
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BBQ: BOOSTING QUANTIZATION ENTROPY WITH
BELL BOX QUANTIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantization-Aware Pre-Training (QAPT) is an effective technique to reduce the
compute and memory overhead of Deep Neural Networks while improving their
energy efficiency on edge devices. Existing QAPT methods produce models
stored in compute-efficient data types (e.g. integers) that are not information the-
oretically optimal (ITO). On the other hand, existing ITO data types (e.g. Quan-
tile/NormalFloat Quantization) are not compute-efficient. We propose BBQ, the
first ITO quantization method that is also compute-efficient. BBQ builds on our
key insight that since learning is domain-agnostic, the output of a quantizer does
not need to reside in the the same domain as its input. BBQ performs ITO quan-
tization in its input domain, and returns its output in a compute-efficient domain
where ITO data types are mapped to compute-efficient data types. Without sac-
rificing compute efficiency, BBQ outperforms prior SOTA QAPT methods by a
perplexity reduction of up to 2 points for 4-bit models, up to 4 points for 3-bit
models, up to 5 points for 2-bit models, and up to 18 points for 1-bit models.

1 INTRODUCTION

Quantization is an effective method to reduce the computation/memory/energy consumption of Deep
Neural Networks (DNNs), allowing DNNs to be deployed to edge devices with limited hardware re-
sources. However, quantization often degrades model quality. While Post-Training Quantization
(PTQ) methods (Lin et al., 2024; Shao et al., 2024; Ma et al., 2024b; Liu et al., 2024a; Kim et al.,
2024) can mitigate quality degradation without re-training for higher precisions (4+-bit), they strug-
gle to maintain quality when weights and activations are quantized to 4-bit and below (Panferov
et al., 2025; Esser et al., 2020; Ma et al., 2024a; Kumar et al., 2025). Quantization-Aware Training
(QAT) methods (Panferov et al., 2025; Esser et al., 2020; Ma et al., 2024a; Kumar et al., 2025; Shen
et al., 2024; Liu et al., 2025; Yamamoto, 2021), on the other hand, can achieve higher accuracy than
PTQ methods under the same precision (Du et al., 2024; Panferov et al., 2025; Liu et al., 2024b) by
introducing quantization in the training loop.

QAT can be further divided into Quantization-Aware Pre-Training (Panferov et al., 2025; Shen et al.,
2024) (QAPT) and Quantization-Aware Fine-Tuning (Malinovskii et al., 2024; Du et al., 2024)
(QAFT). QAFT initializes a low-precision model from a full-precision pre-trained checkpoint, and
trains the model for a short duration to fit a downstream task, which is typically much smaller than
the pre-training dataset (Du et al., 2024). On the other hand, QAPT initializes a low-precision model
from scratch, aims to fit a much larger dataset, and typically trains for much longer durations. Com-
pared to first pre-train in full-precision and subsequently apply PTQ/QAFT, QAPT may have higher
pre-training speed (Kumar et al., 2025; Xi et al., 2023; Castro et al., 2025), as when activations and
weights are quantized, the forward pass of training may be performed in low precision.

This work aims to improve the accuracy of a QAPT’ed model without compromising its efficiency
on edge devices. Specifically, we target the case when a low-precision model is initialized ran-
domly, trained for long durations on large datasets, and is aimed to be deployed to edge devices with
constraints on memory capacity, inference latency, and energy consumption. The energy constraint
requires the model to be compute-efficient, or that expensive high-precision matrix multiplications
be substituted with low-precision arithmetic, while the memory and latency constraints require the
model to be small in size, or to have a low parameter count and precision. The main challenge of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Signed INT4 -8, ±7, ±6, ±5, ±4, ±3, ±2, ±1, 0
MX FP4 ±6, ±4, ±3, ±2, ±1.5, ±1, ±0.5, ±0

Table 1: Possible values of the INT4 and the MX FP4 data type.

this work is models with limited memory footprint cannot fit large datasets well due to a lack of
learning capacity (Kumar et al., 2025).

Using the discrete Shannon entropy (Shannon, 1948; Cover & Thomas, 2006) of quantized weights
as a proxy to the amount of information/knowledge present in a QAPT’ed model, we observe that
SOTA QAPT methods QuEST (Panferov et al., 2025) and LSQ (Esser et al., 2020) produce quan-
tized models that under-utilize the available learning capacity. The under-utilization is because LSQ
and QuEST use compute-efficient data types (e.g. integers and floats) which are not information
theoretically optimal (ITO). While existing ITO data types (Dettmers et al., 2023; 2022) can reduce
this under-utilization of learning capacity, they lack compute efficiency on modern CPUs/GPUs,
which limits the applicability on edge devices with limited energy.

To maximally utilize the limited learning capacity while preserving compute efficiency, we pro-
pose Bell Box Quantization (BBQ). BBQ is designed based on our key insight: since learning is
domain-agnostic, the output of a quantizer does not need to live in the same domain as its input.
BBQ performs ITO quantization in its input domain to maximally preserve information, but returns
its output in a different domain, where ITO data types are mapped to compute-efficient data types.
BBQ achieves higher capacity utilization and better prediction quality than QuEST and LSQ. Unlike
existing ITO data types, a BBQ-quantized model can still accelerate expensive matrix multiplica-
tions with low-precision arithmetic.

2 BACKGROUND AND MOTIVATION

In this section, we discuss compute-efficient data types on modern GPUs, existing ITO quantization
methods, and lastly, the domain-agnostic property of learning which is the key inspiration of BBQ.

Quantization is the discretization of a continuous random variable x to a discrete random variable
x̂, with 2b possible states, such that x̂ is sufficiently close to x. We present a generic template for
quantization as follows:

x̂ = f−1(q), where q = r(f(x)) (1)

where f : R→ R is a transform function that converts x to some intermediate domain more suitable
for quantization; r : R → T is some rounding function that converts any real value to one of 2b
possible real values, i.e. T ⊆ R and |T| = 2b; and f−1, the inverse function of f , is responsible for
converting the discretized value q back to the original domain of x.

2.1 COMPUTE EFFICIENT DATA TYPES

A data type T is compute-efficient, if hardware offers low-precision multiply-accumulate instruc-
tions that directly operate on members of T without first decoding to high precision data types. Table
1 shows members of T for INT4, which is supported by the Nvidia Ampere (Nvidia, 2021) and Tur-
ing (Nvidia, 2018) architectures, and members of T for MX FP4 (Rouhani et al., 2023), which is
supported by the Blackwell architecture (Nvidia, 2025). When f−1 is linear or affine, a compute-
efficient data type can be used to accelerate matrix multiplication and convolution (Yao et al., 2021).
For example, if f−1(q) = sq for a constant scalar s, then the multiplication of activation matrix
X̂ = f−1(Qx) = sQx and weight matrix Ŵ = f−1(Qw) = sQw can be simplified to s2(Qx ·Qw).
In other words, the matrix multiplication can be computed using solely low-precision representa-
tions of activations and weights, and later de-quantized to the original domain by multiplication of
s2.

Prior SOTA QAPT methods QuEST (Panferov et al., 2025) and LSQ (Esser et al., 2020) uses lin-
ear/affine f−1 and compute-efficient data types. We show the definition of f , r, and f−1 for LSQ

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and QuEST as follows:

LSQ: f(x) = x/s, r(v) = ⌊clip(v,−2b−1, 2b−1 − 1)⌉, f−1(q) = sq

QuEST: f(x) =
HT(x)
α∗σ

− 1

2
, r(v) = ⌊clip(v,−2b−1, 2b−1 − 1)⌉, f−1(q) = HT(α∗σ(q +

1

2
))

(2)

where s, σ, and α∗ are constant scalars; HT is the Hadamard transform, a linear operation; and
the clip operation and the round-to-nearest-integer operation ⌊·⌉ enforces the output of r to be a
b-bit signed integer. Since f−1 is linear or affine in LSQ and QuEST, matrix multiplications can be
accelerated with low-precision arithmetic.

