

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BBQ: BOOSTING QUANTIZATION ENTROPY WITH BELL BOX QUANTIZATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

012 Quantization-Aware Pre-Training (QAPT) is an effective technique to reduce the
013 compute and memory overhead of Deep Neural Networks while improving their
014 energy efficiency on edge devices. Existing QAPT methods produce models
015 stored in compute-efficient data types (e.g. integers) that are not information-the-
016oretically optimal (ITO). On the other hand, existing ITO data types (e.g. Quan-
017tient/NormalFloat Quantization) are not compute-efficient. We propose BBQ, the
018 first ITO quantization method that is also compute-efficient. BBQ builds on our
019 key insight that since learning is domain-agnostic, the output of a quantizer does
020 not need to reside in the same domain as its input. BBQ performs ITO quan-
021 tization in its input domain, and returns its output in a compute-efficient domain
022 where ITO data types are mapped to compute-efficient data types. Without sac-
023 rificing compute efficiency, BBQ outperforms prior SOTA QAPT methods by a
024 perplexity reduction of up to 2 points for 4-bit models, up to 4 points for 3-bit
025 models, up to 5 points for 2-bit models, and up to 18 points for 1-bit models.

1 INTRODUCTION

029 Quantization is an effective method to reduce the computation/memory/energy consumption of Deep
030 Neural Networks (DNNs), allowing DNNs to be deployed to edge devices with limited hardware re-
031 sources. However, quantization often degrades model quality. While Post-Training Quantization
032 (PTQ) methods (Lin et al., 2024; Shao et al., 2024; Ma et al., 2024b; Liu et al., 2024a; Kim et al.,
033 2024) can mitigate quality degradation without re-training for higher precisions (4+-bit), they strug-
034 gle to maintain quality when weights and activations are quantized to 4-bit and below (Panferov
035 et al., 2025; Esser et al., 2020; Ma et al., 2024a; Kumar et al., 2025). Quantization-Aware Training
036 (QAT) methods (Panferov et al., 2025; Esser et al., 2020; Ma et al., 2024a; Kumar et al., 2025; Shen
037 et al., 2024; Liu et al., 2025; Yamamoto, 2021), on the other hand, can achieve higher accuracy than
038 PTQ methods under the same precision (Du et al., 2024; Panferov et al., 2025; Liu et al., 2024b) by
039 introducing quantization in the training loop.

040 QAT can be further divided into Quantization-Aware Pre-Training (Panferov et al., 2025; Shen et al.,
041 2024) (QAPT) and Quantization-Aware Fine-Tuning (Malinovskii et al., 2024; Du et al., 2024)
042 (QAFT). QAFT initializes a low-precision model from a full-precision pre-trained checkpoint, and
043 trains the model for a short duration to fit a downstream task, which is typically much smaller than
044 the pre-training dataset (Du et al., 2024). On the other hand, QAPT initializes a low-precision model
045 from scratch, aims to fit a much larger dataset, and typically trains for much longer durations. Com-
046 pared to first pre-train in full-precision and subsequently apply PTQ/QAFT, QAPT may have higher
047 pre-training speed (Kumar et al., 2025; Xi et al., 2023; Castro et al., 2025), as when activations and
048 weights are quantized, the forward pass of training may be performed in low precision.

049 This work aims to improve the accuracy of a QAPT'ed model without compromising its efficiency
050 on edge devices. Specifically, we target the case when a low-precision model is initialized ran-
051 domly, trained for long durations on large datasets, and is aimed to be deployed to edge devices with
052 constraints on memory capacity, inference latency, and energy consumption. The energy constraint
053 requires the model to be compute-efficient, or that expensive high-precision matrix multiplications
be substituted with low-precision arithmetic, while the memory and latency constraints require the
model to be small in size, or to have a low parameter count and precision. The main challenge of

054	Signed INT4	-8, ± 7 , ± 6 , ± 5 , ± 4 , ± 3 , ± 2 , ± 1 , 0
055	MX FP4	± 6 , ± 4 , ± 3 , ± 2 , ± 1.5 , ± 1 , ± 0.5 , ± 0

057 Table 1: Possible values of the INT4 and the MX FP4 data type.
058
059060 this work is models with limited memory footprint cannot fit large datasets well due to a lack of
061 learning capacity (Kumar et al., 2025).062 Using the discrete Shannon entropy (Shannon, 1948; Cover & Thomas, 2006) of quantized weights
063 as a proxy to the amount of information/knowledge present in a QAPT’ed model, we observe that
064 SOTA QAPT methods QuEST (Panferov et al., 2025) and LSQ (Esser et al., 2020) produce quantized
065 models that under-utilize the available learning capacity. The under-utilization is because LSQ
066 and QuEST use compute-efficient data types (e.g. integers and floats) which are not information
067 theoretically optimal (ITO). While existing ITO data types (Dettmers et al., 2023; 2022) can reduce
068 this under-utilization of learning capacity, they lack compute efficiency on modern CPUs/GPUs,
069 which limits the applicability on edge devices with limited energy.070 To maximally utilize the limited learning capacity while preserving compute efficiency, we pro-
071 pose Bell Box Quantization (BBQ). BBQ is designed based on our key insight: since learning is
072 domain-agnostic, the output of a quantizer does not need to live in the same domain as its input.
073 BBQ performs ITO quantization in its input domain to maximally preserve information, but returns
074 its output in a different domain, where ITO data types are mapped to compute-efficient data types.
075 BBQ achieves higher capacity utilization and better prediction quality than QuEST and LSQ. Unlike
076 existing ITO data types, a BBQ-quantized model can still accelerate expensive matrix multiplica-
077 tions with low-precision arithmetic.
078079

2 BACKGROUND AND MOTIVATION

080081 In this section, we discuss compute-efficient data types on modern GPUs, existing ITO quantization
082 methods, and lastly, the domain-agnostic property of learning which is the key inspiration of BBQ.
083084 Quantization is the discretization of a continuous random variable x to a discrete random variable
085 \hat{x} , with 2^b possible states, such that \hat{x} is sufficiently close to x . We present a generic template for
086 quantization as follows:
087

$$\hat{x} = f^{-1}(q), \text{ where } q = r(f(x)) \quad (1)$$

088 where $f : \mathbb{R} \rightarrow \mathbb{R}$ is a transform function that converts x to some intermediate domain more suitable
089 for quantization; $r : \mathbb{R} \rightarrow \mathbb{T}$ is some rounding function that converts any real value to one of 2^b
090 possible real values, i.e. $\mathbb{T} \subseteq \mathbb{R}$ and $|\mathbb{T}| = 2^b$; and f^{-1} , the inverse function of f , is responsible for
091 converting the discretized value q back to the original domain of x .
092093

2.1 COMPUTE EFFICIENT DATA TYPES

094095 A data type \mathbb{T} is compute-efficient, if hardware offers low-precision multiply-accumulate instruc-
096 tions that directly operate on members of \mathbb{T} without first decoding to high precision data types. Table
097 1 shows members of \mathbb{T} for INT4, which is supported by the Nvidia Ampere (Nvidia, 2021) and Tur-
098 ing (Nvidia, 2018) architectures, and members of \mathbb{T} for MX FP4 (Rouhani et al., 2023), which is
099 supported by the Blackwell architecture (Nvidia, 2025). When f^{-1} is linear or affine, a compute-
100 efficient data type can be used to accelerate matrix multiplication and convolution (Yao et al., 2021).
101 For example, if $f^{-1}(q) = sq$ for a constant scalar s , then the multiplication of activation matrix
102 $\hat{X} = f^{-1}(Q_x) = sQ_x$ and weight matrix $\hat{W} = f^{-1}(Q_w) = sQ_w$ can be simplified to $s^2(Q_x \cdot Q_w)$.
103 In other words, the matrix multiplication can be computed using solely low-precision representa-
104 tions of activations and weights, and later de-quantized to the original domain by multiplication of
105 s^2 .
106107 Prior SOTA QAPT methods QuEST (Panferov et al., 2025) and LSQ (Esser et al., 2020) uses lin-
108 ear/affine f^{-1} and compute-efficient data types. We show the definition of f , r , and f^{-1} for LSQ

108 and QuEST as follows:

$$\begin{aligned} \text{LSQ: } f(x) &= x/s, r(v) = \lfloor \text{clip}(v, -2^{b-1}, 2^{b-1} - 1) \rceil, f^{-1}(q) = sq \\ \text{QuEST: } f(x) &= \frac{\text{HT}(x)}{\alpha^* \sigma} - \frac{1}{2}, r(v) = \lfloor \text{clip}(v, -2^{b-1}, 2^{b-1} - 1) \rceil, f^{-1}(q) = \text{HT}(\alpha^* \sigma(q + \frac{1}{2})) \end{aligned} \quad (2)$$

114 where s , σ , and α^* are constant scalars; HT is the Hadamard transform, a linear operation; and
 115 the clip operation and the round-to-nearest-integer operation $\lfloor \cdot \rceil$ enforces the output of r to be a
 116 b -bit signed integer. Since f^{-1} is linear or affine in LSQ and QuEST, matrix multiplications can be
 117 accelerated with low-precision arithmetic.

118 In short, for a quantization method to be compute-efficient, it should have a linear/affine dequantiza-
 119 tion function f^{-1} and a compute-efficient data type \mathbb{T} .
 120

121 2.2 INFORMATION THEORETICALLY OPTIMAL QUANTIZATION METHODS

123 An ITO quantization method is one that ensures each member of \mathbb{T} is used equally often (Dettmers
 124 et al., 2023). For example, if $b = 2$, then 25% of values of x should be assigned to each of the 4
 125 possible values in \mathbb{T} . While there are many possible mappings that evenly split the probability mass,
 126 a trivial mapping is to use the 25, 50, 75 percentile as rounding boundaries. In other words, values
 127 of x less than the 25-percentile of x are rounded to the first value in \mathbb{T} ; values larger than the 25-
 128 percentile but less than 50-percentile of x are rounded to the second value, etc. For $x \sim N(0, \sigma^2)$,
 129 this trivial mapping can be expressed as:

$$f(x) = x/\sigma, r(v) = T[\text{floor}(2^b \Phi(v))], f^{-1}(q) = \sigma q \quad (3)$$

131 where $T[i]$ is the i th smallest element in \mathbb{T} . Note that Equation 3 only requires that \mathbb{T} contains 2^b
 132 unique real values. Therefore, Equation 3 describes a set of ITO methods rather than a unique one.
 133 By evenly splitting the probability mass of x , all ITO data types maximize the Shannon entropy of
 134 q defined as

$$H(q) = \sum_{t \in \mathbb{T}} -P(q = t) \log_2 P(q = t) \quad (4)$$

137 Note that entropy was shown to positively correlate with accuracy/prediction quality (Cheng et al.,
 138 2025; Shen et al., 2024).

139 Inspired by ITO quantization methods, Dettmers et al. (2023) proposed NormalFloat, whose values
 140 are a list of abs-max-normalized Gaussian quantiles (Yoshida, 2023; Dotzel et al., 2024). Due to
 141 lack of hardware support, NormalFloat must be de-quantized to full-precision floats and then used
 142 in computation, which limits its applicability on energy-constrained edge devices.
 143

144 This presents a dilemma: while ITO quantization methods maximally preserve information, they are
 145 not compute-efficient; compute-efficient quantization methods, on the other hand, are not ITO for
 146 Gaussianly distributed weights/activations. Can we obtain the best of both worlds?

