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Abstract

The inverse design of materials with specific desired properties, such as high-
temperature superconductivity, represents a formidable challenge in materials
science due to the vastness of chemical and structural space. This work introduces
a guided diffusion framework to accelerate the discovery of novel superconductors.
Our approach begins with a foundation model trained on crystal structures from
the Alexandria Database, which is then fine-tuned using a labeled dataset of
7,217 conventional superconductors to generate new structures conditioned on
critical temperature, 7. Employing classifier-free guidance, we generated 200,000
potential crystal structures. These candidates were subsequently subjected to a
rigorous multi-stage computational screening workflow, utilizing machine learning
models and density functional theory calculations to assess stability and electronic
properties. Notably, our generative model demonstrated effective property-driven
design by shifting the distribution of generated materials toward targeted 7, values
within the training regime. This process successfully identified 773 promising
superconducting candidates with predicted 7, > 5K. This end-to-end workflow,
from generation to new candidate superconductors, illuminates a powerful pathway
for materials discovery, demonstrating the significant potential of the Al-driven
framework to accelerate discovery.

1 Introduction

The discovery of novel materials with desired properties remains a fundamental challenge in materials
science, as traditional methods involving direct simulation or experimental synthesis and characteriza-
tion are frequently impeded by high costs, lengthy development cycles, and a low yield of successful
outcomes. While ab initio methods and machine learning (ML) models have advanced the ability to
predict material properties from known crystal structures, the inverse problem—designing materials
that exhibit specific target properties—remains difficult due to the vastness of chemical and structural
space.

Generative models, which have achieved remarkable success in domains such as images, text, and
video, are now gaining traction in materials science to address this problem. Recent advances in
structure-generating models, such as diffusion-based frameworks Ho et al.|[2020] (e.g., DiffCSP {Jiao
et al.|[2023]], MatterGen Zeni et al.|[2024])), flow-based [Lipman et al.[[2023]] models (e.g., FlowMM
Miller et al.[[2024])), and frameworks based on stochastic interpolants |Albergo et al.[[2023]] that
unify diffusion and flow such as OMatG Hollmer et al.|[2025]], highlight the potential of generative
approaches for material discovery.

Superconductors, with their zero electrical resistance, hold transformative potential for technologies
ranging from energy transmission and storage to high-field applications in medical imaging, particle
accelerators, and materials processing Boeri et al.| [2022], Larbalestier et al.| [2001], Malozemotff et al.
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[2003], Flikiger|[2012]]. These wide-ranging applications make the discovery of new superconductors,
particularly those with higher critical temperatures ¢, a high-priority target for inverse materials
design. In the most widely used class of superconductors, i.e. electron-phonon superconductors, 7.
is governed by the coupling between electrons and lattice vibrations Bardeen et al.|[1957], |[Eliashberg
[1960]. Traditionally DFT |Giannozzi et al.| [2020] coupled to Eliashberg theory |Giustino et al.|[2007]
has been used to accurately predict the critical temperatures of superconductors, albeit at too high a
computational cost to be suitable for high-throughput screening.

Attempts have been made previously to discover superconductors with generative artificial intelligence
(AD), notably the work by Wines et al. Wines et al.| [2023]] using the crystal diffusion variational
autoencoder (CDVAE Xie et al.|[2022]]) framework and ALIGNN |Choudhary and DeCost|[2021]]
model for superconductivity prediction. While a novel proof-of-concept, their study has two key
limitations. First, their property predictor (ALIGNN) was trained on a relatively small dataset of
1,058 structures, which may limit generalization of the inference capability of the model. Second,
all generated structures were reported in the low-symmetry space group P1, which may bias the
structural diversity and affect physical realizability. Another work by Dordevic et al. Yuan and
Dordevic|[2024] introduced SuperDiff, a diffusion-based generative model for superconductors that
implements iterative latent variable refinement (ILVR) Choi et al.|[2021] to condition the structure
generation on reference compounds. While SuperDiff demonstrated fast training and inference and
was the first to generate entirely new superconductor families via conditioning, it operates purely on
composition-level data without explicitly modeling atomic positions or crystal structures, limiting its
ability to capture the underlying atomic structure.

