Under review as a conference paper at ICLR 2026

BBQ: BOOSTING QUANTIZATION ENTROPY WITH
BELL BOX QUANTIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantization-Aware Pre-Training (QAPT) is an effective technique to reduce the
compute and memory overhead of Deep Neural Networks while improving their
energy efficiency on edge devices. Existing QAPT methods produce models
stored in compute-efficient data types (e.g. integers) that are not information the-
oretically optimal (ITO). On the other hand, existing ITO data types (e.g. Quan-
tile/NormalFloat Quantization) are not compute-efficient. We propose BBQ, the
first ITO quantization method that is also compute-efficient. BBQ builds on our
key insight that since learning is domain-agnostic, the output of a quantizer does
not need to reside in the the same domain as its input. BBQ performs ITO quan-
tization in its input domain, and returns its output in a compute-efficient domain
where ITO data types are mapped to compute-efficient data types. Without sac-
rificing compute efficiency, BBQ outperforms prior SOTA QAPT methods by a
perplexity reduction of up to 2 points for 4-bit models, up to 4 points for 3-bit
models, up to 5 points for 2-bit models, and up to 18 points for 1-bit models.

1 INTRODUCTION

Quantization is an effective method to reduce the computation/memory/energy consumption of Deep
Neural Networks (DNNs), allowing DNNss to be deployed to edge devices with limited hardware re-
sources. However, quantization often degrades model quality. While Post-Training Quantization
(PTQ) methods (Lin et al., 2024} Shao et al., [2024; [Ma et al.| [2024b; [Liu et al., 2024a; |Kim et al.,
2024) can mitigate quality degradation without re-training for higher precisions (4+-bit), they strug-
gle to maintain quality when weights and activations are quantized to 4-bit and below (Panferov
et al., 2025} [Esser et al., |2020; [Ma et al., |2024a; |Kumar et al., 2025). Quantization-Aware Training
(QAT) methods (Panferov et al., [2025; [Esser et al.| [2020; Ma et al., 20244} |Kumar et al.| 2025} [Shen
et al.,2024; Liu et al.||2025; |Yamamoto} 2021, on the other hand, can achieve higher accuracy than
PTQ methods under the same precision (Du et al., [2024} |[Panferov et al., 2025; Liu et al., 2024b) by
introducing quantization in the training loop.

QAT can be further divided into Quantization-Aware Pre-Training (Panferov et al.,2025; Shen et al.}
2024) (QAPT) and Quantization-Aware Fine-Tuning (Malinovskii et al.| 2024} Du et al.| [2024)
(QAFT). QAFT initializes a low-precision model from a full-precision pre-trained checkpoint, and
trains the model for a short duration to fit a downstream task, which is typically much smaller than
the pre-training dataset (Du et al.,2024). On the other hand, QAPT initializes a low-precision model
from scratch, aims to fit a much larger dataset, and typically trains for much longer durations. Com-
pared to first pre-train in full-precision and subsequently apply PTQ/QAFT, QAPT may have higher
pre-training speed (Kumar et al.| 2025; X1 et al., 2023} (Castro et al.,|2025)), as when activations and
weights are quantized, the forward pass of training may be performed in low precision.

This work aims to improve the accuracy of a QAPT’ed model without compromising its efficiency
on edge devices. Specifically, we target the case when a low-precision model is initialized ran-
domly, trained for long durations on large datasets, and is aimed to be deployed to edge devices with
constraints on memory capacity, inference latency, and energy consumption. The energy constraint
requires the model to be compute-efficient, or that expensive high-precision matrix multiplications
be substituted with low-precision arithmetic, while the memory and latency constraints require the
model to be small in size, or to have a low parameter count and precision. The main challenge of

Under review as a conference paper at ICLR 2026

Signed INT4 | -8, £7, £6, £5, +4, +3, 2, £1,0
MX FP4 +6, 4, +£3, £2, £1.5, £1, £0.5, £0

Table 1: Possible values of the INT4 and the MX FP4 data type.

this work is models with limited memory footprint cannot fit large datasets well due to a lack of
learning capacity (Kumar et al., 2025).

Using the discrete Shannon entropy (Shannon, |1948; |Cover & Thomas|, [2000) of quantized weights
as a proxy to the amount of information/knowledge present in a QAPT ed model, we observe that
SOTA QAPT methods QuEST (Panferov et al., 2025) and LSQ (Esser et al., 2020) produce quan-
tized models that under-utilize the available learning capacity. The under-utilization is because LSQ
and QuEST use compute-efficient data types (e.g. integers and floats) which are not information
theoretically optimal (ITO). While existing ITO data types (Dettmers et al.| 2023} 2022) can reduce
this under-utilization of learning capacity, they lack compute efficiency on modern CPUs/GPUs,
which limits the applicability on edge devices with limited energy.