147 2.3 LEARNING IS DOMAIN-AGNOSTIC

149 Since neural networks are universal function approximators (Hornik et al., 1989), they are capable
 150 of learning from transformed/augmented data, or even data encoded in latent spaces that are not
 151 human-understandable. For example, DNNs can correctly classify images that are rotated (He et al.,
 152 2015), or even images that are transformed to the frequency domain (Xu et al., 2020). As another
 153 example, when sparse autoencoders (Gao et al., 2025) are trained just to reconstruct the data, the
 154 resulting latent embedding of the data can be used by other DNNs to complete downstream tasks.
 155 These are all evidence that, as long as information is preserved, simply projecting/transforming data
 156 to a different domain does not prevent learning.

157 The domain-agnostic property of learning provides an opportunity to circumvent the inefficiency of
 158 ITO quantization methods. Rather than treating quantizers as data compressors and reconstructors,
 159 we could treat them as feature extractors that return a set of compact latent features of the original
 160 data. Critically, these latent features reside in an output domain, that is, not necessarily the same
 161 domain as the input, but is designed to be a compute-efficient domain, where features can be effi-
 162 ciently used by matrix multiplication operators. In other words, we ask the research question: *if we*

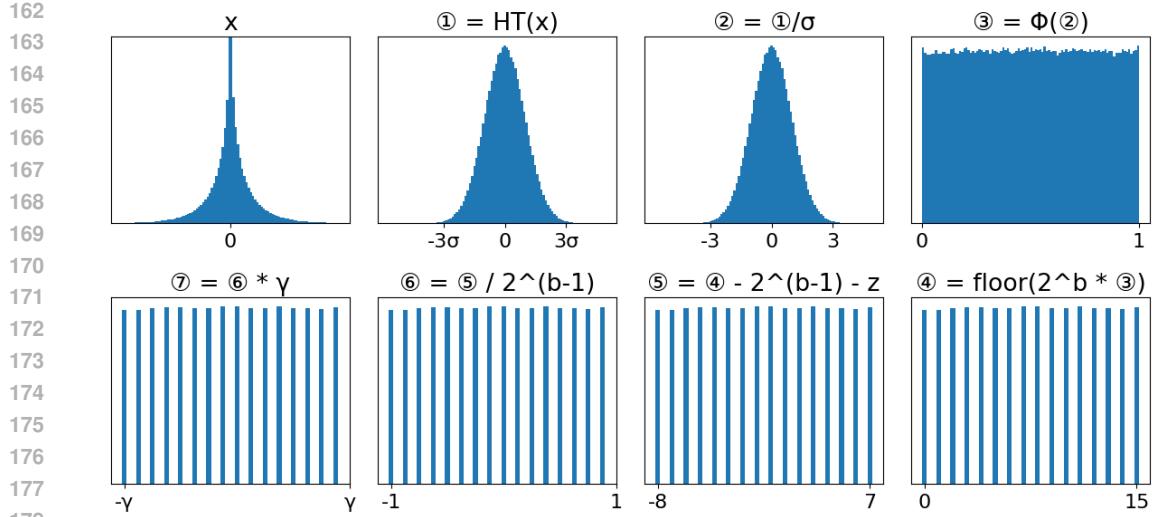


Figure 1: The seven steps of BBQ: Hadamard Transform (①), RMS normalization (②), probability integral transform (③), uniform quantization (④), unsigned-to-signed conversion (⑤), precision-dependent scaling (⑥), and precision-independent scaling (⑦).

design a quantizer that performs ITO quantization in the original domain, and returns output in an alternative compute-efficient domain, will such a quantizer outperform existing non-ITO quantizers in QAPT?

3 PROPOSED METHOD

In this section, we present the Bell Box Quantizer (BBQ). BBQ is designed to be ITO, or to maximally preserve information from its input, while also returning compute-efficient outputs that can be accelerated by modern hardware. The formulation of BBQ is as follows:

$$q = \lfloor 2^b \Phi(\text{HT}(x)/\sigma) \rfloor - 2^{b-1} - z \quad (5)$$

$$\hat{x} = \frac{\gamma}{2^{b-1}} q$$

where γ is a learnable scaling factor, HT is the Hadamard transform operation, Φ is the Gaussian CDF, $\lfloor \cdot \rfloor$ is the floor operation, σ is the RMS normalization factor $\sqrt{E[(\text{HT}(x))^2]}$, and z is a hyperparameter zero point. As illustrated in Figure 1, BBQ involves seven steps: Hadamard Transform, RMS Normalization, probability integral transform, uniform quantization, unsigned-to-signed conversion, precision-dependent scaling, and precision-independent scaling.

3.1 STEP 1: HADAMARD TRANSFORM

Similar to QuEST (Panferov et al., 2025), the first step of BBQ is to Gaussianize the input x by performing the Hadamard transform, visualized in Figure 1 Row 1 Column 2. After the transform, $\text{HT}(x)$ behaves like samples from $N(0, \sigma^2)$. Instead of transforming the whole matrix x , we follow QuEST and perform the Hadamard Transform on every H elements of x along the input channel dimension. During training, the Hadamard Transform is a differentiable operation, and we simply use autograd frameworks to perform its backward pass. During inference, the Hadamard transform is implemented with a vector-matrix multiplication, between an H -element slice of x and the pre-computed $H \times H$ Hadamard matrix.

3.2 STEP 2: RMS NORMALIZATION

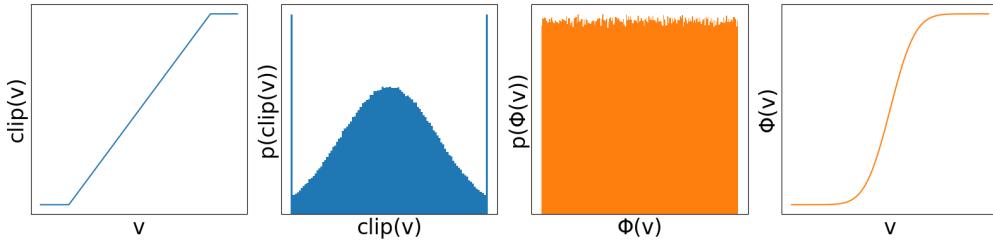
The next step of BBQ, visualized in Figure 1 Row 1 Column 3, is to normalize the Gaussian-like data by dividing the root-mean-square scaling factor $\sigma = \sqrt{E[\text{HT}(x)]}$. After the normalization,

216 **Algorithm 1** Example 3-bit Inference Quantization Kernel for a Thread Block

```

217 1: function BBQ(block_id, x_ptr, h_ptr, q_ptr, E[1/σ])
218 2:   x = x_ptr[block_id:block_id+1, :] # x_ptr is an  $N \times N$  matrix reshaped to  $(N^2/H, H)$ 
219 3:   h = h_ptr[:, :] # h_ptr is a pre-computed Hadamard matrix with shape  $(H, H)$ 
220 4:   x = x @ h # vector matrix multiplication between shapes  $(1, H)$  and  $(H, H)$ 
221 5:   x = x * E[1/σ] # element-wise multiplication by scalar
222 6:   for  $t \leftarrow 0$  to  $H - 1$  do # can be done in parallel across warps and threads
223 7:     if  $x[t] \geq \Phi^{-1}(4/8)$  then # Binary search through pre-computed  $\Phi^{-1}$  values
224 8:       if  $x[t] \geq \Phi^{-1}(6/8)$  then
225 9:         x[t] = 3 if  $x[t] \geq \Phi^{-1}(7/8)$  else 2
226 10:      else
227 11:        x[t] = 1 if  $x[t] \geq \Phi^{-1}(5/8)$  else 0
228 12:      end if
229 13:      else
230 14:        if  $x[t] \geq \Phi^{-1}(2/8)$  then
231 15:          x[t] = -1 if  $x[t] \geq \Phi^{-1}(3/8)$  else -2
232 16:        else
233 17:          x[t] = -3 if  $x[t] \geq \Phi^{-1}(1/8)$  else -4
234 18:        end if
235 19:      end if
236 20:    end for
237 21:    q_ptr[id:id+1, :] = x # store quantized results to global memory
22: end function

```



247 Figure 2: Comparison of clipping (blue) and the normal CDF (orange) Φ for $v \sim N(0, 1)$.

250 the data behaves like samples from $N(0, 1)$. For weight quantization during training, we measure
251 σ and perform RMS normalization for every output channel individually. After training, weight
252 quantization can be done once offline and does not introduce runtime overhead. For activation
253 quantization, we measure σ and perform RMS normalization for the whole activation tensor. In
254 addition, during training we keep track of an exponential moving average of $1/\sigma$ measured from
255 activations, denoted as $E[1/\sigma]$. During inference, instead of measuring $1/\sigma$ from activation tensors,
256 we use the recorded $E[1/\sigma]$ instead. This is similar to how BatchNorm (Ioffe & Szegedy, 2015)
257 uses running statistics during inference. During training, we use autograd frameworks to perform
258 the backward pass of RMS Normalization to x and σ . Unlike QuEST, we do not detach the gradient
259 of σ .

260 3.3 STEP 3: PROBABILITY INTEGRAL TRANSFORM

262 The probability integral transform (Fisher, 1992) converts any continuous distribution to a uniform
263 one by applying its CDF on the data. As visualized in Figure 1 Row 1 Column 4, we apply the
264 standard Gaussian CDF Φ to data that behaves like samples from $N(0, 1)$, creating data that behaves
265 like samples from $U(0, 1)$. In QuEST and LSQ, the component that behaves similarly to Φ is the
266 clip operation. As shown in Figure 2, both functions restrict their output to be within some finite
267 range. However, Φ is infinitely differentiable and is therefore much smoother than clip which is
268 piecewise linear. A smoother operation can be more suitable for optimization methods like Gradient
269 Descent (Nesterov, 2014; Bottou et al., 2018). For example, the GELU function (Hendrycks &
Gimpel, 2023) defined as $\text{GELU}(x) = x\Phi(x)$ is smoother than the piecewise linear ReLU (Agarap,

Precision	Possible Values of q
4	-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7
3	-4,-3,-2,-1,0,1,2,3
2	-1.5,-0.5,0.5,1.5
1	-0.5,0.5

Table 2: Values that BBQ can represent. As shown, for $b = 4$, BBQ can be encoded as INT4. For $b = 3$, BBQ can be encoded as INT4 or FP4. For $b \in \{1, 2\}$, BBQ can be encoded as FP4.

2018), and GELU can outperform ReLU empirically (Hendrycks & Gimpel, 2023). During training, Φ is a differentiable operation and we use the autograd framework to perform BackProp. During inference, we combine Φ with the subsequent floor operation using the following property:

$$\lfloor 2^b \Phi(v) \rfloor = i, \text{ s.t. } \Phi^{-1} \left(\frac{i}{2^b} \right) \leq v < \Phi^{-1} \left(\frac{i+1}{2^b} \right) \quad (6)$$

which allows us to pre-compute $\Phi^{-1} \left(\frac{i}{2^b} \right)$ for all 2^b possible values of i , and at runtime perform a binary search that requires b floating point comparisons. The pseudocode of a 3-bit inference kernel implementation of BBQ is shown in Algorithm 1.

3.4 STEP 4 AND 5: UNIFORM QUANTIZATION AND UNSIGNED-TO-SIGNED CONVERSION

At this stage, uniform quantization is the ITO quantization method since the data behaves like samples from $U(0, 1)$ as shown in Figure 1 Row 1 Column 4. Since it is known that having zero-mean activations is desired for training DNNs (LeCun et al., 2012), we subsequently convert the positive-only data to symmetric data by subtracting 2^{b-1} and the hyperparameter zero point z , producing the final q stored as a compute-efficient data type, visualized in Figure 1 Row 2 Column 3. Inspired by NF4 (Dettmers et al., 2023), we use $z = 0$ for $b \in \{3, 4\}$, allowing the data type to represent zero exactly while sacrificing an extra value on the positive side. We use $z = -0.5$ for $b \in \{1, 2\}$ to ensure activations remain zero-mean. During training, we use the Straight-Through Estimator (Bengio et al., 2013) for the floor operation, and the autograd framework for all other differentiable operations. Table 2 lists the values supported by the BBQ data type. For $b \in \{1, 2, 3\}$, BBQ can be represented using the MX FP4 data type on existing Blackwell GPUs. For $b \in \{3, 4\}$, BBQ can be represented using INT4 on existing Ampere and Turing GPUs.