The field lacks a true generative model for superconductors to solve the inverse problem, and one
crucial challenge is to tackle the problem of lack of a large conditioned database of superconductors
that is sufficient for training a big foundation model. In this work, we build on recent advances in
generative Al and present an enhanced DiffCSP framework that leverages guided diffusion to generate
crystal structures conditioned on target 7. values. To overcome the challenge posed by the limited
size of labeled datasets for specific properties like superconductivity, our strategy separates the tasks
of learning general crystal structure formation and specific property conditioning. We first develop a
foundation model by training DiffCSP on a vast dataset of over two million crystal structures with up
to 20 atoms in the unit cell, drawn from the Alexandria Database [Schmidt et al.|[2022} 2023]]. This
initial phase allows the model to learn to generate stable and novel crystal structures, independent of
any particular material property. Subsequently, we fine-tune this pre-trained foundation model using
a smaller, high-quality dataset of 7,217 conventional superconductors with calculated T, |Cerqueira
et al|[2024] as illustrated in Fig. [[[a).

This two-stage approach has the significant advantage of leveraging a massive dataset to learn
structural plausibility, while requiring only a specialized dataset to learn the more subtle correlations
that govern superconductivity. This method effectively guides the generation of novel crystal
structures towards candidates that are both structurally stable and likely to be superconducting.
We couple this approach to a subsequent screening framework that identifies the most-promising
candidate superconductors. We apply this complete end-to-end discovery workflow by first using our
guided diffusion framework to generate a large-scale library of 200,000 candidate crystal structures,
as illustrated in Figure[T[(a). These are then processed through a multi-stage computational screening
pipeline that leverages machine learning models (Chen et al.| [[2019], (Chen and Ong| [2022], Gibson
et al.| [2025] and density functional theory |Giannozzi et al.| [2020] to identify a subset of novel, stable
candidates predicted to have higher T, shown in Figure[I[b). This leads to prediciton of 773 new
superconducting candidates with 7, > 5 K with Ey,; < 200 meV.

2 Methods

Our methodology for discovering novel superconductors integrates two primary components: (1)
a generative Al framework to propose novel crystal structures conditioned on superconducting
properties; (2) a high-throughput computational screening workflow driven by machine learning
models and ab initio calculations to assess the stability and promise of the generated candidates. The
components of our discovery pipeline, illustrated in Figure[I] is designed to first generate a vast
number of candidate structures and then systematically filter them to identify the most promising ones.
The generative Al stage itself involves three core steps: training a foundation model, fine-tuning it for
superconductivity, and guiding the generation process with classifier-free diffusion to create an initial
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Figure 1: Workflow combining (a) guided diffusion and (b) multi-stage filtering to predict candidate
superconductor. (a) Overview of the guided diffusion pipeline for superconductor discovery. Starting
from the Alexandria database of 2,086,767 crystal structures, we train a foundation model based
on the DiffCSP architecture, capable of generating stable crystals. An adapter module is added to
DiffCSP architecture to fine-tune the foundation model using a dataset of 7183 superconductors
Cerqueira et al.| [2024], |Gibson et al.| [2025]. Using classifier free guidance, we use this Al to
generate 200,000 crystal structures. (b) Overview of the multi-stage filtering process of the generated
structures. We first pass the generated structures through initial ML relaxation, followed by search for
metallic, thermodynamically stable, ML predicted 7, > 5 K structures and Ep,,;; < 200 meV/atom.
We perform dynamic stability search on the remaining candidates, and calculated the stable structures’
T. with BEE-NET Gibson et al.|[2025] using the PhDOS as embedding, selecting the T, > 5 K. The
e-ph spectral function of the final candidates is evalutated using DFT, which is then used to get the
final (DFT) T of the candidate structures.

ensemble of 200,000 structures (Fig. a)). These candidates are then subjected to a rigorous, multi-
stage filtering workflow (Fig.[T[b)) that uses a combination of machine learning interatomic potentials
(MLIPs), the BEE-NET property predictor, and density functional theory (DFT) calculations to assess
stability and predict 7¢.. The following subsections detail each step of this computational process.

2.1 Data

We used two main datasets in this study: the Alexandria Materials Database, and a labeled dataset
of superconductors |Cerqueira et al.| [2024] included the superconducting materials predicted in
BEE-NET |Gibson et al.|[2025]].

The Alexandria Materials Database |[Schmidt et al.| [2022} 2023] contains over 5 million crystal
structures. To train our foundation model, we restricted the data to structures with up to 20 atoms
per unit cell, giving us 2,086,767 structures, divided into subset of 1,857,222 crystal structures for
training and another 229,545 for validation. This large, unlabeled dataset enables the model to learn
the manifold of material space.

