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SUMMARY
Every day, hundreds of thousands of people undergo general anesthesia. One hypothesis is that anesthesia
disrupts dynamic stability—the ability of the brain to balance excitability with the need to be stable and
controllable. To test this hypothesis, we developed a method for quantifying changes in population-level dy-
namic stability in complex systems: delayed linear analysis for stability estimation (DeLASE). Propofol was
used to transition animals between the awake state and anesthetized unconsciousness. DeLASEwas applied
tomacaque cortex local field potentials (LFPs). We found that neural dynamics weremore unstable in uncon-
sciousness comparedwith the awake state. Cortical trajectoriesmirrored predictions fromdestabilized linear
systems. We mimicked the effect of propofol in simulated neural networks by increasing inhibitory tone. This
in turn destabilized the networks, as observed in the neural data. Our results suggest that anesthesia disrupts
dynamical stability that is required for consciousness.
INTRODUCTION

The pharmacological action and neurophysiological response of

propofol are well understood, but how it renders unconscious-

ness is not. Propofol boosts inhibition through GABAA (g-amino-

butyric acid type A) receptors and significantly alters cortical dy-

namics.1–6 This could disrupt the cortical communication on

which consciousness depends,1,2,7 but the exact link to theories

of consciousness is not clear. Many theories of consciousness

have focused on the representation and network structure

involved in integrating information or linking together cortical

representations.8–14 For example, one prominent theory of con-

sciousness posits that awareness follows from an ‘‘ignition’’ that

produces widespread cortical spiking, much like a few claps can

lead to a whole audience applauding.10,15,16 However, overly

excitable and unstable states are uncontrollable, indicative of

pathological conditions.17,18 Thus, we hypothesize that a key

factor in consciousness is dynamic stability. Brain states should
Neuron 112, 2799–2813, Au
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be sufficiently excitable for generation of widespread activity and

information integration. But they also need to be controllable and

stable, reliably producing the same computations.19–23

Stability has longbeenknown tobecritical for brain function, but

early computational work investigated it in the context of conver-

gence to a single state, involving a kind of ‘‘freezing’’ of neural ac-

tivity.24–26 However, normal neural activity is rarely so stationary;

rather, it constantly evolves through dynamic trajectories.27,28

Thus, stability, and hence consciousness, needs tobeunderstood

in terms of a dynamic brain.21,22 Here, we approach the analysis

of anesthetic unconsciousness through the lens ofdynamic stabil-

ity (henceforth stability) (Figure 1A), a fundamental concept in

dynamical systems theoryandcontrol. Essentially,dynamicstabil-

ity is ameasure of the robustness of a dynamical system. The sys-

tem needs to be able to recover from disturbances (e.g., distrac-

tions, random fluctuations in activity) to its normal state.

Previous work on cortical stability during anesthesia has pro-

duced contradictory results, suggesting that anesthesia either
gust 21, 2024 ª 2024 The Authors. Published by Elsevier Inc. 2799
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Introduction: Stability and insta-

bility, and hypothesis candidates

(A) (Left, top) Depiction of stability in dynamics:

starting from two distinct initial conditions, system

trajectories converge. (Left, bottom) Diagram of a

stable system—a pendulum with friction—that will

converge to the bottom position regardless of the

starting point. (Right, top) Depiction of instability in

dynamics: starting from two similar initial condi-

tions, system trajectories diverge to distinct paths.

(Right, bottom) Cartoon of an unstable system—

the weather—where a small perturbation, like a

butterfly’s wings flapping, may cause a large-scale

change such as a tornado.29

(B) Three hypotheses regarding the impact of

propofol anesthesia on neural dynamics: dy-

namics can be more unstable, more stable, or

show no significant change compared with awake

dynamics.

(C) Sample neural data from the propofol dataset:

(top row) LFPs during the awake (left) and un-

conscious (right) states. (Bottom row) Spike ras-

ters during awake (left) and unconscious (right)

states. In the awake state, LFP signals are lower

amplitude with higher-frequency activity, and

spiking is consistent without coordinated bursting.

In the unconscious state, LFP signals display

low frequency, hypothesized to underlie loss

of consciousness.1,2 Spiking during the uncon-

scious state shows up-state/down-state bursting

patterns.
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destabilizes30,31 or excessively stabilizes32–34 neural dynamics

(Figure 1B). This could be due to a paucity of studies using

high-density intracortical electrophysiology and the inability to

therefore apply sufficiently rich dynamical tools to assess stabil-

ity. Thus, we used a dataset of local field potential (LFP) record-

ings with hundreds of electrodes from multiple brain regions in

two non-human primates (NHPs, specifically adult rhesus ma-

caque monkeys) as they lost and regained consciousness due

to propofol anesthesia (Figure 1C).

We introduce a new approach—delayed linear analysis for

stability estimation (DeLASE). DeLASE directly quantifies

changes in stability in neural data.We show that thismethod pro-

duces high-quality models of nonlinear circuit dynamics while

maintaining the simplicity and tractability of a linear dynamical

system. We validated the model’s estimates of changes in dy-

namic stability in systems for which the ground truth stability is

known. We found that propofol-induced unconsciousness is

associated with destabilized neural dynamics.

RESULTS

Dynamical systems approach: DeLASE method
There are three major challenges to a dynamical systems anal-

ysis of neural data.

(1) Partial observation: Neural dynamics are high-dimen-

sional. Any one sample of neural data can only hope to
2800 Neuron 112, 2799–2813, August 21, 2024
capture a few of the dimensions of the overall system.

This means we are restricted to partial observation.

(2) High-dimensionality: These partial observations are

nonetheless high-dimensional. Electrophysiology can

employ hundreds of electrodes and a high LFP sampling

rate. This generates thousands of neural data points every

second. Therefore, analysis of neural dynamics requires a

computationally efficient model-fitting procedure to

handle vast amounts of data.

(3) Nonlinearity: Neural dynamics are highly nonlinear.

Nonlinear models are computationally intensive. Any

model must be optimized for computational tractability

while still capturing nonlinear dynamics.

In this section, we propose a new method that leverages ad-

vances in data-driven dynamical systems analysis with strong

theoretical guarantees to solve each of these challenges.

Partial observations

Takens’ Delay Embedding Theorem is a powerful result from

dynamical systems theory that shows how the full attractor of

a dynamical system can be reconstructed from partial observa-

tion of data by appending lagged copies of the subset of

observed variables onto the existing measurements.35 In other

words, remarkably, it is possible to trade time (multiple time ob-

servations of a subset of variables) for space (the full attractor of

the system) to characterize a nonlinear dynamical system. As an

example of this delay embedding principle,36–47 the famous



Figure 2. DeLASE: Measuring stability through linear delayed dynamical models

(A) Trajectory history enables attractor reconstruction from partial observation. (Left) With only a single observation of the three-dimensional Lorenz system, it is not

clear what the attractor geometry is. (Right) However, by performing a delay embedding, the famous butterfly attractor geometry can be reconstructed. We plot the

first two eigen-time-delay coordinates of the data, equivalent to performing principal-component analysis (PCA) whitening on the delay embedding matrix.

(B) Trajectory history enables prediction in partially observed systems. (Left) With only the position of a pendulum, no prediction of future states can be made.

(Right) The trajectory history illuminates the impact of the unobserved variable (the pendulum velocity) on the observed variable (the position).

(C) A cartoon depiction of the Koopman operator. A flow on a nonlinear manifold can be expanded (in this case through time-delay embedding) into a high-

dimensional embedding in which there exists a linear representation for the dynamics.

(D) Dynamical modeling of the partially observed second dimension of the nonlinear Van der Pol oscillator. The HAVOK model was able to achieve a fully

autonomous linear representation of the nonlinear oscillator.

(E) A cartoon of the approach for assessing stability from delay differential equations is illustrated. The impacts of modeled dynamics are weighted based on how

far back they are from the current state.
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‘‘butterfly attractor’’29 of the three-dimensional Lorenz system

can be reconstructed from observing a single dimension over

the full time period (Figure 2A). The key takeaway is that informa-

tion is gained through considering the trajectory history of a sys-

tem, in conjunctionwith its current state. Aswe hope to convey in

this paper, this has tremendous implications for neural data,

which is likely capturing a very small fraction of the information

contained in the full neural system. Delay embeddings have

been widely harnessed as a tool for elucidating dynamical in-

sights from partially observed data,48–55 including examples in

the context of neural data.42,56–61

The trajectory history also enables reconstruction of the time-

resolved dynamics from partial observations.57,62–67 For instance,

if we observe a snapshot of a pendulum’s position but not its
velocity (a partial observation), we cannot predict its next state

(Figure 2B). By including the position history, the upcoming dy-

namics of the pendulum become clear. We harness the informa-

tion provided by the trajectory history of neural data in a similar

way to predict future states.

High-dimensionality and nonlinearity

There are many efficient tools for accurate prediction of linear

systems. However, neural and neural circuit dynamics are highly

nonlinear, and nonlinear prediction is often both challenging and

computationally expensive. Here, we leverage a second deep

insight from dynamical systems, the Koopman operator theory,

which shows that a nonlinear dynamical system can be repre-

sented without approximation as an infinite-dimensional linear

system68–70 (Figure 2C). The major challenge in practically
Neuron 112, 2799–2813, August 21, 2024 2801
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exploiting this theoretical insight is to find large but finite-dimen-

sional representations that allow the Koopman operator theory

to approximately hold.

Given that incorporating trajectory history through delay

embedding reconstructs the underlying attractor from partial

observation, we might surmise that the dimension-expansion

from delay embeddings constitutes a reasonable finite-dimen-

sional representation in which the Koopman theory approxi-

mately holds.36,37,41,42,71–73 An approach that exploits exactly

this insight is the Hankel alternative view of Koopman

(HAVOK),36 which uses a decorrelated and low-rank represen-

tation of the delay embedding matrix (known as eigen-time-

delay coordinates) as an embedding space in which to estimate

the Koopman operator. The resulting decorrelated representa-

tion used to estimate the dynamics is relevant for neural data,

which can often be highly correlated. Under certain conditions,

the HAVOK approach has been shown to find an optimal

finite-dimensional space for representing the Koopman oper-

ator.37 HAVOK is a variant of dynamic mode decomposition

(DMD),74–76 an approach to estimating the Koopman operator

that has been explored in many varieties,71,74,77–86 including ap-

plications to neuroscience.42,86–90 To demonstrate the predic-

tive power of HAVOK models, we take a partial observation of

the Van der Pol oscillator (a two-dimensional nonlinear sys-

tem).91 HAVOK models are able to autonomously reproduce

this nonlinear time serieswith purely linear dynamics (Figure 2D).

By ‘‘autonomously reproduce,’’ wemean that future predictions

are generated by previous ones.

Therefore, we use HAVOK to construct efficient and accurate

dynamical models of partially observed neural circuits, resolving

the challenges of high-dimensionality and nonlinearity.

Estimating stability from delayed dynamical systems

models

We use the accurate dynamical models constructed with

HAVOK to estimate the stability of the observed dynamics. We

rearrange the dynamics equation, shifting from a Koopman

representation in eigen-time-delay coordinates to a delay differ-

ential equation in the original neural space. Delay differential

equations make explicit the dependence of the future states of

the systems on past states. The stability of a system described

by a delay differential equation is determined by the roots of its

corresponding characteristic equation.92

These roots, known as characteristic roots, are complex-

valued numbers. The real part corresponds to the (inverse)

characteristic timescale at which the system will respond to a

perturbation along a particular direction. The sign in front of the

timescale determines whether the system will grow (a positive

sign) or decay (a negative sign) in response to a perturbation.