3.5 STEP 6 AND 7: PRECISION DEPENDENT AND INDEPENDENT SCALING

BBQ includes a learnable scaling parameter $s = \gamma/2^{b-1}$, as without it, the network has no control over the magnitude of its activations. Normalization layers like BatchNorm (Ioffe & Szegedy, 2015) and LayerNorm (Ba et al., 2016) use a similar learnable scaling factor to address the same problem. Instead of learning s like in LSQ (Esser et al., 2020), we decouple s into the ratio of a precision-independent learnable scaling factor γ (visualized in Figure 1 Row 2 Column 1) and a constant precision-dependent scaling factor 2^{b-1} (visualized in Figure 1 Row 2 Column 2) to ensure γ can be initialized to the same value regardless of precision.

The initialization of γ also plays a critical role, as overly large initialization can lead to gradient explosion while overly small initialization can lead to gradient vanishing. We initialize γ to $\zeta^* \sigma_0$, where σ_0 is the σ measured at the first iteration of training, and ζ^* is a constant MSE optimal scaling factor defined as follows:

$$\zeta^* = \arg \min_{\zeta} E_{v \sim N(0,1)}[(v - \zeta(2\Phi(v) - 1))^2] \quad (7)$$

In other words, if a Gaussian variable v is transformed to the cumulative distribution domain and scaled to the range $[-\zeta, \zeta]$, the resulting quantity $\zeta(2\Phi(v) - 1)$ is closest on average to v when $\zeta = \zeta^*$. By initializing γ to $\zeta^* \sigma_0$, \hat{x} can have approximately the same magnitude as x (in the first iteration) to prevent the activation magnitude from exploding or vanishing as tokens travel deeper into the network. After the first iteration, we simply let γ update itself based on gradient descent. In addition, we apply an LSQ-style gradient scaling method (Esser et al., 2020) to reduce the gradient of γ by a factor of \sqrt{n} , where n is the number of weights/activations in tensor x . We use per-channel γ for weights, and per-tensor γ for activations. We do not apply weight decay to γ .

Params	Tokens	Full	Bits	BBQ		QuEST		LSQ	
				Entropy	Perplexity	Entropy	Perplexity	Entropy	Perplexity
95M	3B	24.75	4	3.93	25.51	3.61	26.37	3.59	27.46
95M	3B	24.75	3	2.96	26.55	2.78	29.04	2.74	30.27
95M	3B	24.75	2	1.97	31.34	1.92	35.58	1.69	36.58
95M	3B	24.75	1	1.00	49.22	1.00	67.78	-	-
125M	5B	21.51	4	3.93	22.15	3.61	22.98	3.60	23.77
125M	5B	21.51	3	2.96	23.22	2.78	25.21	2.74	26.28
125M	5B	21.51	2	1.98	27.34	1.93	31.32	1.81	31.42
125M	5B	21.51	1	1.00	44.58	1.00	72.54	-	-
200M	10B	17.93	4	3.93	18.79	3.61	19.06	2.73	1778
200M	10B	17.93	3	2.96	19.74	2.78	20.82	2.50	140.9
200M	10B	17.93	2	1.98	23.08	1.93	25.46	1.63	78.19
200M	10B	17.93	1	1.00	38.27	1.00	52.37	-	-
300M	20B	15.43	4	3.93	16.10	3.61	16.26	-	-
300M	20B	15.43	3	2.96	16.90	2.78	17.67	-	-
300M	20B	15.43	2	1.98	19.75	1.93	21.53	-	-

Table 3: Entropy and Perplexity of LLaMA models pretrained on the C4 dataset. The headers are the number of parameters (Params), the number of tokens (Tokens), perplexity without any quantization (Full), activation/weight precision (Bits), and the entropy and perplexity of BBQ, QuEST and LSQ.

Params	95M	95M	95M	95M	95M	95M	95M	95M	95M	95M	95M
Bits WA	16	4	4	4	4	3	3	3	3	1	1
Method	None	BBQ	QuEST	LSQ	NF4	BBQ	QuEST	LSQ	NF3	BBQ	QuEST
Perplexity	25	26.7	26.83	27.55	28.5	28.61	29.7	30.85	36.16	53.8	77.96
Params	95M	95M	95M	95M	95M	125M	125M	125M	125M	125M	125M
Bits WA	2	2	2	2	2	3	3	2	2	1	1
Method	BBQ	QuEST	LSQ	NF2	SEQ	BBQ	QuEST	BBQ	QuEST	BBQ	QuEST
Perplexity	34.36	36.7	38.98	246.6	40.07	24.78	26.05	29.38	31.47	50.46	69.78

Table 4: Perplexity of GPT models pretrained on the C4 dataset.

4 EVALUATION AND DISCUSSION

We use the publicly available source code of QuEST (Panferov et al., 2025), add the implementation of BBQ, and train on LLaMA (Touvron et al., 2023; Vaswani et al., 2017) models with n non-embedding parameters plus e embedding parameters where $n \in \{30M, 50M, 100M, 200M\}$ and $e \in \{65M, 75M, 100M, 100M\}$. For each model, we pre-train with $100n$ C4 tokens while quantizing the weights and activations of all linear layers to b -bit following QuEST. We compare BBQ against QuEST/LSQ for each $b \in \{1, 2, 3, 4\}$, and present the evaluation quality (perplexity) and weight entropy (bits) in Table 3. We show zero-shot results in Table 9, and training loss curves in Section A.6. Since LSQ does not support 1-bit quantization and LSQ diverges when $n+e = 300M$, we omit such experiments. Each experiment for $n+e \leq 200M$ is conducted on one Nvidia RTX 5090 and lasts for up to 1 day. Each experiment for $n+e = 300M$ is conducted on one Nvidia A100 80GB and lasts for 3.5 days. In total, all experiments took approximately 1.5 GPU months, which is all we can afford in a non-corporate setting with limited access to shared hardware. Lastly, we evaluate BBQ against QuEST, LSQ, ParetoQ-SEQ (Liu et al., 2025), and NormalFloat (Dettmers et al., 2023) on GPT (Brown et al., 2020) models and present our results in Table 4.

Results in Table 3 and 4 suggest BBQ can consistently achieve higher entropy and lower perplexity than QuEST and LSQ at the same precision, and that entropy is a good proxy to prediction quality. A special case is when $b = 1$. In this case, both QuEST and LSQ achieves the maximal entropy of 1 bit. We attribute the performance gain to the fact that Φ from BBQ is smoother than the clip operation from QuEST and LSQ, and therefore have nicer properties for optimization methods like Gradient Descent. In addition, we note that LSQ diverges for LLaMA-200M, which is reflected in its entropy. Notably, when LSQ does not diverge, like in the case of LLaMA-95M and LLaMA-125M, we see that LSQ can achieve an entropy of 3.6 bits for 4-bit precision, 2.74 bits for 3-bit precision, and 1.7 bits for 2-bit precision. However, when LSQ diverges, we see that its entropy drops to 2.73 bits for 4-bit precision, 2.50 bits for 3 bit precision, and 1.63 bits for 2-bit precision. This shows that

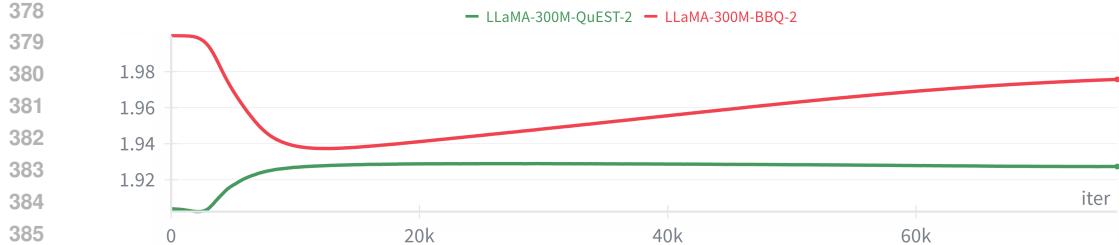


Figure 3: Quantized weight entropy (y-axis) vs. training iterations (x-axis) for LLaMA-300M with 2-bit weight and activations, pre-trained on 20 billion C4 tokens (batched into 80 thousand training iterations). BBQ is red and QuEST is green.

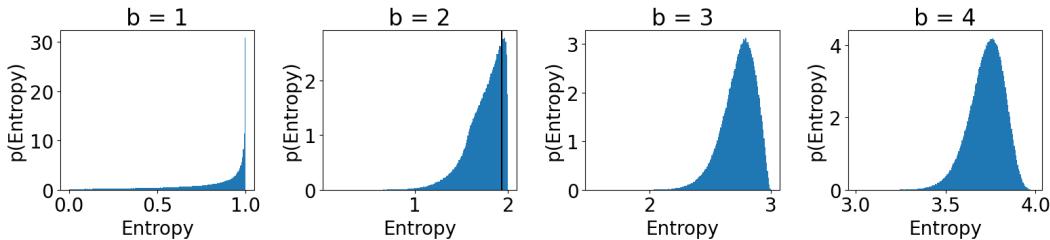


Figure 4: Monte Carlo Estimation of the PDF of the entropy of a 2^b -category discrete distribution. The figures are generated as follows. First, we generate s lists, where each list has 2^b numbers, each i.i.d. sampled from $U(0, 1)$. Next, for each of the s lists, we normalize the list such that all 2^b numbers in that list add up to 1. Effectively, this creates s randomly generated discrete distributions.

Next, for each list l , we calculate its entropy with the formula $\sum_{i=1}^{2^b} -l[i] \log_2 l[i]$, obtaining a total of s samples of entropy. Lastly, we plot the histogram of entropy to estimate its PDF. We use $s = 1,000,000$ and $b \in \{1, 2, 3, 4\}$. The plots suggest that for $b = 1$, most discrete distributions have entropy > 0.5 ; for $b = 2$, most discrete distributions have entropy > 1 ; for $b = 3$, most distributions have entropy > 2 ; and lastly, for $b = 4$, most distributions have entropy > 3.5 .

entropy is a good indicator of a quantized model’s prediction quality. Lastly, Table 3 shows BBQ achieves SOTA perplexity for 1-bit quantization and BBQ works for models at multiple scales.

4.1 ENTROPY AND LEARNING CAPACITY

In this section, we discuss the implications of Figure 3, which contains the behaviour of weight entropy of BBQ and QuEST during 2-bit training. We note a few observations:

- BBQ can maximize entropy as it can achieve 2 bits of entropy at the beginning of training.
- During training, a BBQ-quantized model can still learn to decrease its entropy if that is (temporarily) the best thing to do.
- Excluding the first 8 thousand iterations when learning rate is warming up, BBQ tends to increase weight entropy for the last 72 thousand iterations. This suggest as more training tokens are presented to the model, more information is accumulated in weights.
- The entropy of QuEST seems to have an empirical ceiling at around 1.93 bits.