To maximally utilize the limited learning capacity while preserving compute efficiency, we pro-
pose Bell Box Quantization (BBQ). BBQ is designed based on our key insight: since learning is
domain-agnostic, the output of a quantizer does not need to live in the same domain as its input.
BBQ performs ITO quantization in its input domain to maximally preserve information, but returns
its output in a different domain, where ITO data types are mapped to compute-efficient data types.
BBQ achieves higher capacity utilization and better prediction quality than QUEST and LSQ. Unlike
existing ITO data types, a BBQ-quantized model can still accelerate expensive matrix multiplica-
tions with low-precision arithmetic.

2 BACKGROUND AND MOTIVATION

In this section, we discuss compute-efficient data types on modern GPUs, existing ITO quantization
methods, and lastly, the domain-agnostic property of learning which is the key inspiration of BBQ.

Quantization is the discretization of a continuous random variable x to a discrete random variable
&, with 2° possible states, such that & is sufficiently close to 2. We present a generic template for
quantization as follows:

&= f"(q), where ¢ = r(f()) 1)

where f : R — Ris a transform function that converts z to some intermediate domain more suitable
for quantization; 7 : R — T is some rounding function that converts any real value to one of 2°
possible real values, i.e. T C R and |T| = 2b: and f‘l, the inverse function of f, is responsible for
converting the discretized value g back to the original domain of z.

2.1 COMPUTE EFFICIENT DATA TYPES

A data type T is compute-efficient, if hardware offers low-precision multiply-accumulate instruc-
tions that directly operate on members of T without first decoding to high precision data types. Table
shows members of T for INT4, which is supported by the Nvidia Ampere (Nvidia,|2021)) and Tur-
ing (Nvidia, 2018) architectures, and members of T for MX FP4 (Rouhani et al., 2023), which is
supported by the Blackwell architecture (Nvidial [2025). When f~* is linear or affine, a compute-
efficient data type can be used to accelerate matrix multiplication and convolution (Yao et al.,[2021])).
For example, if f~!(q) = sq for a constant scalar s, then the multiplication of activation matrix
X = f74(Q.) = sQ, and weight matrix W = f~1(Q,,) = sQ,, can be simplified to s2(Qy - Q).
In other words, the matrix multiplication can be computed using solely low-precision representa-
tigns of activations and weights, and later de-quantized to the original domain by multiplication of
5°.

Prior SOTA QAPT methods QuEST (Panferov et al.l [2025) and LSQ (Esser et al.l [2020) uses lin-
ear/affine f~! and compute-efficient data types. We show the definition of f, r, and f~! for LSQ

Under review as a conference paper at ICLR 2026

and QuEST as follows:
LSQ: f(x) = x/s,r(v) = [clip(v, =2° 1,271 = 1)], F 71 (q) = sq

HT(x 1 . — — — * 1
QUEST: f(z) = afg) = 5 7(v) = [elip(v, 2", 2" =)], fH(g) = HT(a"0(g + 3))
2)
where s, o, and a* are constant scalars; HT is the Hadamard transform, a linear operation; and
the clip operation and the round-to-nearest-integer operation |-] enforces the output of r to be a
b-bit signed integer. Since f~! is linear or affine in LSQ and QuEST, matrix multiplications can be
accelerated with low-precision arithmetic.

In short, for a quantization method to be compute-efficient, it should have a linear/affine dequanti-
zation function f~! and a compute-efficient data type T.

2.2 INFORMATION THEORETICALLY OPTIMAL QUANTIZATION METHODS

An ITO quantization method is one that ensures each member of T is used equally often (Dettmers
et al., 2023). For example, if b = 2, then 25% of values of = should be assigned to each of the 4
possible values in T. While there are many possible mappings that evenly split the probability mass,
a trivial mapping is to use the 25, 50, 75 percentile as rounding boundaries. In other words, values
of z less than the 25-percentile of x are rounded to the first value in T; values larger than the 25-
percentile but less than 50-percentile of z are rounded to the second value, etc. For x ~ N(0,02),
this trivial mapping can be expressed as:

f(x) = z/o,r(v) = Tlfloor(2°@(v))], f ' (q) = 0q 3)
where T7i] is the ith smallest element in T. Note that Equation [3| only requires that T contains 2°
unique real values. Therefore, Equation [3]describes a set of ITO methods rather than a unique one.
By evenly splitting the probability mass of z, all ITO data types maximize the Shannon entropy of
q defined as

H(q) =Y _ —P(q=t)logy P(q=1) &)
teT

Note that entropy was shown to positively correlate with accuracy/prediction quality (Cheng et al.,
20255 [Shen et al.| 2024).