For instance, a negative root of �100 s�1 will decay quickly in

response to perturbation (in this case, with a characteristic time-

scale of 0.01 s). A negative root of�10 s�1 is more unstable than

a negative root of �100 s�1 because the response will decay

more slowly—namely, with a timescale of 0.1 s. The imaginary

part of the characteristic root is the frequency of the perturbation

response.

To numerically approximate a finite portion of the (infinitely

many) roots of a given delay differential equation, we harness

the TRACE-DDE (tool for robust analysis and characteristic
2802 Neuron 112, 2799–2813, August 21, 2024
equations for delay differential equations) algorithm.93 This algo-

rithm broadly estimates stability by discounting the impact of the

previous time steps based on how far back they are from the cur-

rent time (Figure 2E).

DeLASE, our approach to directly estimating changes in sta-

bility in neural data, consists of four primary steps:

(1) Performing a grid search across key HAVOK hyperpara-

meters (the size of the delay embedding, the rank of the

eigen-time-delay coordinates) to identify the optimal pa-

rameters for all the dynamic states being compared.

(2) Fitting HAVOK dynamical systems models to the data.

(3) Using the TRACE-DDE algorithm to extract characteristic

roots from the delay differential equations representation

of the models as an estimate of stability.

(4) Compare the estimated stability from each of the dynamic

states.
DeLASE tracks changes in stability in simulated neural
networks from partial observations
To validate the DeLASE procedure, we attempted to accurately

predict changes in stability from partial observations of systems

for which the ground truth stability is known.

We began by considering noise-driven linear dynamical sys-

tems of varying stability. We picked 10 different degrees of sta-

bility of such systems, all of which were close to the transition to

unstable dynamics (as awake and unconscious neural states are

hypothesized to be).19,30,32,94 We altered the degree of stability

by varying the maximum eigenvalue of the linear system matrix.

For the stability analysis, we randomly chose 10% of the dimen-

sions of the system for partial observation and fit HAVOK

models. The correlation of the mean instability estimated from

DeLASE with the ground truth stability is 1 (Figure 3A).

To further validate the DeLASE procedure on more brain-like

systems, we considered numerous randomly connected recur-

rent neural networks (RNNs) with a gain parameter g. The gain

parameter scales the synaptic weights and induces a transition

to chaos in these networks.97 We ran DeLASE on a randomly

chosen partial observation of approximately 1% of the dimen-

sions from each network. DeLASE predicted relative changes

in the stability of RNNs with a correlation of 0.993 (Figure 3B).

For reference, we compare DeLASE to vector autoregression

(VAR), a simple linear dynamical systems model, which has

been used previously to estimate stability in neural data.32,33,98

Both methods perform somewhat comparably on stability esti-

mation where ground truth is known (i.e., on simulated data).

However, on actual neural data, DeLASE consistently outper-

forms VAR on next time-step prediction. This is explained in

the following section.
Delayed linear dynamical systems models capture
neural dynamics
Good estimates of stability depend on good models of dy-

namics. In other words, if we are to trust a statistical method

for estimating dynamical variables from data via model fitting,

then that model should do a good job of predicting the future

data. We chose HAVOK models because they use a history of



Figure 3. Validating DeLASE on simulated and empirical neural data

Data are represented as mean ± SEM.

(A) Linear systems. The x axis and right y axis show the maximal real part of the dynamics matrix eigenvalues (orange line). The left y axis displays instability

estimated from DeLASE (black dotted line), using the maximal 10% of the real parts of characteristic roots from delay differential equations analysis (averaged

over 10 simulations). DeLASE was fit to 10 out of 100 system dimensions and achieved a Pearson correlation of 1.

(B) RNN models. (Left) The x axis is the gain parameter, which scales synaptic weights and increases network instability. The right y axis shows the maximum

Lyapunov exponent (blue curve), averaged over 10 simulations, determining stability. The full system state and dynamics are needed to compute this in the

standard approachwe used.95 The left y axis displays instability estimated fromDeLASE (black dotted line), with the same approach as (A). DeLASEwas fit 10 out

of 1,024 system dimensions and achieved a Pearson correlation of 0.993. (Right) The VAR stability estimation approach is shown, fit to a large temporal window,

and using the maximal 10% of real parts of eigenvalues. VAR was fit to 10 out of 1,024 dimensions and achieved a Pearson correlation of 0.714. Both methods

struggle between synaptic gains of 1 and 1.2, where networks transition from quasiperiodic to chaotic dynamics, which are difficult to distinguish.96

(C) Comparison of different models’ one-step predictions on neural data (LFPs from four recorded areas, sampled at 1 kHz). The persistence baseline, predicting

the next state as identical to the previous one, is plotted as the gray bar and dotted line. HAVOK models were the only ones to surpass this baseline in pre-

diction tasks.

(D) Similar to (C), but using AIC, showing that HAVOK’s superior performance was not due to having more parameters than other models.

See also Figure S1.
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neural states to construct simpler linear dynamics from a

nonlinear system (like the brain). Our first step toward estimating

changes in stability in real neural data, therefore, was to confirm

that HAVOK was a good model for capturing neural dynamics.

We compared HAVOK to three other models. (1) A persistence

baseline model. This model predicts that the neural state at each

time step will be identical to the previous time step. For instance,

given a time series with values: [1, 4, 5, 7], when predicting the

second time point, the persistence baseline is 1, and when pre-

dicting the third one, the persistence baseline is 4. Better models

of neural dynamics should thus be able to outperform the persis-

tencebaselinemodel. (2) and (3) Two formsof VARmodels,which

were previously used to study stability in propofol-induced un-

consciousness.32,33Here,weuse1st-orderVAR (VAR(1))models,

which generate predictions for the next state using only the most

recent state but also take into account the dynamics across the

training set. One VAR model (VAR-small) used 500 ms of neural

data for training, as in previous work.32 The other VAR model

(VAR-large) used a 15 s window. VAR-large was included
because we used 15 s windows for HAVOK. All models were

tested on a window of data of equal size to the training window

and temporally immediately following the training window.

HAVOK, in contrast to VAR, predicts future states by taking into

account the history of multiple preceding timesteps.

We computed the mean-squared error (MSE) of one-step

model predictions averaged over all sessions (Figure 3C). The

VAR-small models were significantly outperformed by the

persistence baseline models (p < 1e–6, one-sided Wilcoxon

signed-rank test). The VAR-large models achieved an MSE

much closer to the persistence baseline but were still outper-

formed (p < 1e–6, one-sided Wilcoxon signed-rank test). Only

the HAVOK models were capable of beating the persistence

baseline (p < 1e–6, one-sidedWilcoxon signed-rank test). Akaike

information criterion (AIC) was also used to assess the models’

prediction quality relative to the number of parameters. AIC pe-

nalizesmodels for complexity and thus guards against overfitting

data. HAVOK models have more parameters. Again, only the

HAVOK models outperformed the persistence baseline models
Neuron 112, 2799–2813, August 21, 2024 2803



ll
OPEN ACCESS Article
on one-step prediction (Figure 3D, p < 1e–6, one-sidedWilcoxon

signed-rank test). All results held when considering the predic-

tion quality for each NHP separately (Figure S1).

Thus, through the inclusion of the history of neural states,

HAVOK models form accurate dynamical models of the multi-

electrode activity while preserving the tractability and interpret-

ability of linear methods.

Propofol anesthesia destabilizes cortical neural
dynamics
To determine the impact of propofol anesthesia on the stability of

neural dynamics, we analyzed multi-electrode activity recorded

from twoNHPs.2 Electrodes were placed in four areas: ventrolat-

eral prefrontal cortex, frontal eye fields, posterior parietal cortex,

and auditory cortex. We found that propofol destabilized neural

activity.

We first characterized the stability of every brain region sepa-

rately using DeLASE (Figure 4A). Characteristic roots were used

as a quantification of instability. One component is the timescale

at which the systemwill respond to a perturbation along a partic-

ular direction (see ‘‘estimating stability from delayed dynamical

systems models’’). The faster the response, the more stable

the system. While we later analyze neural responses to experi-

mental perturbations in the form of stimuli, these perturbations

are hypothetical and used to describe the general system

response. We analyzed the instability values from the upper

10% of the distribution of characteristic roots (Figure 4A). We

used the upper 10% because they have the most impact on dy-

namic stability. For both animals and across all four cortical re-

gions, propofol anesthesia reliably destabilized neural dynamics

(blue and gray curves, p < 0.001 for all combinations of NHP/

area, one-sided Wilcoxon signed-rank test). The same was

true for all areas considered together as a single system (purple

curves, p < 0.001 for both NHPs, one-sided Wilcoxon signed-

rank test). Note that for each curve, the instability values

increased after propofol induction. This means the system was

slower to respond (i.e., less stable).

Note that the absolute values of instability were variable

across areas and NHPs. Because of the nature of the instability

values, their absolute value will capture details of the differences

in signals due to factors such as differences in their intrinsic dy-

namics, exact location of the electrodes relative to the neurons,

electrode impedance, etc. The critical measure, therefore, is the

change in values over time. When normalized to baseline values,

the change in instability across areas differed in magnitude but

followed similar time courses (Figure S2A). When we considered

all recorded areas as a single system, the ratio of change in insta-

bility values was remarkably similar across the two NHPs (Fig-

ure 4B). For the remainder of this paper, we focus on models

constructed from all areas as a single system (Figure 4B). Insta-

bility values during unconsciousness were nearly twice that of

awake states (pre-propofol), indicating that the system’s re-

sponses to perturbation were much slower than the response

during the awake state (Figure 4B).

To better visualize the change in instability values, we plot the

distribution of the top 10% of values at each time point across all

areas (Figure 4C). The entire distribution of instability values

shifted upward during propofol infusion (p < 0.01 for both
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NHPs, Wilcoxon signed-rank test on the Cramér-von Mises cri-

terion of awake-unconscious distributions for each session).

This was also true when considering the instability value dis-

tribution below the top 10% (Figure S2B). During recovery, the

distribution of values shifted down to be more stable

(p < 0.001, one-sided Wilcoxon signed-rank test), approaching

that seen pre-propofol (Figure S2C, p < 0.001 for both NHPs,

one-sided Wilcoxon signed-rank test on the Cramér-von Mises

criterion of awake-recovery distributions compared with uncon-

scious-recovery for each session).

Instability changed throughout the session. It rose to a

maximum during the large loading dose, then gradually declined

through the maintenance dose and finally recovery phases (Fig-

ure 4D). The estimated integrated dosage of propofol was pre-

dictive of instability in the system (Figure S2D, R2 of 0.873 for

NHP 1 and 0.853 for NHP 2 using a linear-log model).

Next, we considered another measure of system response to

perturbation, the frequency of the system response (Figure 4E).

During unconsciousness, a larger portion of the frequency com-

ponents fell in the lower-frequency bands than during the awake

state (Figure S2E, p < 0.01 for both NHPs, Wilcoxon signed-rank

test on the proportion of frequencies in the delta band).