By having a lower empirical entropy upper bound of 1.93 bits, QuEST limits the learning capacity of the model, while BBQ does not suffer from such capacity under-utilization. Suppose a model has n parameters, each quantized to b bits. This means the model has a total of 2^{nb} possible unique states. Some of the 2^{nb} states have higher entropy, while others have lower entropy. QAPT’s objective is to find a (locally) optimal state out of all 2^{nb} possible states. However, if QuEST enforces its weight

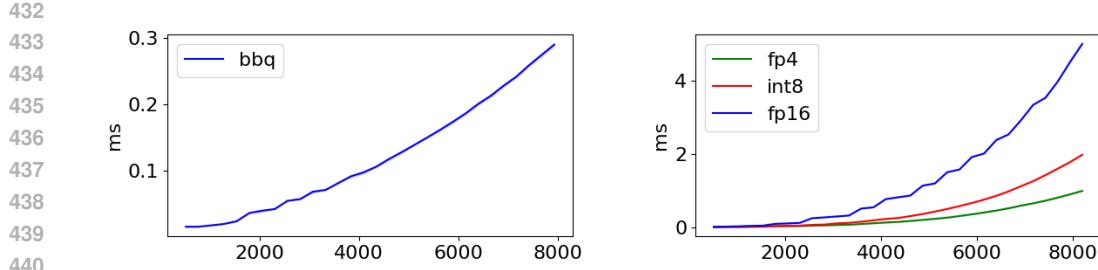


Figure 5: The left figure shows latency of BBQ quantization kernel of an $N \times N$ matrix. The right figure shows the latency of FP4/INT8/FP16 matrix multiplication of two $N \times N$ matrices. The y-axis is latency and the x-axis is N . All latency measurements are conducted on Nvidia RTX 5090.

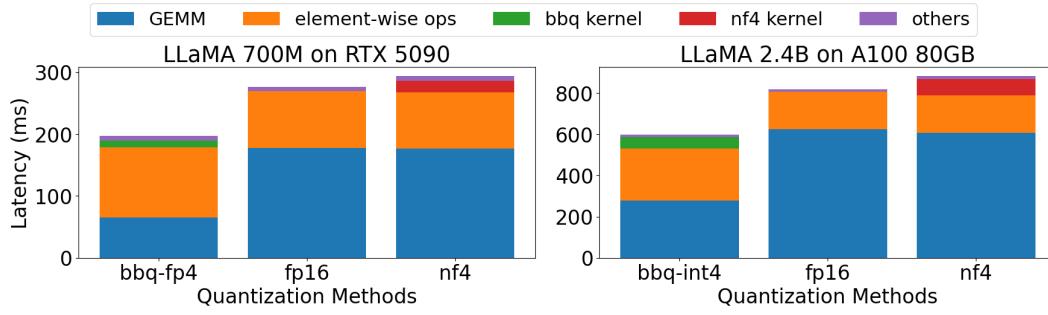


Figure 6: End-to-end latency improvement of BBQ vs. full-precision and NormalFloat 4 on RTX 5090 (a Blackwell GPU that supports fp4 matmul) and A100 (an Ampere GPU that supports int4 matmul) GPUs. For each linear layer, BBQ launches an activation quantization kernel (green region), an fp4/int4 matrix multiplication kernel (part of blue regions), and an element-wise scaling kernel (part of orange region).

entropy to be lower than 1.93 bits, then some of the high-entropy states cannot be explored by the training algorithm. Therefore, the model’s learning capacity is effectively reduced.

To numerically quantify the under-utilization of QuEST and the improvement in capacity utilization of BBQ over QuEST, we use Monte Carlo sampling to estimate the PDF of entropy in Figure 4 for $b \in \{1, 2, 3, 4\}$. The figure suggests that regardless of n , most of the 2^{nb} states have medium to high entropy, while very few have low entropy. Since QuEST has an empirical entropy upper bound of 1.93 bits (indicated by the black line in Figure 4 column 2), we estimate from Figure 4 that QuEST’s search space is limited to $0.82 \cdot 2^{nb}$ states. On the other hand, BBQ has an entropy upper bound of 2 bits, and therefore has a search space of 2^{nb} , or a 22% gain in search space size over QuEST.

4.2 INFERENCE SPEEDUP

In this section, we discuss our profiling results of the latency of a Triton implementation (shown in Section A.1) of Algorithm 1 on $N \times N$ activation matrices, for $N \in [256, 8192]$. Specifically, $N = 8192$ corresponds to the dimension of LLaMA-65B (Touvron et al., 2023), an important LLM benchmark. We perform latency measurements on Nvidia RTX 5090, a Blackwell GPU with support for MX FP4. Figure 5 left shows that when $N = 8192$, our BBQ quantization kernel takes 0.3 milliseconds to quantize an $N \times N$ activation matrix to FP4. However, Figure 5 right shows the latency saving of FP4 over FP16 is 4 milliseconds when $N = 8192$. Therefore, for models at the scale of LLaMA-65B, BBQ with FP4 quantization leads to 3.7 milliseconds of latency reduction per linear layer. In addition, for the memory-bound token generation phase of inference, using FP4 can still lead to speedup since weights/activations are quantized to FP4 to save memory. In Figure 4.1, we additionally show end-to-end LLaMA inference speedup on both NVIDIA RTX 5090 and NVIDIA A100 80GB, an Ampere GPU. In Figure 4.1, the latency of BBQ quantization kernel is

	Hadamard	RMS Norm	PIT	Learnable γ	γ Init	Perplexity	Entropy	Notes
486	✓	✓	✓	✓	✓	31.34	1.97	BBQ
487	✗	✓	✓	✓	✓	35.79	1.98	
488	✓	✗	✓	✓	✓	35.93	1.98	
489	✓	✓	✗	✗	✗	35.58	1.92	QuEST
490	✓	✓	✓	✗	✗	138.3	1.92	
491	✓	✓	✓	✗	✓	31.46	1.98	
492								

Table 5: Ablation of BBQ features, evaluated on LLaMA-95M trained with 3B C4 tokens. The features are Hadamard Transform, RMS Normalization, Probability Integral Transform (PIT or Φ), making γ a learnable parameter, and γ initialization. A ✓ means a feature is present, and ✗ means the feature is not included.

illustrated as a fraction of the overall latency. In general, BBQ shows a 40% speedup over full-precision baseline and a 48% speedup over NF4 quantization.

4.3 ABLATION

In this section, we present ablation studies of BBQ’s individual features in Table 4.2. Specifically, we study the effects of Hadamard Transform, RMS Normalization, probability integral transform (Φ), having a learnable scale γ , and initializing γ to $\zeta^* \sigma_0$ instead of a dummy value (e.g. 1). Results show Hadamard transform and RMS normalization are two solid features BBQ inherited from QuEST, as removing them from BBQ results in a perplexity increase of 4.45 and 4.59 points, respectively. The probability integral transform (Φ) is meant to replace QuEST’s clip function. We see that naively substituting clip with Φ (row 4 compared to row 5) without γ initialization leads to divergence (a perplexity increase from 35.58 to 138.3), but the combination of Φ and γ initialization (row 6) can outperform QuEST (row 4) by a perplexity decrease of 4.12. Lastly, making γ learnable can further reduce the perplexity by a small margin (0.12 perplexity reduction).

5 LIMITATIONS

While BBQ can achieve lower perplexity than QuEST and LSQ when a model with limited memory footprint is initialized randomly and trained on a large dataset (**QAPT**), BBQ is, by design, a quantizer that makes no attempt to reduce/bound the Euclidean distance between x and \hat{x} , since they live in separate domains. Therefore, when applied to **QAFT**, or finetuning a large model initialized from a full-precision pre-trained checkpoint for a short duration on a small downstream dataset, BBQ’s unbounded quantization error will drastically reduce the model quality and cannot catch up to “same-domain” quantizers like QuEST and LSQ within the short time frame of QAFT. For similar reasons, BBQ is not suitable for **PTQ**.

6 CONCLUSION

In this work, we identify existing SOTA QAPT methods under-utilize learning capacity. While existing ITO quantization methods can maximize entropy, they are not compute-efficient, which limits their applicability to edge devices with energy constraints. Utilizing our key insight that learning is domain-agnostic, we propose BBQ, which performs ITO quantization in the input domain, while returning outputs in a compute-efficient domain. Empirical results shows BBQ outperforms QuEST and LSQ without sacrificing compute efficiency.

540 7 REPRODUCIBILITY STATEMENT
541542 We will upload our source code as a separate zip file. Our code should allow reviewers to reproduce
543 Table 3 and Figures 3 and 5.
544545 REFERENCES
546547 Abien Fred Agarap. Deep learning using rectified linear units (relu), 2018. URL <http://arxiv.org/abs/1803.08375>. cite arxiv:1803.08375Comment: 7 pages, 11 figures, 9 tables.
548549 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
550 <https://arxiv.org/abs/1607.06450>.
551552 Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
553 through stochastic neurons for conditional computation, 2013. URL <https://arxiv.org/abs/1308.3432>.
554555 Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
556 learning, 2018. URL <https://arxiv.org/abs/1606.04838>.
557558 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
559 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
560 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
561 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
562 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
563 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
564 <https://arxiv.org/abs/2005.14165>.
565565 Roberto L. Castro, Andrei Panferov, Soroush Tabesh, Oliver Sieberling, Jiale Chen, Mahdi Nikdan,
566 Saleh Ashkboos, and Dan Alistarh. Quartet: Native fp4 training can be optimal for large language
567 models. *CoRR*, abs/2505.14669, May 2025. URL <https://doi.org/10.48550/arXiv.2505.14669>.
568569 Feng Cheng, Cong Guo, Chiyue Wei, Junyao Zhang, Changchun Zhou, Edward Hanson, Jiaqi
570 Zhang, Xiaoxiao Liu, Hai Li, and Yiran Chen. Ecco: Improving memory bandwidth and capacity
571 for llms via entropy-aware cache compression. In *Proceedings of the 52nd Annual International
572 Symposium on Computer Architecture*, ISCA '25, pp. 793–807, New York, NY, USA, 2025. As-
573 sociation for Computing Machinery. ISBN 9798400712616. doi: 10.1145/3695053.3731024.
574 URL <https://doi.org/10.1145/3695053.3731024>.
575576 Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory (Wiley Series in Telecom-
577 munication and Signal Processing)*. Wiley-Interscience, USA, 2006. ISBN 0471241954.
578578 Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
579 quantization. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=shpkpVXzo3h>.
580581 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: efficient finetuning
582 of quantized llms. In *Proceedings of the 37th International Conference on Neural Information
583 Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.
584585 Jordan Dotzel, Yuzong Chen, Bahaa Kotb, Sushma Prasad, Gang Wu, Sheng Li, Mohamed S. Ab-
586 delfattah, and Zhiru Zhang. Learning from students: applying t-distributions to explore accurate
587 and efficient formats for llms. In *Proceedings of the 41st International Conference on Machine
588 Learning*, ICML'24. JMLR.org, 2024.
589590 DaYou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, Xiaowen Chu, and Ningyi Xu. BitDis-
591 tiller: Unleashing the potential of sub-4-bit LLMs via self-distillation. In Lun-Wei Ku, Andre
592 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association
593 for Computational Linguistics (Volume 1: Long Papers)*, pp. 102–116, Bangkok, Thailand, Au-
594 gust 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.7. URL
595 <https://aclanthology.org/2024.acl-long.7/>.
596

594 Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dhar-
 595 mendra S. Modha. Learned step size quantization. In *International Conference on Learning*
 596 *Representations*, 2020. URL <https://openreview.net/forum?id=rkg066VKDS>.

597

598 R. A. Fisher. *Statistical Methods for Research Workers*, pp. 66–70. Springer New York, New
 599 York, NY, 1992. ISBN 978-1-4612-4380-9. doi: 10.1007/978-1-4612-4380-9_6. URL https://doi.org/10.1007/978-1-4612-4380-9_6.