Inspired by ITO quantization methods, |[Dettmers et al.| (2023) proposed NormalFloat, whose values
are a list of abs-max-normalized Gaussian quantiles (Yoshidal 2023 |Dotzel et al.| 2024). Due to
lack of hardware support, NormalFloat must be de-quantized to full-precision floats and then used
in computation, which limits its applicability on energy-constrained edge devices.

This presents a dilemma: while ITO quantization methods maximally preserve information, they are
not compute-efficient; compute-efficient quantization methods, on the other hand, are not ITO for
Gaussianly distributed weights/activations. Can we obtain the best of both worlds?

2.3 LEARNING IS DOMAIN-AGNOSTIC

Since neural networks are universal function approximators (Hornik et al.l [1989), they are capable
of learning from transformed/augmented data, or even data encoded in latent spaces that are not
human-understandable. For example, DNNs can correctly classify images that are rotated (He et al.}
2015)), or even images that are transformed to the frequency domain (Xu et al.| [2020). As another
example, when sparse autoencoders (Gao et al., [2025)) are trained just to reconstruct the data, the
resulting latent embedding of the data can be used by other DNNs to complete downstream tasks.
These are all evidence that, as long as information is preserved, simply projecting/transforming data
to a different domain does not prevent learning.

The domain-agnostic property of learning provides an opportunity to circumvent the inefficiency of
ITO quantization methods. Rather than treating quantizers as data compressors and reconstructors,
we could treat them as feature extractors that return a set of compact latent features of the original
data. Critically, these latent features reside in an output domain, that is, not necessarily the same
domain as the input, but is designed to be a compute-efficient domain, where features can be effi-
ciently used by matrix multiplication operators. In other words, we ask the research question: if we

Under review as a conference paper at ICLR 2026

X @ = HT(x) @=@/o @ = 0(®@)

0 -30 0 30 -3 0 3 0 1
@=6@*y ®=5/2"(b-1) ®=@-2"(b-1)-z @ =floor(2™b * @)

‘ 8 7

y -1 1

Figure 1: The seven steps of BBQ: Hadamard Transform (D), RMS normalization (), probability
integral transform (()), uniform quantization (@), unsigned-to-signed conversion ((3), precision-
dependent scaling (®), and precision-independent scaling (().

design a quantizer that performs ITO quantization in the original domain, and returns output in an
alternative compute-efficient domain, will such a quantizer outperform existing non-I1TO quantizers
in QAPT?

3 PROPOSED METHOD

In this section, we present the Bell Box Quantizer (BBQ). BBQ is designed to be ITO, or to max-
imally preserve information from its input, while also returning compute-efficient outputs that can
be accelerated by modern hardware. The formulation of BBQ is as follows:

q=[2® (HT(z)/o)] — 21 — 2
N ®)

where 7y is a learnable scaling factor, HT is the Hadamard transform operation, ® is the Gaussian
CDF, | -] is the floor operation, o is the RMS normalization factor v/ E[(HT(x))2], and z is a hyper-
parameter zero point. As illustrated in Figure [T BBQ involves seven steps: Hadamard Transform,
RMS Normalization, probability integral transform, uniform quantization, unsigned-to-signed con-
version, precision-dependent scaling, and precision-independent scaling.

3.1 STEP 1: HADAMARD TRANSFORM

Similar to QUEST (Panferov et all, 2023)), the first step of BBQ is to Gaussianize the input z by
performing the Hadamard transform, visualized in Figure [[|Row 1 Column 2. After the transform,
HT(z) behaves like samples from N (0, o2). Instead of transforming the whole matrix x, we follow
QuEST and perform the Hadamard Transform on every H elements of x along the input channel
dimension. During training, the Hadamard Transform is a differentiable operation, and we simply
use autograd frameworks to perform its backward pass. During inference, the Hadamard transform
is implemented with a vector-matrix multiplication, between an H-element slice of x and the pre-
computed H x H Hadamard matrix.