Conversely, during the awake state, more fell into the highest

populated frequency bands (Figure S2E, p < 0.01 for both

NHPs, Wilcoxon signed-rank test on the proportion of fre-

quencies in the beta band for NHP 1 and gamma band and

NHP 2). This is consistent with observations that propofol causes

a large increase in lower-frequency power and decrease in

higher-frequency power in cortex.2

Destabilized dynamics explain sensory responses in the
anesthetized cortex
In the previous section, we established that propofol measurably

destabilizes cortical neural dynamics. We now investigate how

this destabilization changes sensory responses. We found that

sensory responses under anesthesia are consistent with desta-

bilized linear filters.

When more stable systems are perturbed, they recover faster

than less stable systems. An example of this is two systems in

which spheres of differentmass are hanging at rest from identical

springs (Figure 5A). A smallermass causes the system tobemore

stable. Thus, when perturbed with identical force, the spring with

the smaller mass decays back to its resting state more quickly.

We can describe the pattern of response to perturbation with a

simple linear filter of the form _x = � lx + uðtÞ, where uðtÞ is a

perturbation. In this filter, the parameter l controls the ‘‘stability’’

of the filter. For larger values of l, the filter is more stable in that

the filter will take less time to recover in response to perturba-

tions. We considered the response of such a filter to a pure sinu-

soidal input (uðtÞ = sinðtÞ) across a wide range of l values (Fig-

ure 5B). Smaller values of l corresponded to larger amplitude,

phase-shifted responses. To illustrate such responses in a

more neural-like setting, we simulated two different linear filters,

driven by a small amount of noise (Figure 5C). At times 0 and 1,

sinusoidal inputs were provided to the linear filter. The purple

curve—having a less stable parameter l—shows a response

with a phase shift relative to the green curve, which has a more

stable parameter.



Figure 4. Propofol anesthesia destabilizes cortical neural dynamics

All characteristic root analyses refer to the maximal 10% of the distribution of characteristic roots extracted from delay differential equations analysis. All figures

(except C) are reported as mean ± SEM, with results averaged over sessions for each NHP.

(A) Instability across the session in both NHPs. DeLASE was fit to contiguous windows of 15 s across the session for each area individually. The x axis is time

relative to the start of anesthesia. The y axis is the mean real part of characteristic roots (the inverse timescale of response)—a measure of instability. Instability

increased during anesthesia for all areas in both NHPs. The red line indicates the mean moment of eyes closing (used as a proxy for loss of consciousness), and

the green line indicates the mean moment of eyes opening (used as a proxy for return of consciousness). Areas are ventrolateral prefrontal cortex (PFC), frontal

eye fields (FEFs), posterior parietal cortex (PPC), and auditory cortex (STG). ‘‘ALL’’ refers to all areas considered together as a single system.

(B) Themean timescales of response normalized to the awake baseline for ‘‘ALL’’ areas considered together. The awake baseline was computed for each session

by taking the geometric mean of the timescales associated with the characteristic roots across all windows in the awake section of the session. Then, for each

window, the geometric mean of the ratio of the timescales to the awake baseline was computed. After accounting for the baseline awake instability, the degree of

destabilization in the timescales in each NHP was very similar. Vertical dotted lines are eyes close/eyes open, with color used to indicate the mean for each NHP.

(C) The distribution of instability values across sessions in each NHP. The x axis is time relative to anesthesia start, and the y axis is the real part of the char-

acteristic roots. Color represents the density of characteristic roots in a particular bin. In both NHPs, the distribution shifted upward to bemore unstable during the

unconscious state.

(D) The mean instability grouped by section of the session, including at the higher loading dose (0.58 mg/kg/min for NHP 1 and 0.285 mg/kg/min for NHP 2) and

the lower maintenance dose (0.32 mg/kg/min for NHP 1 and approx. 0.075 mg/kg/min for NHP 2). For full section definitions, see STAR Methods and Figure S6.

(E) Frequency information from computed roots. The x axis is the real part of the characteristic root, and the y axis is the imaginary part of the characteristic root

(converted to a frequency in Hz by dividing by 2p).

See also Figures S2, S5, and S6.
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This simple model perfectly captured the qualitative change in

neural responses to stimuli from the awake state to the uncon-

scious state. Throughout the entire session, tone and puff stimuli

were delivered to the NHPs (see STARMethods). In our analyses,

we focused on ‘‘tone-puff’’ trials consisting of a 500 ms tone at

time 0, followed by a 500 ms delay, and then a 10 ms airpuff at

time 1.We computed themean cortical LFP response to the tones

and puffs from all sessions (Figures 5D and 5E). There was a

phase shift in the sensory responses under anesthesia, and the
responses are slower than during the awake state. This exactly

matched the intuition from the simulated systems: less stable sys-

tems decay back to rest more slowly after being perturbed.

Sensory-evoked trajectories are consistent with
destabilized dynamics under anesthesia
We already demonstrated that sensory responses to perturba-

tions are slower in unconsciousness compared with the awake

state. We now consider how this destabilization manifests in
Neuron 112, 2799–2813, August 21, 2024 2805



Figure 5. Destabilized dynamics explain sensory responses to tones and puffs during anesthetic unconsciousness

Data in (D) and (E) are represented as mean ± SEM, with results are averaged over trials.

(A) Mass-spring oscillators with spheres of different masses hanging from identical springs. (1) Spheres perturbed upward by equal force (2) oscillate back to the

resting state (3). Smaller mass (green) decays faster than larger mass (purple).

(B) Simulations show that increasing filter decay rate—thus stabilizing the filter—generates a phase shift and amplitude decrease for oscillatory input.

(C) Response to two oscillatory inputs and noise for two decay parameters. Less stable (purple) yielded amplitude increase and phase shift relative to more

stable (green).

(D and E) Mean tone-evoked LFP response for each NHP (D, NHP 1; E, NHP 2). Anesthetic unconscious state shows a phase shift relative to awake state,

matching destabilized linear filters.
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the neural state space. To gain some intuition for what we might

expect, we consider a conceptual diagram of what happens

when stable systems with different timescales of response are

perturbed (Figure 6A). In a systemwithmore stability, a perturba-

tion may cause a brief divergence from a baseline region of state

space (left). In a systemwith less stability, however, the perturba-
2806 Neuron 112, 2799–2813, August 21, 2024
tion induces a prolonged rotational divergence from the baseline

region, depicted with slowly decaying oscillations (right).

We simulated two two-dimensional linear systemswith different

levels of stability (Figure 6B). At times 0 and 1, the systemwas per-

turbedwithconstant inputs,matching the structure of the toneand

puff stimuli presented to theNHPs.Assuggested in theconceptual



Figure 6. Low-dimensional sensory-evoked trajectories are consistent with destabilized dynamics under anesthesia

(A) Cartoon depiction of dynamic responses to perturbation in stable systems. Without perturbation (orange arrow), the system remains in a small state-space

region (pink oval). In more stable systems, there is a quick recovery to baseline after perturbation (left, green arrow); less stable systems show slower recovery,

potentially with decaying oscillatory dynamics (right, purple arrow).

(B) Two-dimensional noise-driven linear systems simulatedwith two different intrinsic timescales. Systemswere perturbedwith 500ms input at time 0 and 150ms

input at time 1, approximately matching the stimuli provided to the NHPs. The systems exhibited different responses based on stability (left: more stable, right:

less stable).

(C and D) State-space embeddings of the mean responses to tone-puff trials from NHP 1 (C) and NHP 2 (D) during the awake state. Neural responses from tone-

puff trials were each delay embedded to illuminate the attractor structure and then averaged. PCA was performed on the mean delay-embedded trajectories for

visualization (yielding scaled eigen-time-delay coordinates; see STAR Methods). Awake trajectories rapidly decayed in response to stimuli.

(E and F) Same as (C) and (D), during unconscious state. Trajectories decayed slower with oscillatory structure.

(G and H) First coordinate from awake and unconscious state tone-puff responses for NHPs. The unconscious response was slower.

See also Figure S3.
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diagram, the more stable system (shorter governing timescale)

was perturbed and then quickly returned back to the baseline.

Bycontrast, the lessstablesystem(longergoverning timescale) re-

sponded to perturbations with slowly decaying oscillations.

We performed dimensionality reductions for subspace coding

on the LFPs from all brain areas collected during both the awake

and unconscious states. Our dimensionality reduction approach

involved first performing a time-delay embedding on neural data

from tone-puff trials from all sessions (we use a delay interval of

20 ms and 32 delays). As discussed, delay embedding can help

with attractor reconstruction when the available data constitutes

a partial observation from a higher-dimensional system.We then

averaged each delay embedding coordinate across trials before

performing principal-component analysis (PCA) to obtain a visu-

alization of neural trajectories in two dimensions. This is equiva-

lent to computing (scaled, i.e., non-whitened) eigen-time-delay

coordinates.

We visualized two-dimensional state-space trajectories of

neural responses to tone-puff trials in eigen-time-delay coordi-

nates (Figures 6C–6F). During the awake state, the state-space

trajectories display two clear responses to the two stimuli: the

response to the tone, at time 0, followed by the response to
the airpuff at time 1 (Figures 6C and 6D). These perturbations

caused a deviation from the baseline region into other regions

of state space. The system quickly recovered from the perturba-

tion, returning to the baseline state. By contrast, in unconscious-

ness, the perturbations due to tones and puffs caused prolonged

deviations into state space (Figures 6E and 6F). These state-

space trajectories are characterized by a slow oscillatory decay

back to baseline, as in the simulation. Furthermore, in the awake

state, after being first perturbed by the tone, the systemwas able

to decay back to the baseline region before the puff. However, in

unconsciousness, the system did not recover from the tone

before the puff was delivered. To highlight the different time-

scales between states, we also visualized the time course of

the first eigen-time-delay coordinate (Figures 6G and 6H). The

unconscious curve depicts a slower neural response to stimulus

perturbation, as suggested by the results from the previous sec-

tion. The results of this section were consistent across variations

in the delay embedding parameters (Figure S3).

Increasing inhibition in random RNNs destabilizes them
We now propose a simple mechanism through which propofol

can induce destabilization in neural circuits: increased inhibition.
Neuron 112, 2799–2813, August 21, 2024 2807



Figure 7. Increasing inhibition in random recurrent neural networks destabilizes them
Data in (C) and (D) are represented as mean ± SEM.

(A) The effect of scaling only inhibitory weights in random RNNs is unknown.

(B) In an RNN driven by noise, scaling up inhibitory weights led to high-amplitude dynamics. Scaling down these weights suppressed amplitudes.

(C) Mean instability (maximum Lyapunov exponent) of RNNs for different scalings of inhibitory weights, averaged over (10) simulations and different baseline

gains. Increasing inhibitory weight magnitude destabilized networks, and decreasing the inhibitory weight magnitudes stabilized them.

(D) Same as (C), but split by baseline gain. Increasing inhibitory weights destabilized, while decreasing inhibitory weights stabilized networks.

See also Figure S4.
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Propofol is known to act as an agonist at GABAA inhibitory re-

ceptors, thus increasing inhibitory tone. To model the effects of

propofol on neural circuits, we alter the connectivity of the

randomly connected RNNs (see STAR Methods). These RNNs

include againparameterg that scales the synapticweights and in-

ducesa transition tochaos in thesenetworks.97While it is therefore

known that increasing the magnitude of all the network weights

leads toadestabilization in thesenetworks, theeffectsofchanging

only the inhibitory weights are unknown (Figures 7A and 7B).

