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Abstract

The inverse design of materials with specific desired properties, such as high-1

temperature superconductivity, represents a formidable challenge in materials2

science due to the vastness of chemical and structural space. This work introduces3

a guided diffusion framework to accelerate the discovery of novel superconductors.4

Our approach begins with a foundation model trained on crystal structures from5

the Alexandria Database, which is then fine-tuned using a labeled dataset of6

7,217 conventional superconductors to generate new structures conditioned on7

critical temperature, Tc. Employing classifier-free guidance, we generated 200,0008

potential crystal structures. These candidates were subsequently subjected to a9

rigorous multi-stage computational screening workflow, utilizing machine learning10

models and density functional theory calculations to assess stability and electronic11

properties. Notably, our generative model demonstrated effective property-driven12

design by shifting the distribution of generated materials toward targeted Tc values13

within the training regime. This process successfully identified 773 promising14

superconducting candidates with predicted Tc > 5K. This end-to-end workflow,15

from generation to new candidate superconductors, illuminates a powerful pathway16

for materials discovery, demonstrating the significant potential of the AI-driven17

framework to accelerate discovery.18

1 Introduction19

The discovery of novel materials with desired properties remains a fundamental challenge in materials20

science, as traditional methods involving direct simulation or experimental synthesis and characteriza-21

tion are frequently impeded by high costs, lengthy development cycles, and a low yield of successful22

outcomes. While ab initio methods and machine learning (ML) models have advanced the ability to23

predict material properties from known crystal structures, the inverse problem—designing materials24

that exhibit specific target properties—remains difficult due to the vastness of chemical and structural25

space.26

Generative models, which have achieved remarkable success in domains such as images, text, and27

video, are now gaining traction in materials science to address this problem. Recent advances in28

structure-generating models, such as diffusion-based frameworks Ho et al. [2020] (e.g., DiffCSP Jiao29

et al. [2023], MatterGen Zeni et al. [2024]), flow-based Lipman et al. [2023] models (e.g., FlowMM30

Miller et al. [2024]), and frameworks based on stochastic interpolants Albergo et al. [2023] that31

unify diffusion and flow such as OMatG Höllmer et al. [2025], highlight the potential of generative32

approaches for material discovery.33

Superconductors, with their zero electrical resistance, hold transformative potential for technologies34

ranging from energy transmission and storage to high-field applications in medical imaging, particle35

accelerators, and materials processing Boeri et al. [2022], Larbalestier et al. [2001], Malozemoff et al.36
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[2005], Flükiger [2012]. These wide-ranging applications make the discovery of new superconductors,37

particularly those with higher critical temperatures Tc, a high-priority target for inverse materials38

design. In the most widely used class of superconductors, i.e. electron-phonon superconductors, Tc39

is governed by the coupling between electrons and lattice vibrations Bardeen et al. [1957], Eliashberg40

[1960]. Traditionally DFT Giannozzi et al. [2020] coupled to Eliashberg theory Giustino et al. [2007]41

has been used to accurately predict the critical temperatures of superconductors, albeit at too high a42

computational cost to be suitable for high-throughput screening.43

Attempts have been made previously to discover superconductors with generative artificial intelligence44

(AI), notably the work by Wines et al. Wines et al. [2023] using the crystal diffusion variational45

autoencoder (CDVAE Xie et al. [2022]) framework and ALIGNN Choudhary and DeCost [2021]46

model for superconductivity prediction. While a novel proof-of-concept, their study has two key47

limitations. First, their property predictor (ALIGNN) was trained on a relatively small dataset of48

1,058 structures, which may limit generalization of the inference capability of the model. Second,49

all generated structures were reported in the low-symmetry space group P1, which may bias the50

structural diversity and affect physical realizability. Another work by Dordevic et al. Yuan and51