3.2 STEP 2: RMS NORMALIZATION

The next step of BBQ, visualized in Figure [[] Row 1 Column 3, is to normalize the Gaussian-like
data by dividing the root-mean-square scaling factor ¢ = /E[HT(z)]. After the normalization,

Under review as a conference paper at ICLR 2026

Algorithm 1 Example 3-bit Inference Quantization Kernel for a Thread Block

1: function BBQ(block_id, x_ptr, h_ptr, q_ptr, E[l /o))
2: x = x_ptr[block_id:block id+1, :] # x ptris an N x N matrix reshaped to (N?/H, H)

3: h = h_ptr[:, :] # h_ptr is a pre-computed Hadamard matrix with shape (H, H)
4: x =X @ h # vector matrix multiplication between shapes (1, H) and (H, H)
5: x =x * F[1/o] # element-wise multiplication by scalar
6: for t < 0to H — 1 do # can be done in parallel across warps and threads
7 if 2[t] > ®~1(4/8) then # Binary scarch through pre-computed ® ' values
8: if x[t] > ®~1(6/8) then
9: x[t] =3if z[t] > ®71(7/8) else 2

10: else

11: x[t]=1if z[t] > ®~1(5/8) else 0

12: end if

13: else

14: if z[t] > ®~1(2/8) then

15: x[t] =-1if z[t] > ®~1(3/8) else -2

16: else

17: x[t] =-3if z[t] > ®71(1/8) else -4

18: end if

19: end if

20: end for

21: g-ptr[id:id+1, :] = x # store quantized results to global memory

22: end function

clip(v)
p(clip(v))
p(®(v))
d(v)

_/

\

v clip(v) O(v)

Figure 2: Comparison of clipping (blue) and the normal CDF (orange) ® for v ~ N(0,1).

the data behaves like samples from N (0, 1). For weight quantization during training, we measure
o and perform RMS normalization for every output channel individually. After training, weight
quantization can be done once offline and does not introduce runtime overhead. For activation
quantization, we measure o and perform RMS normalization for the whole activation tensor. In
addition, during training we keep track of an exponential moving average of 1/0 measured from
activations, denoted as E[1/0]. During inference, instead of measuring 1/0 from activation tensors,
we use the recorded E[1/0] instead. This is similar to how BatchNorm (Ioffe & Szegedy, [2015)
uses running statistics during inference. During training, we use autograd frameworks to perform
the backward pass of RMS Normalization to and o. Unlike QUEST, we do not detach the gradient
of 0.

3.3 STEP 3: PROBABILITY INTEGRAL TRANSFORM

The probability integral transform converts any continuous distribution to a uniform
one by applying its CDF on the data. As visualized in Figure [[]Row 1 Column 4, we apply the
standard Gaussian CDF @ to data that behaves like samples from N (0, 1), creating data that behaves
likes samples from U(0,1). In QuEST and LSQ, the component that behaves similarly to ® is the
clip operation. As shown in Figure [2] both functions restrict their output to be within some finite
range. However, @ is infinitely differentiable and is therefore much smoother than clip which is
piecewise linear. A smoother operation can be more suitable for optimization methods like Gradient
Descent (Nesterov}, 2014} [Bottou et al.l 2018). For example, the GELU function (Hendrycks &
Gimpel, [2023) defined as GELU(z) = x®(x) is smoother than the piecewise linear ReLU (Agarap)

Under review as a conference paper at ICLR 2026

Precision | Possible Values of ¢
4| -8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7
31 -4,-3,-2,-1,0,1,2,3
2 | -1.5,-0.5,0.5,1.5
1] -0.5,0.5

Table 2: Values that BBQ can represent. As shown, for b = 4, BBQ can be encoded as INT4. For
b = 3, BBQ can be encoded as INT4 or FP4. For b € {1, 2}, BBQ can be encoded as FP4.

2018)), and GELU can outperform ReLU empirically (Hendrycks & Gimpel,[2023)). During training,
® is a differentiable operation and we use the autograd framework to perform BackProp. During
inference, we combine ¢ with the subsequent floor operation using the following property:

|.2bq)(v>J =1, s.t. 1 <2le> <v< $-1 (l ;rbl) ©

which allows us to pre-compute & ~* (2%) for all 2° possible values of 4, and at runtime perform a
binary search that requires b floating point comparisons. The pseudocode of a 3-bit inference kernel
implementation of BBQ is shown in Algorithm T}

