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ABSTRACT

Foundation models are increasingly applied to MIR tasks,
yet their performance on music cognition problems re-
mains underexplored. In this work, we investigate how
state-of-the-art audio-language models and large language
models (LLMs) perform on timbre-related cognitive tasks.
We focus on music emotion recognition which captures
listeners’ perceived and induced emotions in response to
instrument tones, and run additional tests on instrument
recognition. We evaluate contrastive audio-language mod-
els (CLAP variants and MuQ-MuLan) in both zero-shot
and probe-based settings, and compare their performance
with Centaur, a recent LLM fine-tuned on human decision
patterns. We further propose a novel inference pipeline
that integrates CLAP descriptors as intermediate textual
prompts for LLMs. Results show that LLMs, especially
Centaur, outperform both zero-shot and probe-trained con-
trastive models, while the hybrid pipeline yields the best
performance overall. Our findings suggest that combin-
ing audio-language and language-only models provides a
promising direction for modelling music-related cognition,
with implications for applications such as music recom-
mendation, generation, and adaptive audio interfaces.

1. INTRODUCTION

Foundation models have been applied to music in a variety
of domains, including representation learning, multimodal
integration, and music generation in both symbolic and au-
dio formats [1]. Though these models have been evalu-
ated on various general music information retrieval tasks,
they haven’t yet been extensively tested on music cogni-
tion tasks. Music is a fundamentally cognitive activity [2]
therefore computational models of music should be able to
capture the perceptual and experiential aspects that music
psychology investigates.

In this paper, we evaluate foundation models of music
on timbre-related tasks, focusing on music emotion recog-
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nition as a case study. Timbre is a musical feature that can
be described as not pitch, rhythm, or loudness and is of-
ten described in natural language by both researchers and
practitioners (e.g., audio engineers and producers). Many
foundation models of music rely on audio representations
such as mel spectrograms, which retain timbral informa-
tion [1], making timbre a compelling target for evaluation.
From a music cognition perspective, our goal is to test how
well these models reproduce listeners’ perceptual and af-
fective responses, thereby moving beyond purely formal
or structural accounts of music understanding.

This study addresses two research questions:

1. How well do foundation models capture human re-
sponses to timbre in emotion recognition and instru-
ment identification tasks?

2. Does combining audio-language models with LLMs
improve performance on music emotion recogni-
tion?

Our contributions are threefold:

* We conduct a systematic evaluation of language-
audio contrastive-learning models on timbre-related
cognitive tasks, comparing zero-shot inference with
probe-based regression approaches.

e We assess the performance of LLMs on a timbre-
emotion association task, and introduce a novel hy-
brid pipeline in which semantic descriptors are in-
jected into LLM prompts.

* We provide empirical evidence that this hybrid ap-
proach yields the closest alignment with human re-
sponses, outperforming both traditional baselines
and audio foundation models.

2. BACKGROUND

The few works that look into evaluation of foundation
models on music cognition tasks have provided promising
results [3,4]. This is the line of inquiry that this work aims
to extend.

In addition to the other music-related tasks for which
foundation models have been employed, music question
answering is a relatively new task that leverages their gen-
eral music understanding. Despite the impressive perfor-
mance of LLMs and other foundation models in ques-
tion answering, significant drawbacks have been identified,
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Figure 1. Proposed pipeline: CLAP extracts descriptors
from a pool of 20 used in Reymore et al. [6]. These are
then included in the prompt to Centaur.

most importantly the limited influence of the audio encoder
on the answers compared to the text encoder [5]. To coun-
teract this, we propose an alternative pipeline (see figure
8) where an audio-language model processes audio and ex-
tracts an intermediate language description, that is then fed
into an LLM as part of the prompt.

3. METHOD
3.1 Data

We first focused on a dataset of human timbre-emotion as-
sociations (Experiment 1 by Korsmit et al. [7]). This con-
sists of 59 music tones (each lasting for 3 seconds) played
by 26 instruments across different types/families. Listen-
ers (total N = 263) were split into four groups, each asked
to report induced (felt) vs perceived (expressed in music)
emotion and whether they had to choose between a di-
mensional emotion representation (consisting of valence,

tension and energy plus their liking of each sample) ver-
sus a discrete emotion representation (consisting of five
affective descriptors: happiness, sadness, anger, tender-
ness and fear). Therefore this dataset comprises four sub-
experiments: Induced Dimensional (IDim), Perceived Di-
mensional (PDim), Induced Discrete (IDisc) and Perceived
Discrete (PDisc).