Dordevic [2024] introduced SuperDiff, a diffusion-based generative model for superconductors that52

implements iterative latent variable refinement (ILVR) Choi et al. [2021] to condition the structure53

generation on reference compounds. While SuperDiff demonstrated fast training and inference and54

was the first to generate entirely new superconductor families via conditioning, it operates purely on55

composition-level data without explicitly modeling atomic positions or crystal structures, limiting its56

ability to capture the underlying atomic structure.57

The field lacks a true generative model for superconductors to solve the inverse problem, and one58

crucial challenge is to tackle the problem of lack of a large conditioned database of superconductors59

that is sufficient for training a big foundation model. In this work, we build on recent advances in60

generative AI and present an enhanced DiffCSP framework that leverages guided diffusion to generate61

crystal structures conditioned on target Tc values. To overcome the challenge posed by the limited62

size of labeled datasets for specific properties like superconductivity, our strategy separates the tasks63

of learning general crystal structure formation and specific property conditioning. We first develop a64

foundation model by training DiffCSP on a vast dataset of over two million crystal structures with up65

to 20 atoms in the unit cell, drawn from the Alexandria Database Schmidt et al. [2022, 2023]. This66

initial phase allows the model to learn to generate stable and novel crystal structures, independent of67

any particular material property. Subsequently, we fine-tune this pre-trained foundation model using68

a smaller, high-quality dataset of 7,217 conventional superconductors with calculated Tc Cerqueira69

et al. [2024] as illustrated in Fig. 1(a).70

This two-stage approach has the significant advantage of leveraging a massive dataset to learn71

structural plausibility, while requiring only a specialized dataset to learn the more subtle correlations72

that govern superconductivity. This method effectively guides the generation of novel crystal73

structures towards candidates that are both structurally stable and likely to be superconducting.74

We couple this approach to a subsequent screening framework that identifies the most-promising75

candidate superconductors. We apply this complete end-to-end discovery workflow by first using our76

guided diffusion framework to generate a large-scale library of 200,000 candidate crystal structures,77

as illustrated in Figure 1(a). These are then processed through a multi-stage computational screening78

pipeline that leverages machine learning models Chen et al. [2019], Chen and Ong [2022], Gibson79

et al. [2025] and density functional theory Giannozzi et al. [2020] to identify a subset of novel, stable80

candidates predicted to have higher Tc, shown in Figure 1(b). This leads to prediciton of 773 new81

superconducting candidates with Tc > 5 K with Ehull < 200 meV.82

2 Methods83

Our methodology for discovering novel superconductors integrates two primary components: (1)84

a generative AI framework to propose novel crystal structures conditioned on superconducting85

properties; (2) a high-throughput computational screening workflow driven by machine learning86

models and ab initio calculations to assess the stability and promise of the generated candidates. The87

components of our discovery pipeline, illustrated in Figure 1, is designed to first generate a vast88

number of candidate structures and then systematically filter them to identify the most promising ones.89

The generative AI stage itself involves three core steps: training a foundation model, fine-tuning it for90

superconductivity, and guiding the generation process with classifier-free diffusion to create an initial91
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Figure 1: Workflow combining (a) guided diffusion and (b) multi-stage filtering to predict candidate
superconductor. (a) Overview of the guided diffusion pipeline for superconductor discovery. Starting
from the Alexandria database of 2,086,767 crystal structures, we train a foundation model based
on the DiffCSP architecture, capable of generating stable crystals. An adapter module is added to
DiffCSP architecture to fine-tune the foundation model using a dataset of 7183 superconductors
Cerqueira et al. [2024], Gibson et al. [2025]. Using classifier free guidance, we use this AI to
generate 200,000 crystal structures. (b) Overview of the multi-stage filtering process of the generated
structures. We first pass the generated structures through initial ML relaxation, followed by search for
metallic, thermodynamically stable, ML predicted Tc > 5 K structures and Ehull < 200 meV/atom.
We perform dynamic stability search on the remaining candidates, and calculated the stable structures’
Tc with BEE-NET Gibson et al. [2025] using the PhDOS as embedding, selecting the Tc > 5 K. The
e-ph spectral function of the final candidates is evalutated using DFT, which is then used to get the
final (DFT) Tc of the candidate structures.

