be-393

tween the Clarinet and Saxophone, or the Vibraphone and394

Tubular Bells. The model’s difficulty with instruments like395

the Tubular Bells, which are likely underrepresented in its396

training data, further suggests that data distribution plays a397

significant role in performance.398

To explore this discrepancy, we trained an MLP on399

human-aligned data from the C4 subset of tones. The MLP400

achieved an impressive accuracy of 90.91% on this specific401

subset. However, its performance on the rest of the dataset402

dropped dramatically to just 6.62%. This result suggests403

that the MLP overfitted to the unique characteristics of the404

C4 tones and failed to generalise effectively, unlike human405

participants. This massive drop in performance also points406

to the potential importance of the text encoder, which was407

not used in this probe-based approach.408

This finding underscores the potential of foundation409

models for modeling objective acoustic properties. How-410

ever, their ability to model human perception, which is a411

distinct and potentially more useful ability for downstream412

tasks such as music recommendation, requires either fine-413

tuning on human-centric data or a more sophisticated ap-414

proach that accounts for the subjective nature of auditory415

cognition.416
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