600

601 Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
 602 Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In *The Thirteenth Inter-
 603 national Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=tcsZt9ZNKD>.

604

605 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 606 nition. *CoRR*, abs/1512.03385, 2015. URL <http://arxiv.org/abs/1512.03385>.

607

608 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL <https://arxiv.org/abs/1606.08415>.

609

610 Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
 611 versal approximators. *Neural Networks*, 2(5):359–366, 1989. ISSN 0893-6080. doi: [https://doi.org/10.1016/0893-6080\(89\)90020-8](https://doi.org/10.1016/0893-6080(89)90020-8). URL <https://www.sciencedirect.com/science/article/pii/0893608089900208>.

612

613

614 Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training by
 615 reducing internal covariate shift. In *Proceedings of the 32nd International Conference on Inter-
 616 national Conference on Machine Learning - Volume 37*, ICML’15, pp. 448–456. JMLR.org,
 617 2015.

618

619 Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W.
 620 Mahoney, and Kurt Keutzer. Squeezeelm: dense-and-sparse quantization. In *Proceedings of the*
 621 *41st International Conference on Machine Learning*, ICML’24. JMLR.org, 2024.

622

623 Tanishq Kumar, Zachary Ankner, Benjamin Frederick Spector, Blake Bordelon, Niklas Muen-
 624 nighoff, Mansheej Paul, Cengiz Pehlevan, Christopher Re, and Aditi Raghunathan. Scaling laws
 625 for precision. In *The Thirteenth International Conference on Learning Representations*, 2025.
 626 URL <https://openreview.net/forum?id=wg1PCg3CUP>.

627

628 Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. *Efficient Back-
 629 Prop*, pp. 9–48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-
 630 642-35289-8. doi: 10.1007/978-3-642-35289-8_3. URL https://doi.org/10.1007/978-3-642-35289-8_3.

631

632 Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan
 633 Sun, and Ying Wei. Duquant: Distributing outliers via dual transformation makes stronger quan-
 634 tized LLMs. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
 635 2024. URL <https://openreview.net/forum?id=mp8u2Pcmqz>.

636

637 Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei Cai, and Bohan Zhuang. QLLM: Ac-
 638 curate and efficient low-bitwidth quantization for large language models. In *The Twelfth Interna-
 639 tional Conference on Learning Representations*, 2024a. URL <https://openreview.net/forum?id=FIplmUWdm3>.

640

641 Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
 642 Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. LLM-QAT: Data-free quantization aware
 643 training for large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
 644 *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 467–484, Bangkok,
 645 Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 findings-acl.26. URL <https://aclanthology.org/2024.findings-acl.26/>.

646

647 Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei Zhao, Scott Roy,
 648 Lisa Jin, Yunyang Xiong, Yangyang Shi, Lin Xiao, Yuandong Tian, Bilge Soran, Raghuraman

648 Krishnamoorthi, Tijmen Blankevoort, and Vikas Chandra. Paretoq: Improving scaling laws in ex-
 649 tremely low-bit LLM quantization. In *The Thirty-ninth Annual Conference on Neural Information*
 650 *Processing Systems*, 2025. URL <https://openreview.net/forum?id=PMSNd8xTHp>.

651

652 Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
 653 Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
 654 1.58 bits, 2024a. URL <https://arxiv.org/abs/2402.17764>.

655

656 Yue Xiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei Chao,
 657 and Rongrong Ji. Affinequant: Affine transformation quantization for large language models. In
 658 *ICLR*, 2024b. URL <https://openreview.net/forum?id=of2rhALq8l>.

659

660 Vladimir Malinovskii, Denis Mazur, Ivan Ilin, Denis Kuznedelev, Konstantin Pavlovich
 661 Burlachenko, Kai Yi, Dan Alistarh, and Peter Richtárik. PV-tuning: Beyond straight-through
 662 estimation for extreme LLM compression. In *The Thirty-eighth Annual Conference on Neu-
 663 ral Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=YvA8UF0I37>.

664

665 Yurii Nesterov. *Introductory Lectures on Convex Optimization: A Basic Course*. Springer Publishing
 666 Company, Incorporated, 1 edition, 2014. ISBN 1461346916.

667

668 Nvidia. Nvidia turing gpu architecture, 2018. URL <https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf>.

669

670 Nvidia. Nvidia ampere ga102 gpu architecture, 2021. URL <https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf>.

671

672

673 Nvidia. Nvidia rtx blackwell gpu architecture, 2025. URL <https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf>.

674

675

676 Andrei Panferov, Jiale Chen, Soroush Tabesh, Roberto L. Castro, Mahdi Nikdan, and Dan Alistarh.
 677 QuEST: Training accurate LLMs over highly-compressed weights and activation. In *Sparsity in
 678 LLMs (SLLM): Deep Dive into Mixture of Experts, Quantization, Hardware, and Inference*, 2025.
 679 URL <https://openreview.net/forum?id=ElgAzv9fNk>.

680

681 Bita Darvish Rouhani, Nitin Garegrat, Tom Savell, Ankit More, Kyung-Nam Han, Ritchie
 682 Zhao, Mathew Hall, Eric Chung, Jasmine Klar, Yuan Yu, Michael Schulte, Ralph Wit-
 683 tig, Ian Bratt, Nigel Stephens, Jelena Milanovic, John Brothers, Pradeep Dubey, Marius
 684 Cornea, Alexander Heinecke, Andres Rodriguez, Martin Langhammer, Summer Deng, Maxim
 685 Naumov, Paulius Micikevicius, Michael Siu, and Colin Verrilli. Ocp microscaling for-
 686 mats (mx) specification, 2023. URL <https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf>.

687

688 C. E. Shannon. A mathematical theory of communication. *Bell System Technical
 689 Journal*, 27(3):379–423, 1948. doi: <https://doi.org/10.1002/j.1538-7305.1948.tb01338.x>.
 690 URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x>.

691

692 Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
 693 Peng Gao, Yu Qiao, and Ping Luo. Omnipoint: Omnidirectionally calibrated quantization for
 694 large language models. In *The Twelfth International Conference on Learning Representations*,
 695 2024. URL <https://openreview.net/forum?id=8Wuvhh0LYW>.

696

697 Xuan Shen, Zhenglun Kong, Changdi Yang, Zhaoyang Han, Lei Lu, Peiyan Dong, Cheng Lyu,
 698 Chih hsiang Li, Xuehang Guo, Zhihao Shu, Wei Niu, Miriam Leeser, Pu Zhao, and Yanzhi
 699 Wang. Edgeqat: Entropy and distribution guided quantization-aware training for the accelera-
 700 tion of lightweight llms on the edge. *CoRR*, abs/2402.10787, 2024. URL <https://doi.org/10.48550/arXiv.2402.10787>.

701

702 Philippe Tillet, H. T. Kung, and David Cox. Triton: an intermediate language and compiler for
 703 tiled neural network computations. In *Proceedings of the 3rd ACM SIGPLAN International*
 704 *Workshop on Machine Learning and Programming Languages*, MAPL 2019, pp. 10–19, New
 705 York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450367196. doi:
 706 10.1145/3315508.3329973. URL <https://doi.org/10.1145/3315508.3329973>.

707 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
 708 Herve Jegou. Training data-efficient image transformers amp; distillation through attention.
 709 In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on*
 710 *Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 10347–
 711 10357. PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/touvron21a.html>.

712 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 713 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
 714 mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
 715 language models, 2023. URL <https://arxiv.org/abs/2302.13971>.

716 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 717 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
 718 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-*
 719 *vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 720 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fdb053c1c4a845aa-Paper.pdf.

721 Haocheng Xi, ChangHao Li, Jianfei Chen, and Jun Zhu. Training transformers with 4-bit integers.
 722 In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=H9hWlfMT6O>.

723 Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, and Fengbo Ren. Learning in the
 724 frequency domain. In *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 725 (*CVPR*), pp. 1737–1746, 2020. doi: 10.1109/CVPR42600.2020.00181.

726 Kohei Yamamoto. Learnable Companding Quantization for Accurate Low-bit Neural Net-
 727 works . In *2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 728 pp. 5027–5036, Los Alamitos, CA, USA, June 2021. IEEE Computer Society. doi: 10.
 729 1109/CVPR46437.2021.00499. URL <https://doi.ieee.org/10.1109/CVPR46437.2021.00499>.

730 Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang, Qi-
 731 jing Huang, Yida Wang, Michael Mahoney, and Kurt Keutzer. Hawq-v3: Dyadic neural network
 732 quantization. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International*
 733 *Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*,
 734 pp. 11875–11886. PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/yao21a.html>.

735 Davis Yoshida. Nf4 isn't information theoretically optimal (and that's good), 2023. URL <https://arxiv.org/abs/2306.06965>.

740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756 A APPENDIX
757758 A.1 KERNEL IMPLEMENTATION
759760 In this section, we present an example implementation of Algorithm 1 using the Triton (Tillet et al.,
761 2019) programming language.762 Nvidia GPUs provide extensive support for low-precision tensor core operations, allowing expensive
763 high-precision matrix multiplications to be replaced with low-precision alternatives, leading to
764 higher compute throughput and lower energy consumption. For example, the Nvidia Blackwell ar-
765 chitecture (Nvidia, 2025) provides tensor core support for the MX FP4 (Rouhani et al., 2023) data
766 type. As another example, the Turing (Nvidia, 2018) and Ampere (Nvidia, 2021) architectures pro-
767 vide support for the INT4 data type. We list in Table 6 the representable values for both data types.
768769
770

Binary Representation	Signed INT4	MX FP4
0b0000	0	0
0b0001	1	0.5
0b0010	2	1
0b0011	3	1.5
0b0100	4	2
0b0101	5	3
0b0110	6	4
0b0111	7	6
0b1000	-8	0
0b1001	-7	-0.5
0b1010	-6	-1
0b1011	-5	-1.5
0b1100	-4	-2
0b1101	-3	-3
0b1110	-2	-4
0b1111	-1	-6

785786 Table 6: Signed INT4 vs. MXFP4
787788 Table 7 shows the values that BBQ can represent.
789790
791

Precision	Possible Values of q
4	-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7
3	-4,-3,-2,-1,0,1,2,3
2	-1.5,-0.5,0.5,1.5
1	-0.5,0.5