3.4 STEP 4 AND 5: UNIFORM QUANTIZATION AND UNSIGNED-TO-SIGNED CONVERSION

At this stage, uniform quantization is the ITO quantization method since the data behaves like sam-
ples from U(0, 1) as shown in Figure Row 1 Column 4. Since it is known that having zero-mean
activations is desired for training DNNs (LeCun et al.,2012), we subsequently convert the positive-
only data to symmetric data by subtracting 2°~! and the hyperparameter zero point z, producing the
final ¢ stored as a compute-efficient data type, visualized in Figure [I]Row 2 Column 3. Inspired by
NF4 (Dettmers et al., [2023), we use z = 0 for b € {3,4}, allowing the data type to represent zero
exactly while sacrificing an extra value on the positive side. We use z = —0.5 for b € {1, 2} to en-
sure activations remain zero-mean. During training, we use the Straight-Through Estimator (Bengio
et al.| |2013) for the floor operation, and the autograd framework for all other differentiable oper-
ations. Table [2|lists the values supported by the BBQ data type. For b € {1,2,3}, BBQ can be
represented using the MX FP4 data type on existing Blackwell GPUs. For b € {3,4}, BBQ can be
represented using INT4 on existing Ampere and Turing GPUs.

3.5 STEP 6 AND 7: PRECISION DEPENDENT AND INDEPENDENT SCALING

BBQ includes a learnable scaling parameter s = v/ 2b=1 as without it, the network has no control
over the magnitude of its activations. Normalization layers like BatchNorm (loffe & Szegedyl [2015)
and LayerNorm (Ba et al.,2016) use a similar learnable scaling factor to address the same problem.
Instead of learning s like in LSQ (Esser et al.l 2020), we decouple s into the ratio of a precision-
independent learnable scaling factor « (visualized in Figure [I| Row 2 Column 1) and a constant
precision-dependent scaling factor 2°~! (visualized in Figure |1/ Row 2 Column 2) to ensure 7 can
be initialized to the same value regardless of precision.

The initialization of ~y also plays a critical role, as overly large initialization can lead to gradient
explosion while overly small initialization can lead to gradient vanishing. We initialize v to (* oy,
where o is the 0 measured at the first iteration of training, and {* is a constant MSE optimal scaling
factor defined as follows:

(" = arg min By o (0 = (22(0) - 1)?] @

In other words, if a Gaussian variable v is transformed to the cumulative distribution domain and
scaled to the range [—(, (], the resulting quantity ¢(2®(v) — 1) is closest on average to v when
¢ = (*. By initializing v to (*og, & can have approximately the same magnitude as x (in the first
iteration) to prevent the activation magnitude from exploding or vanishing as tokens travel deeper
into the network. After the first iteration, we simply let v update itself based on gradient descent. In
addition, we apply an LSQ-style gradient scaling method (Esser et al., |2020) to reduce the gradient
of by a factor of /n, where n is the number of weights/activations in tensor . We use per-channel
~ for weights, and per-tensor ~ for activations. We do not apply weight decay to ~.

Under review as a conference paper at ICLR 2026

. BBQ QuEST LSQ
Params | Tokens | Full | Bits Entropy | Perplexity | Entropy | Perplexity | Entropy | Perplexity
95M 3B 2475 | 4 3.93 25.51 3.61 26.37 3.59 27.46
95M 3B 2475 | 3 2.96 26.55 2.78 29.04 2.74 30.27
95M 3B 2475 | 2 1.97 31.34 1.92 35.58 1.69 36.58
95M 3B 24.75 1 1.00 49.22 1.00 67.78 - -
125M 5B 2151 | 4 3.93 22.15 3.61 22.98 3.60 23.77
125M 5B 2151 | 3 2.96 23.22 278 25.21 2.74 26.28
125M 5B 2151 | 2 1.98 27.34 1.93 31.32 1.81 31.42
125M 5B 21.51 1 1.00 44.58 1.00 72.54 - -
200M 10B 1793 | 4 3.93 18.79 3.61 19.06 2.73 1778
200M 10B 1793 | 3 2.96 19.74 2.78 20.82 2.50 140.9
200M 10B 1793 | 2 1.98 23.08 1.93 25.46 1.63 78.19
200M 10B 17.93 1 1.00 38.27 1.00 52.37 - -
300M 20B 1543 | 4 3.93 16.10 3.61 16.26 - -
300M 20B 1543 | 3 2.96 16.90 2.78 17.67 - -
300M 20B 1543 | 2 1.98 19.75 1.93 21.53 - -

Table 3: Entropy and Perplexity of LLaMA models pretrained on the C4 dataset. The headers are the
number of parameters (Params), the number of tokens (Tokens), perplexity without any quantization
(Full), activation/weight precision (Bits), and the entropy and perplexity of BBQ, QuEST and LSQ.