We tested the impact of scaling the magnitude of the inhibitory

weights in networks of varying baseline gain (thus impacting the

baseline stability of the networks). We simulated the RNN dy-

namics with a small amount of noise (see STAR Methods). We

then measured the network instability through the maximum Lya-

punov exponent, computed using standardmethods.95We found

that across all baseline connectivity gains, increasing the inhibi-

tory tone in the networks destabilized them (Figures 7C and 7D).

Furthermore, decreasing the inhibitory tone in the networks stabi-

lized them (p < 0.05 for all comparisons with one-sided Wilcoxon

signed-rank test; see STAR Methods and Figure S4).

We emphasize that this is a somewhat surprising result, given

that inhibitory connectivity is often thought of as suppressing ac-

tivity. In fact, it has been suggested that the increased inhibitory
2808 Neuron 112, 2799–2813, August 21, 2024
tone during propofol anesthesia might shut off regions of the

brain during unconsciousness.6,99 Nevertheless, the demon-

strated destabilization of RNNs through increased inhibitory

connectivity lends support to propofol’s action at GABAA recep-

tors underlying the observed destabilization and loss of con-

sciousness during propofol anesthesia.

DISCUSSION

Our results show that propofol anesthesia destabilizes cortical

neural dynamics. We found that the stability of brain dynamics

was an excellent marker for anesthetic depth, as it smoothly

and monotonically varied with the depth of anesthetic state.

We then examined neural responses to sensory inputs.We found

a longer timescale for recovery from perturbation in uncon-

sciousness, like that seen in destabilized linear systems. We

also found that increasing inhibition (as propofol does) in artificial

RNN models produced destabilization.

Propofol disrupts the balance between cortical excitation and

inhibition. This balance is known to be critical for maintaining the

stability of cortical dynamics.100 Combined with our findings, this

paints a picture in which propofol tampers with this balance,

causing widespread cortical instabilities and thereby disrupting
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the brain’s capacity for information processing. Overall, our anal-

ysis suggests a mechanism for anesthesia that involves destabi-

lizing brain activity to the point where the brain loses the ability to

maintain conscious awareness.

We have also demonstrated the efficacy of a novel approach,

DeLASE, designed to directly estimate changes in neural stabil-

ity from data. The approach brings together multiple aspects of

dynamical systems theory, including delay embeddings, Koop-

man operators, and delay differential equations theory. The line-

arity of DeLASE enables it to be tractably deployed on ultra-high-

volume and high-dimensional neural data. Its theoretically

rigorous grounding enables it to provide robust stability esti-

mates despite challenging features of the data such as nonline-

arity and partial observation.

The extended response times to stimuli may contribute to the

loss of conscious awareness during anesthesia. We discovered

that during anesthetic unconsciousness, the response time-

scales were nearly twice as slow as during the awake state.

Therefore, when faced with an input, such as a sensory one,

the neural dynamics may not be capable of the synchronization

dynamics across areas required to produce conscious aware-

ness. This is consistent with the observation that sensory cortex

responses to sensory stimuli are less affected by anesthesia than

those in the higher cortex.101 Though the signal may be present

in sensory areas, the full brain—including the higher-level areas

thought to be necessary for conscious perception—does not

converge to a combined stimulus-guided trajectory fast enough.

We wish to emphasize the use of delay embeddings as part of

our methodology for analyzing the nature of neural dynamics

across states. Delay embeddings are a widely used tool known

to improve the quality of dynamics and attractor reconstruction

when observations are of a much smaller dimension than the

dimensionality of the true system,35,36,42,53,54,56–58,61–63,71 as is al-

ways the case in neuroscience. Delay embedding the neural data

was, in our case, not only beneficial for the estimation of dynamics

but also for the visualization of neural trajectories. Patterns in neu-

ral response trajectoriesemergedmost clearlywhen the trajectory

history was used to reconstruct the attractor (Figures 6 and S3).

Our findings support the hypothesis that neural computations

are instantiated by reliable dynamics in neural state space. Given

that computations such as working memory, motor control, and

decision-making are instantiated by dynamical features such as

fixed points and attractors, destabilizing neural dynamics would

undermine the ability of neural circuits to perform these

computations.22,24,27,28,102–108

While we focused on the comparison between conscious and

unconscious states in this paper, we emphasize that our

approach to stability estimation was completely agnostic to the

nature of themental state that generated the neural data. It could

thus be applied to a wide variety of data from a range of states. In

particular, a compelling potential application is to data from psy-

chiatric and mood disorders. Conditions such as depression,

anxiety, substance use disorder, and schizophrenia can all be

characterized as having distorted thinking patterns relative to

neurotypical states, distortions that have been hypothesized to

arise from changes to the stability landscape.19,109–114 Tracking

changes in stability in neural dynamics over time for individuals

with these conditions could help shape the course of treatment.
It could also shed light on the mechanisms of interventions like

psychedelics andmeditation, which are thought to disrupt overly

stable dynamics.115–117 Many clinical science studies have

tracked changes in physiological measures across time—for

example, over the course of treatment,118,119 such as neurofeed-

back.120 When considered over the course of treatment,

changes in these physiological measures were shown to corre-

spond to decreases in symptom severity. The hypothesized

deep connection between neural stability and psychiatric disor-

ders suggests that measuring changes in stability could be an

excellent approach for monitoring treatment efficacy.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include

the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL DETAILS

d METHOD DETAILS

B LFP Preprocessing

B Dynamics and stability estimation approach

B Implementation of VAR

B Estimating stability in simulated systems

B Linear dynamics with inputs

B Neural trajectories of stimulus responses

B Increasing inhibition in RNNs

B Example dynamical systems

B Pharmacokinetics analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Prediction quality of dynamical models

B Changes in stability in neural dynamics

B Distances between stability distributions

B Changes to characteristic root frequencies

B Destabilization in simulated networks
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

neuron.2024.06.011.

ACKNOWLEDGMENTS

This study was supported by The Office of Naval Research (I.R.F. and N00014-

23-1-2768 to E.K.M.), The National Institute of Mental Health 1R01MH131715-

01 (E.K.M.), The National Science Foundation Computer and Information

Science and Engineering Directorate (I.R.F.), The National Institute of Neuro-

logical Disorders and Stroke R01NS123120 (E.N.B.), The Simons Foundation

through The Simons Center for the Social Brain (E.K.M.) and The Simons

Collaboration on theGlobal Brain (I.R.F.), The JPB Foundation (E.K.M.), The Pi-

cower Institute for Learning and Memory (E.K.M.), and The McGovern Institute

at MIT (I.R.F.). We thank Chandrika Prakash Vyasarayani and Antonio Carlos

Costa for many helpful discussions and thoughts.

AUTHOR CONTRIBUTIONS

Conceptualization, A.J.E. and L.K.; methodology, A.J.E., L.K., S.C., J.T., and

I.R.F.; simulations and data analysis, A.J.E.; macaque surgeries, recordings,

and data preprocessing, A.M.B., J.A.D., M.K.M., and S.L.B.; writing – original

draft, A.J.E., L.K., I.R.F., and E.K.M.; writing – review & editing, A.J.E., L.K.,
Neuron 112, 2799–2813, August 21, 2024 2809

https://doi.org/10.1016/j.neuron.2024.06.011
https://doi.org/10.1016/j.neuron.2024.06.011


ll
OPEN ACCESS Article
A.M.B., J.A.D., M.K.M., S.L.B., S.C., E.N.B., I.R.F., and E.K.M.; funding acqui-

sition, E.N.B., I.R.F., and E.K.M.; supervision, E.N.B., I.R.F., and E.K.M.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: January 31, 2024

Revised: May 13, 2024

Accepted: June 14, 2024

Published: July 15, 2024

REFERENCES

1. Lewis, L.D., Weiner, V.S., Mukamel, E.A., Donoghue, J.A., Eskandar,

E.N., Madsen, J.R., Anderson, W.S., Hochberg, L.R., Cash, S.S.,

Brown, E.N., et al. (2012). Rapid fragmentation of neuronal networks at

the onset of propofol-induced unconsciousness. Proc. Natl. Acad. Sci.

USA 109, E3377–E3386. https://doi.org/10.1073/pnas.1210907109.

2. Bastos, A.M., Donoghue, J.A., Brincat, S.L., Mahnke, M., Yanar, J.,

Correa, J., Waite, A.S., Lundqvist, M., Roy, J., Brown, E.N., et al.

(2021). Neural effects of propofol-induced unconsciousness and its

reversal using thalamic stimulation. eLife 10, e60824. https://doi.org/

10.7554/eLife.60824.

3. Flores, F.J., Hartnack, K.E., Fath, A.B., Kim, S.-E., Wilson, M.A., Brown,

E.N., and Purdon, P.L. (2017). Thalamocortical synchronization during in-

duction and emergence from propofol-induced unconsciousness. Proc.

Natl. Acad. Sci. USA 114, E6660–E6668. https://doi.org/10.1073/pnas.

1700148114.

4. Palva, S., and Palva, J.M. (2007). New vistas for alpha-frequency band

oscillations. Trends Neurosci. 30, 150–158. https://doi.org/10.1016/j.

tins.2007.02.001.

5. Ching, S., Cimenser, A., Purdon, P.L., Brown, E.N., and Kopell, N.J.

(2010). Thalamocortical model for a propofol-induced alpha-rhythm

associated with loss of consciousness. Proc. Natl. Acad. Sci. USA.

107, 22665–22670. https://doi.org/10.1073/pnas.1017069108.

6. Brown, E.N., Lydic, R., and Schiff, N.D. (2010). General anesthesia,

sleep, and coma. N. Engl. J. Med. 363, 2638–2650. https://doi.org/10.

1056/NEJMra0808281.

7. Saalmann, Y.B., and Kastner, S. (2015). The cognitive thalamus. Front.

Syst. Neurosci. 9, 39. https://doi.org/10.3389/fnsys.2015.00039.

8. Seth, A.K., and Bayne, T. (2022). Theories of consciousness. Nat. Rev.

Neurosci. 23, 439–452. https://doi.org/10.1038/s41583-022-00587-4.

9. Baars, B.J. (1988). A Cognitive Theory of Consciousness (Cambridge

University Press).

10. Dehaene, S., and Changeux, J.-P. (2011). Experimental and theoretical

approaches to conscious processing. Neuron 70, 200–227. https://doi.

org/10.1016/j.neuron.2011.03.018.

11. Tononi, G. (2008). Consciousness as integrated information: a provi-

sional manifesto. Biol. Bull. 215, 216–242. https://doi.org/10.2307/

25470707.

12. Tononi, G., Boly, M., Massimini, M., and Koch, C. (2016). Integrated infor-

mation theory: from consciousness to its physical substrate. Nat. Rev.

Neurosci. 17, 450–461. https://doi.org/10.1038/nrn.2016.44.

13. Graziano, M.S.A. (2017). The Attention Schema Theory: A Foundation for

Engineering Artificial Consciousness. Front. Robot. AI 4. https://doi.org/

10.3389/frobt.2017.00060.

14. Brown, R., Lau, H., and LeDoux, J.E. (2019). Understanding the Higher-

Order Approach to Consciousness. Trends Cogn. Sci. 23, 754–768.

https://doi.org/10.1016/j.tics.2019.06.009.