ensemble of 200,000 structures (Fig. 1(a)). These candidates are then subjected to a rigorous, multi-92

stage filtering workflow (Fig. 1(b)) that uses a combination of machine learning interatomic potentials93

(MLIPs), the BEE-NET property predictor, and density functional theory (DFT) calculations to assess94

stability and predict Tc. The following subsections detail each step of this computational process.95

2.1 Data96

We used two main datasets in this study: the Alexandria Materials Database, and a labeled dataset97

of superconductors Cerqueira et al. [2024] included the superconducting materials predicted in98

BEE-NET Gibson et al. [2025].99

The Alexandria Materials Database Schmidt et al. [2022, 2023] contains over 5 million crystal100

structures. To train our foundation model, we restricted the data to structures with up to 20 atoms101

per unit cell, giving us 2,086,767 structures, divided into subset of 1,857,222 crystal structures for102

training and another 229,545 for validation. This large, unlabeled dataset enables the model to learn103

the manifold of material space.104

For fine-tuning, we used the DS-A dataset from Cerqueira et al. Cerqueira et al. [2024], which105

comprises 7,217 dynamically stable metallic compounds with first-principles electron–phonon calcu-106

lations. Each entry includes the relaxed crystal structure, density of states at the Fermi level, logarith-107
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mic average phonon frequency, and electron–phonon coupling constant. We used the Allen–Dynes108

formulaAllen and Dynes [1975] to estimate the superconducting transition temperature Tc of there109

materials. We end up with 6326 superconducting materials, a reduction due to the numerial in-110

stability from the Allen-Dynes formula. We use only the Tc values for fine-tuning, the dataset111

offers high-quality labels derived from the DFT-based workflows, making it well suited for guiding112

models toward superconductivity-relevant features. We extended this dataset by adding additional113

857 superconducting candidates found in Gibson et al. [2025]- giving us dataset of size 7183 for114

fine-funing. The fine-tuning data was split into training, validation and test sets in 8 : 1 : 1 ratio.115

2.2 Foundation Model Training116

The first stage in our methodology is the development of a robust foundation model for crystal117

structure generation. The primary objective of this foundational training is to create a model adept118

at generating a diverse range of structurally and thermodynamically plausible crystalline materials,119

capturing the inherent chemical and physical rules governing crystal stability.120

Training was performed using the DiffCSP framework, the architecture of which is detailed in121

Section 2.3. During this unsupervised phase, the model learns to reverse a diffusion process that122

gradually adds noise to the lattice parameters, fractional atomic coordinates, and atom types of known123

crystal structures. By learning to effectively denoise these inputs, the model implicitly learns the124

complex manifold of crystal structures. This process is guided by the need to respect fundamental125

physical symmetries inherent in crystalline materials, such as rotational, translational and periodic126

boundary conditions. The resulting foundation model is therefore well-versed in the general principles127

of crystal structure formation and stability, without being biased towards any specific target property,128

providing a strong starting point for subsequent fine-tuning towards superconductor discovery.129

2.3 DiffCSP Architecture130

For crystal structure generation within our work, we employ a diffusion model. This generative131

approach involves a forward process where Gaussian noise is progressively added to the key attributes132

of a crystal structure - specifically its lattice parameters, the fractional coordinates of its constituent133

atoms, and their elemental types. The model is then trained to reverse this noising process, learning134

to denoise these attributes at various noise levels to reconstruct the original, physically valid crystal135

structure. New crystal structures are subsequently generated by iteratively applying this learned136

denoising function, beginning from a state of pure noise.137

Generating physically realistic crystal structures critically requires the model’s adherence to funda-138

mental crystallographic symmetries. These include O(3) equivariance, which ensures that predictions139

are independent of crystal orientation by requiring consistent transformation of vectorial features140

