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ABSTRACT

Quantization-Aware Pre-Training (QAPT) is an effective technique to reduce the
compute and memory overhead of Deep Neural Networks while improving their
energy efficiency on edge devices. Existing QAPT methods produce models
stored in compute-efficient data types (e.g. integers) that are not information the-
oretically optimal (ITO). On the other hand, existing ITO data types (e.g. Quan-
tile/NormalFloat Quantization) are not compute-efficient. We propose BBQ, the
first ITO quantization method that is also compute-efficient. BBQ builds on our
key insight that since learning is domain-agnostic, the output of a quantizer does
not need to reside in the the same domain as its input. BBQ performs ITO quan-
tization in its input domain, and returns its output in a compute-efficient domain
where ITO data types are mapped to compute-efficient data types. Without sac-
rificing compute efficiency, BBQ outperforms prior SOTA QAPT methods by a
perplexity reduction of up to 2 points for 4-bit models, up to 4 points for 3-bit
models, up to 5 points for 2-bit models, and up to 18 points for 1-bit models.

1 INTRODUCTION

Quantization is an effective method to reduce the computation/memory/energy consumption of Deep
Neural Networks (DNNs), allowing DNNs to be deployed to edge devices with limited hardware re-
sources. However, quantization often degrades model quality. While Post-Training Quantization
(PTQ) methods (Lin et al., 2024; Shao et al., 2024; Ma et al., 2024b; Liu et al., 2024a; Kim et al.,
2024) can mitigate quality degradation without re-training for higher precisions (4+-bit), they strug-
gle to maintain quality when weights and activations are quantized to 4-bit and below (Panferov
et al., 2025; Esser et al., 2020; Ma et al., 2024a; Kumar et al., 2025). Quantization-Aware Training
(QAT) methods (Panferov et al., 2025; Esser et al., 2020; Ma et al., 2024a; Kumar et al., 2025; Shen
et al., 2024; Liu et al., 2025; Yamamoto, 2021), on the other hand, can achieve higher accuracy than
PTQ methods under the same precision (Du et al., 2024; Panferov et al., 2025; Liu et al., 2024b) by
introducing quantization in the training loop.

QAT can be further divided into Quantization-Aware Pre-Training (Panferov et al., 2025; Shen et al.,
2024) (QAPT) and Quantization-Aware Fine-Tuning (Malinovskii et al., 2024; Du et al., 2024)
(QAFT). QAFT initializes a low-precision model from a full-precision pre-trained checkpoint, and
trains the model for a short duration to fit a downstream task, which is typically much smaller than
the pre-training dataset (Du et al., 2024). On the other hand, QAPT initializes a low-precision model
from scratch, aims to fit a much larger dataset, and typically trains for much longer durations. Com-
pared to first pre-train in full-precision and subsequently apply PTQ/QAFT, QAPT may have higher
pre-training speed (Kumar et al., 2025; Xi et al., 2023; Castro et al., 2025), as when activations and
weights are quantized, the forward pass of training may be performed in low precision.

This work aims to improve the accuracy of a QAPT’ed model without compromising its efficiency
on edge devices. Specifically, we target the case when a low-precision model is initialized ran-
domly, trained for long durations on large datasets, and is aimed to be deployed to edge devices with
constraints on memory capacity, inference latency, and energy consumption. The energy constraint
requires the model to be compute-efficient, or that expensive high-precision matrix multiplications
be substituted with low-precision arithmetic, while the memory and latency constraints require the
model to be small in size, or to have a low parameter count and precision. The main challenge of
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Signed INT4 -8, ±7, ±6, ±5, ±4, ±3, ±2, ±1, 0
MX FP4 ±6, ±4, ±3, ±2, ±1.5, ±1, ±0.5, ±0

Table 1: Possible values of the INT4 and the MX FP4 data type.

this work is models with limited memory footprint cannot fit large datasets well due to a lack of
learning capacity (Kumar et al., 2025).

Using the discrete Shannon entropy (Shannon, 1948; Cover & Thomas, 2006) of quantized weights
as a proxy to the amount of information/knowledge present in a QAPT’ed model, we observe that
SOTA QAPT methods QuEST (Panferov et al., 2025) and LSQ (Esser et al., 2020) produce quan-
tized models that under-utilize the available learning capacity. The under-utilization is because LSQ
and QuEST use compute-efficient data types (e.g. integers and floats) which are not information
theoretically optimal (ITO). While existing ITO data types (Dettmers et al., 2023; 2022) can reduce
this under-utilization of learning capacity, they lack compute efficiency on modern CPUs/GPUs,
which limits the applicability on edge devices with limited energy.

To maximally utilize the limited learning capacity while preserving compute efficiency, we pro-
pose Bell Box Quantization (BBQ). BBQ is designed based on our key insight: since learning is
domain-agnostic, the output of a quantizer does not need to live in the same domain as its input.
BBQ performs ITO quantization in its input domain to maximally preserve information, but returns
its output in a different domain, where ITO data types are mapped to compute-efficient data types.
BBQ achieves higher capacity utilization and better prediction quality than QuEST and LSQ. Unlike
existing ITO data types, a BBQ-quantized model can still accelerate expensive matrix multiplica-
tions with low-precision arithmetic.

2 BACKGROUND AND MOTIVATION

In this section, we discuss compute-efficient data types on modern GPUs, existing ITO quantization
methods, and lastly, the domain-agnostic property of learning which is the key inspiration of BBQ.

Quantization is the discretization of a continuous random variable x to a discrete random variable
x̂, with 2b possible states, such that x̂ is sufficiently close to x. We present a generic template for
quantization as follows:

x̂ = f−1(q), where q = r(f(x)) (1)

where f : R→ R is a transform function that converts x to some intermediate domain more suitable
for quantization; r : R → T is some rounding function that converts any real value to one of 2b
possible real values, i.e. T ⊆ R and |T| = 2b; and f−1, the inverse function of f , is responsible for
converting the discretized value q back to the original domain of x.

2.1 COMPUTE EFFICIENT DATA TYPES

A data type T is compute-efficient, if hardware offers low-precision multiply-accumulate instruc-
tions that directly operate on members of T without first decoding to high precision data types. Table
1 shows members of T for INT4, which is supported by the Nvidia Ampere (Nvidia, 2021) and Tur-
ing (Nvidia, 2018) architectures, and members of T for MX FP4 (Rouhani et al., 2023), which is
supported by the Blackwell architecture (Nvidia, 2025). When f−1 is linear or affine, a compute-
efficient data type can be used to accelerate matrix multiplication and convolution (Yao et al., 2021).
For example, if f−1(q) = sq for a constant scalar s, then the multiplication of activation matrix
X̂ = f−1(Qx) = sQx and weight matrix Ŵ = f−1(Qw) = sQw can be simplified to s2(Qx ·Qw).
In other words, the matrix multiplication can be computed using solely low-precision representa-
tions of activations and weights, and later de-quantized to the original domain by multiplication of
s2.