15. Dehaene, S., Sergent, C., and Changeux, J.-P. (2003). A neuronal

network model linking subjective reports and objective physiological

data during conscious perception. Proc. Natl. Acad. Sci. USA 100,

8520–8525. https://doi.org/10.1073/pnas.1332574100.
2810 Neuron 112, 2799–2813, August 21, 2024
16. Mashour, G.A., Roelfsema, P., Changeux, J.-P., and Dehaene, S. (2020).

Conscious Processing and the Global Neuronal Workspace Hypothesis.

Neuron 105, 776–798. https://doi.org/10.1016/j.neuron.2020.01.026.

17. Babloyantz, A., and Destexhe, A. (1986). Low-dimensional chaos in an

instance of epilepsy. Proc. Natl. Acad. Sci. USA 83, 3513–3517.

https://doi.org/10.1073/pnas.83.10.3513.

18. Theiler, J. (1995). On the evidence for low-dimensional chaos in an

epileptic electroencephalogram. Phys. Lett. A 196, 335–341. https://

doi.org/10.1016/0375-9601(94)00856-K.

19. Carhart-Harris, R.L., Leech, R., Hellyer, P.J., Shanahan, M., Feilding, A.,

Tagliazucchi, E., Chialvo, D.R., and Nutt, D. (2014). The entropic brain: a

theory of conscious states informed by neuroimaging research with psy-

chedelic drugs. Front. Hum. Neurosci. 8, 20. https://doi.org/10.3389/

fnhum.2014.00020.

20. Beggs, J.M. (2008). The criticality hypothesis: how local cortical networks

might optimize information processing. Philos. Trans. AMath. Phys. Eng.

Sci. 366, 329–343. https://doi.org/10.1098/rsta.2007.2092.

21. Kozachkov, L., Lundqvist, M., Slotine, J.J., and Miller, E.K. (2020).

Achieving stable dynamics in neural circuits. PLoS Comput. Biol. 16,

e1007659. https://doi.org/10.1371/journal.pcbi.1007659.

22. Vyas, S., Golub,M.D., Sussillo, D., and Shenoy, K.V. (2020). Computation

Through Neural Population Dynamics. Annu. Rev. Neurosci. 43,

249–275. https://doi.org/10.1146/annurev-neuro-092619-094115.

23. Demertzi, A., Tagliazucchi, E., Dehaene, S., Deco, G., Barttfeld, P.,

Raimondo, F., Martial, C., Fernández-Espejo, D., Rohaut, B., Voss,

H.U., et al. (2019). Human consciousness is supported by dynamic com-

plex patterns of brain signal coordination. Sci. Adv. 5, eaat7603. https://

doi.org/10.1126/sciadv.aat7603.

24. Hopfield, J.J. (1982). Neural networks and physical systems with emer-

gent collective computational abilities. Proc. Natl. Acad. Sci. USA 79,

2554–2558. https://doi.org/10.1073/pnas.79.8.2554.

25. Hirsch, M.W. (1989). Convergent activation dynamics in continuous time

networks. Neural Netw. 2, 331–349. https://doi.org/10.1016/0893-

6080(89)90018-X.

26. Cohen,M.A., andGrossberg, S. (1987). Absolute Stability of Global Pattern

Formation and Parallel Memory Storage by Competitive Neural Networks.

In The Adaptive Brain I – Cognition, Learning, Reinforcement, and Rhythm,

S. Grossberg, ed. (North-Holland), pp. 288–308. https://doi.org/10.1016/

S0166-4115(08)60913-9.

27. Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D.,

Nuyujukian, P., Ryu, S.I., and Shenoy, K.V. (2012). Neural population dy-

namics during reaching. Nature 487, 51–56. https://doi.org/10.1038/

nature11129.

28. Sohn, H., Narain, D., Meirhaeghe, N., and Jazayeri, M. (2019). Bayesian

Computation through Cortical Latent Dynamics. Neuron 103, 934–

947.e5. https://doi.org/10.1016/j.neuron.2019.06.012.

29. Lorenz, E.N. (1963). Deterministic Nonperiodic Flow. J. Atmos. Sci. 20,

130–141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.

0.CO;2.

30. Toker, D., Pappas, I., Lendner, J.D., Frohlich, J., Mateos, D.M.,

Muthukumaraswamy, S., Carhart-Harris, R., Paff, M., Vespa, P.M.,

Monti, M.M., et al. (2022). Consciousness is supported by near-critical

slow cortical electrodynamics. Proc. Natl. Acad. Sci. USA 119,

e2024455119. https://doi.org/10.1073/pnas.2024455119.
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Escrichs, A., Martial, C., Thibaut, A., Gosseries, O., Kringelbach, M.L.,

Annen, J., et al. (2021). Loss of consciousness reduces the stability of

brain hubs and the heterogeneity of brain dynamics. Commun. Biol. 4,

1037. https://doi.org/10.1038/s42003-021-02537-9.

32. Solovey, G., Alonso, L.M., Yanagawa, T., Fujii, N., Magnasco, M.O.,

Cecchi, G.A., and Proekt, A. (2015). Loss of Consciousness Is

Associated with Stabilization of Cortical Activity. J. Neurosci. 35,

10866–10877. https://doi.org/10.1523/JNEUROSCI.4895-14.2015.

https://doi.org/10.1073/pnas.1210907109
https://doi.org/10.7554/eLife.60824
https://doi.org/10.7554/eLife.60824
https://doi.org/10.1073/pnas.1700148114
https://doi.org/10.1073/pnas.1700148114
https://doi.org/10.1016/j.tins.2007.02.001
https://doi.org/10.1016/j.tins.2007.02.001
https://doi.org/10.1073/pnas.1017069108
https://doi.org/10.1056/NEJMra0808281
https://doi.org/10.1056/NEJMra0808281
https://doi.org/10.3389/fnsys.2015.00039
https://doi.org/10.1038/s41583-022-00587-4
http://refhub.elsevier.com/S0896-6273(24)00446-X/sref9
http://refhub.elsevier.com/S0896-6273(24)00446-X/sref9
https://doi.org/10.1016/j.neuron.2011.03.018
https://doi.org/10.1016/j.neuron.2011.03.018
https://doi.org/10.2307/25470707
https://doi.org/10.2307/25470707
https://doi.org/10.1038/nrn.2016.44
https://doi.org/10.3389/frobt.2017.00060
https://doi.org/10.3389/frobt.2017.00060
https://doi.org/10.1016/j.tics.2019.06.009
https://doi.org/10.1073/pnas.1332574100
https://doi.org/10.1016/j.neuron.2020.01.026
https://doi.org/10.1073/pnas.83.10.3513
https://doi.org/10.1016/0375-9601(94)00856-K
https://doi.org/10.1016/0375-9601(94)00856-K
https://doi.org/10.3389/fnhum.2014.00020
https://doi.org/10.3389/fnhum.2014.00020
https://doi.org/10.1098/rsta.2007.2092
https://doi.org/10.1371/journal.pcbi.1007659
https://doi.org/10.1146/annurev-neuro-092619-094115
https://doi.org/10.1126/sciadv.aat7603
https://doi.org/10.1126/sciadv.aat7603
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1016/0893-6080(89)90018-X
https://doi.org/10.1016/0893-6080(89)90018-X
https://doi.org/10.1016/S0166-4115(08)60913-9
https://doi.org/10.1016/S0166-4115(08)60913-9
https://doi.org/10.1038/nature11129
https://doi.org/10.1038/nature11129
https://doi.org/10.1016/j.neuron.2019.06.012
https://doi.org/10.1175/1520-0469(1963)020&lt;0130:DNF&gt;2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020&lt;0130:DNF&gt;2.0.CO;2
https://doi.org/10.1073/pnas.2024455119
https://doi.org/10.1038/s42003-021-02537-9
https://doi.org/10.1523/JNEUROSCI.4895-14.2015


ll
OPEN ACCESSArticle
33. Alonso, L.M., Proekt, A., Schwartz, T.H., Pryor, K.O., Cecchi, G.A., and

Magnasco, M.O. (2014). Dynamical criticality during induction of anes-

thesia in human ECoG recordings. Front. Neural Circuits 8, 20. https://

doi.org/10.3389/fncir.2014.00020.

34. Krzemi�nski, D., Kami�nski, M., Marchewka, A., and Bola, M. (2017).

Breakdown of long-range temporal correlations in brain oscillations dur-

ing general anesthesia. Neuroimage 159, 146–158. https://doi.org/10.

1016/j.neuroimage.2017.07.047.

35. Takens, F. (1981). Detecting strange attractors in turbulence. In

Dynamical Systems and Turbulence, Warwick 1980 (Springer),

pp. 366–381. https://doi.org/10.1007/BFb0091924.

36. Brunton, S.L., Brunton, B.W., Proctor, J.L., Kaiser, E., and Kutz, J.N.

(2017). Chaos as an intermittently forced linear system. Nat. Commun.

8, 19. https://doi.org/10.1038/s41467-017-00030-8.

37. Kamb, M., Kaiser, E., Brunton, S.L., and Kutz, J.N. (2020). Time-Delay

Observables for Koopman: Theory and Applications. SIAM J. Appl.

Dyn. Syst. 19, 886–917. https://doi.org/10.1137/18M1216572.

38. Costa, A.C., Ahamed, T., Jordan, D., and Stephens, G.J. (2023).

Maximally predictive states: From partial observations to long time-

scales. Chaos 33, 23136. https://doi.org/10.1063/5.0129398.

39. Dhir, N., Kosiorek, A.R., and Posner, I. (2017). Bayesian delay embed-

dings for dynamical systems. In 31st Conference on Neural Information

Processing Systems (NIPS 2017) https://www.robots.ox.ac.uk/

�mobile/Papers/2017NIPS_dhir.pdf.

40. Susuki, Y., andMezi�c, I. (2015). A prony approximation of KoopmanMode

Decomposition. In 2015 54th IEEE Conference on Decision and Control

(CDC), pp. 7022–7027. https://doi.org/10.1109/CDC.2015.7403326.

41. Arbabi, H., Korda, M., and Mezi�c, I. (2018). A Data-Driven Koopman

Model Predictive Control Framework for Nonlinear Partial Differential

Equations. In IEEE Conference on Decision and Control. (CDC),

pp. 6409–6414. https://doi.org/10.1109/CDC.2018.8619720.

42. Brunton, B.W., Johnson, L.A., Ojemann, J.G., and Kutz, J.N. (2016).

Extracting spatial-temporal coherent patterns in large-scale neural re-

cordings using dynamic mode decomposition. J. Neurosci. Methods

258, 1–15. https://doi.org/10.1016/j.jneumeth.2015.10.010.

43. Bakarji, J., Champion, K., Nathan Kutz, J., and Brunton, S.L. (2023).

Discovering governing equations from partial measurements with deep

delay autoencoders. Proc. R. Soc. A. 479, 20230422. https://doi.org/

10.1098/rspa.2023.0422.
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EXPERIMENTAL MODEL DETAILS

Multi-electrode neural activitywas recorded from two rhesusmacaques (Macacamulatta), denotedNHP1andNHP2 (standing for non-

human primate). NHP 1 was female, aged 8 years,�6.6kg at the time of the study and NHP 2 was male, aged 14 years,�13.0-kg. Re-

sults were very similar between themale animal and female animal. Animals were pair-housed on 12 hr day/night cycles andmaintained

in a temperature-controlled environment (80 �F). The animalswerenot involved in previousprocedures.Monkeys 1 and 2were surgically

implantedwith a subcutaneous vascular accessport (ModelCP-6, Norfolk AccessTechnologies, Skokie, IL) at the cervicothoracic junc-

tion of the neck with the catheter tip reaching the termination of the superior vena cava via the external jugular vein. All procedures fol-

lowed the guidelines of the Massachusetts Institute of Technology Committee on Animal Care and the National Institutes of Health.