(like atomic positions or lattice vectors) under rotation. Additionally, proper handling of periodic141

boundary conditions (PBC) is essential for accurately representing fractional atomic coordinates and142

ensuring the continuity of structural properties across unit cell boundaries.143

To implement a diffusion process that rigorously incorporates these essential symmetries, we selected144

the Crystal Structure Prediction by Joint Equivariant Diffusion (DiffCSP) Jiao et al. [2023] framework145

as the backbone denoising architecture. DiffCSP employs an E(n) equivariant graph neural network146

(EGNN) Satorras et al. [2021] for the denoising model. This choice ensures O(3)-equivariance for147

handling lattice and coordinate symmetries and effectively manages periodic translational invariance148

for fractional atomic coordinates.149

The input features consist of atomic embeddings and sinusoidal positional encoding that represent150

atom types and their positions within the crystal lattice. These features are processed through multiple151

message-passing layers, which incorporate both spatial and periodic symmetries. A Fourier transform152

is applied to the relative fractional coordinates, improving the model’s ability to capture periodic153

behavior. The denoising model outputs two components: one for lattice noise and one for fractional154

coordinate noise. These outputs are designed to respect both O(3)-equivariance and translational155

invariance. Together, these architectural properties enable the model to robustly denoise inputs Ho156

et al. [2020], Song et al. [2021] in a way that preserves the physical symmetries of crystal structures.157
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In addition to lattice and coordinate modeling, atom types are also handled through learned embed-158

dings/denoising, though detailed discussion of atom-type noise is omitted here for brevity. We kept159

the model hyperparameters consistent with those used in the original DiffCSP framework.160

2.4 Fine-tuning for Conditional Generation161

The second stage of training involves fine-tuning the foundation model to guide it toward generating162

superconducting materials. We use a labeled dataset of 7,000 conventional ambient condition163

superconductors whose Tc was calculated using ab initio methods Cerqueira et al. [2024]. We164

introduce an adapter module Zeni et al. [2024], inspired by text-to-image generation technique of165

computer vision, into the equivariant graph network (CSPNet) used in DiffCSP. This module allows166

us to condition generation on the target property, in this case, the superconducting critical temperature167

(Tc). The adapter is applied after each message-passing layer as follows:168

H
′(L)
j = H

(L)
j + f

(L)
mixin(f

(L)
adapter(g)) · I(property is not null)

Here, H(L)
j represents the node embeddings at layer L, and g is the sinusoidally embedded Vaswani169

et al. [2017] property value (Tc). The adapter module f
(L)
adapter consists of four fully connected linear170

layers, and its output is passed through a mixin layer Harrison and Ossher [2001] f (L)
mixin, which171

stabilizes training by gradually increasing the adapter’s influence. This mechanism prevents abrupt172

disruptions to the foundation model’s learned features. The mixin layer initially scales the adapter173

output to zero and increases it progressively during fine-tuning.174

We retain the original loss function from DiffCSP, which ensures that generated structures remain175

close to the training distribution. The adapter module allows the model to incorporate property176

information during generation without compromising the stability learned during the foundation177

model training.178

2.5 Classifier-free Guided Generation179

To generate candidate superconducting materials, we implemented classifier-free diffusion Ho and180

Salimans [2021] guidance. This method enables conditional generation by interpolating between the181

unconditional foundation model and the fine-tuned, property-aware model. Specifically, we combine182

the denoising predictions from both models as follows:183

ϵ̃θ(zλ, c) = (1 + w)ϵθ(zλ, c)− wϵθ(zλ)

Here, ϵθ(zλ, c) is the denoising output of the conditional model guided by the target property c, and184