For fine-tuning, we used the DS-A dataset from Cerqueira et al. |Cerqueira et al.[[2024]], which
comprises 7,217 dynamically stable metallic compounds with first-principles electron—phonon calcu-
lations. Each entry includes the relaxed crystal structure, density of states at the Fermi level, logarith-
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mic average phonon frequency, and electron—phonon coupling constant. We used the Allen—Dynes
formulaAllen and Dynes|[1975]] to estimate the superconducting transition temperature 7. of there
materials. We end up with 6326 superconducting materials, a reduction due to the numerial in-
stability from the Allen-Dynes formula. We use only the 7 values for fine-tuning, the dataset
offers high-quality labels derived from the DFT-based workflows, making it well suited for guiding
models toward superconductivity-relevant features. We extended this dataset by adding additional
857 superconducting candidates found in |Gibson et al.|[2025]]- giving us dataset of size 7183 for
fine-funing. The fine-tuning data was split into training, validation and test sets in 8 : 1 : 1 ratio.

2.2 Foundation Model Training

The first stage in our methodology is the development of a robust foundation model for crystal
structure generation. The primary objective of this foundational training is to create a model adept
at generating a diverse range of structurally and thermodynamically plausible crystalline materials,
capturing the inherent chemical and physical rules governing crystal stability.

Training was performed using the DiffCSP framework, the architecture of which is detailed in
Section[2.3] During this unsupervised phase, the model learns to reverse a diffusion process that
gradually adds noise to the lattice parameters, fractional atomic coordinates, and atom types of known
crystal structures. By learning to effectively denoise these inputs, the model implicitly learns the
complex manifold of crystal structures. This process is guided by the need to respect fundamental
physical symmetries inherent in crystalline materials, such as rotational, translational and periodic
boundary conditions. The resulting foundation model is therefore well-versed in the general principles
of crystal structure formation and stability, without being biased towards any specific target property,
providing a strong starting point for subsequent fine-tuning towards superconductor discovery.

2.3 DiffCSP Architecture

For crystal structure generation within our work, we employ a diffusion model. This generative
approach involves a forward process where Gaussian noise is progressively added to the key attributes
of a crystal structure - specifically its lattice parameters, the fractional coordinates of its constituent
atoms, and their elemental types. The model is then trained to reverse this noising process, learning
to denoise these attributes at various noise levels to reconstruct the original, physically valid crystal
structure. New crystal structures are subsequently generated by iteratively applying this learned
denoising function, beginning from a state of pure noise.

Generating physically realistic crystal structures critically requires the model’s adherence to funda-
mental crystallographic symmetries. These include O(3) equivariance, which ensures that predictions
are independent of crystal orientation by requiring consistent transformation of vectorial features
(like atomic positions or lattice vectors) under rotation. Additionally, proper handling of periodic
boundary conditions (PBC) is essential for accurately representing fractional atomic coordinates and
ensuring the continuity of structural properties across unit cell boundaries.

To implement a diffusion process that rigorously incorporates these essential symmetries, we selected
the Crystal Structure Prediction by Joint Equivariant Diffusion (DiffCSP) Jiao et al.|[2023]] framework
as the backbone denoising architecture. DiffCSP employs an E(n) equivariant graph neural network
(EGNN) [Satorras et al.|[2021] for the denoising model. This choice ensures O(3)-equivariance for
handling lattice and coordinate symmetries and effectively manages periodic translational invariance
for fractional atomic coordinates.

The input features consist of atomic embeddings and sinusoidal positional encoding that represent
atom types and their positions within the crystal lattice. These features are processed through multiple
message-passing layers, which incorporate both spatial and periodic symmetries. A Fourier transform
is applied to the relative fractional coordinates, improving the model’s ability to capture periodic
behavior. The denoising model outputs two components: one for lattice noise and one for fractional
coordinate noise. These outputs are designed to respect both O(3)-equivariance and translational
invariance. Together, these architectural properties enable the model to robustly denoise inputs Ho
et al.|[2020], Song et al.|[2021]] in a way that preserves the physical symmetries of crystal structures.
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In addition to lattice and coordinate modeling, atom types are also handled through learned embed-
dings/denoising, though detailed discussion of atom-type noise is omitted here for brevity. We kept
the model hyperparameters consistent with those used in the original DiffCSP framework.