Params 95M 95M 95M 95M 95M | 95M 95M 95M 95M 95M 95M
Bits WA 16 4 4 4 4 3 3 3 3 1 1
Method None BBQ QuEST LSQ NF4 | BBQ QuEST LSQ NF3 BBQ QuEST
Perplexity 25 26.7 26.83 27.55 28.5 | 28.61 29.7 30.85 36.16 53.8 77.96
Params 95M 95M 95M 95M 95M | 125M 125M | 125M 125M | 125M 125M
Bits WA 2 2 2 2 2 3 3 2 2 1 1
Method BBQ QuEST LSQ NF2 SEQ | BBQ QuEST | BBQ QuEST | BBQ QuEST
Perplexity | 34.36 36.7 38.98 246.6 40.07 | 24.78 26.05 | 29.38 3147 | 5046 69.78

Table 4: Perplexity of GPT models pretrained on the C4 dataset.

4 EVALUATION AND DISCUSSION

We use the publicly available source code of QUEST (Panferov et al., 2025), add the implemen-
tation of BBQ, and train on LLaMA (Touvron et al., [2023; [Vaswani et al., [2017) models with n
non-embedding parameters plus e embedding parameters where n € {30M, 50M, 100M, 200M }
and e € {65M,75M,100M,100M }. For each model, we pre-train with 100n C4 tokens while
quantizing the weights and activations of all linear layers to b-bit following QUEST. We compare
BBQ against QUEST/LSQ for each b € {1,2,3,4}, and present the evaluation quality (perplexity)
and weight entropy (bits) in Table[3] We show zero-shot results in Table[9} and training loss curves in
Section[A.6] Since LSQ does not support 1-bit quantization and LSQ diverges when n+e = 300M,
we omit such experiments. Each experiment for n + e < 200M is conducted on one Nvidia RTX
5090 and lasts for up to 1 day. Each experiment for n + e = 300M is conducted on one Nvidia
A100 80GB and lasts for 3.5 days. In total, all experiments took approximately 1.5 GPU months,
which is all we can afford in a non-corporate setting with limited access to shared hardware. Lastly,
we evaluate BBQ against QUEST, LSQ, ParetoQ-SEQ (Liu et al.,|2025)), and NormalFloat (Dettmers
et al.| 2023) on GPT (Brown et al.,[2020) models and present our results in Table@

Results in Table [3]and 4] suggest BBQ can consistently achieve higher entropy and lower perplexity
than QuEST and LSQ at the same precision, and that entropy is a good proxy to prediction quality.
A special case is when b = 1. In this case, both QUEST and LSQ achieves the maximal entropy
of 1 bit. We attribute the performance gain to the fact that ® from BBQ is smoother than the clip
operation from QuUEST and LSQ, and therefore have nicer properties for optimization methods like
Gradient Descent. In addition, we note that LSQ diverges for LLaMA-200M, which is reflected in its
entropy. Notably, when LSQ does not diverge, like in the case of LLaMA-95M and LLaMA-125M,
we see that LSQ can achieve an entropy of 3.6 bits for 4-bit precision, 2.74 bits for 3-bit precision,
and 1.7 bits for 2-bit precision. However, when LSQ diverges, we see that its entropy drops to 2.73
bits for 4-bit precision, 2.50 bits for 3 bit precision, and 1.63 bits for 2-bit precision. This shows that

Under review as a conference paper at ICLR 2026

= LLaMA-300M-QuEST-2 = LLaMA-300M-BBQ-2

1.98
1.96
1.94

1.92
| iter

0 20k 40k 60k

Figure 3: Quantized weight entropy (y-axis) vs. training iterations (x-axis) for LLaMA-300M with
2-bit weight and activations, pre-trained on 20 billion C4 tokens (batched into 80 thousand training
iterations). BBQ is red and QuEST is green.

b=1 b=2 b=3 b=4
30 3 4
= =5 = =
g20) g2 s
= c = 22
10 gt g1 g
0.0 0.5 10 1 2 0 2 3 %% 3.5 4.0
Entropy Entropy Entropy Entropy

Figure 4: Monte Carlo Estimation of the PDF of the entropy of a 2°-category discrete distribution.
The figures are generated as follows. First, we generate s lists, where each list has 2% numbers,
each i.i.d. sampled from U(0, 1). Next, for each of the s lists, we normalize the list such that all b
numbers in that list add up to 1. Effectively, this creates s randomly generated discrete distributions.

Next, for each list I, we calculate its entropy with the formula Zil —I[i] logs, I[i], obtaining a total
of s samples of entropy. Lastly, we plot the histogram of entropy to estimate its PDF. We use
s = 1,000,000 and b € {1,2,3,4}. The plots suggest that for b = 1, most discrete distributions
have entropy > 0.5; for b = 2, most discrete distributions have entropy > 1; for b = 3, most
distributions have entropy > 2; and lastly, for b = 4, most distributions have entropy > 3.5.

entropy is a good indicator of a quantized model’s prediction quality. Lastly, Table [3] shows BBQ
achieves SOTA perplexity for 1-bit quantization and BBQ works for models at multiple scales.