Additionally, we performed initial tests on a recent
dataset of human timbre recognition responses (Experi-
ment 1 by McAdams et al. [8]). This includes 151 mu-
sic tones, played by 11 instruments of different families,
at different pitch ranges (each lasting less than a second).
Listeners (N = 25) had to select which of the 11 instru-
ments produced each of the 151 audio files.

3.2 Models

Two types of foundation models were used in this work:
audio-language contrastive learning based models and
LLMs. More specifically, CLAP [9] variants with differ-
ing audio encoder sizes and training datasets, and the re-
cent MuQ-MuLan model [10] were used (see table 3.2 for
details). In addition, Centaur (an instance of Llama 3.1
70B fine-tuned on human decisions) [11] was also evalu-
ated, and compared to Llama 3.1 70B instruct !, which we
found to be performing much better and closer to Centaur
compared to the non-instruct version.

3.3 Experiments

For the timbre-emotion association data [7], we tested the
contrastive learning models using two different methods:

(1) Zero-shot inference: The audio stimuli were in-
putted to the audio encoder and text prompts were created
and inputted to the text encoder (see section 3.4). Similar-
ity scores were computed for each audio-text pair by taking
the dot product between the audio and text embeddings.
Then, the cosine similarity scores were normalised to the
continuous range of 1-9, corresponding to the responses
listeners gave during the experiment.

(2) MLP probe training: We also split the human re-
sponses into train and test subsets and trained MLPs to
perform regression over the output values, using the au-
dio embeddings of each of the models as input. We trained
both univariate regressor MLPs (which output one emo-
tion value at a time) as well as multivariate regressor MLPs
(which output all the emotion values of either the induced
or perceived category simultaneously).

For each of the above methods, we evaluated their out-
puts against averaged human responses using multiple re-
gression metrics. Additionally, we converted the ratings of
the models and the averaged human responses to rankings
and evaluated them using multiple ranking metrics.

We used two baselines: a random one and an MLP
trained on the human responses of each sub-experiment

'https://huggingface.co/meta-1lama/Llama-3.
1-70B-Instruct

2https://github.com/LAION-AI/CLAP

3https://github.com/tencent-ailab/MuQ


https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://github.com/LAION-AI/CLAP
https://github.com/tencent-ailab/MuQ

Model Name Audio Encoder (type/size)

Embedding size

Training data

Unfused HTSAT 768
Fused HTSAT 768
General HTSAT 1024
Music and Speech  HTSAT 1024
Music HTSAT 1024
MuQ-MuLan MuQ 1024

LAION-Audio-630K, AudioSet
LAION-Audio-630K, AudioSet

Music, Speech, LAION-Audio-630K, AudioSet
Music, Speech, LAION-Audio-630K

Music, AudioSet, LAION-Audio-630K
Music4all [12]

Table 1. The audio-language models under evaluation. Information gathered from the github pages of CLAP 2 and MuQ-

MuLan 3.

using standard timbral features used in the literature and
taken from the repository provided by Korsmit et al. [7].

For the timbre recognition data [8], we run zero-shot
inference using CLAP variants to test whether it could
achieve the 75% pass threshold that humans had to in order
to participate in the experiment.

3.4 Prompt engineering

It has been shown in previous work [13] that foundation
models are very sensitive to text input. Accordingly, for
the timbre-emotion association data, text inputs were ei-
ther tags or captions, constructed based on the original
task instructions to listeners. Specifically, tags represented
the two sets of emotion axes of each sub-experiment (di-
mensional, discrete). Captions were constructed to fur-
ther specify whether the emotion was induced/felt or per-
ceived/expressed. Multiple variants were tested until we
converged to the following captions:

¢ Induced: "This sound makes me feel <tag>"
* Perceived: "I perceive this sound as <tag>"