2.4 Fine-tuning for Conditional Generation

The second stage of training involves fine-tuning the foundation model to guide it toward generating
superconducting materials. We use a labeled dataset of 7,000 conventional ambient condition
superconductors whose 7, was calculated using ab initio methods |Cerqueira et al.| [2024]. We
introduce an adapter module Zeni et al.| [[2024], inspired by text-to-image generation technique of
computer vision, into the equivariant graph network (CSPNet) used in DiffCSP. This module allows
us to condition generation on the target property, in this case, the superconducting critical temperature
(T¢). The adapter is applied after each message-passing layer as follows:
Hj(L) = H](-L) + fr&i{)m( (D (9)) - I(property is not null)

adapter

Here, H ;L) represents the node embeddings at layer L, and g is the sinusoidally embedded |[Vaswani
et al.[[2017]] property value (7). The adapter module f:(i;ler consists of four fully connected linear

layers, and its output is passed through a mixin layer [Harrison and Ossher| [2001]] félﬁ)m, which
stabilizes training by gradually increasing the adapter’s influence. This mechanism prevents abrupt
disruptions to the foundation model’s learned features. The mixin layer initially scales the adapter

output to zero and increases it progressively during fine-tuning.

We retain the original loss function from DiffCSP, which ensures that generated structures remain
close to the training distribution. The adapter module allows the model to incorporate property
information during generation without compromising the stability learned during the foundation
model training.

2.5 Classifier-free Guided Generation

To generate candidate superconducting materials, we implemented classifier-free diffusion Ho and
Salimans| [2021] guidance. This method enables conditional generation by interpolating between the
unconditional foundation model and the fine-tuned, property-aware model. Specifically, we combine
the denoising predictions from both models as follows:

€o(2zx, ) = (L +w)ep(za, ¢) — weg(zy)

Here, €y (2, ¢) is the denoising output of the conditional model guided by the target property ¢, and
€g(zy) is the output of the unconditional model. The guidance weight w controls the strength of the
conditioning — higher values bias the generation more strongly toward the target property. We found
w = 2 to be a stable and effective choice in practice.

Using this guided generation strategy, we sampled 200,000 crystal structures by conditioning on
different 7. values. These generated candidates were then passed through our structure analysis
workflow to identify stable, high-T;, superconductors.

2.6 Structural Analysis Workflow

We follow a rigorous multi-step workflow to identify stable, high-7.. superconducting candidates
from the set of generated structures. This pipeline ensures that final materials are metallic, thermo-
dynamically and dynamically stable, and synthesizable. Before these generated structures enter the
detailed screening pipeline, an initial filtering step is performed to ensure a focus on novel candidates.
This involves removing any generated structures that are identical to those present in our fine-tuning
dataset. Additionally, duplicate structures within the generated set itself are identified and reduced to
unique instances. This pre-screening ensures that the subsequent computationally intensive analyses
are concentrated on genuinely new potential superconductors.

First, we relax all remaining unique, novel generated structures using the M3GNet machine learning
interatomic potential (MLIP) |Chen and Ong|[2022]]. After relaxation, we use MEGNet Chen et al.
[2019] to compute the bandgap (FE) and formation energy (£). We retain only metallic structures
(E; = 0) with negative E'y. Next, we estimate the superconducting critical temperature (7;) of these
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filtered structures using BEE-Net|Gibson et al.[[2025]. We only keep materials with predicted T, > 5
K for further analysis. To assess thermodynamic stability, we calculate the energy above the convex
hull (Fhyn) using M3GNet and compare against the Materials Project database Jain et al.| [2013].
Structures with Fy,;; > 200 meV/atom are discarded. We further refine the surviving structures by
recalculating Fy,,)) using DFT-relaxed geometries and reapply the T;. > 5 K filter using BEE-Net.

At this point, we incorporate phonon calculations to improve both dynamic stability assessment
and 7T, accuracy. For each structure, we compute the phonon density of states (PhDOS) and use
BEE-Net with coarse phonon density (CPD) embeddings to predict a more refined 7¢. Structures with
imaginary phonon modes are eliminated. In the final stage, we perform electron-phonon coupling
calculations using Quantum ESPRESSO to obtain the electron-phonon spectral function a? F'(w) and
compute the final DFT-based 7. values using the Allen-Dynes equation |Allen and Dynes| [1975].