Prior SOTA QAPT methods QuEST (Panferov et al., 2025) and LSQ (Esser et al., 2020) uses lin-
ear/affine f−1 and compute-efficient data types. We show the definition of f , r, and f−1 for LSQ
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and QuEST as follows:

LSQ: f(x) = x/s, r(v) = ⌊clip(v,−2b−1, 2b−1 − 1)⌉, f−1(q) = sq

QuEST: f(x) =
HT(x)
α∗σ

− 1

2
, r(v) = ⌊clip(v,−2b−1, 2b−1 − 1)⌉, f−1(q) = HT(α∗σ(q +

1

2
))

(2)

where s, σ, and α∗ are constant scalars; HT is the Hadamard transform, a linear operation; and
the clip operation and the round-to-nearest-integer operation ⌊·⌉ enforces the output of r to be a
b-bit signed integer. Since f−1 is linear or affine in LSQ and QuEST, matrix multiplications can be
accelerated with low-precision arithmetic.

In short, for a quantization method to be compute-efficient, it should have a linear/affine dequanti-
zation function f−1 and a compute-efficient data type T.

2.2 INFORMATION THEORETICALLY OPTIMAL QUANTIZATION METHODS

An ITO quantization method is one that ensures each member of T is used equally often (Dettmers
et al., 2023). For example, if b = 2, then 25% of values of x should be assigned to each of the 4
possible values in T. While there are many possible mappings that evenly split the probability mass,
a trivial mapping is to use the 25, 50, 75 percentile as rounding boundaries. In other words, values
of x less than the 25-percentile of x are rounded to the first value in T; values larger than the 25-
percentile but less than 50-percentile of x are rounded to the second value, etc. For x ∼ N(0, σ2),
this trivial mapping can be expressed as:

f(x) = x/σ, r(v) = T [floor(2bΦ(v))], f−1(q) = σq (3)

where T [i] is the ith smallest element in T. Note that Equation 3 only requires that T contains 2b

unique real values. Therefore, Equation 3 describes a set of ITO methods rather than a unique one.
By evenly splitting the probability mass of x, all ITO data types maximize the Shannon entropy of
q defined as

H(q) =
∑
t∈T
−P (q = t) log2 P (q = t) (4)

Note that entropy was shown to positively correlate with accuracy/prediction quality (Cheng et al.,
2025; Shen et al., 2024).

Inspired by ITO quantization methods, Dettmers et al. (2023) proposed NormalFloat, whose values
are a list of abs-max-normalized Gaussian quantiles (Yoshida, 2023; Dotzel et al., 2024). Due to
lack of hardware support, NormalFloat must be de-quantized to full-precision floats and then used
in computation, which limits its applicability on energy-constrained edge devices.

This presents a dilemma: while ITO quantization methods maximally preserve information, they are
not compute-efficient; compute-efficient quantization methods, on the other hand, are not ITO for
Gaussianly distributed weights/activations. Can we obtain the best of both worlds?

2.3 LEARNING IS DOMAIN-AGNOSTIC

Since neural networks are universal function approximators (Hornik et al., 1989), they are capable
of learning from transformed/augmented data, or even data encoded in latent spaces that are not
human-understandable. For example, DNNs can correctly classify images that are rotated (He et al.,
2015), or even images that are transformed to the frequency domain (Xu et al., 2020). As another
example, when sparse autoencoders (Gao et al., 2025) are trained just to reconstruct the data, the
resulting latent embedding of the data can be used by other DNNs to complete downstream tasks.
These are all evidence that, as long as information is preserved, simply projecting/transforming data
to a different domain does not prevent learning.

The domain-agnostic property of learning provides an opportunity to circumvent the inefficiency of
ITO quantization methods. Rather than treating quantizers as data compressors and reconstructors,
we could treat them as feature extractors that return a set of compact latent features of the original
data. Critically, these latent features reside in an output domain, that is, not necessarily the same
domain as the input, but is designed to be a compute-efficient domain, where features can be effi-
ciently used by matrix multiplication operators. In other words, we ask the research question: if we
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Figure 1: The seven steps of BBQ: Hadamard Transform ( 1⃝), RMS normalization ( 2⃝), probability
integral transform ( 3⃝), uniform quantization ( 4⃝), unsigned-to-signed conversion ( 5⃝), precision-
dependent scaling ( 6⃝), and precision-independent scaling ( 7⃝).

design a quantizer that performs ITO quantization in the original domain, and returns output in an
alternative compute-efficient domain, will such a quantizer outperform existing non-ITO quantizers
in QAPT?

3 PROPOSED METHOD

In this section, we present the Bell Box Quantizer (BBQ). BBQ is designed to be ITO, or to max-
imally preserve information from its input, while also returning compute-efficient outputs that can
be accelerated by modern hardware. The formulation of BBQ is as follows:

q = ⌊2bΦ (HT(x)/σ)⌋ − 2b−1 − z

x̂ =
γ

2b−1
q

(5)

where γ is a learnable scaling factor, HT is the Hadamard transform operation, Φ is the Gaussian
CDF, ⌊·⌋ is the floor operation, σ is the RMS normalization factor

√
E[(HT(x))2], and z is a hyper-

parameter zero point. As illustrated in Figure 1, BBQ involves seven steps: Hadamard Transform,
RMS Normalization, probability integral transform, uniform quantization, unsigned-to-signed con-
version, precision-dependent scaling, and precision-independent scaling.

3.1 STEP 1: HADAMARD TRANSFORM

Similar to QuEST (Panferov et al., 2025), the first step of BBQ is to Gaussianize the input x by
performing the Hadamard transform, visualized in Figure 1 Row 1 Column 2. After the transform,
HT(x) behaves like samples from N(0, σ2). Instead of transforming the whole matrix x, we follow
QuEST and perform the Hadamard Transform on every H elements of x along the input channel
dimension. During training, the Hadamard Transform is a differentiable operation, and we simply
use autograd frameworks to perform its backward pass. During inference, the Hadamard transform
is implemented with a vector-matrix multiplication, between an H-element slice of x and the pre-
computed H ×H Hadamard matrix.