We further evaluated Centaur and Llama-3.1 Instruct
using two prompt designs, both of which mirrored the in-
structions given to human participants, but differed in the
type of information provided about each musical tone. The
first prompt included only metadata, the instrument and
pitch range, so the models’ outputs were not influenced
by audio-derived information. The second prompt incor-
porated five semantic descriptors, characterising each tone
selected from a pool of 20 descriptors used in Reymore
et al. [6]. These were chosen as the top-5 most similar
descriptors according to the unfused CLAP model, which
we selected for its consistently strong performance without
reliance on larger audio encoders or music/speech-specific
training. In this way, the second prompt conveyed timbral
information indirectly, via CLAP’s semantic processing.

This approach represents a novel combination of foun-
dation models: rather than projecting audio embeddings
directly into an LLM, we first extract intermediate textual
descriptors with CLAP and then embed them within the
LLM’s prompt (Figure 8). This design allows the LLM to
leverage cognitively meaningful, language-based descrip-
tions of timbre while retaining the benefits of CLAP’s au-
dio understanding.

4. RESULTS
4.1 Audio-language models in emotion recognition

Across all sub-experiments, contrastive audio-language
models outperformed the random baseline in the zero-shot
setting, with the exception of CLAP Music (Figure 2). This
finding is notable given the musical nature of the task:
models trained on broader and more heterogeneous data
(e.g., CLAP General or CLAP Music and Speech) were
better aligned with listeners’ judgments than those trained
exclusively on music. This suggests that diversity of train-
ing data enhances generalisation, even for timbre-specific
tasks.

When training MLP probes on top of audio embed-
dings, performance improved consistently across models.
R? values were relatively stable (around 0.2), indicating
that the audio encoders reliably captured features relevant
to listeners’ affective ratings. The lowest R? was observed
for CLAP Music (0.167), again confirming the limitations
of music-only training. As shown in Figure 2, probe-based
results (dark blue bars) generally reduced MAE compared
to zero-shot inference (light blue bars).

Interestingly, the fused CLAP model underperformed
relative to unfused variants. Since all stimuli were shorter
than 10 seconds, fusion of multiple audio segments pro-
vided little benefit, and may have introduced unnecessary
complexity. This points to an important caveat: fusion is
not advantageous for short timbral stimuli.

4.2 LLMs and hybrid pipeline in emotion recognition

Turning to the LLMs, both Llama-3.1 Instruct and Centaur,
substantially outperformed all CLAP variants and MLP
probes in terms of MAE (orange and green bars in Fig-
ure 2). Moreover, the proposed hybrid pipeline, where
CLAP descriptors were inserted into the LLM prompts,
consistently outperformed the version using only instru-
ment and pitch range information. This demonstrates that
intermediate semantic descriptions derived from audio-
language models can serve as more effective cues for
LLMs than symbolic metadata.

Between the two LLMs, Centaur achieved the best
performance overall, outperforming Llama-3.1 Instruct in
both prompt configurations. This supports the hypothe-
sis that Centaur’s fine-tuning on human decision patterns
makes it particularly well-suited for music cognition tasks.
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Figure 2. Overall comparison of the best variants per method across models in terms of MAE.

4.3 Instrument recognition

In modelling this experiment, CLAP general was used, as it
was one of the best performing variants, and also showed
promising results: on a subset of C4 tones across instru-
ments, it achieved 82% accuracy in instrument recogni-
tion without any task-specific training, exceeding the 75%
minimum accuracy that was required of human partici-
pants. This highlights the potential of foundation mod-
els to generalise beyond emotion recognition into related
timbre-based cognitive tasks.

5. CONCLUSION

We evaluated foundation models on timbre-related cogni-
tive tasks, focusing on emotion recognition and instrument
identification. Contrastive audio-language models cap-
tured some aspects of human responses, but LLMs, partic-
ularly Centaur, achieved superior accuracy. Our proposed
hybrid pipeline that integrates CLAP-generated descriptors
into LLM prompts further improved performance, suggest-
ing a promising strategy for bridging perceptual and lin-
guistic aspects of music. Timbre is among the most chal-
lenging musical features to model—arguably more so than
pitch, rhythm, or loudness—because it is more difficult to
represent computationally, yet the tested models handled
the tasks impressively well.