The NHPs were implanted with 8 3 8 chronic Utah arrays, yielding 64 channels per multi-electrode array (‘Utah arrays’, MultiPort:

1.0 mm shank length, 400 mm spacing, Blackrock Microsystems, Salt Lake City, UT). The distance between electrodes ensured

thatwewere not sampling spiking from the sameneuronsmore than once. Electrodeswere placed in four areas: ventrolateral prefrontal

cortex (PFC), frontal eye fields (FEF), posterior parietal cortex (PPC) and auditory cortex (STG).2 In the present analysis, we use LFPs

from each area. During Utah array recordings, areas FEF and PFC were ground and referenced to a common subdural site. Areas STG

andPPCalso shareda commonsubdural ground/reference channel. The LFPswere recordedat 30kHz and filtered online via a lowpass

250 Hz software filter. The LFPs were then subsequently downsampled to 1 kHz. To ensure synchronization of signals recorded on the

multiple data acquisition systems, we simultaneously recorded a synchronization test signal with locally unique temporal structure on

one auxiliary analog channel of each system. Throughout the entire recording session, we regularly measured offline the relative timing

of this test signal between each of the system’s recorded datafiles. Measured timing offsets between datafiles were rectified by appro-

priately shifting event code timestamps, and in addition by linearly interpolating analog signals to a common time base.

Note that for the stability analyses, since ourmethodmodels population dynamics, all usable electrodes in each areawere included

in the analysis, and no averaging was performed. Each anesthetic infusion is referred to as a ‘‘session’’. By ‘‘session’’, we mean a

continuous recording, from wakefulness through anesthetic infusion to recovery, in one animal. There are 21 anesthetic sessions

across two non-human primate subjects (NHPs): 10 sessions with NHP 1, and 11 sessions with NHP 2. Sessions were always sepa-

rated by at least 2 days, and were thus treated as independent samples. In each session, the NHP performed a non-demanding de-

layed saccade task pre-anesthesia. Then, following this task, the NHP experienced a passive airpuff/tone classical conditioning task.

Specifically, on one third of trials the NHP was delivered a 500 ms ringing tone, which after a 500 ms blank delay, is followed by an

airpuff (lasting about 10 ms) to the eye/face designed to elicit a blink response (notably, the airpuff also emitted a sound). In another

third of trials there was an isolated airpuff with no tone, and on the last third of trials there was a distinct tone played that indicates that

no airpuff will follow. After around 15-20 minutes of airpuff/tone classical conditioning the NHP was infused with propofol anesthesia

for 60 minutes. 30 minutes at a higher loading dose (0.58 mg/kg/min for NHP 1 and 0.285 mg/kg/min for NHP 2) and 30 minutes at a

lower maintenance dose (0.32mg/kg/min for NHP 1 and approx. 0.075mg/kg/min for NHP 2). The infusion was then stopped and the

NHP gradually returned to a normal awake state. propofol was intravenously infused via a computer-controlled syringe pump (PHD

ULTRA 4400, Harvard Apparatus, Holliston, MA).

All data analysis and simulation was done in Python using original code in addition to, Hydra, Matplotlib,121 Pandas,122 PyTorch,123

scikit-learn,124 scipy,125 and spynal.

METHOD DETAILS

LFP Preprocessing
Recordings for each session were quite stable. Utah arrays have been shown to be stable on the order of days.126 But to further

ensure instability across sessions did not affect results, we first removed the mean across the entire session from each LFP.

Then, to handle noise sources, we removed line noise via temporally windowed sinusoid fits at 60 Hz and all harmonics, as well

as empirically found line noise frequencies: 107.35, 214.7, 190.2, 196.8, 393.6. We then low pass filtered each LFP at 300 Hz (3rd

order bidirectional Butterworth). It was not necessary to consider eye movement and muscle artifacts in the preprocessing as these

are considered to be signals that are not cerebral in origin,127,128 and are more commonly considered in electroencephalography

(EEG) and magnetoencephalography (MEG) studies due to their non-invasive nature.129,130 The invasive intracortical electrophysi-

ology signals used in this study are fortunately not susceptible to the same signal contamination risks as EEG andMEG. Furthermore,

electrodes were not averaged at any point in the stability analysis pipeline. This is because our method models population dynamics

and takes into account how the overall population representation transforms over time. That information is lost when electrodes are

averaged.

Dynamics and stability estimation approach
Here we outline the DeLASE (Delayed Linear Analysis for Stability Estimation) approach to stability estimation.

Eigen-time-delay coordinate dynamics (HAVOK)

We consider observed data consisting of Tobservations of N dimensions (i.e. a matrix in RT3N). Given a sampling interval of Dt, this

corresponds to a window length of TDt. Following HAVOK (Hankel Alternative View of Koopman), we construct a delay embedding,

i.e. a matrix of the form
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H =

2664
xp xp+1 / xT

xp� 1 xp / xT � 1

« « 1 «
x1 x2 / xT �p+1
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Where xt ˛RNare the state observations at timet (e.g. channel activities), and p is the number of lags in the delay embedding matrix.

ThusH˛RNp3ðT�p+1Þ. We can now perform SVD onH to obtainH = USVT, whereU are the delay embedding’s spatial modes,S are

the singular values, and V are the eigen-time-delay coordinates (temporal modes). We select the r coordinates with largest singular

values to obtain a reduced rankmatrix Vr ˛RT3r of temporal modes. The benefits of this SVD step are twofold. First, it avoids a some-

what ill-posed regression, as most of the terms in each column of the delay embedding matrix H are identical to the previous column

(but shifted). Second, it also removes any extraneous information present in the delay embedding due to correlation dimensions and

noise. The computation of eigen-time-delay coordinates is equivalent to performing PCAwhitening on the delay embeddingmatrix.89

PCA whitening projects a data matrix into a space in which coordinates are decorrelated and have equal variance. This is explored

later in the STAR Methods in the section ‘‘responses in eigen-time-delay coordinates’’. We then compute the dynamics matrix AV ˛
Rr3ras the matrix that solves the following least squares regression problem:

AV = argminAkV+
r
T
--AV--r

Tk2
Where V--r ˛RðT �pÞ3r is thematrix consisting of the first r eigen-time-delay coordinates at times 1 through T � p and V+

r ˛ RðT �pÞ3r is

the matrix consisting of the first r eigen-time-delay coordinates at times 2 through T � p+ 1. We can therefore construct a discrete

model of the delay-embedded neural dynamical system as

ht+1 = UrSrAVS
y
rU

T
r ht

Where ht is the column of the delay embedding matrixH corresponding to maximal time t (that is, including times t � p+ 1 through t,

Ur ˛RNp3r is the matrix corresponding to the first r columns ofU,Sr is the matrix corresponding to the first r singular values, andSy is
the pseudoinverse of S.

Estimating stability from delay dynamics

Wenow letA = UrSrAVS
y
rU

T
r soA is the linear representation of the dynamics in the delay-embedded neural space.We now note that

the first N rows of the matrix A describe the dependence of xt on the trajectory history:

xt =
Xp
k = 1

Akxt--1

Where Ak is the N3N matrix corresponding to columns kN through ðk + 1ÞN of the first N rows of A. We have thus arrived at a rep-

resentation of the neural dynamics in the form of a (discrete) linear delay differential equation. To extract the stability from this rep-

resentation of the dynamics, we turned to the field of delay differential equations. We first convert to continuous time (for purposes of

interpretation) setting ~Ak = Ak

Dt for k > 1 and ~Ak = Ak--IN
Dt for k = 1 (this latter term is an approximation of the instantaneous term, and so

it includes an identity matrix). This yields the delay differential equation _xðtÞ =
Pp

k = 1
~Akxðt--kDtÞ. The stability of this delay differential

equation is determined by the roots l of its corresponding characteristic equation92:

det

 
lIN--

Xp
k = 1

~Ake
--lkDt

!
= 0

The intuition for why this equation is helpful in capturing the stability present in the system is because of the e--lkDt term. This term

discounts the impact of the matrix ~Ak based on how far it is from the current state (Figure 2E).

This characteristic equation has infinitely-many solutions.131 In fact, even for a simple delay differential equation with a single delay,

the characteristic equation has infinite solutions. Intuitively, this is because in a continuous time setting there are infinite points in be-

tween the delay time and the current time - thus the system is infinite dimensional and must be specified with an infinite dimensional

initial condition. Mathematically, the infinitely-many solutions are a result of a corollary to The Great Picard Theorem, namely that an

entire non-polynomial function assumes every complex number infinitelymany times (with one possible exception).132 Analytic inves-

tigation of the stability of even single delay equations can necessitate quite advanced mathematical machinery.133 There exist

numerous methodologies to numerically approximate a finite portion of the roots of a given delay differential equation.92,93,134,135

These approaches typically discretize the delay period and are guaranteed to converge to the true characteristic roots as the discre-

tization of the delay period becomes finer. For our analysis, we use the TRACE-DDE algorithm, which estimates the roots of the char-

acteristic equation by constructing a discrete approximation of the infinitesimal generator.93 We choose the number of discretization

points in the delay period to be equal to the number of lags chosen for the delay embedding, with discretization points spaced out by

Dt. This generatesNðp + 1Þ characteristic roots, of which for the present analyses we evaluate the top 10% (i.e. the 10%with greatest

real part).

The characteristic roots are complex valued numbers. The real part of the root determines the rate at which perturbations to the

system along a particular direction will decay. The complex part of the root determines the frequency at which such perturbations will
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decay. In a strictly linear delay differential equation, the root with largest real part determines the stability, as it determines the overall

slowest rate at which perturbations will decay (if the real part is negative) or the fastest rate at which they will explode (if the real part is

positive). For our analysis, since we are approximating complex nonlinear systems with linear delay differential equations, we look at

the upper portion of the distribution of characteristic roots extracted to characterize stability. Further, while the convention is to report

the real parts of characteristic roots as inverse timescales, in our analysis we represent these values both with inverse timescales and

standard timescales where appropriate.

To handle instabilities introduced into the dynamics by sensory stimuli, inputs that are not accounted for, noise, and other artifacts,

we filter the extracted characteristic roots in two ways. First, we enable filtering out all characteristic roots with a frequency compo-

nent above a certain value. For our analysis, we filtered out characteristic roots with a frequency component greater than 500 Hz,

since this is the maximum possible frequency in data sampled at 1 kHz. Next, we enable filtering out all unstable roots with a fre-

quency component above a certain value. For our analysis, we filtered out unstable roots with a frequency component greater

than 125 Hz. The intuition for this is that rapid, sharp changes due to sensory inputs and other artifacts will destabilize the dynamics

with a high frequency component, due to the sharpness of the change. We also note that when visualizing the characteristic roots as

proper timescales in Figure 4B, we considered only the characteristic roots with negative real part. This was because the timescales

associated with roots with negative real part are timescales of stable decay – in contrast to timescales associated with roots with

positive real part, which are timescales of unstable explosion. Nearly all computed characteristic roots had a negative real part

(see Figures 4C and 4E), and all statistics were performed on inverse timescales, which included any roots with positive real part.