3 Results

We first validate our computational approach by demonstrating that guidance allows for the generation
of materials with desired superconducting critical temperatures. We then characterize the full set
of generated structures, followed by the experimental synthesis and characterization of selected
candidates to verify our theoretical predictions.

3.1 Validation of the Guided Diffusion model

We validated the performance of the guided diffusion model by assessing its ability to generate
structures conditioned on a target 7. The guidance mechanism, based on classifier-free guidance
Ho and Salimans|[2021] (detailed in Sec. [2.5)), is designed to balance this drive toward a specific T
with the principles of structural stability learned by the foundation model (Sec.[2.2]and Sec. [2.4).
To efficiently analyze the distributions of predicted 7. values to validate our generative pipeline,
we estimated 7, using our screening workflow until the input of the crystal structure only (CSO) to
BEE-NET (Fig.[1|(b)). This approach provides near-immediate feedback without the computational
cost of ab initio calculations, which are reserved for the more comprehensive analysis workflow
described in Sec.

For the analysis shown in Fig. 2] we generated 1000 structures for each configuration. Our test result
illustrated in Fig. [Zh first confirms that with guidance disabled (w = —1), the T distribution of
generated samples closely follows that of the fine-tuning dataset, establishing a baseline. In contrast,
enabling classifier-free guidance (e.g., w = 2) to target a specific 7. of 10 K resulted in a clear and
effective shift of the distribution towards the desired value, demonstrating property-driven control
(Fig. 2b). We further probed the model’s behavior with an out-of-distribution target of 7, = 110 K, a
regime absent from the fine-tuning data. Even with strong guidance, the model consistently failed
to produce stable high-T¢. structures. Instead, as shown in Fig. 2t (w = 2), the model preferentially
generates stable low-T, structures. This behavior demonstrates that while guidance is effective
for targeted design within the training domain, the foundation model acts as a crucial prerequisite
for stability, constraining the generation to physically plausible structures for extreme property
extrapolation.

3.2 Prediction of Superconducting Candidates

The application of our full generative pipeline starts with 200,000 initial structures and incorporates
the rigorous multi-stage structure analysis workflow (detailed in Section [2.6)), yielding 773 unique
candidate superconductors with DFT-calculated 7, > 5 K, indicating promising superconducting
properties and thermodynamic stability conducive to synthesis. The relationship between predicted
T, and Eyy for these candidates is illustrated in Figure[3] showing a diverse set of materials spanning
T, values up to approximately 35 K.

A compositional analysis of these 773 candidates revealed a strong trend towards multi-component
compounds of 133 binaries (17%), 455 ternaries (59%), 178 quaternaries (23%), and 7 pentanaries
(1%). Among the final set of computationally identified superconducting candidates, we observed a
significantly higher proportion of ternary structures compared to binary ones. We attribute this trend
to the combined effect of our model’s generative capabilities and the current state of superconductor
research. The landscape of binary superconductors has been extensively investigated. In essence, for
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Figure 2: Effect of classifier-free guidance on 7T distribution. (a) Generated structures with guidance
disabled (w = —1) closely follow the fine-tuning dataset distribution. (b) With guidance enabled
(w = 2) and target T, = 10 K, the distribution shifts toward the desired value, demonstrating
the model’s controllability. (c) Distribution of predicted T, values for structures generated with
a target of 7, = 110 K using guidance weight w = 2. Although the target lies far outside the
training distribution, the model predominantly generates low-T,, structures, reflecting a preference for
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Figure 3: Distribution of the 773 predicted superconducting candidates. The plot shows the energy
above the convex hull (Ey,,;) versus the DFT-calculated critical temperature (7;,) for each candidate.
The markers are colored by compound type, as shown in the inset legend.

the workflow to identify new and viable superconductors, it is more probable that these will emerge
from these more complex systems where a greater potential for undiscovered materials exists, rather
than from the more saturated binary space.

4 Discussion

In this study, generative Al was used to create 200,000 crystal structures, which were subsequently
screened using an ML driven workflow to arrive at 773 good candidates for superconductivity.
Although the final superconducting candidates are in an acceptable regime of Ep,,;; < 200 meV. This
distribution of stability can likely be attributed to the training and fine-tuning data sets, which both
consist of mainly theoretical materials that are not all on the convex hull. We believe that training on
experimentally synthesized materials, and/or only materials with E},,,;; near zero, would guide the
model to generate candidates that are, on average, closer to the hull.