4.1 ENTROPY AND LEARNING CAPACITY

In this section, we discuss the implications of Figure [3] which contains the behaviour of weight
entropy of BBQ and QuEST during 2-bit training. We note a few observations:

* BBQ can maximize entropy as it can achieve 2 bits of entropy at the beginning of training.

* During training, a BBQ-quantized model can still learn to decrease its entropy if that is
(temporarily) the best thing to do.

* Excluding the first 8 thousand iterations when learning rate is warming up, BBQ tends to
increase weight entropy for the last 72 thousand iterations. This suggest as more training
tokens are presented to the model, more information is accumulated in weights.

* The entropy of QUEST seems to have an empirical ceiling at around 1.93 bits.

By having a lower empirical entropy upper bound of 1.93 bits, QUEST limits the learning capacity of
the model, while BBQ does not suffer from such capacity under-utilization. Suppose a model has n
parameters, each quantized to b bits. This means the model has a total of 2"? possible unique states.
Some of the 2" states have higher entropy, while others have lower entropy. QAPT’s objective is to
find a (locally) optimal state out of all 27* possible states. However, if QUEST enforces its weight

Under review as a conference paper at ICLR 2026

0.3
—— bbg — fp4
41 — int8
0.2 — fpl6
(%] 9]
£ £,
0.11
T T T T 07 T T T T
2000 4000 6000 8000 2000 4000 6000 8000

Figure 5: The left figure shows latency of BBQ quantization kernel of an N x N matrix. The right
figure shows the latency of FP4/INT8/FP16 matrix multiplication of two N x N matrices. The
y-axis is latency and the x-axis is N. All latency measurements are conducted on Nvidia RTX 5090.

N GEMM W element-wise ops I bbqg kernel Il nf4 kernel s others
LLaMA 700M on RTX 5090 LLaMA 2.4B on A100 80GB
800

600
400
200

0

bbqg-fp4 fpl6 nf4
Quantization Methods Quantization Methods

bbg-int4 fpl6 nf4

Figure 6: End-to-end latency improvement of BBQ vs. full-precision and NormalFloat 4 on RTX
5090 (a Blackwell GPU that supports fp4 matmul) and A100 (an Ampere GPU that supports int4
matmul) GPUs. For each linear layer, BBQ launches an activation quantization kernel (green re-
gion), an fp4/int4 matrix multiplication kernel (part of blue regions), and an element-wise scaling
kernel (part of orange region).

entropy to be lower than 1.93 bits, then some of the high-entropy states cannot be explored by the
training algorithm. Therefore, the model’s learning capacity is effectively reduced.

To numerically quantify the under-utilization of QUEST and the improvement in capacity utilization
of BBQ over QUEST, we use Monte Carlo sampling to estimate the PDF of entropy in Figure [for
b€ {1,2,3,4}. The figure suggests that regardless of 7, most of the 2" states have medium to high
entropy, while very few have low entropy. Since QuEST has an empirical entropy upper bound of
1.93 bits (indicated by the black line in Figure d]column 2), we estimate from Figure] that QUEST’s
search space is limited to 0.82 - 2"° states. On the other hand, BBQ has an entropy upper bound of
2 bits, and therefore has a search space of 2™, or a 22% gain in search space size over QUEST.

4.2 INFERENCE SPEEDUP

In this section, we discuss our profiling results of the latency of a Triton implementation (shown
in Section[A.T) of Algorithm[Tjon N x N activation matrices, for N € [256,8192]. Specifically,
N = 8192 corresponds to the dimension of LLaMA-65B (Touvron et al) 2023), an important
LLM benchmark. We perform latency measurements on Nvidia RTX 5090, a Blackwell GPU with
support for MX FP4. Figure [5 left shows that when N = 8192, our BBQ quantization kernel takes
0.3 milliseconds to quantize an N x N activation matrix to FP4. However, Figure [5] right shows
the latency saving of FP4 over FP16 is 4 milliseconds when N = 8192. Therefore, for models at
the scale of LLaMA-65B, BBQ with FP4 quantization leads to 3.7 milliseconds of latency reduction
per linear layer. In addition, for the memory-bound token generation phase of inference, using FP4
can still lead to speedup since weights/activations are quantized to FP4 to save memory. In Figure
@1} we additionally show end-to-end LLaMA inference speedup on both NVIDIA RTX 5090 and
NVIDIA A100 80GB, an Ampere GPU. In Figure [A1] the latency of BBQ quantization kernel is