3.2 STEP 2: RMS NORMALIZATION

The next step of BBQ, visualized in Figure 1 Row 1 Column 3, is to normalize the Gaussian-like
data by dividing the root-mean-square scaling factor σ =

√
E[HT(x)]. After the normalization,
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Algorithm 1 Example 3-bit Inference Quantization Kernel for a Thread Block
1: function BBQ(block id, x ptr, h ptr, q ptr, E[1/σ])
2: x = x ptr[block id:block id+1, :] # x ptr is an N ×N matrix reshaped to (N2/H,H)
3: h = h ptr[:, :] # h ptr is a pre-computed Hadamard matrix with shape (H,H)
4: x = x @ h # vector matrix multiplication between shapes (1, H) and (H,H)
5: x = x * E[1/σ] # element-wise multiplication by scalar
6: for t← 0 to H − 1 do # can be done in parallel across warps and threads
7: if x[t] ≥ Φ−1(4/8) then # Binary search through pre-computed Φ−1 values
8: if x[t] ≥ Φ−1(6/8) then
9: x[t] = 3 if x[t] ≥ Φ−1(7/8) else 2

10: else
11: x[t] = 1 if x[t] ≥ Φ−1(5/8) else 0
12: end if
13: else
14: if x[t] ≥ Φ−1(2/8) then
15: x[t] = -1 if x[t] ≥ Φ−1(3/8) else -2
16: else
17: x[t] = -3 if x[t] ≥ Φ−1(1/8) else -4
18: end if
19: end if
20: end for
21: q ptr[id:id+1, :] = x # store quantized results to global memory
22: end function

Figure 2: Comparison of clipping (blue) and the normal CDF (orange) Φ for v ∼ N(0, 1).

the data behaves like samples from N(0, 1). For weight quantization during training, we measure
σ and perform RMS normalization for every output channel individually. After training, weight
quantization can be done once offline and does not introduce runtime overhead. For activation
quantization, we measure σ and perform RMS normalization for the whole activation tensor. In
addition, during training we keep track of an exponential moving average of 1/σ measured from
activations, denoted as E[1/σ]. During inference, instead of measuring 1/σ from activation tensors,
we use the recorded E[1/σ] instead. This is similar to how BatchNorm (Ioffe & Szegedy, 2015)
uses running statistics during inference. During training, we use autograd frameworks to perform
the backward pass of RMS Normalization to x and σ. Unlike QuEST, we do not detach the gradient
of σ.

3.3 STEP 3: PROBABILITY INTEGRAL TRANSFORM

The probability integral transform (Fisher, 1992) converts any continuous distribution to a uniform
one by applying its CDF on the data. As visualized in Figure 1 Row 1 Column 4, we apply the
standard Gaussian CDF Φ to data that behaves like samples from N(0, 1), creating data that behaves
likes samples from U(0, 1). In QuEST and LSQ, the component that behaves similarly to Φ is the
clip operation. As shown in Figure 2, both functions restrict their output to be within some finite
range. However, Φ is infinitely differentiable and is therefore much smoother than clip which is
piecewise linear. A smoother operation can be more suitable for optimization methods like Gradient
Descent (Nesterov, 2014; Bottou et al., 2018). For example, the GELU function (Hendrycks &
Gimpel, 2023) defined as GELU(x) = xΦ(x) is smoother than the piecewise linear ReLU (Agarap,
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Precision Possible Values of q
4 -8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7
3 -4,-3,-2,-1,0,1,2,3
2 -1.5,-0.5,0.5,1.5
1 -0.5,0.5

Table 2: Values that BBQ can represent. As shown, for b = 4, BBQ can be encoded as INT4. For
b = 3, BBQ can be encoded as INT4 or FP4. For b ∈ {1, 2}, BBQ can be encoded as FP4.

2018), and GELU can outperform ReLU empirically (Hendrycks & Gimpel, 2023). During training,
Φ is a differentiable operation and we use the autograd framework to perform BackProp. During
inference, we combine Φ with the subsequent floor operation using the following property:

⌊2bΦ(v)⌋ = i, s.t. Φ−1

(
i

2b

)
≤ v < Φ−1

(
i+ 1

2b

)
(6)

which allows us to pre-compute Φ−1
(

i
2b

)
for all 2b possible values of i, and at runtime perform a

binary search that requires b floating point comparisons. The pseudocode of a 3-bit inference kernel
implementation of BBQ is shown in Algorithm 1.

3.4 STEP 4 AND 5: UNIFORM QUANTIZATION AND UNSIGNED-TO-SIGNED CONVERSION

At this stage, uniform quantization is the ITO quantization method since the data behaves like sam-
ples from U(0, 1) as shown in Figure 1 Row 1 Column 4. Since it is known that having zero-mean
activations is desired for training DNNs (LeCun et al., 2012), we subsequently convert the positive-
only data to symmetric data by subtracting 2b−1 and the hyperparameter zero point z, producing the
final q stored as a compute-efficient data type, visualized in Figure 1 Row 2 Column 3. Inspired by
NF4 (Dettmers et al., 2023), we use z = 0 for b ∈ {3, 4}, allowing the data type to represent zero
exactly while sacrificing an extra value on the positive side. We use z = −0.5 for b ∈ {1, 2} to en-
sure activations remain zero-mean. During training, we use the Straight-Through Estimator (Bengio
et al., 2013) for the floor operation, and the autograd framework for all other differentiable oper-
ations. Table 2 lists the values supported by the BBQ data type. For b ∈ {1, 2, 3}, BBQ can be
represented using the MX FP4 data type on existing Blackwell GPUs. For b ∈ {3, 4}, BBQ can be
represented using INT4 on existing Ampere and Turing GPUs.

3.5 STEP 6 AND 7: PRECISION DEPENDENT AND INDEPENDENT SCALING

BBQ includes a learnable scaling parameter s = γ/2b−1, as without it, the network has no control
over the magnitude of its activations. Normalization layers like BatchNorm (Ioffe & Szegedy, 2015)
and LayerNorm (Ba et al., 2016) use a similar learnable scaling factor to address the same problem.
Instead of learning s like in LSQ (Esser et al., 2020), we decouple s into the ratio of a precision-
independent learnable scaling factor γ (visualized in Figure 1 Row 2 Column 1) and a constant
precision-dependent scaling factor 2b−1 (visualized in Figure 1 Row 2 Column 2) to ensure γ can
be initialized to the same value regardless of precision.