In short, for a quantization method to be compute-efficient, it should have a linear/affine dequanti-
zation function f−1 and a compute-efficient data type T.

2.2 INFORMATION THEORETICALLY OPTIMAL QUANTIZATION METHODS

An ITO quantization method is one that ensures each member of T is used equally often (Dettmers
et al., 2023). For example, if b = 2, then 25% of values of x should be assigned to each of the 4
possible values in T. While there are many possible mappings that evenly split the probability mass,
a trivial mapping is to use the 25, 50, 75 percentile as rounding boundaries. In other words, values
of x less than the 25-percentile of x are rounded to the first value in T; values larger than the 25-
percentile but less than 50-percentile of x are rounded to the second value, etc. For x ∼ N(0, σ2),
this trivial mapping can be expressed as:

f(x) = x/σ, r(v) = T [floor(2bΦ(v))], f−1(q) = σq (3)

where T [i] is the ith smallest element in T. Note that Equation 3 only requires that T contains 2b

unique real values. Therefore, Equation 3 describes a set of ITO methods rather than a unique one.
By evenly splitting the probability mass of x, all ITO data types maximize the Shannon entropy of
q defined as

H(q) =
∑
t∈T
−P (q = t) log2 P (q = t) (4)

Note that entropy was shown to positively correlate with accuracy/prediction quality (Cheng et al.,
2025; Shen et al., 2024).

Inspired by ITO quantization methods, Dettmers et al. (2023) proposed NormalFloat, whose values
are a list of abs-max-normalized Gaussian quantiles (Yoshida, 2023; Dotzel et al., 2024). Due to
lack of hardware support, NormalFloat must be de-quantized to full-precision floats and then used
in computation, which limits its applicability on energy-constrained edge devices.

This presents a dilemma: while ITO quantization methods maximally preserve information, they are
not compute-efficient; compute-efficient quantization methods, on the other hand, are not ITO for
Gaussianly distributed weights/activations. Can we obtain the best of both worlds?

2.3 LEARNING IS DOMAIN-AGNOSTIC

Since neural networks are universal function approximators (Hornik et al., 1989), they are capable
of learning from transformed/augmented data, or even data encoded in latent spaces that are not
human-understandable. For example, DNNs can correctly classify images that are rotated (He et al.,
2015), or even images that are transformed to the frequency domain (Xu et al., 2020). As another
example, when sparse autoencoders (Gao et al., 2025) are trained just to reconstruct the data, the
resulting latent embedding of the data can be used by other DNNs to complete downstream tasks.
These are all evidence that, as long as information is preserved, simply projecting/transforming data
to a different domain does not prevent learning.

The domain-agnostic property of learning provides an opportunity to circumvent the inefficiency of
ITO quantization methods. Rather than treating quantizers as data compressors and reconstructors,
we could treat them as feature extractors that return a set of compact latent features of the original
data. Critically, these latent features reside in an output domain, that is, not necessarily the same
domain as the input, but is designed to be a compute-efficient domain, where features can be effi-
ciently used by matrix multiplication operators. In other words, we ask the research question: if we

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: The seven steps of BBQ: Hadamard Transform (1⃝), RMS normalization (2⃝), probability
integral transform (3⃝), uniform quantization (4⃝), unsigned-to-signed conversion (5⃝), precision-
dependent scaling (6⃝), and precision-independent scaling (7⃝).

design a quantizer that performs ITO quantization in the original domain, and returns output in an
alternative compute-efficient domain, will such a quantizer outperform existing non-ITO quantizers
in QAPT?

3 PROPOSED METHOD

In this section, we present the Bell Box Quantizer (BBQ). BBQ is designed to be ITO, or to max-
imally preserve information from its input, while also returning compute-efficient outputs that can
be accelerated by modern hardware. The formulation of BBQ is as follows:

q = ⌊2bΦ (HT(x)/σ)⌋ − 2b−1 − z

x̂ =
γ

2b−1
q

(5)

where γ is a learnable scaling factor, HT is the Hadamard transform operation, Φ is the Gaussian
CDF, ⌊·⌋ is the floor operation, σ is the RMS normalization factor

√
E[(HT(x))2], and z is a hyper-

parameter zero point. As illustrated in Figure 1, BBQ involves seven steps: Hadamard Transform,
RMS Normalization, probability integral transform, uniform quantization, unsigned-to-signed con-
version, precision-dependent scaling, and precision-independent scaling.

3.1 STEP 1: HADAMARD TRANSFORM

Similar to QuEST (Panferov et al., 2025), the first step of BBQ is to Gaussianize the input x by
performing the Hadamard transform, visualized in Figure 1 Row 1 Column 2. After the transform,
HT(x) behaves like samples from N(0, σ2). Instead of transforming the whole matrix x, we follow
QuEST and perform the Hadamard Transform on every H elements of x along the input channel
dimension. During training, the Hadamard Transform is a differentiable operation, and we simply
use autograd frameworks to perform its backward pass. During inference, the Hadamard transform
is implemented with a vector-matrix multiplication, between an H-element slice of x and the pre-
computed H ×H Hadamard matrix.

3.2 STEP 2: RMS NORMALIZATION

The next step of BBQ, visualized in Figure 1 Row 1 Column 3, is to normalize the Gaussian-like
data by dividing the root-mean-square scaling factor σ =

√
E[HT(x)]. After the normalization,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Example 3-bit Inference Quantization Kernel for a Thread Block
1: function BBQ(block id, x ptr, h ptr, q ptr, E[1/σ])
2: x = x ptr[block id:block id+1, :] # x ptr is an N ×N matrix reshaped to (N2/H,H)
3: h = h ptr[:, :] # h ptr is a pre-computed Hadamard matrix with shape (H,H)
4: x = x @ h # vector matrix multiplication between shapes (1, H) and (H,H)
5: x = x * E[1/σ] # element-wise multiplication by scalar
6: for t← 0 to H − 1 do # can be done in parallel across warps and threads
7: if x[t] ≥ Φ−1(4/8) then # Binary search through pre-computed Φ−1 values
8: if x[t] ≥ Φ−1(6/8) then
9: x[t] = 3 if x[t] ≥ Φ−1(7/8) else 2

10: else
11: x[t] = 1 if x[t] ≥ Φ−1(5/8) else 0
12: end if
13: else
14: if x[t] ≥ Φ−1(2/8) then
15: x[t] = -1 if x[t] ≥ Φ−1(3/8) else -2
16: else
17: x[t] = -3 if x[t] ≥ Φ−1(1/8) else -4
18: end if
19: end if
20: end for
21: q ptr[id:id+1, :] = x # store quantized results to global memory
22: end function

Figure 2: Comparison of clipping (blue) and the normal CDF (orange) Φ for v ∼ N(0, 1).

the data behaves like samples from N(0, 1). For weight quantization during training, we measure
σ and perform RMS normalization for every output channel individually. After training, weight
quantization can be done once offline and does not introduce runtime overhead. For activation
quantization, we measure σ and perform RMS normalization for the whole activation tensor. In
addition, during training we keep track of an exponential moving average of 1/σ measured from
activations, denoted as E[1/σ]. During inference, instead of measuring 1/σ from activation tensors,
we use the recorded E[1/σ] instead. This is similar to how BatchNorm (Ioffe & Szegedy, 2015)
uses running statistics during inference. During training, we use autograd frameworks to perform
the backward pass of RMS Normalization to x and σ. Unlike QuEST, we do not detach the gradient
of σ.