795796 Table 7: Values that BBQ can represent. As shown, for $b = 4$, BBQ can be encoded as INT4. For
797 $b = 3$, BBQ can be encoded as INT4 or FP4. For $b \in \{1, 2\}$, BBQ can be encoded as FP4.
798799 Since $b = 3$ can be encoded by both INT4 and FP4, we present an example triton kernel for BBQ
800 with 3-bit quantization following Algorithm 1.
801802 @triton.jit
803 def bbq(
804 x_ptr,
805 h_ptr,
806 rsigma_ptr,
807 qmz_ptr,
808 ROW_SIZE: tl.constexpr,
809 BLOCKSIZE: tl.constexpr=128,
810 DTYPES: tl.constexpr = "int4"

```

810
811     rid = tl.program_id(axis=0)
812     cid = tl.program_id(axis=1)
813     xrids = rid * BLOCKSIZE + tl.arange(0, BLOCKSIZE)[:, None]
814     xcids = cid * BLOCKSIZE + tl.arange(0, BLOCKSIZE)[None, :]
815     xids = xrids * ROW_SIZE + xcids
816
817     hrids = tl.arange(0, BLOCKSIZE)[:, None]
818     hcids = tl.arange(0, BLOCKSIZE)[None, :]
819     hids = hrids * BLOCKSIZE + hcids
820
821     # load a block of x
822     x = tl.load(x_ptr + xids)
823     # load pre-computed hadamard matrix shared across the entire kernel
824     h = tl.load(h_ptr + hids)
825     # load reciprocal of sigma
826     rsigma = tl.load(rsigma_ptr)
827
828     # hadamard transform
829     v = tl.dot(x, h) * rsigma
830
831     # accelerated normal CDF and rounding
832     qmz = normal_cdf_and_round_3bit(v, DTYPE)
833
834     # pack two 4-bit data type into a single byte
835     shift = tl.arange(0, 2)[None, None, :] * 4
836     qmz = tl.reshape(qmz, (BLOCKSIZE, BLOCKSIZE // 2, 2)) << shift
837     qmz = tl.xor_sum(qmz, axis=-1, keep_dims=False)
838
839     # write quantized data to memory
840     qmzrids = rid * BLOCKSIZE + tl.arange(0, BLOCKSIZE)[:, None]
841     qmzcids = cid * (BLOCKSIZE // 2) + tl.arange(0, BLOCKSIZE // 2)[None, :]
842     qmzids = qmzrids * (ROW_SIZE // 2) + qmzcids
843     tl.store(qmz_ptr + qmzids, qmz)
844
845 Next, we show the definition of function normal_cdf_and_round_3bit. We pre-compute  $\Phi^{-1}(\frac{i}{2^b})$  for
846 all possible values of  $i$ , and use a binary search method to decide which  $i$  should be the result of quan-
847 tization, and lastly, directly use the binary representation of  $i - 2^{b-1} - z$  according to Table 6. For
848 3-bit quantization, the 8 pre-computed values of  $\Phi^{-1}(\frac{i}{2^b})$ , for  $i \in \{0, 1, 2, 3, 4, 5, 6, 7\}$ , are  $\{-\infty, -$ 
849  $1.1503493803760083, -0.6744897501960818, -0.3186393639643752, 0.0, 0.3186393639643752,$ 
850  $0.6744897501960818, 1.1503493803760083\}$ . The corresponding values of  $i - 2^{b-1} - z$  are
851  $\{-4, -3, -2, -1, 0, 1, 2, 3\}$ .
852
853     @triton.jit
854     def normal_cdf_and_round_3bit(v: tl.tensor, DTYP
855         if DTYP
856             if DTYP == "int4":
857                 qmz = tl.where(
858                     v >= 0.0,
859                     tl.where(
860                         v >= 0.6744897501960818,
861                         tl.where(v >= 1.1503493803760083, 0b0011, 0b0010),
862                         tl.where(v >= 0.3186393639643752, 0b0001, 0b0000),
863                     ),
864                     tl.where(
865                         v >= -0.6744897501960818,
866                         tl.where(v >= -0.3186393639643752, 0b1111, 0b1110),
867                         tl.where(v >= -1.1503493803760083, 0b1101, 0b1100),
868                     )
869                 ).to(tl.int8)

```

```

864         return qmz
865     elif DTYPE == "fp4":
866         qmz = tl.where(
867             v >= 0.0,
868             tl.where(
869                 v >= 0.6744897501960818,
870                 tl.where(v >= 1.1503493803760083, 0b0101, 0b0100),
871                 tl.where(v >= 0.3186393639643752, 0b0010, 0b0000),
872             ),
873             tl.where(
874                 v >= -0.6744897501960818,
875                 tl.where(v >= -0.3186393639643752, 0b1010, 0b1100),
876                 tl.where(v >= -1.1503493803760083, 0b1101, 0b1110),
877             )
878         ).to(tl.int8)
879     return qmz
880

```

A.2 ABLATION ON EXPONENTIAL MOVING AVERAGE OF σ

Results in Table 3 are conducted without keeping an EMA of $1/\sigma$ during training and use it for inference. In this section, we show both variants of BBQ achieve identical perplexity.

	4-bit	3-bit	2-bit	1-bit
BBQ	25.51	26.55	31.35	49.8
BBQ with EMA of Reciprocal of σ	25.4	26.55	31.43	49.72

Table 8: Perplexity of BBQ vs BBQ with an exponential moving average of $1/\sigma$, on LLaMA-95M pre-trained with 3 billion C4 tokens.

A.3 ZERO-SHOT RESULTS

In this section, we present the zero-shot evaluation perplexity in Table 9, which corresponds to the models pre-trained in Table 3.

```

891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

```

Model	Dataset	Params n+e	Method	Bits WA	Perplexity
LLaMA	wikitext	95M	None	16	56.11
LLaMA	wikitext	95M	BBQ	4	57.87
LLaMA	wikitext	95M	QuEST	4	58.91
LLaMA	wikitext	95M	LSQ	4	61.62
LLaMA	wikitext	95M	BBQ	3	60.18
LLaMA	wikitext	95M	QuEST	3	64.21
LLaMA	wikitext	95M	LSQ	3	68.35
LLaMA	wikitext	95M	BBQ	2	70.19
LLaMA	wikitext	95M	QuEST	2	77.32
LLaMA	wikitext	95M	LSQ	2	80.11
LLaMA	wikitext	95M	BBQ	1	109.66
LLaMA	wikitext	95M	QuEST	1	172.77
LLaMA	wikitext	125M	None	16	50.26
LLaMA	wikitext	125M	BBQ	4	50.50
LLaMA	wikitext	125M	QuEST	4	51.31
LLaMA	wikitext	125M	LSQ	4	53.72
LLaMA	wikitext	125M	BBQ	3	50.94
LLaMA	wikitext	125M	QuEST	3	54.37
LLaMA	wikitext	125M	LSQ	3	58.61
LLaMA	wikitext	125M	BBQ	2	60.47
LLaMA	wikitext	125M	QuEST	2	69.45
LLaMA	wikitext	125M	LSQ	2	70.61
LLaMA	wikitext	125M	BBQ	1	97.34
LLaMA	wikitext	125M	QuEST	1	180.33
LLaMA	wikitext	200M	None	16	40.42
LLaMA	wikitext	200M	BBQ	4	42.56
LLaMA	wikitext	200M	QuEST	4	41.67
LLaMA	wikitext	200M	LSQ	4	4133
LLaMA	wikitext	200M	BBQ	3	41.82
LLaMA	wikitext	200M	QuEST	3	43.95
LLaMA	wikitext	200M	LSQ	3	426.8
LLaMA	wikitext	200M	BBQ	2	49.53
LLaMA	wikitext	200M	QuEST	2	54.12
LLaMA	wikitext	200M	LSQ	2	208.5
LLaMA	wikitext	200M	BBQ	1	80.34
LLaMA	wikitext	200M	QuEST	1	123.19
LLaMA	wikitext	300M	None	16	34.95
LLaMA	wikitext	300M	BBQ	4	38.57
LLaMA	wikitext	300M	QuEST	4	35.26
LLaMA	wikitext	300M	BBQ	3	36.77
LLaMA	wikitext	300M	QuEST	3	37.26
LLaMA	wikitext	300M	BBQ	2	41.24
LLaMA	wikitext	300M	QuEST	2	45.28

Table 9: Zero-shot wikitext perplexity.

A.4 BBQ vs. QUEST

In this section, we illustrate the difference between BBQ and QuEST in Figure 7.

- BBQ and QuEST share the Hadamard transform (①) and RMS normalization (②) to reshape the distribution to better match the standard Gaussian.
- In step ③, QuEST scales by α^* , shifts by 0.5, and uses the clip function to limit values within a finite range. BBQ uses the Φ function to limit values within a finite range, while simultaneously maximizing the entropy.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

- In step ④, both methods use uniform quantization to quantize data. Both methods ensure the quantized data can be stored in a compute-efficient data type (INT4 or FP4).
- In step ⑤, BBQ applies linear scaling, while QuEST reverses all of the operations it did before (RMS Normalization, scaling by α^* , and shifting by 0.5), as QuEST is a “same-domain” quantizer. BBQ is a “cross-domain” quantizer, so BBQ does not reverse its previous operation such as Φ , shifting by $2^b - 1$ and z , multiplication by 2^b , division by σ etc. Instead, BBQ applies linear scaling to scale its range to be within $[-\gamma, \gamma]$ where γ is a learnable parameter.
- In step ⑥, QuEST reverses its Hadamard transform (a unitary operation). BBQ does not reverse the Hadamard transform because it is a “cross-domain” quantizer.

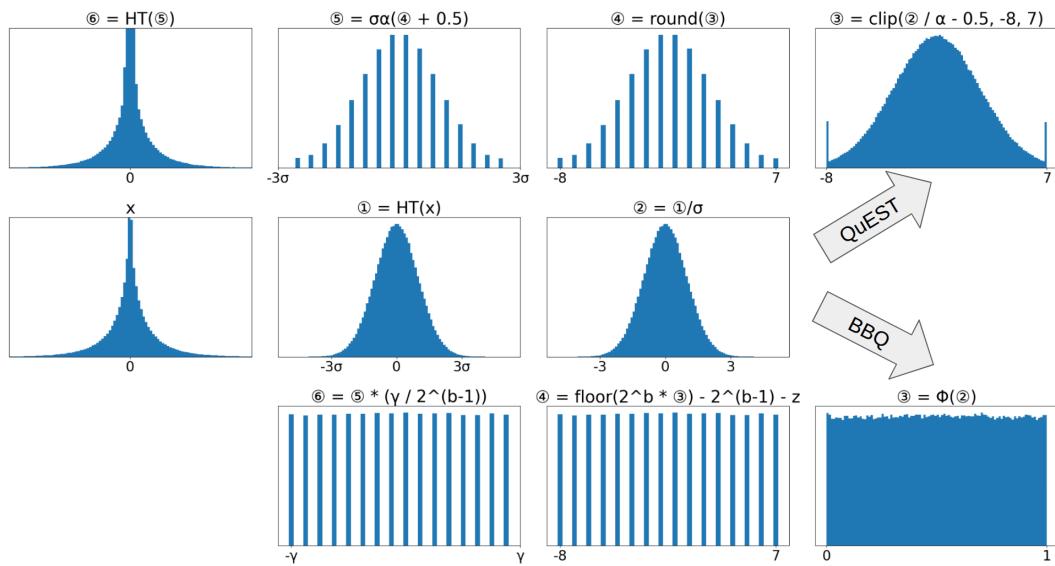


Figure 7: BBQ vs. QuEST.

A.5 EXTENSION TO VISION MODELS

While BBQ is designed for language models, we discuss and evaluate a potential extension of BBQ to vision models. When we naively apply BBQ to vision models without any modification, we notice, as shown in Figure 8 right, a subset of learned γ have magnitudes extremely close to 0. Since every γ is assigned to a weight channel, if γ is small, weights from the corresponding channel suffers from gradient vanishing. As shown in Figure 8 left, language models do not suffer from such γ collapsing. Instead of making γ a learnable parameter and initializing γ to $\zeta\sigma_0$ as discussed in Section 3.5, we propose a BBQ variant, BBQ-Vision, that instead dynamically calculates the value of γ as $\zeta\sigma$ on every forward pass. BBQ-Vision prevents γ from collapsing to 0, since for γ to be 0, all weights in that channel must also be 0. In addition, BBQ-Vision still preserves some degree of learnability as the network can modify weights/activations to indirectly control the value of σ . We compare BBQ-Vision against QuEST and LSQ on DeiT (Touvron et al., 2021) and Resnet (He et al., 2015) with various sizes and show our results in Table 10. Our preliminary results show BBQ-Vision can outperform QuEST and LSQ.