The initialization of γ also plays a critical role, as overly large initialization can lead to gradient
explosion while overly small initialization can lead to gradient vanishing. We initialize γ to ζ∗σ0,
where σ0 is the σ measured at the first iteration of training, and ζ∗ is a constant MSE optimal scaling
factor defined as follows:

ζ∗ = argmin
ζ

Ev∼N(0,1)[(v − ζ(2Φ(v)− 1))2] (7)

In other words, if a Gaussian variable v is transformed to the cumulative distribution domain and
scaled to the range [−ζ, ζ], the resulting quantity ζ(2Φ(v) − 1) is closest on average to v when
ζ = ζ∗. By initializing γ to ζ∗σ0, x̂ can have approximately the same magnitude as x (in the first
iteration) to prevent the activation magnitude from exploding or vanishing as tokens travel deeper
into the network. After the first iteration, we simply let γ update itself based on gradient descent. In
addition, we apply an LSQ-style gradient scaling method (Esser et al., 2020) to reduce the gradient
of γ by a factor of

√
n, where n is the number of weights/activations in tensor x. We use per-channel

γ for weights, and per-tensor γ for activations. We do not apply weight decay to γ.
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Params Tokens Full Bits BBQ QuEST LSQ
Entropy Perplexity Entropy Perplexity Entropy Perplexity

95M 3B 24.75 4 3.93 25.51 3.61 26.37 3.59 27.46
95M 3B 24.75 3 2.96 26.55 2.78 29.04 2.74 30.27
95M 3B 24.75 2 1.97 31.34 1.92 35.58 1.69 36.58
95M 3B 24.75 1 1.00 49.22 1.00 67.78 - -

125M 5B 21.51 4 3.93 22.15 3.61 22.98 3.60 23.77
125M 5B 21.51 3 2.96 23.22 2.78 25.21 2.74 26.28
125M 5B 21.51 2 1.98 27.34 1.93 31.32 1.81 31.42
125M 5B 21.51 1 1.00 44.58 1.00 72.54 - -
200M 10B 17.93 4 3.93 18.79 3.61 19.06 2.73 1778
200M 10B 17.93 3 2.96 19.74 2.78 20.82 2.50 140.9
200M 10B 17.93 2 1.98 23.08 1.93 25.46 1.63 78.19
200M 10B 17.93 1 1.00 38.27 1.00 52.37 - -
300M 20B 15.43 4 3.93 16.10 3.61 16.26 - -
300M 20B 15.43 3 2.96 16.90 2.78 17.67 - -
300M 20B 15.43 2 1.98 19.75 1.93 21.53 - -

Table 3: Entropy and Perplexity of LLaMA models pretrained on the C4 dataset. The headers are the
number of parameters (Params), the number of tokens (Tokens), perplexity without any quantization
(Full), activation/weight precision (Bits), and the entropy and perplexity of BBQ, QuEST and LSQ.

Params 95M 95M 95M 95M 95M 95M 95M 95M 95M 95M 95M
Bits WA 16 4 4 4 4 3 3 3 3 1 1
Method None BBQ QuEST LSQ NF4 BBQ QuEST LSQ NF3 BBQ QuEST
Perplexity 25 26.7 26.83 27.55 28.5 28.61 29.7 30.85 36.16 53.8 77.96
Params 95M 95M 95M 95M 95M 125M 125M 125M 125M 125M 125M
Bits WA 2 2 2 2 2 3 3 2 2 1 1
Method BBQ QuEST LSQ NF2 SEQ BBQ QuEST BBQ QuEST BBQ QuEST
Perplexity 34.36 36.7 38.98 246.6 40.07 24.78 26.05 29.38 31.47 50.46 69.78

Table 4: Perplexity of GPT models pretrained on the C4 dataset.

4 EVALUATION AND DISCUSSION

We use the publicly available source code of QuEST (Panferov et al., 2025), add the implemen-
tation of BBQ, and train on LLaMA (Touvron et al., 2023; Vaswani et al., 2017) models with n
non-embedding parameters plus e embedding parameters where n ∈ {30M, 50M, 100M, 200M}
and e ∈ {65M, 75M, 100M, 100M}. For each model, we pre-train with 100n C4 tokens while
quantizing the weights and activations of all linear layers to b-bit following QuEST. We compare
BBQ against QuEST/LSQ for each b ∈ {1, 2, 3, 4}, and present the evaluation quality (perplexity)
and weight entropy (bits) in Table 3. We show zero-shot results in Table 9, and training loss curves in
Section A.6. Since LSQ does not support 1-bit quantization and LSQ diverges when n+e = 300M ,
we omit such experiments. Each experiment for n + e ≤ 200M is conducted on one Nvidia RTX
5090 and lasts for up to 1 day. Each experiment for n + e = 300M is conducted on one Nvidia
A100 80GB and lasts for 3.5 days. In total, all experiments took approximately 1.5 GPU months,
which is all we can afford in a non-corporate setting with limited access to shared hardware. Lastly,
we evaluate BBQ against QuEST, LSQ, ParetoQ-SEQ (Liu et al., 2025), and NormalFloat (Dettmers
et al., 2023) on GPT (Brown et al., 2020) models and present our results in Table 4.

Results in Table 3 and 4 suggest BBQ can consistently achieve higher entropy and lower perplexity
than QuEST and LSQ at the same precision, and that entropy is a good proxy to prediction quality.
A special case is when b = 1. In this case, both QuEST and LSQ achieves the maximal entropy
of 1 bit. We attribute the performance gain to the fact that Φ from BBQ is smoother than the clip
operation from QuEST and LSQ, and therefore have nicer properties for optimization methods like
Gradient Descent. In addition, we note that LSQ diverges for LLaMA-200M, which is reflected in its
entropy. Notably, when LSQ does not diverge, like in the case of LLaMA-95M and LLaMA-125M,
we see that LSQ can achieve an entropy of 3.6 bits for 4-bit precision, 2.74 bits for 3-bit precision,
and 1.7 bits for 2-bit precision. However, when LSQ diverges, we see that its entropy drops to 2.73
bits for 4-bit precision, 2.50 bits for 3 bit precision, and 1.63 bits for 2-bit precision. This shows that
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Figure 3: Quantized weight entropy (y-axis) vs. training iterations (x-axis) for LLaMA-300M with
2-bit weight and activations, pre-trained on 20 billion C4 tokens (batched into 80 thousand training
iterations). BBQ is red and QuEST is green.

Figure 4: Monte Carlo Estimation of the PDF of the entropy of a 2b-category discrete distribution.
The figures are generated as follows. First, we generate s lists, where each list has 2b numbers,
each i.i.d. sampled from U(0, 1). Next, for each of the s lists, we normalize the list such that all 2b
numbers in that list add up to 1. Effectively, this creates s randomly generated discrete distributions.
Next, for each list l, we calculate its entropy with the formula

∑2b

i=1−l[i] log2 l[i], obtaining a total
of s samples of entropy. Lastly, we plot the histogram of entropy to estimate its PDF. We use
s = 1, 000, 000 and b ∈ {1, 2, 3, 4}. The plots suggest that for b = 1, most discrete distributions
have entropy > 0.5; for b = 2, most discrete distributions have entropy > 1; for b = 3, most
distributions have entropy > 2; and lastly, for b = 4, most distributions have entropy > 3.5.

entropy is a good indicator of a quantized model’s prediction quality. Lastly, Table 3 shows BBQ
achieves SOTA perplexity for 1-bit quantization and BBQ works for models at multiple scales.