3.3 STEP 3: PROBABILITY INTEGRAL TRANSFORM

The probability integral transform (Fisher, 1992) converts any continuous distribution to a uniform
one by applying its CDF on the data. As visualized in Figure 1 Row 1 Column 4, we apply the
standard Gaussian CDF Φ to data that behaves like samples from N(0, 1), creating data that behaves
likes samples from U(0, 1). In QuEST and LSQ, the component that behaves similarly to Φ is the
clip operation. As shown in Figure 2, both functions restrict their output to be within some finite
range. However, Φ is infinitely differentiable and is therefore much smoother than clip which is
piecewise linear. A smoother operation can be more suitable for optimization methods like Gradient
Descent (Nesterov, 2014; Bottou et al., 2018). For example, the GELU function (Hendrycks &
Gimpel, 2023) defined as GELU(x) = xΦ(x) is smoother than the piecewise linear ReLU (Agarap,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Precision Possible Values of q
4 -8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7
3 -4,-3,-2,-1,0,1,2,3
2 -1.5,-0.5,0.5,1.5
1 -0.5,0.5

Table 2: Values that BBQ can represent. As shown, for b = 4, BBQ can be encoded as INT4. For
b = 3, BBQ can be encoded as INT4 or FP4. For b ∈ {1, 2}, BBQ can be encoded as FP4.

2018), and GELU can outperform ReLU empirically (Hendrycks & Gimpel, 2023). During training,
Φ is a differentiable operation and we use the autograd framework to perform BackProp. During
inference, we combine Φ with the subsequent floor operation using the following property:

⌊2bΦ(v)⌋ = i, s.t. Φ−1

(
i

2b

)
≤ v < Φ−1

(
i+ 1

2b

)
(6)

which allows us to pre-compute Φ−1
(

i
2b

)
for all 2b possible values of i, and at runtime perform a

binary search that requires b floating point comparisons. The pseudocode of a 3-bit inference kernel
implementation of BBQ is shown in Algorithm 1.

3.4 STEP 4 AND 5: UNIFORM QUANTIZATION AND UNSIGNED-TO-SIGNED CONVERSION

At this stage, uniform quantization is the ITO quantization method since the data behaves like sam-
ples from U(0, 1) as shown in Figure 1 Row 1 Column 4. Since it is known that having zero-mean
activations is desired for training DNNs (LeCun et al., 2012), we subsequently convert the positive-
only data to symmetric data by subtracting 2b−1 and the hyperparameter zero point z, producing the
final q stored as a compute-efficient data type, visualized in Figure 1 Row 2 Column 3. Inspired by
NF4 (Dettmers et al., 2023), we use z = 0 for b ∈ {3, 4}, allowing the data type to represent zero
exactly while sacrificing an extra value on the positive side. We use z = −0.5 for b ∈ {1, 2} to en-
sure activations remain zero-mean. During training, we use the Straight-Through Estimator (Bengio
et al., 2013) for the floor operation, and the autograd framework for all other differentiable oper-
ations. Table 2 lists the values supported by the BBQ data type. For b ∈ {1, 2, 3}, BBQ can be
represented using the MX FP4 data type on existing Blackwell GPUs. For b ∈ {3, 4}, BBQ can be
represented using INT4 on existing Ampere and Turing GPUs.

3.5 STEP 6 AND 7: PRECISION DEPENDENT AND INDEPENDENT SCALING

BBQ includes a learnable scaling parameter s = γ/2b−1, as without it, the network has no control
over the magnitude of its activations. Normalization layers like BatchNorm (Ioffe & Szegedy, 2015)
and LayerNorm (Ba et al., 2016) use a similar learnable scaling factor to address the same problem.
Instead of learning s like in LSQ (Esser et al., 2020), we decouple s into the ratio of a precision-
independent learnable scaling factor γ (visualized in Figure 1 Row 2 Column 1) and a constant
precision-dependent scaling factor 2b−1 (visualized in Figure 1 Row 2 Column 2) to ensure γ can
be initialized to the same value regardless of precision.

The initialization of γ also plays a critical role, as overly large initialization can lead to gradient
explosion while overly small initialization can lead to gradient vanishing. We initialize γ to ζ∗σ0,
where σ0 is the σ measured at the first iteration of training, and ζ∗ is a constant MSE optimal scaling
factor defined as follows:

ζ∗ = argmin
ζ

Ev∼N(0,1)[(v − ζ(2Φ(v)− 1))2] (7)

In other words, if a Gaussian variable v is transformed to the cumulative distribution domain and
scaled to the range [−ζ, ζ], the resulting quantity ζ(2Φ(v) − 1) is closest on average to v when
ζ = ζ∗. By initializing γ to ζ∗σ0, x̂ can have approximately the same magnitude as x (in the first
iteration) to prevent the activation magnitude from exploding or vanishing as tokens travel deeper
into the network. After the first iteration, we simply let γ update itself based on gradient descent. In
addition, we apply an LSQ-style gradient scaling method (Esser et al., 2020) to reduce the gradient
of γ by a factor of

√
n, where n is the number of weights/activations in tensor x. We use per-channel

γ for weights, and per-tensor γ for activations. We do not apply weight decay to γ.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Params Tokens Full Bits BBQ QuEST LSQ
Entropy Perplexity Entropy Perplexity Entropy Perplexity

95M 3B 24.75 4 3.93 25.51 3.61 26.37 3.59 27.46
95M 3B 24.75 3 2.96 26.55 2.78 29.04 2.74 30.27
95M 3B 24.75 2 1.97 31.34 1.92 35.58 1.69 36.58
95M 3B 24.75 1 1.00 49.22 1.00 67.78 - -

125M 5B 21.51 4 3.93 22.15 3.61 22.98 3.60 23.77
125M 5B 21.51 3 2.96 23.22 2.78 25.21 2.74 26.28
125M 5B 21.51 2 1.98 27.34 1.93 31.32 1.81 31.42
125M 5B 21.51 1 1.00 44.58 1.00 72.54 - -
200M 10B 17.93 4 3.93 18.79 3.61 19.06 2.73 1778
200M 10B 17.93 3 2.96 19.74 2.78 20.82 2.50 140.9
200M 10B 17.93 2 1.98 23.08 1.93 25.46 1.63 78.19
200M 10B 17.93 1 1.00 38.27 1.00 52.37 - -
300M 20B 15.43 4 3.93 16.10 3.61 16.26 - -
300M 20B 15.43 3 2.96 16.90 2.78 17.67 - -
300M 20B 15.43 2 1.98 19.75 1.93 21.53 - -

Table 3: Entropy and Perplexity of LLaMA models pretrained on the C4 dataset. The headers are the
number of parameters (Params), the number of tokens (Tokens), perplexity without any quantization
(Full), activation/weight precision (Bits), and the entropy and perplexity of BBQ, QuEST and LSQ.

Params 95M 95M 95M 95M 95M 95M 95M 95M 95M 95M 95M
Bits WA 16 4 4 4 4 3 3 3 3 1 1
Method None BBQ QuEST LSQ NF4 BBQ QuEST LSQ NF3 BBQ QuEST
Perplexity 25 26.7 26.83 27.55 28.5 28.61 29.7 30.85 36.16 53.8 77.96
Params 95M 95M 95M 95M 95M 125M 125M 125M 125M 125M 125M
Bits WA 2 2 2 2 2 3 3 2 2 1 1
Method BBQ QuEST LSQ NF2 SEQ BBQ QuEST BBQ QuEST BBQ QuEST
Perplexity 34.36 36.7 38.98 246.6 40.07 24.78 26.05 29.38 31.47 50.46 69.78

Table 4: Perplexity of GPT models pretrained on the C4 dataset.