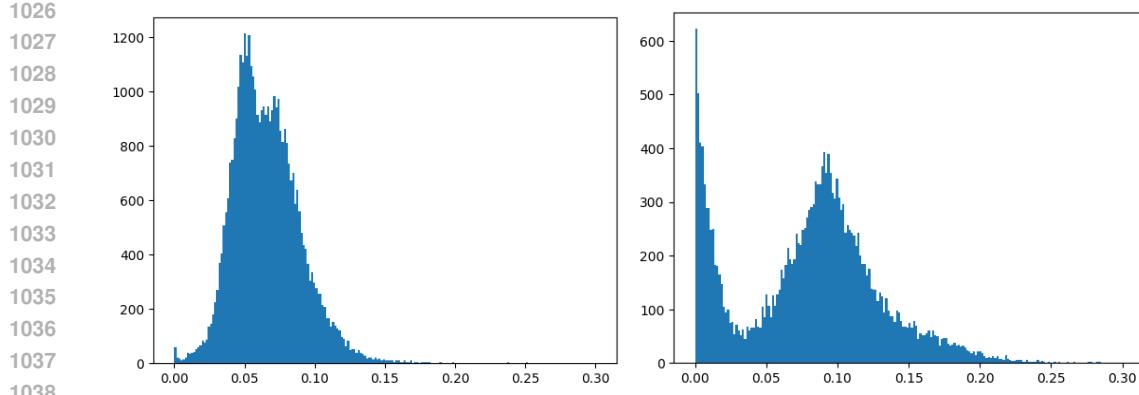


Figure 8: Histogram of learned γ on the 2-bit language model LLaMA-95M (left) and 2-bit vision model DeiT-Tiny (right). The x-axis is the value of γ and the y-axis is its frequency.

Model	Params	Dataset	Bits WA	BBQ-Vision	QuEST	LSQ
DEIT-T	5M	Imagenet-100	4	3.85/2.84/74.68	3.61/2.91/74.3	3.67/2.88/74.88
DEIT-T	5M	Imagenet-100	3	2.93/2.89/74.24	2.78/2.98/72.2	2.81/3.01/71.36
DEIT-T	5M	Imagenet-100	2	1.94/3.05/70.16	1.93/3.18/67.24	1.90/3.23/65.32
DEIT-T	5M	Imagenet-100	1	1.00/3.52/53.54	1.00/3.67/47.55	-/-
DEIT-S	20M	Imagenet-100	4	3.82/2.53/79.46	3.61/ 2.51/80.00	3.57/2.52/80.04
DEIT-S	20M	Imagenet-100	3	2.91/2.48/80.88	2.78/2.62/79.34	2.74/2.64/78.96
DEIT-S	20M	Imagenet-100	2	1.93/2.76/77.02	1.93/2.82/76.18	1.83/2.87/74.42
DEIT-S	20M	Imagenet-100	1	1.00/3.18/66.16	1.00/3.37/59.94	-/-
Resnet-10	5M	Imagenet-100	1	1.00/3.37/63.6	1.00/3.40/62.4	-/-
Resnet-18	11M	Imagenet-100	1	1.00/3.12/73.13	1.00/3.14/72.28	-/-

Table 10: Entropy/Training Cross Entropy Loss/Evaluation Accuracy of vision models pretrained on vision datasets

A.6 VALIDATION LOSS VS. TRAINING PROGRESS

In this section we present validation loss vs. training iteration curves for all of our experiments in Section 4. For visualization purposes, we only show the validation loss for the last 90% iterations, hide the first 10% iterations when learning rate is warming up, and don't show loss curves for methods that diverged. For all figures, the y-axis is the validation cross entropy loss, and x-axis is iterations (batches). For all experiments, we quantize both weights and activations of linear layers to b bits. In addition, for all QuEST experiments, we use a trust factor of $T = \alpha^*/(2^b - 1)$ as discuss in QuEST (Panferov et al., 2025).

Figure 9: LLaMA-95M (4-bit) pre-trained on 3 billion C4 tokens (batched over 12 thousand iterations). LSQ is green, QuEST is gray, and BBQ is blue.

Figure 10: LLaMA-95M (3-bit) pre-trained on 3 billion C4 tokens (batched over 12 thousand iterations). LSQ is pink, QuEST is red, and BBQ is green.

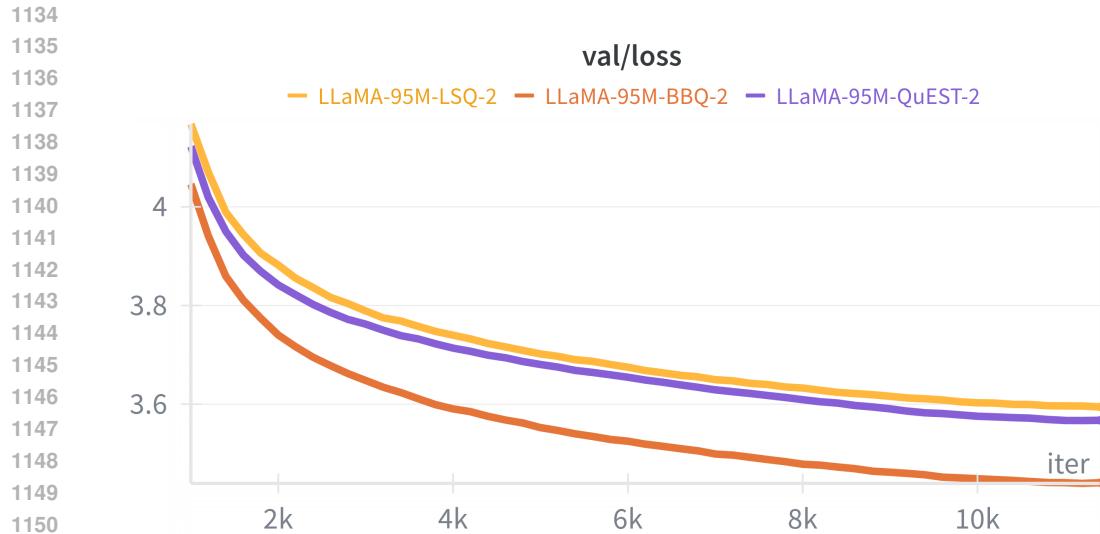


Figure 11: LLaMA-95M (2-bit) pre-trained on 3 billion C4 tokens (batched over 12 thousand iterations). LSQ is yellow, QuEST is purple, and BBQ is orange.

Figure 12: LLaMA-95M (1-bit) pre-trained on 3 billion C4 tokens (batched over 12 thousand iterations). QuEST is purple and BBQ is orange.

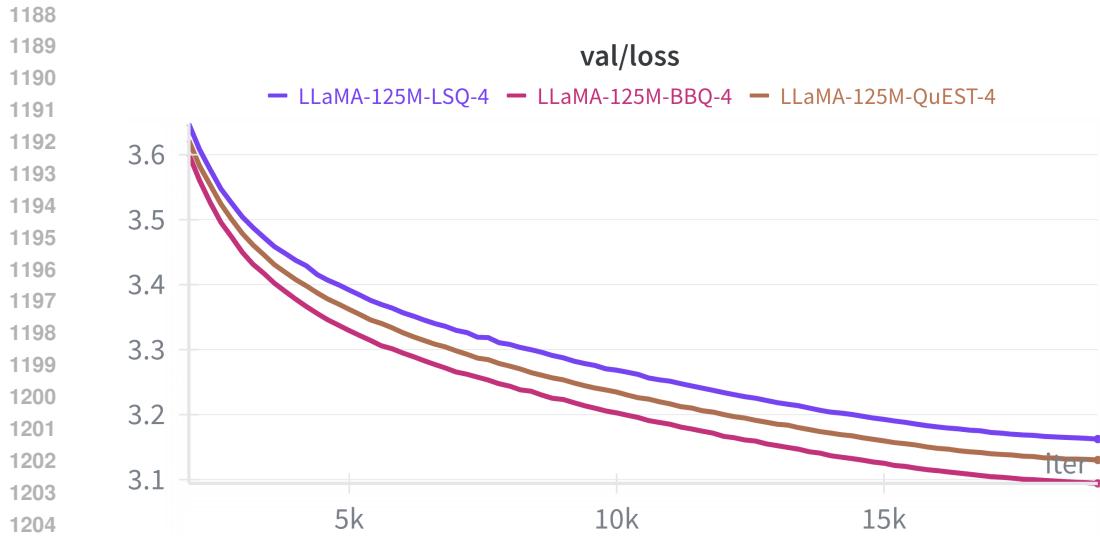


Figure 13: LLaMA-125M (4-bit) pre-trained on 5 billion C4 tokens (batched over 20 thousand iterations). LSQ is red, QuEST is brown, and BBQ is pink.

Figure 14: LLaMA-125M (3-bit) pre-trained on 5 billion C4 tokens (batched over 20 thousand iterations). LSQ is green, QuEST is gray, and BBQ is blue.

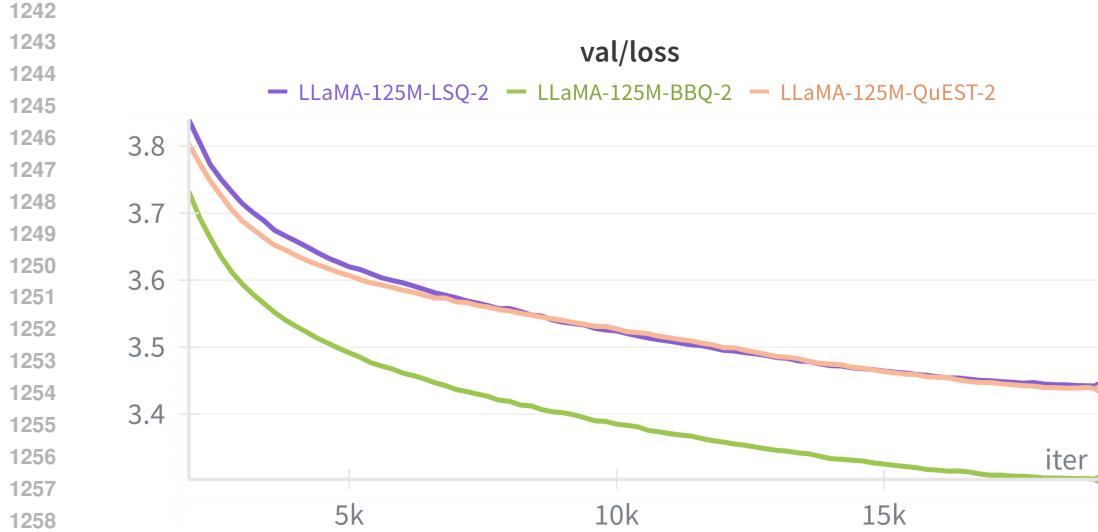


Figure 15: LLaMA-125M (2-bit) pre-trained on 5 billion C4 tokens (batched over 20 thousand iterations). LSQ is purple, QuEST is orange, and BBQ is green.