4.1 ENTROPY AND LEARNING CAPACITY

In this section, we discuss the implications of Figure 3, which contains the behaviour of weight
entropy of BBQ and QuEST during 2-bit training. We note a few observations:

• BBQ can maximize entropy as it can achieve 2 bits of entropy at the beginning of training.

• During training, a BBQ-quantized model can still learn to decrease its entropy if that is
(temporarily) the best thing to do.

• Excluding the first 8 thousand iterations when learning rate is warming up, BBQ tends to
increase weight entropy for the last 72 thousand iterations. This suggest as more training
tokens are presented to the model, more information is accumulated in weights.

• The entropy of QuEST seems to have an empirical ceiling at around 1.93 bits.

By having a lower empirical entropy upper bound of 1.93 bits, QuEST limits the learning capacity of
the model, while BBQ does not suffer from such capacity under-utilization. Suppose a model has n
parameters, each quantized to b bits. This means the model has a total of 2nb possible unique states.
Some of the 2nb states have higher entropy, while others have lower entropy. QAPT’s objective is to
find a (locally) optimal state out of all 2nb possible states. However, if QuEST enforces its weight
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Figure 5: The left figure shows latency of BBQ quantization kernel of an N ×N matrix. The right
figure shows the latency of FP4/INT8/FP16 matrix multiplication of two N × N matrices. The
y-axis is latency and the x-axis is N . All latency measurements are conducted on Nvidia RTX 5090.

Figure 6: End-to-end latency improvement of BBQ vs. full-precision and NormalFloat 4 on RTX
5090 (a Blackwell GPU that supports fp4 matmul) and A100 (an Ampere GPU that supports int4
matmul) GPUs. For each linear layer, BBQ launches an activation quantization kernel (green re-
gion), an fp4/int4 matrix multiplication kernel (part of blue regions), and an element-wise scaling
kernel (part of orange region).

entropy to be lower than 1.93 bits, then some of the high-entropy states cannot be explored by the
training algorithm. Therefore, the model’s learning capacity is effectively reduced.

To numerically quantify the under-utilization of QuEST and the improvement in capacity utilization
of BBQ over QuEST, we use Monte Carlo sampling to estimate the PDF of entropy in Figure 4 for
b ∈ {1, 2, 3, 4}. The figure suggests that regardless of n, most of the 2nb states have medium to high
entropy, while very few have low entropy. Since QuEST has an empirical entropy upper bound of
1.93 bits (indicated by the black line in Figure 4 column 2), we estimate from Figure 4 that QuEST’s
search space is limited to 0.82 · 2nb states. On the other hand, BBQ has an entropy upper bound of
2 bits, and therefore has a search space of 2nb, or a 22% gain in search space size over QuEST.

4.2 INFERENCE SPEEDUP

In this section, we discuss our profiling results of the latency of a Triton implementation (shown
in Section A.1) of Algorithm 1 on N × N activation matrices, for N ∈ [256, 8192]. Specifically,
N = 8192 corresponds to the dimension of LLaMA-65B (Touvron et al., 2023), an important
LLM benchmark. We perform latency measurements on Nvidia RTX 5090, a Blackwell GPU with
support for MX FP4. Figure 5 left shows that when N = 8192, our BBQ quantization kernel takes
0.3 milliseconds to quantize an N × N activation matrix to FP4. However, Figure 5 right shows
the latency saving of FP4 over FP16 is 4 milliseconds when N = 8192. Therefore, for models at
the scale of LLaMA-65B, BBQ with FP4 quantization leads to 3.7 milliseconds of latency reduction
per linear layer. In addition, for the memory-bound token generation phase of inference, using FP4
can still lead to speedup since weights/activations are quantized to FP4 to save memory. In Figure
4.1, we additionally show end-to-end LLaMA inference speedup on both NVIDIA RTX 5090 and
NVIDIA A100 80GB, an Ampere GPU. In Figure 4.1, the latency of BBQ quantization kernel is
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Hadamard RMS Norm PIT Learnable γ γ Init Perplexity Entropy Notes
✓ ✓ ✓ ✓ ✓ 31.34 1.97 BBQ
✗ ✓ ✓ ✓ ✓ 35.79 1.98
✓ ✗ ✓ ✓ ✓ 35.93 1.98
✓ ✓ ✗ ✗ ✗ 35.58 1.92 QuEST
✓ ✓ ✓ ✗ ✗ 138.3 1.92
✓ ✓ ✓ ✗ ✓ 31.46 1.98

Table 5: Ablation of BBQ features, evaluated on LLaMA-95M trained with 3B C4 tokens. The
features are Hadamard Transform, RMS Normalization, Probability Integral Transform (PIT or Φ),
making γ a learnable parameter, and γ initialization. A ✓ means a feature is present, and ✗ means
the feature is not included.

illustrated as a fraction of the overall latency. In general, BBQ shows a 40% speedup over full-
precision baseline and a 48% speedup over NF4 quantization.

4.3 ABLATION

In this section, we present ablation studies of BBQ’s individual features in Table 4.2. Specifically, we
study the effects of Hadamard Transform, RMS Normalization, probability integral transform (Φ),
having a learnable scale γ, and initializing γ to ζ∗σ0 instead of a dummy value (e.g. 1). Results show
Hadamard transform and RMS normalization are two solid features BBQ inherited from QuEST, as
removing them from BBQ results in a perplexity increase of 4.45 and 4.59 points, respectively. The
probability integral transform (Φ) is meant to replace QuEST’s clip function. We see that naively
substituting clip with Φ (row 4 compared to row 5) without γ initialization leads to divergence (a
perplexity increase from 35.58 to 138.3), but the combination of Φ and γ initialization (row 6) can
outperform QuEST (row 4) by a perplexity decrease of 4.12. Lastly, making γ learnable can further
reduce the perplexity by a small margin (0.12 perplexity reduction).

5 LIMITATIONS

While BBQ can achieve lower perplexity than QuEST and LSQ when a model with limited mem-
ory footprint is initialized randomly and trained on a large dataset (QAPT), BBQ is, by design, a
quantizer that makes no attempt to reduce/bound the Euclidean distance between x and x̂, since they
live in separate domains. Therefore, when applied to QAFT, or finetuning a large model initialized
from a full-precision pre-trained checkpoint for a short duration on a small downstream dataset,
BBQ’s unbounded quantization error will drastically reduce the model quality and cannot catch up
to “same-domain” quantizers like QuEST and LSQ within the short time frame of QAFT. For similar
reasons, BBQ is not suitable for PTQ.