4 EVALUATION AND DISCUSSION

We use the publicly available source code of QuEST (Panferov et al., 2025), add the implemen-
tation of BBQ, and train on LLaMA (Touvron et al., 2023; Vaswani et al., 2017) models with n
non-embedding parameters plus e embedding parameters where n ∈ {30M, 50M, 100M, 200M}
and e ∈ {65M, 75M, 100M, 100M}. For each model, we pre-train with 100n C4 tokens while
quantizing the weights and activations of all linear layers to b-bit following QuEST. We compare
BBQ against QuEST/LSQ for each b ∈ {1, 2, 3, 4}, and present the evaluation quality (perplexity)
and weight entropy (bits) in Table 3. We show zero-shot results in Table 9, and training loss curves in
Section A.6. Since LSQ does not support 1-bit quantization and LSQ diverges when n+e = 300M ,
we omit such experiments. Each experiment for n + e ≤ 200M is conducted on one Nvidia RTX
5090 and lasts for up to 1 day. Each experiment for n + e = 300M is conducted on one Nvidia
A100 80GB and lasts for 3.5 days. In total, all experiments took approximately 1.5 GPU months,
which is all we can afford in a non-corporate setting with limited access to shared hardware. Lastly,
we evaluate BBQ against QuEST, LSQ, ParetoQ-SEQ (Liu et al., 2025), and NormalFloat (Dettmers
et al., 2023) on GPT (Brown et al., 2020) models and present our results in Table 4.

Results in Table 3 and 4 suggest BBQ can consistently achieve higher entropy and lower perplexity
than QuEST and LSQ at the same precision, and that entropy is a good proxy to prediction quality.
A special case is when b = 1. In this case, both QuEST and LSQ achieves the maximal entropy
of 1 bit. We attribute the performance gain to the fact that Φ from BBQ is smoother than the clip
operation from QuEST and LSQ, and therefore have nicer properties for optimization methods like
Gradient Descent. In addition, we note that LSQ diverges for LLaMA-200M, which is reflected in its
entropy. Notably, when LSQ does not diverge, like in the case of LLaMA-95M and LLaMA-125M,
we see that LSQ can achieve an entropy of 3.6 bits for 4-bit precision, 2.74 bits for 3-bit precision,
and 1.7 bits for 2-bit precision. However, when LSQ diverges, we see that its entropy drops to 2.73
bits for 4-bit precision, 2.50 bits for 3 bit precision, and 1.63 bits for 2-bit precision. This shows that

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Quantized weight entropy (y-axis) vs. training iterations (x-axis) for LLaMA-300M with
2-bit weight and activations, pre-trained on 20 billion C4 tokens (batched into 80 thousand training
iterations). BBQ is red and QuEST is green.

Figure 4: Monte Carlo Estimation of the PDF of the entropy of a 2b-category discrete distribution.
The figures are generated as follows. First, we generate s lists, where each list has 2b numbers,
each i.i.d. sampled from U(0, 1). Next, for each of the s lists, we normalize the list such that all 2b
numbers in that list add up to 1. Effectively, this creates s randomly generated discrete distributions.
Next, for each list l, we calculate its entropy with the formula

∑2b

i=1−l[i] log2 l[i], obtaining a total
of s samples of entropy. Lastly, we plot the histogram of entropy to estimate its PDF. We use
s = 1, 000, 000 and b ∈ {1, 2, 3, 4}. The plots suggest that for b = 1, most discrete distributions
have entropy > 0.5; for b = 2, most discrete distributions have entropy > 1; for b = 3, most
distributions have entropy > 2; and lastly, for b = 4, most distributions have entropy > 3.5.

entropy is a good indicator of a quantized model’s prediction quality. Lastly, Table 3 shows BBQ
achieves SOTA perplexity for 1-bit quantization and BBQ works for models at multiple scales.

4.1 ENTROPY AND LEARNING CAPACITY

In this section, we discuss the implications of Figure 3, which contains the behaviour of weight
entropy of BBQ and QuEST during 2-bit training. We note a few observations:

• BBQ can maximize entropy as it can achieve 2 bits of entropy at the beginning of training.

• During training, a BBQ-quantized model can still learn to decrease its entropy if that is
(temporarily) the best thing to do.

• Excluding the first 8 thousand iterations when learning rate is warming up, BBQ tends to
increase weight entropy for the last 72 thousand iterations. This suggest as more training
tokens are presented to the model, more information is accumulated in weights.

• The entropy of QuEST seems to have an empirical ceiling at around 1.93 bits.

By having a lower empirical entropy upper bound of 1.93 bits, QuEST limits the learning capacity of
the model, while BBQ does not suffer from such capacity under-utilization. Suppose a model has n
parameters, each quantized to b bits. This means the model has a total of 2nb possible unique states.
Some of the 2nb states have higher entropy, while others have lower entropy. QAPT’s objective is to
find a (locally) optimal state out of all 2nb possible states. However, if QuEST enforces its weight

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: The left figure shows latency of BBQ quantization kernel of an N ×N matrix. The right
figure shows the latency of FP4/INT8/FP16 matrix multiplication of two N × N matrices. The
y-axis is latency and the x-axis is N . All latency measurements are conducted on Nvidia RTX 5090.

Figure 6: End-to-end latency improvement of BBQ vs. full-precision and NormalFloat 4 on RTX
5090 (a Blackwell GPU that supports fp4 matmul) and A100 (an Ampere GPU that supports int4
matmul) GPUs. For each linear layer, BBQ launches an activation quantization kernel (green re-
gion), an fp4/int4 matrix multiplication kernel (part of blue regions), and an element-wise scaling
kernel (part of orange region).

entropy to be lower than 1.93 bits, then some of the high-entropy states cannot be explored by the
training algorithm. Therefore, the model’s learning capacity is effectively reduced.

To numerically quantify the under-utilization of QuEST and the improvement in capacity utilization
of BBQ over QuEST, we use Monte Carlo sampling to estimate the PDF of entropy in Figure 4 for
b ∈ {1, 2, 3, 4}. The figure suggests that regardless of n, most of the 2nb states have medium to high
entropy, while very few have low entropy. Since QuEST has an empirical entropy upper bound of
1.93 bits (indicated by the black line in Figure 4 column 2), we estimate from Figure 4 that QuEST’s
search space is limited to 0.82 · 2nb states. On the other hand, BBQ has an entropy upper bound of
2 bits, and therefore has a search space of 2nb, or a 22% gain in search space size over QuEST.

4.2 INFERENCE SPEEDUP

In this section, we discuss our profiling results of the latency of a Triton implementation (shown
in Section A.1) of Algorithm 1 on N × N activation matrices, for N ∈ [256, 8192]. Specifically,
N = 8192 corresponds to the dimension of LLaMA-65B (Touvron et al., 2023), an important
LLM benchmark. We perform latency measurements on Nvidia RTX 5090, a Blackwell GPU with
support for MX FP4. Figure 5 left shows that when N = 8192, our BBQ quantization kernel takes
0.3 milliseconds to quantize an N × N activation matrix to FP4. However, Figure 5 right shows
the latency saving of FP4 over FP16 is 4 milliseconds when N = 8192. Therefore, for models at
the scale of LLaMA-65B, BBQ with FP4 quantization leads to 3.7 milliseconds of latency reduction
per linear layer. In addition, for the memory-bound token generation phase of inference, using FP4
can still lead to speedup since weights/activations are quantized to FP4 to save memory. In Figure
4.1, we additionally show end-to-end LLaMA inference speedup on both NVIDIA RTX 5090 and
NVIDIA A100 80GB, an Ampere GPU. In Figure 4.1, the latency of BBQ quantization kernel is

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Hadamard RMS Norm PIT Learnable γ γ Init Perplexity Entropy Notes
✓ ✓ ✓ ✓ ✓ 31.34 1.97 BBQ
✗ ✓ ✓ ✓ ✓ 35.79 1.98
✓ ✗ ✓ ✓ ✓ 35.93 1.98
✓ ✓ ✗ ✗ ✗ 35.58 1.92 QuEST
✓ ✓ ✓ ✗ ✗ 138.3 1.92
✓ ✓ ✓ ✗ ✓ 31.46 1.98

Table 5: Ablation of BBQ features, evaluated on LLaMA-95M trained with 3B C4 tokens. The
features are Hadamard Transform, RMS Normalization, Probability Integral Transform (PIT or Φ),
making γ a learnable parameter, and γ initialization. A ✓ means a feature is present, and ✗ means
the feature is not included.

illustrated as a fraction of the overall latency. In general, BBQ shows a 40% speedup over full-
precision baseline and a 48% speedup over NF4 quantization.