Picking hyperparameters

To select (1) the minimum number of delay embedding coordinates and (2) the rank of the eigen-time-delay coordinates used to es-

timate the dynamics, a grid search was performed for each session (sample is shown in Figure S5A). We use fixed window sizes for

our analysis (10 seconds for simulated data and 15 seconds for neural data). These window sizes ensure a long enough time window

to capture awide range of dynamicmotifs, but a short enough timewindow to preserve computational tractability. For the grid search

on neural data, models were fit on 12windows from each session, and parameters were chosen on a per-session and per-area basis.

Windows were chosen to ensure that all sections of the session were included (i.e. awake, anesthetic induction, anesthetic uncon-

sciousness, and recovery), with 4 windows being randomly selected from each section in each session. The metric used to assess

model quality was Akaike Information Criterion (AIC). AIC quantifies the balance between high quality model prediction (as measured

by one-step prediction error on test data) with the number of model parameters. Models are penalized for having larger numbers of

parameters, such that the optimal model of minimal complexity can be obtained. While larger models tend to perform better, after a

certain point the added parameters are not benefitting the prediction quality sufficiently to justify their inclusion (Figure S5A, lower

right corner of the grid). Because we compare stability between sections of each session, the hyperparameters minimizing AIC within

a given session (and area) are chosen. The time interval between delays was held fixed at 1 time step (1 ms) for this analysis. Chosen

hyperparameters varied across sessions but were typically around 750 delay coordinates (12 delays) with a rank of 750 for individual

areas (usually�64 channels per area), and approximately 1000 delay coordinates (4 delays) with a rank of 900 for all areas considered

together (usually�250 channels). All tested hyperparameter combinations preserve the core results of our analysis (see Figure S5B).

Implementation of VAR
We implemented VAR(1) (1st-order vector autoregression) in the following way. We again consider observed data consisting of T

observations from N dimensions (i.e. a matrix X˛RT3N). Given a sampling interval of Dt, this corresponds to a window length of

TDt. We then find the matrix AVAR ˛RN3N that solves the following least squares regression problem:

AVAR = argminAkX+T--AX--
Tk2

where X-- is the ðT--1Þ3N matrix consisting of the N-dimensional state observations at times 1 through T--1 and X+ is the ðT--1Þ3
Nmatrix consisting of the N-dimensional state observations at times 2 through T.

To estimate stability, we compute the eigenvalues of AVAR. To convert to a continuous time representation, for each eigenvalue li

we convert to the continuous time instability measure bl i = logðjli jÞ
Dt as in previous work.33 To estimate stability, we considered the

largest 10% of such instability measures extracted from VAR, mirroring our approach for DeLASE.

Estimating stability in simulated systems
To validate the DeLASE method, and to generate examples of dynamical systems to compare to neural data, we simulated sample

systems. The systems included simple linear dynamics as well as randomly connected RNNs. Since we were interested in systems

that are stable, we often simulated these systems in the stable regime. In this regime, however, these systems converge to fixed

points. Thus, to avoid this trivial behavior, we simulated these systems with stochasticity injected into their dynamics. In this

approach, the systems were simulated with a small amount of process noise, effectively perturbing the system a small amount at

each time step. We simulated stochastic dynamical systems using the Euler-Maruyama method. Specifically, we simulated the sys-

tems using the update:

xt+1 = xt + fðxtÞdt + sdWt
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where xt is the n-dimensional state of the system at time t, f is the systemdynamics (i.e., _x = fðxÞ, dt is the time step of simulation, s is

a small scale parameter on the noise, and dWt is the n-dimensional process noise at time t, with each dimension independently

sampled from a normal distribution with mean 0 and standard deviation
ffiffiffiffiffi
dt

p
.

Linear dynamics

We simulated n-dimensional linear systems of the base form _x = fðxÞ = Ax where A is the n3n dynamics matrix. To set the maximal

real part of the eigenvalues of this matrix, we first sample each matrix element from a normal distribution with mean 0 and standard

deviation 1ffiffi
n

p . Then we perform the update

A = A--lmaxIn + lnewIn

Where lmax is the original maximum real part of thematrix eigenvalues and lnew is what wewould like to update it to.We simulated the

systems in the stochastic framework with s = 1. For the simulations used to generate Figure 3A, we simulated stochastic linear dy-

namics with maximal eigenvalues from-1 to -0.1 (inclusive) stepping by 0.1. We simulated each system 20 times. Each system had

100 dimensions and was simulated for 20,000 time steps. The time step used was 0.002ms. A transient of 2000 time steps was drop-

ped from the simulated systems, and models were fit to a randomly chosen partial observation of 10 dimensions of the system over

10,000 time steps. A hyperparameter grid search was executed to choose the number of delays and the rank of the eigen-time-delay

coordinates. Specifically, minimum delay embedding matrix sizes of 10, 20, 50, 100, 200, 300, 500, 750 and 1000 were tested, along

with ranks of 3, 5, 10, 25, 50, 75, 100, 125, 150, 200, all ranks from 200 to 800 stepping by 50, and also ranks of 900 and 1000. For

each of the 20 runs, the best performing parameter combinations across all linear systems were chosen (typically a delay embedding

matrix size of 10 with a rank of 10) and the stability was estimated based on these models.

Randomly connected RNN dynamics

We simulated randomly connected RNNs according to Sompolinksy et al.97 Specifically, we simulated the dynamics:

_x = fðxÞ = 1

t
ð--x + gW tanh xÞ

Where x is the n-dimensional state of the system (effectively synaptic activity in the RNN), t is the time constant of the dynamics,

typically set to 100 ms (with a time step of simulation of 10 ms),W is the n3n weight matrix with each element drawn from a normal

distribution ofmean 0 standard deviation 1ffiffi
n

p , and g is a gain parameter on the synaptic weights. It has been shown that as n increases,

and as the gain is increased above 1, the network enters into increasingly chaotic regimes.97

For the simulations presented in Figure 3B, we used a network size of 1024 neurons, and chose values for the gain parameter from

0.8 to 1.4 (inclusive), specifically: 0.8, 0.85, 0.9, 0.925, 0.95, 0.975, 1, 1.025, 1.05, 1.075, 1.1, 1.125, 1.15, 1.175, 1.2, 1.25, 1.3, 1.35,

and 1.4. We used s = 0:05. We sampled the matrix W 10 times, then for each sampled matrix simulated the dynamics with all

possible values of the gain. The systems were simulated for 20,000 time steps. For stability analysis, a transient of 2000 time steps

was dropped, and the models were fit to 10,000 time steps of data. We randomly observed 10 dimensions of the 1024-dimensional

system to use for estimating stability. A hyperparameter grid search was executed to choose the number of delays and the rank of the

dynamics matrix. Specifically, minimum delay embedding matrix sizes of 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, and 400

were testedwith ranks of 2, 3, 5, 10, 30, 40, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, and 400. For each of the

10 runs, the best performing parameter combinations across all trajectories were chosen (typically a delay embedding matrix size of

50 with a rank of 40, though there was some variation) and the stability was estimated based on these models.

To compute the Lyapunov exponents in the simulated networks, we applied aQR-based algorithm95 to the Jacobian of the discrete

dynamics, computed as

J = In +
dt

t

�
--In + gWdiag

�
1--tanh2 x

��
The exponents extracted from the QR algorithm are then converted into continuous time by dividing by the time step of simula-

tion, dt.

Linear dynamics with inputs
One-dimensional linear sine wave filters

For Figure 5, we simulated a simple one-dimensional linear system with input according to the dynamics _x = � lx + uðtÞ where l

controls the instability of the filter. For the simple filter on a sine wave (Figure 5B), we found the analytical solution for the (determin-

istic) differential equation with uðtÞ = sin 2 put. The solution is xðtÞ = 1
l2+1

ðl sin 2 put--cos 2 putÞ. We computed this solution for

values of l from 0 to 4.5 (inclusive), stepping by 0.5, and u = 1 (Figure 5B). To simulate the dynamics in the presence of noise (Fig-

ure 5C), we simulated simple one-dimensional stochastic dynamics:

xt+1 = xt + ð � lxt + uðtÞÞdt + sdWt

with l set to 10 and 0.01, and s set to 0.05.We used a time step of 1ms tomatch the sampling rate of the neural data, and a simulation

time of 3 seconds. 1 second into the simulation, we perturbed the above equation with a negative 2 Hz sine wave for 500 ms (uðtÞ =

sin 4 pt). This matches the duration of the tone presentations in the experimental setup. We then provided no inputs for 500 ms
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before providing another negative 2 Hz sine wave input for 500 ms (this matches the spacing of tones and puffs in the experi-

mental setup).

Two-dimensional linear system input responses

In the two-dimensional case, we simulated the two-dimensional stochastic dynamics given by:

xt+1 = xt + ðAxt + uðtÞI2Þdt + sdWt

To generate the dynamics A, we took two parameters, a and b, as well as an orthogonal matrix Q, and set

A = Q

�
a --b
b a

�
Q--1

Thus A has eigenvalues a±bi and a controls the stability of the dynamics. For Figure 6B, we simulated the dynamics with both a =

� 6 and a = � 1. We set b = 2p, and picked Q randomly. We used a time step of 0.25 ms and a simulation time of 7 seconds and

set s = 0:005. The first input was a constant function uðtÞ = 0:6 lasting 500 ms and starting at 2 seconds. The second input was a

constant function uðtÞ = 1 lasting 150 ms and starting at 3 seconds. The structure of the inputs was chosen to mirror the tones and

puffs in the experimental setup.

Neural trajectories of stimulus responses
To compute the neural trajectories depicted in Figures 5D, 5E, and 6C–6H, we first compiled population responses from every

session in each NHP for the trial type of interest (a 500 ms tone, followed by a 500 ms delay and then an air puff). To ensure

enough resolution around the stimuli, we collected LFPs from 2 seconds before the first stimulus onset until 5 seconds after.

For each NHP, this yielded a K3T3N matrix, where K is the number of trials (aggregated across sessions), T is the number of

time-points from the trial (as mentioned, we consider 7 seconds surrounding the stimulus onset), and N is the number of

electrodes.

Average LFP responses

To compute the one-dimensional average LFP trial response (Figures 5D and 5E), for each NHP, we averaged the trial responses over

trials, and then subsequently over electrodes.

Responses in eigen-time-delay coordinates

To compute the (scaled) eigen-time-delay coordinates of the average stimulus response (Figures 6C–6H), we first delay embedded

each trial individually. Specifically, for a specific trial response, given that the neural population state at time t is xt, and given the delay

embedding parameters (the delay interval t and delays), we computed the Np3ðT � ðp � 1ÞtÞ matrix given by

H =

2664
x1+ðp� 1Þt x2+ðp� 1Þt / xT

x1+ðp� 2Þt x2+ðp� 1Þt / xT � t

« « 1 «
x1 x2 / xT �ðp� 1Þt
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After performing a delay embedding for every trial, for each NHPwe end upwith aK3Np3ðT � ðp � 1ÞtÞmatrix.We then average

across trials to arrive at a Np3ðT � ðp � 1ÞtÞmatrix of the average delay embedding. Finally, we perform PCA on (the transpose of)

this matrix to reduce the number of dimensions from Np to 2. Since each dimension of the delay embedding matrix contains obser-

vations from multiple time-points, we consider the ‘‘effective’’ time of the delay embedding coordinate to be the latest time-point in

the dimension. That is, the effective time of the first column of H above is 1+ ðp � 1Þt. These are the times used for plotting in

Figures 6C–6H.