6 CONCLUSION

In this work, we identify existing SOTA QAPT methods under-utilize learning capacity. While ex-
isting ITO quantization methods can maximize entropy, they are not compute-efficient, which limits
their applicability to edge devices with energy constraints. Utilizing our key insight that learning
is domain-agnostic, we propose BBQ, which performs ITO quantization in the input domain, while
returning outputs in a compute-efficient domain. Empirical results shows BBQ outperforms QuEST
and LSQ without sacrificing compute efficiency.
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7 REPRODUCIBILITY STATEMENT

We will upload our source code as a separate zip file. Our code should allow reviewers to reproduce
Table 3 and Figures 3 and 5.
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Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning, 2018. URL https://arxiv.org/abs/1606.04838.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Roberto L. Castro, Andrei Panferov, Soroush Tabesh, Oliver Sieberling, Jiale Chen, Mahdi Nikdan,
Saleh Ashkboos, and Dan Alistarh. Quartet: Native fp4 training can be optimal for large language
models. CoRR, abs/2505.14669, May 2025. URL https://doi.org/10.48550/arXiv.
2505.14669.

Feng Cheng, Cong Guo, Chiyue Wei, Junyao Zhang, Changchun Zhou, Edward Hanson, Jiaqi
Zhang, Xiaoxiao Liu, Hai Li, and Yiran Chen. Ecco: Improving memory bandwidth and capacity
for llms via entropy-aware cache compression. In Proceedings of the 52nd Annual International
Symposium on Computer Architecture, ISCA ’25, pp. 793–807, New York, NY, USA, 2025. As-
sociation for Computing Machinery. ISBN 9798400712616. doi: 10.1145/3695053.3731024.
URL https://doi.org/10.1145/3695053.3731024.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in Telecom-
munications and Signal Processing). Wiley-Interscience, USA, 2006. ISBN 0471241954.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=shpkpVXzo3h.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: efficient finetuning
of quantized llms. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Jordan Dotzel, Yuzong Chen, Bahaa Kotb, Sushma Prasad, Gang Wu, Sheng Li, Mohamed S. Ab-
delfattah, and Zhiru Zhang. Learning from students: applying t-distributions to explore accurate
and efficient formats for llms. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2024.

DaYou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, Xiaowen Chu, and Ningyi Xu. BitDis-
tiller: Unleashing the potential of sub-4-bit LLMs via self-distillation. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 102–116, Bangkok, Thailand, Au-
gust 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.7. URL
https://aclanthology.org/2024.acl-long.7/.

11

http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1606.04838
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2505.14669
https://doi.org/10.48550/arXiv.2505.14669
https://doi.org/10.1145/3695053.3731024
https://openreview.net/forum?id=shpkpVXzo3h
https://openreview.net/forum?id=shpkpVXzo3h
https://aclanthology.org/2024.acl-long.7/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dhar-
mendra S. Modha. Learned step size quantization. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=rkgO66VKDS.

R. A. Fisher. Statistical Methods for Research Workers, pp. 66–70. Springer New York, New
York, NY, 1992. ISBN 978-1-4612-4380-9. doi: 10.1007/978-1-4612-4380-9 6. URL https:
//doi.org/10.1007/978-1-4612-4380-9_6.

Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In The Thirteenth Inter-
national Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=tcsZt9ZNKD.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL https://
arxiv.org/abs/1606.08415.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2(5):359–366, 1989. ISSN 0893-6080. doi: https:
//doi.org/10.1016/0893-6080(89)90020-8. URL https://www.sciencedirect.com/
science/article/pii/0893608089900208.

Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on In-
ternational Conference on Machine Learning - Volume 37, ICML’15, pp. 448–456. JMLR.org,
2015.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W.
Mahoney, and Kurt Keutzer. Squeezellm: dense-and-sparse quantization. In Proceedings of the
41st International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Tanishq Kumar, Zachary Ankner, Benjamin Frederick Spector, Blake Bordelon, Niklas Muen-
nighoff, Mansheej Paul, Cengiz Pehlevan, Christopher Re, and Aditi Raghunathan. Scaling laws
for precision. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=wg1PCg3CUP.
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A APPENDIX

A.1 KERNEL IMPLEMENTATION

In this section, we present an example implementation of Algorithm 1 using the Triton (Tillet et al.,
2019) programming language.

Nvidia GPUs provide extensive support for low-precision tensor core operations, allowing expen-
sive high-precision matrix multiplications to be replaced with low-precision alternatives, leading to
higher compute throughput and lower energy consumption. For example, the Nvidia Blackwell ar-
chitecture (Nvidia, 2025) provides tensor core support for the MX FP4(Rouhani et al., 2023) data
type. As another example, the Turing (Nvidia, 2018) and Ampere (Nvidia, 2021) architectures pro-
vide support for the INT4 data type. We list in Table 6 the representable values for both data types.

Binary Representation Signed INT4 MX FP4
0b0000 0 0
0b0001 1 0.5
0b0010 2 1
0b0011 3 1.5
0b0100 4 2
0b0101 5 3
0b0110 6 4
0b0111 7 6
0b1000 -8 0
0b1001 -7 -0.5
0b1010 -6 -1
0b1011 -5 -1.5
0b1100 -4 -2
0b1101 -3 -3
0b1110 -2 -4
0b1111 -1 -6

Table 6: Signed INT4 vs. MXFP4

Table 7 shows the values that BBQ can represent.

Precision Possible Values of q
4 -8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7
3 -4,-3,-2,-1,0,1,2,3
2 -1.5,-0.5,0.5,1.5
1 -0.5,0.5

Table 7: Values that BBQ can represent. As shown, for b = 4, BBQ can be encoded as INT4. For
b = 3, BBQ can be encoded as INT4 or FP4. For b ∈ {1, 2}, BBQ can be encoded as FP4.

Since b = 3 can be encoded by both INT4 and FP4, we present an example triton kernel for BBQ
with 3-bit quantization following Algorithm 1.

@triton.jit
def bbq(

x_ptr,
h_ptr,
rsigma_ptr,
qmz_ptr,
ROW_SIZE: tl.constexpr,
BLOCKSIZE: tl.constexpr=128,
DTYPE: tl.constexpr = "int4"
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):
rid = tl.program_id(axis=0)
cid = tl.program_id(axis=1)
xrids = rid * BLOCKSIZE + tl.arange(0, BLOCKSIZE)[:, None]
xcids = cid * BLOCKSIZE + tl.arange(0, BLOCKSIZE)[None, :]
xids = xrids * ROW_SIZE + xcids

hrids = tl.arange(0, BLOCKSIZE)[:, None]
hcids = tl.arange(0, BLOCKSIZE)[None, :]
hids = hrids * BLOCKSIZE + hcids

# load a block of x
x = tl.load(x_ptr + xids)
# load pre-computed hadamard matrix shared across the entire kernel
h = tl.load(h_ptr + hids)
# load reciprocal of sigma
rsigma = tl.load(rsigma_ptr)