4.3 ABLATION

In this section, we present ablation studies of BBQ’s individual features in Table 4.2. Specifically, we
study the effects of Hadamard Transform, RMS Normalization, probability integral transform (Φ),
having a learnable scale γ, and initializing γ to ζ∗σ0 instead of a dummy value (e.g. 1). Results show
Hadamard transform and RMS normalization are two solid features BBQ inherited from QuEST, as
removing them from BBQ results in a perplexity increase of 4.45 and 4.59 points, respectively. The
probability integral transform (Φ) is meant to replace QuEST’s clip function. We see that naively
substituting clip with Φ (row 4 compared to row 5) without γ initialization leads to divergence (a
perplexity increase from 35.58 to 138.3), but the combination of Φ and γ initialization (row 6) can
outperform QuEST (row 4) by a perplexity decrease of 4.12. Lastly, making γ learnable can further
reduce the perplexity by a small margin (0.12 perplexity reduction).

5 LIMITATIONS

While BBQ can achieve lower perplexity than QuEST and LSQ when a model with limited mem-
ory footprint is initialized randomly and trained on a large dataset (QAPT), BBQ is, by design, a
quantizer that makes no attempt to reduce/bound the Euclidean distance between x and x̂, since they
live in separate domains. Therefore, when applied to QAFT, or finetuning a large model initialized
from a full-precision pre-trained checkpoint for a short duration on a small downstream dataset,
BBQ’s unbounded quantization error will drastically reduce the model quality and cannot catch up
to “same-domain” quantizers like QuEST and LSQ within the short time frame of QAFT. For similar
reasons, BBQ is not suitable for PTQ.

6 CONCLUSION

In this work, we identify existing SOTA QAPT methods under-utilize learning capacity. While ex-
isting ITO quantization methods can maximize entropy, they are not compute-efficient, which limits
their applicability to edge devices with energy constraints. Utilizing our key insight that learning
is domain-agnostic, we propose BBQ, which performs ITO quantization in the input domain, while
returning outputs in a compute-efficient domain. Empirical results shows BBQ outperforms QuEST
and LSQ without sacrificing compute efficiency.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We will upload our source code as a separate zip file. Our code should allow reviewers to reproduce
Table 3 and Figures 3 and 5.

REFERENCES

Abien Fred Agarap. Deep learning using rectified linear units (relu), 2018. URL http://arxiv.
org/abs/1803.08375. cite arxiv:1803.08375Comment: 7 pages, 11 figures, 9 tables.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation, 2013. URL https://arxiv.org/
abs/1308.3432.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning, 2018. URL https://arxiv.org/abs/1606.04838.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Roberto L. Castro, Andrei Panferov, Soroush Tabesh, Oliver Sieberling, Jiale Chen, Mahdi Nikdan,
Saleh Ashkboos, and Dan Alistarh. Quartet: Native fp4 training can be optimal for large language
models. CoRR, abs/2505.14669, May 2025. URL https://doi.org/10.48550/arXiv.
2505.14669.

Feng Cheng, Cong Guo, Chiyue Wei, Junyao Zhang, Changchun Zhou, Edward Hanson, Jiaqi
Zhang, Xiaoxiao Liu, Hai Li, and Yiran Chen. Ecco: Improving memory bandwidth and capacity
for llms via entropy-aware cache compression. In Proceedings of the 52nd Annual International
Symposium on Computer Architecture, ISCA ’25, pp. 793–807, New York, NY, USA, 2025. As-
sociation for Computing Machinery. ISBN 9798400712616. doi: 10.1145/3695053.3731024.
URL https://doi.org/10.1145/3695053.3731024.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in Telecom-
munications and Signal Processing). Wiley-Interscience, USA, 2006. ISBN 0471241954.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=shpkpVXzo3h.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: efficient finetuning
of quantized llms. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Jordan Dotzel, Yuzong Chen, Bahaa Kotb, Sushma Prasad, Gang Wu, Sheng Li, Mohamed S. Ab-
delfattah, and Zhiru Zhang. Learning from students: applying t-distributions to explore accurate
and efficient formats for llms. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2024.

DaYou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, Xiaowen Chu, and Ningyi Xu. BitDis-
tiller: Unleashing the potential of sub-4-bit LLMs via self-distillation. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 102–116, Bangkok, Thailand, Au-
gust 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.7. URL
https://aclanthology.org/2024.acl-long.7/.

11

http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1606.04838
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2505.14669
https://doi.org/10.48550/arXiv.2505.14669
https://doi.org/10.1145/3695053.3731024
https://openreview.net/forum?id=shpkpVXzo3h
https://openreview.net/forum?id=shpkpVXzo3h
https://aclanthology.org/2024.acl-long.7/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dhar-
mendra S. Modha. Learned step size quantization. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=rkgO66VKDS.

R. A. Fisher. Statistical Methods for Research Workers, pp. 66–70. Springer New York, New
York, NY, 1992. ISBN 978-1-4612-4380-9. doi: 10.1007/978-1-4612-4380-9 6. URL https:
//doi.org/10.1007/978-1-4612-4380-9_6.

Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In The Thirteenth Inter-
national Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=tcsZt9ZNKD.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL https://
arxiv.org/abs/1606.08415.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2(5):359–366, 1989. ISSN 0893-6080. doi: https:
//doi.org/10.1016/0893-6080(89)90020-8. URL https://www.sciencedirect.com/
science/article/pii/0893608089900208.

Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on In-
ternational Conference on Machine Learning - Volume 37, ICML’15, pp. 448–456. JMLR.org,
2015.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W.
Mahoney, and Kurt Keutzer. Squeezellm: dense-and-sparse quantization. In Proceedings of the
41st International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Tanishq Kumar, Zachary Ankner, Benjamin Frederick Spector, Blake Bordelon, Niklas Muen-
nighoff, Mansheej Paul, Cengiz Pehlevan, Christopher Re, and Aditi Raghunathan. Scaling laws
for precision. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=wg1PCg3CUP.

Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient Back-
Prop, pp. 9–48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-
642-35289-8. doi: 10.1007/978-3-642-35289-8 3. URL https://doi.org/10.1007/
978-3-642-35289-8_3.

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan
Sun, and Ying Wei. Duquant: Distributing outliers via dual transformation makes stronger quan-
tized LLMs. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=mp8u2Pcmqz.

Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei Cai, and Bohan Zhuang. QLLM: Ac-
curate and efficient low-bitwidth quantization for large language models. In The Twelfth Interna-
tional Conference on Learning Representations, 2024a. URL https://openreview.net/
forum?id=FIplmUWdm3.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. LLM-QAT: Data-free quantization aware
training for large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
Findings of the Association for Computational Linguistics: ACL 2024, pp. 467–484, Bangkok,
Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-acl.26. URL https://aclanthology.org/2024.findings-acl.26/.

Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei Zhao, Scott Roy,
Lisa Jin, Yunyang Xiong, Yangyang Shi, Lin Xiao, Yuandong Tian, Bilge Soran, Raghuraman

12

https://openreview.net/forum?id=rkgO66VKDS
https://doi.org/10.1007/978-1-4612-4380-9_6
https://doi.org/10.1007/978-1-4612-4380-9_6
https://openreview.net/forum?id=tcsZt9ZNKD
https://openreview.net/forum?id=tcsZt9ZNKD
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://openreview.net/forum?id=wg1PCg3CUP
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://openreview.net/forum?id=mp8u2Pcmqz
https://openreview.net/forum?id=FIplmUWdm3
https://openreview.net/forum?id=FIplmUWdm3
https://aclanthology.org/2024.findings-acl.26/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Krishnamoorthi, Tijmen Blankevoort, and Vikas Chandra. Paretoq: Improving scaling laws in ex-
tremely low-bit LLM quantization. In The Thirty-ninth Annual Conference on Neural Information
Processing Systems, 2025. URL https://openreview.net/forum?id=PMSNd8xTHp.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits, 2024a. URL https://arxiv.org/abs/2402.17764.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei Chao,
and Rongrong Ji. Affinequant: Affine transformation quantization for large language models. In
ICLR, 2024b. URL https://openreview.net/forum?id=of2rhALq8l.

Vladimir Malinovskii, Denis Mazur, Ivan Ilin, Denis Kuznedelev, Konstantin Pavlovich
Burlachenko, Kai Yi, Dan Alistarh, and Peter Richtárik. PV-tuning: Beyond straight-through
estimation for extreme LLM compression. In The Thirty-eighth Annual Conference on Neu-
ral Information Processing Systems, 2024. URL https://openreview.net/forum?id=
YvA8UF0I37.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer Publishing
Company, Incorporated, 1 edition, 2014. ISBN 1461346916.

Nvidia. Nvidia turing gpu architecture, 2018. URL https://images.nvidia.
com/aem-dam/en-zz/Solutions/design-visualization/technologies/
turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf.

Nvidia. Nvidia ampere ga102 gpu architecture, 2021. URL https://www.nvidia.com/
content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.
pdf.

Nvidia. Nvidia rtx blackwell gpu architecture, 2025. URL https://
images.nvidia.com/aem-dam/Solutions/geforce/blackwell/
nvidia-rtx-blackwell-gpu-architecture.pdf.

Andrei Panferov, Jiale Chen, Soroush Tabesh, Roberto L. Castro, Mahdi Nikdan, and Dan Alistarh.
QuEST: Training accurate LLMs over highly-compressed weights and activation. In Sparsity in
LLMs (SLLM): Deep Dive into Mixture of Experts, Quantization, Hardware, and Inference, 2025.
URL https://openreview.net/forum?id=ElgAzv9fNk.

Bita Darvish Rouhani, Nitin Garegrat, Tom Savell, Ankit More, Kyung-Nam Han, Ritchie
Zhao, Mathew Hall, Eric Chung Jasmine Klar, Yuan Yu, Michael Schulte, Ralph Wit-
tig, Ian Bratt, Nigel Stephens, Jelena Milanovic, John Brothers, Pradeep Dubey, Marius
Cornea, Alexander Heinecke, Andres Rodriguez, Martin Langhammer, Summer Deng, Maxim
Naumov, Paulius Micikevicius, Michael Siu, and Colin Verrilli. Ocp microscaling for-
mats (mx) specification, 2023. URL https://www.opencompute.org/documents/
ocp-microscaling-formats-mx-v1-0-spec-final-pdf.

C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27(3):379–423, 1948. doi: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.
1948.tb01338.x.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=8Wuvhh0LYW.

Xuan Shen, Zhenglun Kong, Changdi Yang, Zhaoyang Han, Lei Lu, Peiyan Dong, Cheng Lyu,
Chih hsiang Li, Xuehang Guo, Zhihao Shu, Wei Niu, Miriam Leeser, Pu Zhao, and Yanzhi
Wang. Edgeqat: Entropy and distribution guided quantization-aware training for the accelera-
tion of lightweight llms on the edge. CoRR, abs/2402.10787, 2024. URL https://doi.org/
10.48550/arXiv.2402.10787.

13

https://openreview.net/forum?id=PMSNd8xTHp
https://arxiv.org/abs/2402.17764
https://openreview.net/forum?id=of2rhALq8l
https://openreview.net/forum?id=YvA8UF0I37
https://openreview.net/forum?id=YvA8UF0I37
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf
https://openreview.net/forum?id=ElgAzv9fNk
https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://openreview.net/forum?id=8Wuvhh0LYW
https://doi.org/10.48550/arXiv.2402.10787
https://doi.org/10.48550/arXiv.2402.10787

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Philippe Tillet, H. T. Kung, and David Cox. Triton: an intermediate language and compiler for
tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, MAPL 2019, pp. 10–19, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450367196. doi:
10.1145/3315508.3329973. URL https://doi.org/10.1145/3315508.3329973.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Herve Jegou. Training data-efficient image transformers amp; distillation through attention.
In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 10347–
10357. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/
touvron21a.html.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Haocheng Xi, ChangHao Li, Jianfei Chen, and Jun Zhu. Training transformers with 4-bit integers.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=H9hWlfMT6O.

Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, and Fengbo Ren. Learning in the
frequency domain. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1737–1746, 2020. doi: 10.1109/CVPR42600.2020.00181.

Kohei Yamamoto. Learnable Companding Quantization for Accurate Low-bit Neural Net-
works . In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 5027–5036, Los Alamitos, CA, USA, June 2021. IEEE Computer Society. doi: 10.
1109/CVPR46437.2021.00499. URL https://doi.ieeecomputersociety.org/10.
1109/CVPR46437.2021.00499.

Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang, Qi-
jing Huang, Yida Wang, Michael Mahoney, and Kurt Keutzer. Hawq-v3: Dyadic neural network
quantization. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pp. 11875–11886. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/
v139/yao21a.html.

Davis Yoshida. Nf4 isn’t information theoretically optimal (and that’s good), 2023. URL https:
//arxiv.org/abs/2306.06965.

14

https://doi.org/10.1145/3315508.3329973
https://proceedings.mlr.press/v139/touvron21a.html
https://proceedings.mlr.press/v139/touvron21a.html
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=H9hWlfMT6O
https://openreview.net/forum?id=H9hWlfMT6O
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00499
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00499
https://proceedings.mlr.press/v139/yao21a.html
https://proceedings.mlr.press/v139/yao21a.html
https://arxiv.org/abs/2306.06965
https://arxiv.org/abs/2306.06965

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 KERNEL IMPLEMENTATION

In this section, we present an example implementation of Algorithm 1 using the Triton (Tillet et al.,
2019) programming language.

Nvidia GPUs provide extensive support for low-precision tensor core operations, allowing expen-
sive high-precision matrix multiplications to be replaced with low-precision alternatives, leading to
higher compute throughput and lower energy consumption. For example, the Nvidia Blackwell ar-
chitecture (Nvidia, 2025) provides tensor core support for the MX FP4(Rouhani et al., 2023) data
type. As another example, the Turing (Nvidia, 2018) and Ampere (Nvidia, 2021) architectures pro-
vide support for the INT4 data type. We list in Table 6 the representable values for both data types.

Binary Representation Signed INT4 MX FP4
0b0000 0 0
0b0001 1 0.5
0b0010 2 1
0b0011 3 1.5
0b0100 4 2
0b0101 5 3
0b0110 6 4
0b0111 7 6
0b1000 -8 0
0b1001 -7 -0.5
0b1010 -6 -1
0b1011 -5 -1.5
0b1100 -4 -2
0b1101 -3 -3
0b1110 -2 -4
0b1111 -1 -6

Table 6: Signed INT4 vs. MXFP4

Table 7 shows the values that BBQ can represent.

Precision Possible Values of q
4 -8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7
3 -4,-3,-2,-1,0,1,2,3
2 -1.5,-0.5,0.5,1.5
1 -0.5,0.5

Table 7: Values that BBQ can represent. As shown, for b = 4, BBQ can be encoded as INT4. For
b = 3, BBQ can be encoded as INT4 or FP4. For b ∈ {1, 2}, BBQ can be encoded as FP4.