ϵθ(zλ) is the output of the unconditional model. The guidance weight w controls the strength of the185

conditioning — higher values bias the generation more strongly toward the target property. We found186

w = 2 to be a stable and effective choice in practice.187

Using this guided generation strategy, we sampled 200,000 crystal structures by conditioning on188

different Tc values. These generated candidates were then passed through our structure analysis189

workflow to identify stable, high-Tc superconductors.190

2.6 Structural Analysis Workflow191

We follow a rigorous multi-step workflow to identify stable, high-Tc superconducting candidates192

from the set of generated structures. This pipeline ensures that final materials are metallic, thermo-193

dynamically and dynamically stable, and synthesizable. Before these generated structures enter the194

detailed screening pipeline, an initial filtering step is performed to ensure a focus on novel candidates.195

This involves removing any generated structures that are identical to those present in our fine-tuning196

dataset. Additionally, duplicate structures within the generated set itself are identified and reduced to197

unique instances. This pre-screening ensures that the subsequent computationally intensive analyses198

are concentrated on genuinely new potential superconductors.199

First, we relax all remaining unique, novel generated structures using the M3GNet machine learning200

interatomic potential (MLIP) Chen and Ong [2022]. After relaxation, we use MEGNet Chen et al.201

[2019] to compute the bandgap (Eg) and formation energy (Ef ). We retain only metallic structures202

(Eg = 0) with negative Ef . Next, we estimate the superconducting critical temperature (Tc) of these203
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filtered structures using BEE-Net Gibson et al. [2025]. We only keep materials with predicted Tc > 5204

K for further analysis. To assess thermodynamic stability, we calculate the energy above the convex205

hull (Ehull) using M3GNet and compare against the Materials Project database Jain et al. [2013].206

Structures with Ehull > 200 meV/atom are discarded. We further refine the surviving structures by207

recalculating Ehull using DFT-relaxed geometries and reapply the Tc > 5 K filter using BEE-Net.208

At this point, we incorporate phonon calculations to improve both dynamic stability assessment209

and Tc accuracy. For each structure, we compute the phonon density of states (PhDOS) and use210

BEE-Net with coarse phonon density (CPD) embeddings to predict a more refined Tc. Structures with211

imaginary phonon modes are eliminated. In the final stage, we perform electron-phonon coupling212

calculations using Quantum ESPRESSO to obtain the electron-phonon spectral function α2F (ω) and213

compute the final DFT-based Tc values using the Allen-Dynes equation Allen and Dynes [1975].214

3 Results215

We first validate our computational approach by demonstrating that guidance allows for the generation216

of materials with desired superconducting critical temperatures. We then characterize the full set217

of generated structures, followed by the experimental synthesis and characterization of selected218

candidates to verify our theoretical predictions.219

3.1 Validation of the Guided Diffusion model220

We validated the performance of the guided diffusion model by assessing its ability to generate221

structures conditioned on a target Tc. The guidance mechanism, based on classifier-free guidance222

Ho and Salimans [2021] (detailed in Sec. 2.5), is designed to balance this drive toward a specific Tc223

with the principles of structural stability learned by the foundation model (Sec. 2.2 and Sec. 2.4).224

To efficiently analyze the distributions of predicted Tc values to validate our generative pipeline,225

we estimated Tc using our screening workflow until the input of the crystal structure only (CSO) to226

BEE-NET (Fig. 1 (b)). This approach provides near-immediate feedback without the computational227

cost of ab initio calculations, which are reserved for the more comprehensive analysis workflow228

described in Sec. 2.6.229

For the analysis shown in Fig. 2 we generated 1000 structures for each configuration. Our test result230

illustrated in Fig. 2a first confirms that with guidance disabled (w = −1), the Tc distribution of231

generated samples closely follows that of the fine-tuning dataset, establishing a baseline. In contrast,232

enabling classifier-free guidance (e.g., w = 2) to target a specific Tc of 10 K resulted in a clear and233

effective shift of the distribution towards the desired value, demonstrating property-driven control234