Furthermore, we note again here that this process equates to computing scaled versions of the eigen-time-delay coordinates used

by the HAVOK models. To see why this is the case, consider a delay-embedded matrix X˛RN03T 0
where N0 is the number of coordi-

nates in the delay embedding and T 0 is the number of delay embedded time-points. Thus, given the singular value decomposition

X = USVT, the first r eigen-time-delay coordinates used by HAVOK are the first rcolumns of V. Note that by rearranging this equation

we can show that the first r eigen-time-delay coordinates can be computed asS� 1
r UT

r X = VT
r , and equivalently Vr = XTUrS

� 1
r where

the r in the subscript denotes the rank-r column truncation. Note here that XTUr is the expression that computes the projection of the

data onto the top r principal components in PCA (assuming the N0 rows of X are mean-centered). Thus, in the eigen-time-delay co-

ordinates, the diagonal matrix S� 1
r alters the PCA only in that it scales each component by the inverse of its corresponding singular

value. This is known as PCA whitening and produces a scaled version of the data projected onto the principal components such that

each component has unit variance.

Increasing inhibition in RNNs
To examine the effects of increasing inhibition (Figure 7), we again simulated randomly connected RNNs according to Sompolinksy

et al.97 following the dynamics

t _x = � x+gW tanh x
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where x is the n-dimensional state of the system (effectively synaptic activity in the RNN), t is the time constant of the dynamics

(10 ms, with a time step of simulation of 1 ms), W is the n3n weight matrix with each element drawn from a normal distribution

of mean 0 standard deviation 1ffiffi
n

p , and gis a gain parameter on the synaptic weights. We used a network size of 512 neurons. We

simulated the dynamics with gains 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7. To scale up and down the inhibition in the network,

we took all elements of W with negative weight, and scaled them by an inhibitory scaling factor, kI. For each gain, we simulated

the network with kI = 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, and 1.5. We sampled the matrix W10 times, then for each

sampled matrix simulated the dynamics with all possible pairings of g and kI. The systems were simulated for 10,000 time steps.

We computed the Lyapunov exponents of the networks as described above in the section ‘‘randomly connected RNN

dynamics’’.

Example dynamical systems
HAVOK models of the Van der Pol Oscillator

We simulated the Van der Pol Oscillator91 with a time step of 20 ms and a simulation time of 400 seconds (generating 20,000 time

steps) using the governing equations

_x = y
_y = m
�
1 � x2

�
y � x

We set the parameter m to 2. We chose an initial condition from a standard Gaussian distribution then dropped the first 5,000 time

steps (100 seconds) as a transient. We then observed only the second (y) dimension of the dynamics. We fit a HAVOK model on

10,000 time steps (200 seconds) using 500 delays. Predictions were generated on the remaining 5,000 time steps by autonomously

running the dynamics - that is, the initial state is fed through the model to get the first prediction, then that prediction is fed back

through the model, and so forth. The results of this simulation are presented in Figure 2D.

Mass-spring simulation

For the cartoon shown in Figure 5A, a mass-spring system was simulated with governing dynamics m €x +R _x + kx = I where x is the

vertical position of the mass,m; k;R are parameters governing the dynamics and I is the input. For our simulations, we setm = 10;

k = 1;R = 10.We simulated using scipy’s solve_ivp function for 1,000 time stepswith a time step of 10ms.131 From time step 100 to

120, we perturbed the system with a constant input of value I = 10. The results of this simulation are in Figure 5A (right).

Pharmacokinetics analysis
Estimating integrated propofol dosage

To estimate the integrated (i.e., accumulated) propofol dosage up to a particular moment in the session, we began by estimating the

context-sensitive half time (CSHT) of propofol. CSHTs describe the time it takes for the concentration of anesthetic in the system to

halve, as a function of the duration of infusion (i.e., the ‘‘context’’). Detailed modeling has estimated that the CSHT of propofol is

around 3minutes for a very short infusion and around 8minutes after 60minutes of infusion.136We then linearly interpolated between

these two values for infusion times in between 0 minutes and 60 minutes, and assumed the CSHT stays constant at 8 minutes after

the 60 minute infusion ends. Given the CSHT, we can estimate the instantaneous time constant of decay of propofol by assuming

that the quantity present in the system undergoes exponential decay in the absence of any input. We thus obtained, using the defi-

nition of the CSHT, the expression

0:5x0 = e� CSHTðtÞ
t x0

where x0 is the initial quantity present in the system, t is the instantaneous time constant of decay in minutes, and CSHTðtÞ is the

CSHT after t minutes of infusion. We can solve this equation to obtain that t = tðtÞ = � CSHTðtÞ
log ð0:5Þ minutes. Now, we integrate, over

the course of a full session, a first-order differential equation for the quantity of propofol present in the system:

_x = a � 1

tðtÞ x

Where x is the propofol quantity inmg/kg, _x is the rate of changeof propofol quantity inmg/kg/min, anda is the infusion rate inmg/kg/min

(see Experimental Model Details). We solve this equation using scipy’s solve_ivp function. Given the complexity of propofol pharmaco-

kinetics,137 we stress that these estimates were intended only to be approximations for the purposes of investigating the relationship

between propofol dosage and instability.

Predicting instability from propofol dose

Using the estimated integrated propofol dosage, we attempted to predict the estimated instability values. For each window in each

session, we computed both the estimated integrated propofol dose up to that time, as well as the mean instability in that window.

Then, for each NHP, we fitted a linear-log regression to predict instability from the estimated integrated propofol dose. The results

of this analysis are in Figure S2D.
e7 Neuron 112, 2799–2813.e1–e9, August 21, 2024



ll
OPEN ACCESSArticle
QUANTIFICATION AND STATISTICAL ANALYSIS

For all data plots, ‘‘*’’ denotes a p-value less than 0.05, ‘‘**’’ denotes a p-value less than 0.01, and ‘‘***’’ denotes a p-value less

than 0.001.

Prediction quality of dynamical models
To quantify the prediction quality of the dynamical models considered in the manuscript (Figure 3; section ‘‘delayed linear dynamical

systemsmodels capture neural dynamics’’), we first fit eachmodel for every window of every session. Then, the performancemetrics

(MSE and AIC) were averaged across windows within a single session. To compute the statistics, each session was an independent

sample. Since, for each session, we were comparing between two models, we used the one-sidedWilcoxon signed-rank test. Since

each session was an independent sample, the sample size was n = 10. For Figure S1, we split the analysis by NHP, yielding sample

sizes of:

d NHP 1: n = 10

d NHP 2: n = 11
Changes in stability in neural dynamics
Statistical tests referenced in the section ‘‘propofol anesthesia induces unstable cortical dynamics’’ were conducted as follows. In

each NHP, the real parts (i.e. inverse timescales of response) of the top 10% of characteristic roots from every window in every ses-

sion were grouped according to the section (i.e. awake, unconscious, recovery, early recovery, late recovery, loading dose, and

maintenance dose) of the session. The mean of these inverse timescales was then taken to yield one value per section, per session.

To compute statistics, the sections were defined as follows. Awake windows were collected from the 15 minutes preceding the

start of the anesthetic infusion. Induction windows were collected from the start of propofol infusion until 15 minutes following

the start of propofol infusion. Unconscious windows were collected from 15 minutes following the start of propofol infusion

until the end of propofol infusion (a period of 45 minutes). Recovery windows were collected from the end of propofol infusion until

15 minutes following the end of propofol infusion. Early recovery was collected from the end of propofol infusion until 8 minutes

following the end of propofol infusion. Late recovery was assessed from 8 minutes following the end of propofol infusion until 15 mi-

nutes following the end of propofol infusion. Loading dose windows were collected from 15 minutes following the start of propofol

infusion until 30 minutes following the start of propofol infusion (the final 15minutes of the loading dose). Maintenance dose windows

were collected from 45 minutes following the start of propofol infusion until the end of propofol infusion (the final 15 minutes of the

maintenance dose). See Figure S6 for a visual depiction of the section definitions.

To test whether one section of the session wasmore unstable than another, one-sidedWilcoxon signed-rank tests were performed

on mean instability values (top 10% of the real parts of characteristic roots) and averaged within each section for each session. Thus

for each section, for every area, the sample sizes are:

d NHP 1: n = 10

d NHP 2: n = 11

The results of all comparisons between sections are reported in the main text in the section ‘‘propofol anesthesia destabilizes

cortical neural dynamics’’. Most of these comparisons are also visually presented in Figure 4D.

Distances between stability distributions
To test whether the recovery distribution returned to awake levels of dynamic stability, we first constructed a test value that consisted

of the awake-unconscious Cramér-von Mises criterion, subtracted from the awake-recovery Cramér-von Mises criterion. The

Cramér-von Mises criterion was chosen as it constructs a non-parametric notion of distance between distributions that considers

the whole distribution (as opposed to the widest gap, as is the case with Kolmogorov-Smirnov distance). To compute the

Cramér-von Mises criterion, all characteristic roots from a given section (i.e., awake, unconscious, etc.) of a single session were

included to ensure the maximum resolution. This approach yielded one test value per session. With this construction, if the test value

is negative, it suggests that the recovery distribution is closer to the awake than unconscious state, indicating a return to awake sta-

bility levels. We then performed a one sample Wilcoxon signed-rank test on these differences to test if they were significantly below

zero (i.e., if the test statistic was indeed negative). The sample sizes are the same as above. The results of this analysis are reported in

the main text in the section ‘‘propofol anesthesia destabilizes cortical neural dynamics’’.

Changes to characteristic root frequencies
To analyze how the frequency (imaginary) components of the top 10% of characteristic roots changed in anesthesia, we first aggre-

gated the top 10% of characteristic roots from all windows from all sessions in each NHP. We used the roots estimated frommodels

fit to all areas considered together. Then, to test whether the proportion of roots in each band changed, we computed the proportion

of characteristic roots that fell into that band during both the awake state and the unconscious state. This is equivalent to calculating
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the probability mass function for each band. To test whether the mass was significantly different between the awake and uncon-

scious states, for each band, we performed a two-sided Wilcoxon signed-rank test on the computed probability mass for that fre-

quency band. Sample sizes are the same as above. The results of this analysis are in Figure S2E.

Destabilization in simulated networks
As mentioned above, for each sampling of the weight matrixW, we simulated every possible pairing of the synaptic gain g and inhib-

itory scale kI. Thus, to test whether a given inhibitory scale kI1 induced more instability than another inhibitory scale kI2 , we compared

themaximum Lyapunov exponents of the simulations from each gain and from each sampling of the weight matrix. Specifically, given

a particular sample of W and value of g, we can consider the two networks with inhibitory scales kI1 and kI2 to be paired dependent

samples. Thus, we can conduct a one-sided Wilcoxon signed-rank test using the 100 paired samples for (10 samples ofW times 10

values of g) for each pair of inhibitory scales. The results of this analysis are in Figure S4.
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