Since b = 3 can be encoded by both INT4 and FP4, we present an example triton kernel for BBQ
with 3-bit quantization following Algorithm 1.

@triton.jit
def bbq(

x_ptr,
h_ptr,
rsigma_ptr,
qmz_ptr,
ROW_SIZE: tl.constexpr,
BLOCKSIZE: tl.constexpr=128,
DTYPE: tl.constexpr = "int4"

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

):
rid = tl.program_id(axis=0)
cid = tl.program_id(axis=1)
xrids = rid * BLOCKSIZE + tl.arange(0, BLOCKSIZE)[:, None]
xcids = cid * BLOCKSIZE + tl.arange(0, BLOCKSIZE)[None, :]
xids = xrids * ROW_SIZE + xcids

hrids = tl.arange(0, BLOCKSIZE)[:, None]
hcids = tl.arange(0, BLOCKSIZE)[None, :]
hids = hrids * BLOCKSIZE + hcids

load a block of x
x = tl.load(x_ptr + xids)
load pre-computed hadamard matrix shared across the entire kernel
h = tl.load(h_ptr + hids)
load reciprocal of sigma
rsigma = tl.load(rsigma_ptr)

hadamard transform
v = tl.dot(x, h) * rsigma

accelerated normal CDF and rounding
qmz = normal_cdf_and_round_3bit(v, DTYPE)

pack two 4-bit data type into a single byte
shift = tl.arange(0, 2)[None, None, :] * 4
qmz = tl.reshape(qmz, (BLOCKSIZE, BLOCKSIZE // 2, 2)) << shift
qmz = tl.xor_sum(qmz, axis=-1, keep_dims=False)

write quantized data to memory
qmzrids = rid * BLOCKSIZE + tl.arange(0, BLOCKSIZE)[:, None]
qmzcids = cid * (BLOCKSIZE // 2) + tl.arange(0, BLOCKSIZE // 2)[None, :]
qmzids = qmzrids * (ROW_SIZE // 2) + qmzcids
tl.store(qmz_ptr + qmzids, qmz)

Next, we show the definition of function normal cdf and round 3bit. We pre-compute Φ−1
(

i
2b

)
for

all possible values of i, and use a binary search method to decide which i should be the result of quan-
tization, and lastly, directly use the binary representation of i− 2b−1 − z according to Table 6. For
3-bit quantization, the 8 pre-computed values of Φ−1

(
i
2b

)
, for i ∈ {0, 1, 2, 3, 4, 5, 6, 7}, are {-∞, -

1.1503493803760083, -0.6744897501960818, -0.3186393639643752, 0.0, 0.3186393639643752,
0.6744897501960818, 1.1503493803760083}. The corresponding values of i − 2b−1 − z are
{−4,−3,−2,−1, 0, 1, 2, 3}.

@triton.jit
def normal_cdf_and_round_3bit(v: tl.tensor, DTYPE: tl.constexpr):

if DTYPE == "int4":
qmz = tl.where(

v >= 0.0,
tl.where(

v >= 0.6744897501960818,
tl.where(v >= 1.1503493803760083, 0b0011, 0b0010),
tl.where(v >= 0.3186393639643752, 0b0001, 0b0000),

),
tl.where(

v >= -0.6744897501960818,
tl.where(v >= -0.3186393639643752, 0b1111, 0b1110),
tl.where(v >= -1.1503493803760083, 0b1101, 0b1100),

)
).to(tl.int8)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

return qmz
elif DTYPE == "fp4":

qmz = tl.where(
v >= 0.0,
tl.where(

v >= 0.6744897501960818,
tl.where(v >= 1.1503493803760083, 0b0101, 0b0100),
tl.where(v >= 0.3186393639643752, 0b0010, 0b0000),

),
tl.where(

v >= -0.6744897501960818,
tl.where(v >= -0.3186393639643752, 0b1010, 0b1100),
tl.where(v >= -1.1503493803760083, 0b1101, 0b1110),

)
).to(tl.int8)
return qmz

A.2 ABLATION ON EXPONENTIAL MOVING AVERAGE OF σ

Results in Table 3 are conducted without keeping an EMA of 1/σ during training and use it for
inference. In this section, we show both variants of BBQ achieve identical perplexity.

4-bit 3-bit 2-bit 1-bit
BBQ 25.51 26.55 31.35 49.8
BBQ with EMA of Reciprocal of σ 25.4 26.55 31.43 49.72

Table 8: Perplexity of BBQ vs BBQ with an exponential moving average of 1/σ, on LLaMA-95M
pre-trained with 3 billion C4 tokens.

A.3 ZERO-SHOT RESULTS

In this section, we present the zero-shot evaluation perplexity in Table 9, which corresponds to the
models pre-trained in Table 3.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Model Dataset Params n+e Method Bits WA Perplexity
LLaMA wikitext 95M None 16 56.11
LLaMA wikitext 95M BBQ 4 57.87
LLaMA wikitext 95M QuEST 4 58.91
LLaMA wikitext 95M LSQ 4 61.62
LLaMA wikitext 95M BBQ 3 60.18
LLaMA wikitext 95M QuEST 3 64.21
LLaMA wikitext 95M LSQ 3 68.35
LLaMA wikitext 95M BBQ 2 70.19
LLaMA wikitext 95M QuEST 2 77.32
LLaMA wikitext 95M LSQ 2 80.11
LLaMA wikitext 95M BBQ 1 109.66
LLaMA wikitext 95M QuEST 1 172.77
LLaMA wikitext 125M None 16 50.26
LLaMA wikitext 125M BBQ 4 50.50
LLaMA wikitext 125M QuEST 4 51.31
LLaMA wikitext 125M LSQ 4 53.72
LLaMA wikitext 125M BBQ 3 50.94
LLaMA wikitext 125M QuEST 3 54.37
LLaMA wikitext 125M LSQ 3 58.61
LLaMA wikitext 125M BBQ 2 60.47
LLaMA wikitext 125M QuEST 2 69.45
LLaMA wikitext 125M LSQ 2 70.61
LLaMA wikitext 125M BBQ 1 97.34
LLaMA wikitext 125M QuEST 1 180.33
LLaMA wikitext 200M None 16 40.42
LLaMA wikitext 200M BBQ 4 42.56
LLaMA wikitext 200M QuEST 4 41.67
LLaMA wikitext 200M LSQ 4 4133
LLaMA wikitext 200M BBQ 3 41.82
LLaMA wikitext 200M QuEST 3 43.95
LLaMA wikitext 200M LSQ 3 426.8
LLaMA wikitext 200M BBQ 2 49.53
LLaMA wikitext 200M QuEST 2 54.12
LLaMA wikitext 200M LSQ 2 208.5
LLaMA wikitext 200M BBQ 1 80.34
LLaMA wikitext 200M QuEST 1 123.19
LLaMA wikitext 300M None 16 34.95
LLaMA wikitext 300M BBQ 4 38.57
LLaMA wikitext 300M QuEST 4 35.26
LLaMA wikitext 300M BBQ 3 36.77
LLaMA wikitext 300M QuEST 3 37.26
LLaMA wikitext 300M BBQ 2 41.24
LLaMA wikitext 300M QuEST 2 45.28

Table 9: Zero-shot wikitext perplexity.

A.4 BBQ VS. QUEST

In this section, we illustrate the difference between BBQ and QuEST in Figure 7.

• BBQ and QuEST share the Hadamard transform (1⃝) and RMS normalization (2⃝) to re-
shape the distribution to better match the standard Gaussian.

• In step 3⃝, QuEST scales by α∗, shifts by 0.5, and uses the clip function to limit values
within a finite range. BBQ uses the Φ function to limit values within a finite range, while
simultaneously maximizing the entropy.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• In step 4⃝, both methods use uniform quantization to quantize data. Both methods ensure
the quantized data can be stored in a compute-efficient data type (INT4 or FP4).