(Fig. 2b). We further probed the model’s behavior with an out-of-distribution target of Tc = 110 K, a235

regime absent from the fine-tuning data. Even with strong guidance, the model consistently failed236

to produce stable high-Tc structures. Instead, as shown in Fig. 2c (w = 2), the model preferentially237

generates stable low-Tc structures. This behavior demonstrates that while guidance is effective238

for targeted design within the training domain, the foundation model acts as a crucial prerequisite239

for stability, constraining the generation to physically plausible structures for extreme property240

extrapolation.241

3.2 Prediction of Superconducting Candidates242

The application of our full generative pipeline starts with 200,000 initial structures and incorporates243

the rigorous multi-stage structure analysis workflow (detailed in Section 2.6), yielding 773 unique244

candidate superconductors with DFT-calculated Tc > 5 K, indicating promising superconducting245

properties and thermodynamic stability conducive to synthesis. The relationship between predicted246

Tc and Ehull for these candidates is illustrated in Figure 3, showing a diverse set of materials spanning247

Tc values up to approximately 35 K.248

A compositional analysis of these 773 candidates revealed a strong trend towards multi-component249

compounds of 133 binaries (17%), 455 ternaries (59%), 178 quaternaries (23%), and 7 pentanaries250

(1%). Among the final set of computationally identified superconducting candidates, we observed a251

significantly higher proportion of ternary structures compared to binary ones. We attribute this trend252

to the combined effect of our model’s generative capabilities and the current state of superconductor253

research. The landscape of binary superconductors has been extensively investigated. In essence, for254
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Figure 2: Effect of classifier-free guidance on Tc distribution. (a) Generated structures with guidance
disabled (w = −1) closely follow the fine-tuning dataset distribution. (b) With guidance enabled
(w = 2) and target Tc = 10 K, the distribution shifts toward the desired value, demonstrating
the model’s controllability. (c) Distribution of predicted Tc values for structures generated with
a target of Tc = 110 K using guidance weight w = 2. Although the target lies far outside the
training distribution, the model predominantly generates low-Tc structures, reflecting a preference for
physically plausible outputs.

Figure 3: Distribution of the 773 predicted superconducting candidates. The plot shows the energy
above the convex hull (Ehull) versus the DFT-calculated critical temperature (Tc) for each candidate.
The markers are colored by compound type, as shown in the inset legend.

the workflow to identify new and viable superconductors, it is more probable that these will emerge255

from these more complex systems where a greater potential for undiscovered materials exists, rather256

than from the more saturated binary space.257

4 Discussion258

In this study, generative AI was used to create 200,000 crystal structures, which were subsequently259

screened using an ML driven workflow to arrive at 773 good candidates for superconductivity.260

Although the final superconducting candidates are in an acceptable regime of Ehull < 200 meV. This261

distribution of stability can likely be attributed to the training and fine-tuning data sets, which both262

consist of mainly theoretical materials that are not all on the convex hull. We believe that training on263

experimentally synthesized materials, and/or only materials with Ehull near zero, would guide the264

model to generate candidates that are, on average, closer to the hull.265

Analysis of the compositions of these 773 candidates revealed a significantly higher proportion of266

ternary structures compared to binary ones. This outcome is attributed to the combined effect of our267
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pipeline search in the underexplored regions of the materials space and the prior investigation of268

the superconductor landscape. The comprehensive screening (as detailed in Section 2.6) naturally269

identified more novel candidates within the less-charted ternary, a higher-order compositional spaces270

where the potential for undiscovered materials is greater. This exploration of less-investigated271

chemical spaces was also reflected in the finding that many of the identified ternary candidates272

incorporate elements typically considered rare and more expensive. Such compositions may have273

been historically under-explored in experimental studies due to material costs, thus representing a274

richer domain for computational discovery.275

However, a critical analysis suggests that this exploration of less-charted chemical spaces comes276

with a significant caveat that may explain our experimental outcomes. The model’s prediction of277

stable phases in these regions could be an artifact of data scarcity, not an indication of true physical278

plausibility. For a predicted structure to be deemed stable, its energy must be low relative to a279

convex hull constructed from known, competing phases. In chemical spaces where data is sparse280