Analysis of the compositions of these 773 candidates revealed a significantly higher proportion of
ternary structures compared to binary ones. This outcome is attributed to the combined effect of our
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pipeline search in the underexplored regions of the materials space and the prior investigation of
the superconductor landscape. The comprehensive screening (as detailed in Section [2.6) naturally
identified more novel candidates within the less-charted ternary, a higher-order compositional spaces
where the potential for undiscovered materials is greater. This exploration of less-investigated
chemical spaces was also reflected in the finding that many of the identified ternary candidates
incorporate elements typically considered rare and more expensive. Such compositions may have
been historically under-explored in experimental studies due to material costs, thus representing a
richer domain for computational discovery.

However, a critical analysis suggests that this exploration of less-charted chemical spaces comes
with a significant caveat that may explain our experimental outcomes. The model’s prediction of
stable phases in these regions could be an artifact of data scarcity, not an indication of true physical
plausibility. For a predicted structure to be deemed stable, its energy must be low relative to a
convex hull constructed from known, competing phases. In chemical spaces where data is sparse
— for instance, among ternary systems whose constituent elements do not readily form any known
binary compounds — the reference convex hull is incomplete or poorly defined. Consequently,
a generated structure may appear to have a low energy above the hull (E}.,;) simply because
there are no known, more stable structures to compete with it in the database. Our generative
model, therefore, may be expertly identifying gaps in existing materials data rather than discovering
genuinely synthesizable, stable phases. This highlights a fundamental challenge for Al-driven
materials discovery: distinguishing true, synthesizable novelty from artifacts of an incomplete
reference dataset.

Our current computational pipeline does not take into account the type of elements that are used in
the predicted compounds. As we pointed out earlier, many of the ternary predicted superconductors
have rare and expensive elements, which may pose some practical difficulties with the availability of
the elements. Another problem is element that are either radioactive or toxic, making it difficult to
work with within experimental laboratories such as Technetium.

5 Conclusion

In this work, we developed and deployed an end-to-end workflow that combines a guided diffusion
generative model with high-throughput computational screening to accelerate the inverse design of
novel superconductors. Our Al framework proved highly effective, successfully predicting over 700
unique and promising superconducting candidate materials with T, > 5 K, by exploring less-charted
regions of chemical space, particularly among ternary and higher-order compounds. However, our
studies have revealed a critical challenge highlighting a fundamental insight : the generative model,
while powerful, may be expertly identifying gaps in existing materials databases where the convex
hull is sparse, rather than discovering genuinely synthesizable metastable phases. Therefore, while
our work validates the immense potential of generative Al to accelerate materials discovery, it also
underscores the need for future developments to focus on improving predictions of synthesizability
and integrating experimental feedback into a true active learning loop to bridge the gap between
computational prediction and laboratory realization.

Improvements to the generative model itself present a key direction for future work. We plan
to improve the conditioning of the properties by implementing learnable embeddings for target
properties, rather than the current fixed embedding approach, and exploring alternative guidance
techniques |[Karras et al.| [2024], [Tang et al.| [2025]] that may offer better generalization and spread
over the guided region than classifier-free guidance. To better reflect the discrete nature of elemental
identities, we also intend to investigate guided discrete diffusion Nisonoff et al.| [2025]] models to
generate atom types, which could offer improvements over denoising in a continuous latent space for
atom types. Finally, we are working to integrate our guidance framework with entirely new generative
backbones, such as Flow Matching Miller et al.|[2024]] and stochastic interpolants Hollmer et al.
[2025]], to assess their performance in discovering novel and synthesizable superconductors.

Our findings highlight several key avenues for future work, in order to address the challenge of sparse
reference data in uncharted chemical spaces, the stability analysis could be improved by implementing
on-the-fly DFT calculations to refine the local convex hull around promising candidates. Beyond
refining the screening process, the most impactful advancement would be to establish a true active
learning loop. By incorporating experimental synthesis as new training data, the generative model
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could be systematically retrained to better discriminate between synthesizable and non-synthesizable
structures. This iterative process could be further enhanced by expanding the training datasets with
more experimentally verified compounds and by extending the guided diffusion framework to a
multi-objective optimization that balances the search for high T, with synthesizability and practical
constraints, such as low material cost. A significant enhancement to our screening workflow would be
to incorporate predictions of disorder, disorder is completely ignored in the current pipeline, allowing
the model to assess the relative stability of a predicted ordered compound against a more likely
disordered solid solution.
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