# hadamard transform
v = tl.dot(x, h) * rsigma

# accelerated normal CDF and rounding
qmz = normal_cdf_and_round_3bit(v, DTYPE)

# pack two 4-bit data type into a single byte
shift = tl.arange(0, 2)[None, None, :] * 4
qmz = tl.reshape(qmz, (BLOCKSIZE, BLOCKSIZE // 2, 2)) << shift
qmz = tl.xor_sum(qmz, axis=-1, keep_dims=False)

# write quantized data to memory
qmzrids = rid * BLOCKSIZE + tl.arange(0, BLOCKSIZE)[:, None]
qmzcids = cid * (BLOCKSIZE // 2) + tl.arange(0, BLOCKSIZE // 2)[None, :]
qmzids = qmzrids * (ROW_SIZE // 2) + qmzcids
tl.store(qmz_ptr + qmzids, qmz)

Next, we show the definition of function normal cdf and round 3bit. We pre-compute Φ−1
(

i
2b

)
for

all possible values of i, and use a binary search method to decide which i should be the result of quan-
tization, and lastly, directly use the binary representation of i− 2b−1 − z according to Table 6. For
3-bit quantization, the 8 pre-computed values of Φ−1

(
i
2b

)
, for i ∈ {0, 1, 2, 3, 4, 5, 6, 7}, are {-∞, -

1.1503493803760083, -0.6744897501960818, -0.3186393639643752, 0.0, 0.3186393639643752,
0.6744897501960818, 1.1503493803760083}. The corresponding values of i − 2b−1 − z are
{−4,−3,−2,−1, 0, 1, 2, 3}.

@triton.jit
def normal_cdf_and_round_3bit(v: tl.tensor, DTYPE: tl.constexpr):

if DTYPE == "int4":
qmz = tl.where(

v >= 0.0,
tl.where(

v >= 0.6744897501960818,
tl.where(v >= 1.1503493803760083, 0b0011, 0b0010),
tl.where(v >= 0.3186393639643752, 0b0001, 0b0000),

),
tl.where(

v >= -0.6744897501960818,
tl.where(v >= -0.3186393639643752, 0b1111, 0b1110),
tl.where(v >= -1.1503493803760083, 0b1101, 0b1100),

)
).to(tl.int8)
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return qmz
elif DTYPE == "fp4":

qmz = tl.where(
v >= 0.0,
tl.where(

v >= 0.6744897501960818,
tl.where(v >= 1.1503493803760083, 0b0101, 0b0100),
tl.where(v >= 0.3186393639643752, 0b0010, 0b0000),

),
tl.where(

v >= -0.6744897501960818,
tl.where(v >= -0.3186393639643752, 0b1010, 0b1100),
tl.where(v >= -1.1503493803760083, 0b1101, 0b1110),

)
).to(tl.int8)
return qmz

A.2 ABLATION ON EXPONENTIAL MOVING AVERAGE OF σ

Results in Table 3 are conducted without keeping an EMA of 1/σ during training and use it for
inference. In this section, we show both variants of BBQ achieve identical perplexity.

4-bit 3-bit 2-bit 1-bit
BBQ 25.51 26.55 31.35 49.8
BBQ with EMA of Reciprocal of σ 25.4 26.55 31.43 49.72

Table 8: Perplexity of BBQ vs BBQ with an exponential moving average of 1/σ, on LLaMA-95M
pre-trained with 3 billion C4 tokens.

A.3 ZERO-SHOT RESULTS

In this section, we present the zero-shot evaluation perplexity in Table 9, which corresponds to the
models pre-trained in Table 3.
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Model Dataset Params n+e Method Bits WA Perplexity
LLaMA wikitext 95M None 16 56.11
LLaMA wikitext 95M BBQ 4 57.87
LLaMA wikitext 95M QuEST 4 58.91
LLaMA wikitext 95M LSQ 4 61.62
LLaMA wikitext 95M BBQ 3 60.18
LLaMA wikitext 95M QuEST 3 64.21
LLaMA wikitext 95M LSQ 3 68.35
LLaMA wikitext 95M BBQ 2 70.19
LLaMA wikitext 95M QuEST 2 77.32
LLaMA wikitext 95M LSQ 2 80.11
LLaMA wikitext 95M BBQ 1 109.66
LLaMA wikitext 95M QuEST 1 172.77
LLaMA wikitext 125M None 16 50.26
LLaMA wikitext 125M BBQ 4 50.50
LLaMA wikitext 125M QuEST 4 51.31
LLaMA wikitext 125M LSQ 4 53.72
LLaMA wikitext 125M BBQ 3 50.94
LLaMA wikitext 125M QuEST 3 54.37
LLaMA wikitext 125M LSQ 3 58.61
LLaMA wikitext 125M BBQ 2 60.47
LLaMA wikitext 125M QuEST 2 69.45
LLaMA wikitext 125M LSQ 2 70.61
LLaMA wikitext 125M BBQ 1 97.34
LLaMA wikitext 125M QuEST 1 180.33
LLaMA wikitext 200M None 16 40.42
LLaMA wikitext 200M BBQ 4 42.56
LLaMA wikitext 200M QuEST 4 41.67
LLaMA wikitext 200M LSQ 4 4133
LLaMA wikitext 200M BBQ 3 41.82
LLaMA wikitext 200M QuEST 3 43.95
LLaMA wikitext 200M LSQ 3 426.8
LLaMA wikitext 200M BBQ 2 49.53
LLaMA wikitext 200M QuEST 2 54.12
LLaMA wikitext 200M LSQ 2 208.5
LLaMA wikitext 200M BBQ 1 80.34
LLaMA wikitext 200M QuEST 1 123.19
LLaMA wikitext 300M None 16 34.95
LLaMA wikitext 300M BBQ 4 38.57
LLaMA wikitext 300M QuEST 4 35.26
LLaMA wikitext 300M BBQ 3 36.77
LLaMA wikitext 300M QuEST 3 37.26
LLaMA wikitext 300M BBQ 2 41.24
LLaMA wikitext 300M QuEST 2 45.28

Table 9: Zero-shot wikitext perplexity.

A.4 BBQ VS. QUEST

In this section, we illustrate the difference between BBQ and QuEST in Figure 7.

• BBQ and QuEST share the Hadamard transform ( 1⃝) and RMS normalization ( 2⃝) to re-
shape the distribution to better match the standard Gaussian.

• In step 3⃝, QuEST scales by α∗, shifts by 0.5, and uses the clip function to limit values
within a finite range. BBQ uses the Φ function to limit values within a finite range, while
simultaneously maximizing the entropy.
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• In step 4⃝, both methods use uniform quantization to quantize data. Both methods ensure
the quantized data can be stored in a compute-efficient data type (INT4 or FP4).