• In step 5⃝, BBQ applies linear scaling, while QuEST reverses all of the operations it did
before (RMS Normalization, scaling by α∗, and shifting by 0.5), as QuEST is a “same-
domain” quantizer. BBQ is a “cross-domain” quantizer, so BBQ does not reverse its pre-
vious operation such as Φ, shifting by 2b − 1 and z, multiplication by 2b, division by σ
etc. Instead, BBQ applies linear scaling to scale its range to be within [−γ, γ] where γ is a
learnable parameter.

• In step 6⃝, QuEST reverses its Hadamard transform (a unitary operation). BBQ does not
reverse the Hadamard transform because it is a “cross-domain” quantizer.

Figure 7: BBQ vs. QuEST.

A.5 EXTENSION TO VISION MODELS

While BBQ is designed for language models, we discuss and evaluate a potential extension of BBQ
to vision models. When we naively apply BBQ to vision models without any modification, we
notice, as shown in Figure 8 right, a subset of learned γ have magnitudes extremely close to 0.
Since every γ is assigned to a weight channel, if γ is small, weights from the corresponding channel
suffers from gradient vanishing. As shown in Figure 8 left, language models do not suffer from such
γ collapsing. Instead of making γ a learnable parameter and initializing γ to ζσ0 as discussed in
Section 3.5, we propose a BBQ variant, BBQ-Vision, that instead dynamically calculates the value
of γ as ζσ on every forward pass. BBQ-Vision prevents γ from collapsing to 0, since for γ to be 0,
all weights in that channel must also be 0. In addition, BBQ-Vision still preserves some degree of
learnability as the network can modify weights/activations to indirectly control the value of σ. We
compare BBQ-Vision against QuEST and LSQ on DeiT (Touvron et al., 2021) and Resnet (He et al.,
2015) with various sizes and show our results in Table 10. Our preliminary results show BBQ-Vision
can outperform QuEST and LSQ.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 8: Histogram of learned γ on the 2-bit language model LLaMA-95M (left) and 2-bit vision
model DeIT-Tiny (right). The x-axis is the value of γ and the y-axis is its frequency.

Model Params Dataset Bits WA BBQ-Vision QuEST LSQ
DEIT-T 5M Imagenet-100 4 3.85/2.84/74.68 3.61/2.91/74.3 3.67/2.88/74.88
DEIT-T 5M Imagenet-100 3 2.93/2.89/74.24 2.78/2.98/72.2 2.81/3.01/71.36
DEIT-T 5M Imagenet-100 2 1.94/3.05/70.16 1.93/3.18/67.24 1.90/3.23/65.32
DEIT-T 5M Imagenet-100 1 1.00/3.52/53.54 1.00/3.67/47.55 -/-/-
DEIT-S 20M Imagenet-100 4 3.82/2.53/79.46 3.61/2.51/80.00 3.57/2.52/80.04
DEIT-S 20M Imagenet-100 3 2.91/2.48/80.88 2.78/2.62/79.34 2.74/2.64/78.96
DEIT-S 20M Imagenet-100 2 1.93/2.76/77.02 1.93/2.82/76.18 1.83/2.87/74.42
DEIT-S 20M Imagenet-100 1 1.00/3.18/66.16 1.00/3.37/59.94 -/-/-
Resnet-10 5M Imagenet-100 1 1.00/3.37/63.6 1.00/3.40/62.4 -/-/-
Resnet-18 11M Imagenet-100 1 1.00/3.12/73.13 1.00/3.14/72.28 -/-/-

Table 10: Entropy/Training Cross Entropy Loss/Evaluation Accuracy of vision models pretrained
on vision datasets

A.6 VALIDATION LOSS VS. TRAINING PROGRESS

In this section we present validation loss vs. training iteration curves for all of our experiments in
Section 4. For visualization purposes, we only show the validation loss for the last 90% iterations,
hide the first 10% iterations when learning rate is warming up, and don’t show loss curves for
methods that diverged. For all figures, the y-axis is the validation cross entropy loss, and x-axis is
iterations (batches). For all experiments, we quantize both weights and activations of linear layers to
b bits. In addition, for all QuEST experiments, we use a trust factor of T = α∗/(2b − 1) as discuss
in QuEST (Panferov et al., 2025).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 9: LLaMA-95M (4-bit) pre-trained on 3 billion C4 tokens (batched over 12 thousand itera-
tions). LSQ is green, QuEST is gray, and BBQ is blue.

Figure 10: LLaMA-95M (3-bit) pre-trained on 3 billion C4 tokens (batched over 12 thousand itera-
tions). LSQ is pink, QuEST is red, and BBQ is green.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 11: LLaMA-95M (2-bit) pre-trained on 3 billion C4 tokens (batched over 12 thousand itera-
tions). LSQ is yellow, QuEST is purple, and BBQ is orange.

Figure 12: LLaMA-95M (1-bit) pre-trained on 3 billion C4 tokens (batched over 12 thousand itera-
tions). QuEST is purple and BBQ is orange.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 13: LLaMA-125M (4-bit) pre-trained on 5 billion C4 tokens (batched over 20 thousand
iterations). LSQ is red, QuEST is brown, and BBQ is pink.

Figure 14: LLaMA-125M (3-bit) pre-trained on 5 billion C4 tokens (batched over 20 thousand
iterations). LSQ is green, QuEST is gray, and BBQ is blue.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 15: LLaMA-125M (2-bit) pre-trained on 5 billion C4 tokens (batched over 20 thousand
iterations). LSQ is purple, QuEST is orange, and BBQ is green.

Figure 16: LLaMA-125M (1-bit) pre-trained on 5 billion C4 tokens (batched over 20 thousand
iterations). QuEST is pink and BBQ is orange.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 17: LLaMA-200M (4-bit) pre-trained on 10 billion C4 tokens (batched over 40 thousand
iterations). QuEST is green and BBQ is brown.

Figure 18: LLaMA-200M (3-bit) pre-trained on 10 billion C4 tokens (batched over 40 thousand
iterations). QuEST is pink and BBQ is gray.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 19: LLaMA-200M (2-bit) pre-trained on 10 billion C4 tokens (batched over 40 thousand
iterations). QuEST is orange and BBQ is pink.

Figure 20: LLaMA-200M (1-bit) pre-trained on 10 billion C4 tokens (batched over 40 thousand
iterations). QuEST is green and BBQ is brown.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 21: LLaMA-300M (4-bit) pre-trained on 20 billion C4 tokens (batched over 80 thousand
iterations). QuEST is green and BBQ is brown.

Figure 22: LLaMA-300M (3-bit) pre-trained on 20 billion C4 tokens (batched over 80 thousand
iterations). QuEST is orange and BBQ is green.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 23: LLaMA-300M (2-bit) pre-trained on 20 billion C4 tokens (batched over 80 thousand
iterations). QuEST is green and BBQ is red.

28

	Introduction
	Background and Motivation
	Compute Efficient Data Types
	Information Theoretically Optimal Quantization Methods
	Learning is Domain-Agnostic

	Proposed Method
	Step 1: Hadamard Transform
	Step 2: RMS Normalization
	Step 3: Probability Integral Transform
	Step 4 and 5: Uniform Quantization and Unsigned-to-Signed Conversion
	Step 6 and 7: Precision Dependent and Independent Scaling

	Evaluation and Discussion
	Entropy and Learning Capacity
	Inference Speedup
	Ablation

	Limitations
	Conclusion
	Reproducibility statement
	Appendix
	Kernel Implementation
	Ablation on Exponential Moving Average of
	Zero-shot Results
	BBQ vs. QuEST
	Extension to Vision Models
	Validation Loss vs. Training Progress