– for instance, among ternary systems whose constituent elements do not readily form any known281

binary compounds – the reference convex hull is incomplete or poorly defined. Consequently,282

a generated structure may appear to have a low energy above the hull (Ehull) simply because283

there are no known, more stable structures to compete with it in the database. Our generative284

model, therefore, may be expertly identifying gaps in existing materials data rather than discovering285

genuinely synthesizable, stable phases. This highlights a fundamental challenge for AI-driven286

materials discovery: distinguishing true, synthesizable novelty from artifacts of an incomplete287

reference dataset.288

Our current computational pipeline does not take into account the type of elements that are used in289

the predicted compounds. As we pointed out earlier, many of the ternary predicted superconductors290

have rare and expensive elements, which may pose some practical difficulties with the availability of291

the elements. Another problem is element that are either radioactive or toxic, making it difficult to292

work with within experimental laboratories such as Technetium.293

5 Conclusion294

In this work, we developed and deployed an end-to-end workflow that combines a guided diffusion295

generative model with high-throughput computational screening to accelerate the inverse design of296

novel superconductors. Our AI framework proved highly effective, successfully predicting over 700297

unique and promising superconducting candidate materials with Tc ≥ 5K, by exploring less-charted298

regions of chemical space, particularly among ternary and higher-order compounds. However, our299

studies have revealed a critical challenge highlighting a fundamental insight : the generative model,300

while powerful, may be expertly identifying gaps in existing materials databases where the convex301

hull is sparse, rather than discovering genuinely synthesizable metastable phases. Therefore, while302

our work validates the immense potential of generative AI to accelerate materials discovery, it also303

underscores the need for future developments to focus on improving predictions of synthesizability304

and integrating experimental feedback into a true active learning loop to bridge the gap between305

computational prediction and laboratory realization.306

Improvements to the generative model itself present a key direction for future work. We plan307

to improve the conditioning of the properties by implementing learnable embeddings for target308

properties, rather than the current fixed embedding approach, and exploring alternative guidance309

techniques Karras et al. [2024], Tang et al. [2025] that may offer better generalization and spread310

over the guided region than classifier-free guidance. To better reflect the discrete nature of elemental311

identities, we also intend to investigate guided discrete diffusion Nisonoff et al. [2025] models to312

generate atom types, which could offer improvements over denoising in a continuous latent space for313

atom types. Finally, we are working to integrate our guidance framework with entirely new generative314

backbones, such as Flow Matching Miller et al. [2024] and stochastic interpolants Höllmer et al.315

[2025], to assess their performance in discovering novel and synthesizable superconductors.316

Our findings highlight several key avenues for future work, in order to address the challenge of sparse317

reference data in uncharted chemical spaces, the stability analysis could be improved by implementing318

on-the-fly DFT calculations to refine the local convex hull around promising candidates. Beyond319

refining the screening process, the most impactful advancement would be to establish a true active320

learning loop. By incorporating experimental synthesis as new training data, the generative model321

8



could be systematically retrained to better discriminate between synthesizable and non-synthesizable322

structures. This iterative process could be further enhanced by expanding the training datasets with323

more experimentally verified compounds and by extending the guided diffusion framework to a324

multi-objective optimization that balances the search for high Tc with synthesizability and practical325

constraints, such as low material cost. A significant enhancement to our screening workflow would be326

to incorporate predictions of disorder, disorder is completely ignored in the current pipeline, allowing327

the model to assess the relative stability of a predicted ordered compound against a more likely328

disordered solid solution.329
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