• In step 5⃝, BBQ applies linear scaling, while QuEST reverses all of the operations it did
before (RMS Normalization, scaling by α∗, and shifting by 0.5), as QuEST is a “same-
domain” quantizer. BBQ is a “cross-domain” quantizer, so BBQ does not reverse its pre-
vious operation such as Φ, shifting by 2b − 1 and z, multiplication by 2b, division by σ
etc. Instead, BBQ applies linear scaling to scale its range to be within [−γ, γ] where γ is a
learnable parameter.

• In step 6⃝, QuEST reverses its Hadamard transform (a unitary operation). BBQ does not
reverse the Hadamard transform because it is a “cross-domain” quantizer.

Figure 7: BBQ vs. QuEST.

A.5 EXTENSION TO VISION MODELS

While BBQ is designed for language models, we discuss and evaluate a potential extension of BBQ
to vision models. When we naively apply BBQ to vision models without any modification, we
notice, as shown in Figure 8 right, a subset of learned γ have magnitudes extremely close to 0.
Since every γ is assigned to a weight channel, if γ is small, weights from the corresponding channel
suffers from gradient vanishing. As shown in Figure 8 left, language models do not suffer from such
γ collapsing. Instead of making γ a learnable parameter and initializing γ to ζσ0 as discussed in
Section 3.5, we propose a BBQ variant, BBQ-Vision, that instead dynamically calculates the value
of γ as ζσ on every forward pass. BBQ-Vision prevents γ from collapsing to 0, since for γ to be 0,
all weights in that channel must also be 0. In addition, BBQ-Vision still preserves some degree of
learnability as the network can modify weights/activations to indirectly control the value of σ. We
compare BBQ-Vision against QuEST and LSQ on DeiT (Touvron et al., 2021) and Resnet (He et al.,
2015) with various sizes and show our results in Table 10. Our preliminary results show BBQ-Vision
can outperform QuEST and LSQ.
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Figure 8: Histogram of learned γ on the 2-bit language model LLaMA-95M (left) and 2-bit vision
model DeIT-Tiny (right). The x-axis is the value of γ and the y-axis is its frequency.

Model Params Dataset Bits WA BBQ-Vision QuEST LSQ
DEIT-T 5M Imagenet-100 4 3.85/2.84/74.68 3.61/2.91/74.3 3.67/2.88/74.88
DEIT-T 5M Imagenet-100 3 2.93/2.89/74.24 2.78/2.98/72.2 2.81/3.01/71.36
DEIT-T 5M Imagenet-100 2 1.94/3.05/70.16 1.93/3.18/67.24 1.90/3.23/65.32
DEIT-T 5M Imagenet-100 1 1.00/3.52/53.54 1.00/3.67/47.55 -/-/-
DEIT-S 20M Imagenet-100 4 3.82/2.53/79.46 3.61/2.51/80.00 3.57/2.52/80.04
DEIT-S 20M Imagenet-100 3 2.91/2.48/80.88 2.78/2.62/79.34 2.74/2.64/78.96
DEIT-S 20M Imagenet-100 2 1.93/2.76/77.02 1.93/2.82/76.18 1.83/2.87/74.42
DEIT-S 20M Imagenet-100 1 1.00/3.18/66.16 1.00/3.37/59.94 -/-/-
Resnet-10 5M Imagenet-100 1 1.00/3.37/63.6 1.00/3.40/62.4 -/-/-
Resnet-18 11M Imagenet-100 1 1.00/3.12/73.13 1.00/3.14/72.28 -/-/-

Table 10: Entropy/Training Cross Entropy Loss/Evaluation Accuracy of vision models pretrained
on vision datasets

A.6 VALIDATION LOSS VS. TRAINING PROGRESS

In this section we present validation loss vs. training iteration curves for all of our experiments in
Section 4. For visualization purposes, we only show the validation loss for the last 90% iterations,
hide the first 10% iterations when learning rate is warming up, and don’t show loss curves for
methods that diverged. For all figures, the y-axis is the validation cross entropy loss, and x-axis is
iterations (batches). For all experiments, we quantize both weights and activations of linear layers to
b bits. In addition, for all QuEST experiments, we use a trust factor of T = α∗/(2b − 1) as discuss
in QuEST (Panferov et al., 2025).
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Figure 9: LLaMA-95M (4-bit) pre-trained on 3 billion C4 tokens (batched over 12 thousand itera-
tions). LSQ is green, QuEST is gray, and BBQ is blue.

Figure 10: LLaMA-95M (3-bit) pre-trained on 3 billion C4 tokens (batched over 12 thousand itera-
tions). LSQ is pink, QuEST is red, and BBQ is green.
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Figure 11: LLaMA-95M (2-bit) pre-trained on 3 billion C4 tokens (batched over 12 thousand itera-
tions). LSQ is yellow, QuEST is purple, and BBQ is orange.

Figure 12: LLaMA-95M (1-bit) pre-trained on 3 billion C4 tokens (batched over 12 thousand itera-
tions). QuEST is purple and BBQ is orange.
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Figure 13: LLaMA-125M (4-bit) pre-trained on 5 billion C4 tokens (batched over 20 thousand
iterations). LSQ is red, QuEST is brown, and BBQ is pink.

Figure 14: LLaMA-125M (3-bit) pre-trained on 5 billion C4 tokens (batched over 20 thousand
iterations). LSQ is green, QuEST is gray, and BBQ is blue.
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Figure 15: LLaMA-125M (2-bit) pre-trained on 5 billion C4 tokens (batched over 20 thousand
iterations). LSQ is purple, QuEST is orange, and BBQ is green.

Figure 16: LLaMA-125M (1-bit) pre-trained on 5 billion C4 tokens (batched over 20 thousand
iterations). QuEST is pink and BBQ is orange.
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Figure 17: LLaMA-200M (4-bit) pre-trained on 10 billion C4 tokens (batched over 40 thousand
iterations). QuEST is green and BBQ is brown.

Figure 18: LLaMA-200M (3-bit) pre-trained on 10 billion C4 tokens (batched over 40 thousand
iterations). QuEST is pink and BBQ is gray.
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Figure 19: LLaMA-200M (2-bit) pre-trained on 10 billion C4 tokens (batched over 40 thousand
iterations). QuEST is orange and BBQ is pink.

Figure 20: LLaMA-200M (1-bit) pre-trained on 10 billion C4 tokens (batched over 40 thousand
iterations). QuEST is green and BBQ is brown.
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Figure 21: LLaMA-300M (4-bit) pre-trained on 20 billion C4 tokens (batched over 80 thousand
iterations). QuEST is green and BBQ is brown.

Figure 22: LLaMA-300M (3-bit) pre-trained on 20 billion C4 tokens (batched over 80 thousand
iterations). QuEST is orange and BBQ is green.
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Figure 23: LLaMA-300M (2-bit) pre-trained on 20 billion C4 tokens (batched over 80 thousand
iterations). QuEST is green and BBQ is red.
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