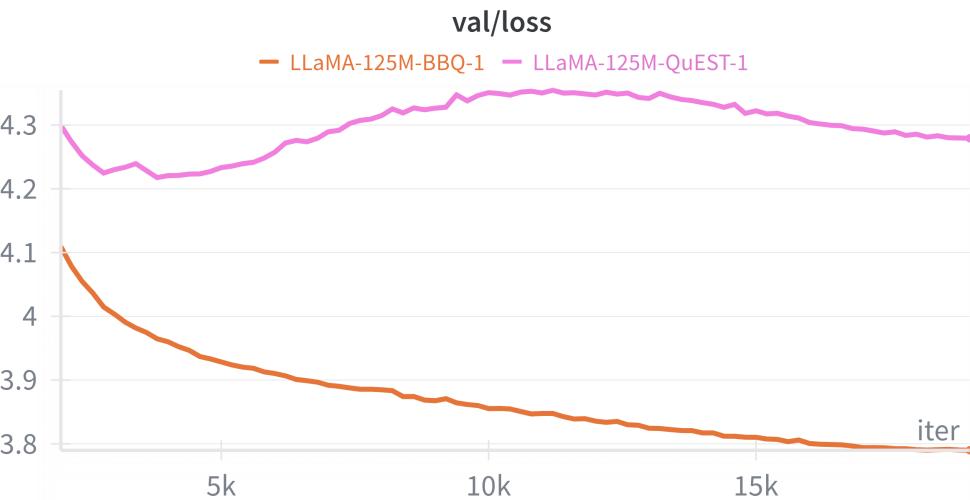


Figure 16: LLaMA-125M (1-bit) pre-trained on 5 billion C4 tokens (batched over 20 thousand iterations). QuEST is pink and BBQ is orange.

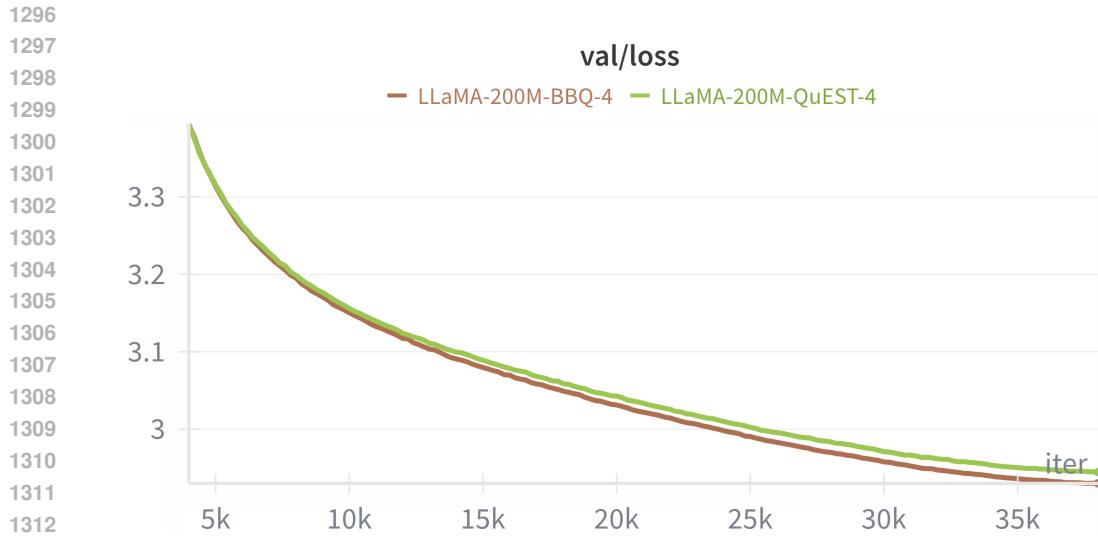


Figure 17: LLaMA-200M (4-bit) pre-trained on 10 billion C4 tokens (batched over 40 thousand iterations). QuEST is green and BBQ is brown.

Figure 18: LLaMA-200M (3-bit) pre-trained on 10 billion C4 tokens (batched over 40 thousand iterations). QuEST is pink and BBQ is gray.

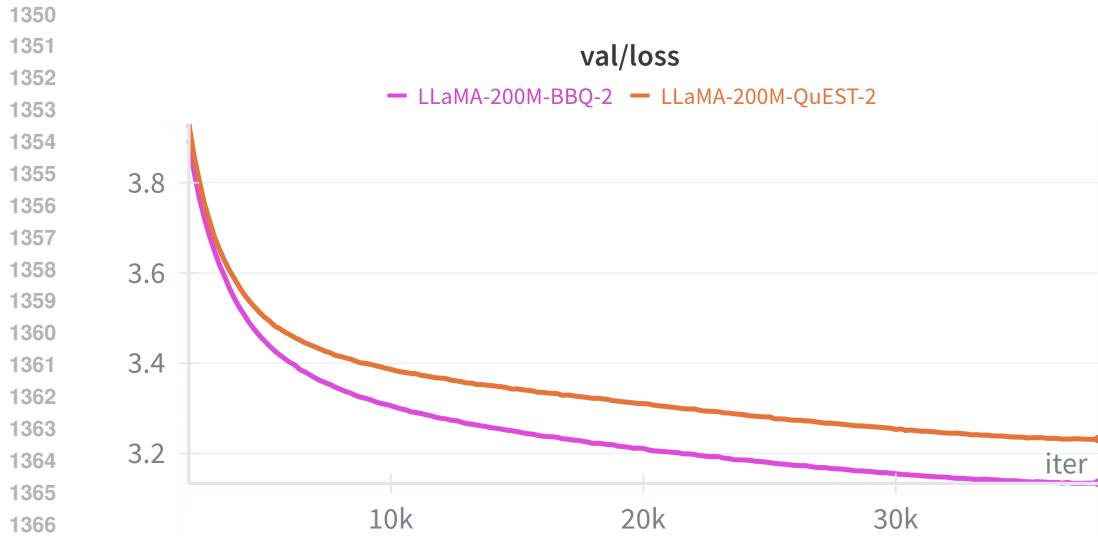


Figure 19: LLaMA-200M (2-bit) pre-trained on 10 billion C4 tokens (batched over 40 thousand iterations). QuEST is orange and BBQ is pink.

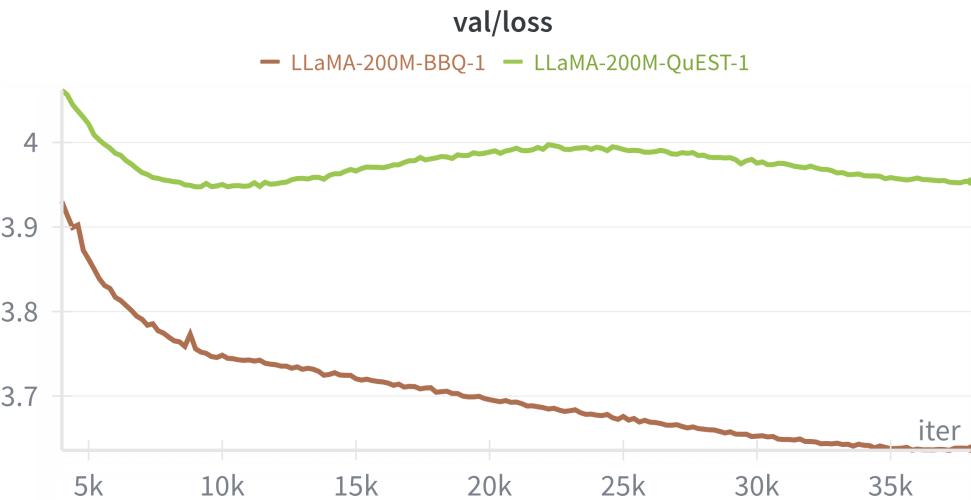
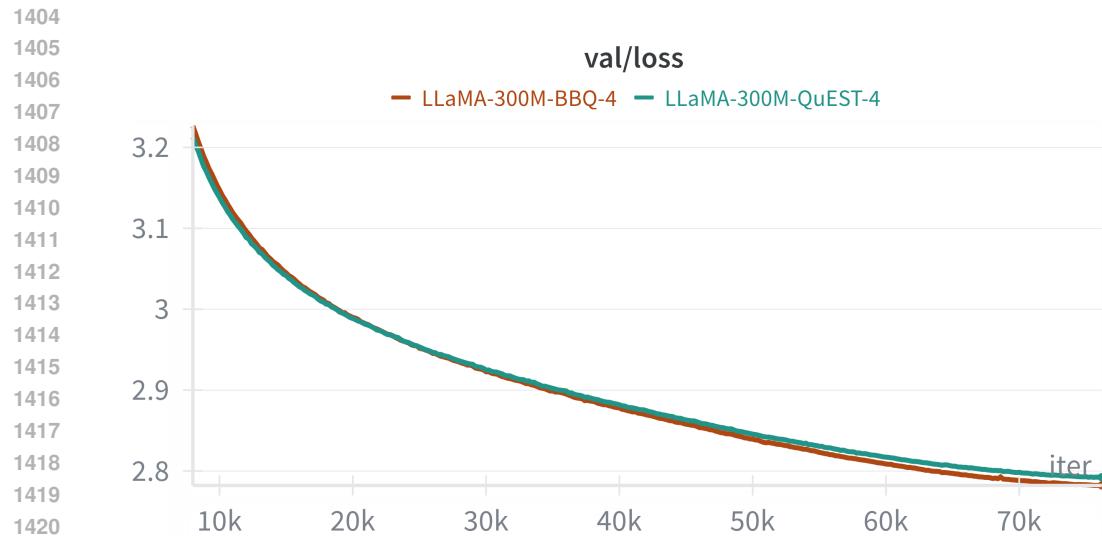


Figure 20: LLaMA-200M (1-bit) pre-trained on 10 billion C4 tokens (batched over 40 thousand iterations). QuEST is green and BBQ is brown.



1423
 1424 Figure 21: LLaMA-300M (4-bit) pre-trained on 20 billion C4 tokens (batched over 80 thousand
 1425 iterations). QuEST is green and BBQ is brown.
 1426
 1427
 1428
 1429
 1430

1447 Figure 22: LLaMA-300M (3-bit) pre-trained on 20 billion C4 tokens (batched over 80 thousand
 1448 iterations). QuEST is orange and BBQ is green.
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

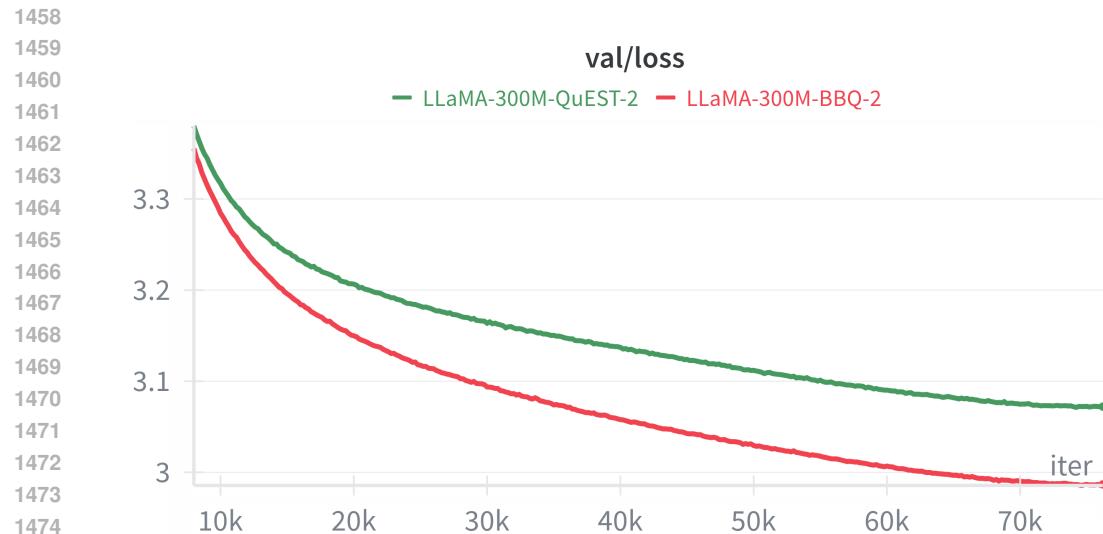


Figure 23: LLaMA-300M (2-bit) pre-trained on 20 billion C4 tokens (batched over 80 thousand iterations). QuEST is green and BBQ is red.

1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511