Future work will extend these experiments to other
cognition-oriented tasks, evaluate additional music-
specific LLMs (e.g. MusiLingo [14]), and explore person-
alisation through individual listener data. These directions

could help utilise foundation models in a way that more
closely reflects the cognitive and experiential dimensions
of music listening.
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8. APPENDIX
8.1 Additional results for Korsmit et al.

The provided figures (3-6) offer a detailed view into the
performance of different foundation models on the timbre-
related emotion recognition tasks. A thorough analysis of
the results reveals several key findings.

The graphs illustrate that while a zero-shot approach
with foundation models is a good starting point, fine-
tuning with a probe MLP significantly boosts performance
in both rating and ranking tasks. This is likely because
the MLP learns to better map the general-purpose audio
embeddings to the specific, nuanced human emotional re-
sponses in the dataset. The use of captions also provides
a small but consistent improvement over simple tags in
the zero-shot setting. Finally, the graphs highlight that the
foundation models are capable of learning representations
that are as effective as, or in some cases even more effec-
tive than those derived from traditional handcrafted timbral
features, validating their use for these cognitive tasks.

» Tags vs. Captions: The performance difference be-
tween models using simple tags vs full captions is
not uniform. While captions generally provide a
slight advantage by adding context, the effect varies
significantly between the two displayed models (as
well as the other CLAP variants), suggesting some
are more sensitive to prompt nuance than others.

¢ Rankings and MLP Performance: MLP probes,
trained for regression, did not consistently outper-
form zero-shot models on the ranking task. This
suggests that the zero-shot approach, leveraging
the models’ pre-trained semantic understanding, is
sometimes better at capturing the relative order
of human preferences than a fine-tuned regression
model.

* Dimensional vs. Discrete Emotions: The mod-
els generally found the dimensional emotion sub-
experiments (IDim, PDim) easier to predict than the
discrete emotion sub-experiments (IDisc, PDisc).
The continuous nature of the dimensional axes may
be better aligned with the latent space of the founda-
tion models, leading to more accurate predictions.

Perceived vs. Induced Emotions: Performance
was consistently higher for perceived emotion tasks
compared to induced emotion tasks. This could be a
direct consequence of the models’ training data (e.g.,
AudioSet, LAION-Audio), which often contains ob-
jective descriptions of sounds rather than subjective,
induced feelings.

8.2 Additional results for McAdams et al.

We further evaluated the zero-shot performance of CLAP
on an instrument recognition task from McAdams et al. [8],
using confusion matrices to compare its predictions against
both the objective ground truth and human consensus data.
The total accuracy was 63.58% when measured against the



objective labels, but dropped to 56.95% when measured
against the human-aligned labels. This divergence high-
lights a crucial finding: the model’s internal representa-
tions are better aligned with the objective source of the
sound than with the patterns of human perception and con-
fusion.

The matrices revealed both strengths and weaknesses
of the model. On one hand, CLAP demonstrated high-
confidence recognition for instruments with distinct tim-
bres, such as the Guitar, Tuba, and Marimba. On the other
hand, it exhibited common confusions that are known to
also challenge human listeners, such as distinguishing be-
tween the Clarinet and Saxophone, or the Vibraphone and
Tubular Bells. The model’s difficulty with instruments like
the Tubular Bells, which are likely underrepresented in its
training data, further suggests that data distribution plays a
significant role in performance.

To explore this discrepancy, we trained an MLP on
human-aligned data from the C4 subset of tones. The MLP
achieved an impressive accuracy of 90.91% on this specific
subset. However, its performance on the rest of the dataset
dropped dramatically to just 6.62%. This result suggests
that the MLP overfitted to the unique characteristics of the
C4 tones and failed to generalise effectively, unlike human
participants. This massive drop in performance also points
to the potential importance of the text encoder, which was
not used in this probe-based approach.

This finding underscores the potential of foundation
models for modeling objective acoustic properties. How-
ever, their ability to model human perception, which is a
distinct and potentially more useful ability for downstream
tasks such as music recommendation, requires either fine-
tuning on human-centric data or a more sophisticated ap-
proach that accounts for the subjective nature of auditory
cognition.
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