Under review as a conference paper at ICLR 2026

Hadamard | RMS Norm | PIT | Learnable v | ~ Init | Perplexity | Entropy | Notes
v 4 v v v 31.34 1.97 BBQ

X v v v v 35.79 1.98

v X v v v 35.93 1.98

v 4 X X X 35.58 1.92 QuEST
v v 4 X X 138.3 1.92

v v v X v 31.46 1.98

Table 5: Ablation of BBQ features, evaluated on LLaMA-95M trained with 3B C4 tokens. The
features are Hadamard Transform, RMS Normalization, Probability Integral Transform (PIT or @),
making ~ a learnable parameter, and +y initialization. A v means a feature is present, and X means
the feature is not included.

illustrated as a fraction of the overall latency. In general, BBQ shows a 40% speedup over full-
precision baseline and a 48% speedup over NF4 quantization.

4.3 ABLATION

In this section, we present ablation studies of BBQ’s individual features in Table[d.2] Specifically, we
study the effects of Hadamard Transform, RMS Normalization, probability integral transform (®),
having a learnable scale v, and initializing v to (* o instead of a dummy value (e.g. 1). Results show
Hadamard transform and RMS normalization are two solid features BBQ inherited from QuEST, as
removing them from BBQ results in a perplexity increase of 4.45 and 4.59 points, respectively. The
probability integral transform (®) is meant to replace QUEST’s clip function. We see that naively
substituting clip with ® (row 4 compared to row 5) without + initialization leads to divergence (a
perplexity increase from 35.58 to 138.3), but the combination of ® and + initialization (row 6) can
outperform QUEST (row 4) by a perplexity decrease of 4.12. Lastly, making v learnable can further
reduce the perplexity by a small margin (0.12 perplexity reduction).

5 LIMITATIONS

While BBQ can achieve lower perplexity than QUEST and LSQ when a model with limited mem-
ory footprint is initialized randomly and trained on a large dataset (QAPT), BBQ is, by design, a
quantizer that makes no attempt to reduce/bound the Euclidean distance between z and z, since they
live in separate domains. Therefore, when applied to QAFT, or finetuning a large model initialized
from a full-precision pre-trained checkpoint for a short duration on a small downstream dataset,
BBQ’s unbounded quantization error will drastically reduce the model quality and cannot catch up
to “same-domain” quantizers like QUEST and LSQ within the short time frame of QAFT. For similar
reasons, BBQ is not suitable for PTQ.

6 CONCLUSION

In this work, we identify existing SOTA QAPT methods under-utilize learning capacity. While ex-
isting ITO quantization methods can maximize entropy, they are not compute-efficient, which limits
their applicability to edge devices with energy constraints. Utilizing our key insight that learning
is domain-agnostic, we propose BBQ, which performs ITO quantization in the input domain, while
returning outputs in a compute-efficient domain. Empirical results shows BBQ outperforms QuEST
and LSQ without sacrificing compute efficiency.

10

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We will upload our source code as a separate zip file. Our code should allow reviewers to reproduce
Table [3]and Figures 3] and [5]

REFERENCES

Abien Fred Agarap. Deep learning using rectified linear units (relu), 2018. URL http://arxiv.
org/abs/1803.08375. cite arxiv:1803.08375Comment: 7 pages, 11 figures, 9 tables.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation, 2013. URL https://arxiv.org/
abs/1308.3432.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning, 2018. URL https://arxiv.org/abs/1606.04838|

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Roberto L. Castro, Andrei Panferov, Soroush Tabesh, Oliver Sieberling, Jiale Chen, Mahdi Nikdan,
Saleh Ashkboos, and Dan Alistarh. Quartet: Native fp4 training can be optimal for large language
models. CoRR, abs/2505.14669, May 2025. URL https://doi.org/10.48550/arXiv.
2505.146609.

Feng Cheng, Cong Guo, Chiyue Wei, Junyao Zhang, Changchun Zhou, Edward Hanson, Jiaqi
Zhang, Xiaoxiao Liu, Hai Li, and Yiran Chen. Ecco: Improving memory bandwidth and capacity
for llms via entropy-aware cache compression. In Proceedings of the 52nd Annual International
Symposium on Computer Architecture, ISCA 25, pp. 793-807, New York, NY, USA, 2025. As-
sociation for Computing Machinery. ISBN 9798400712616. doi: 10.1145/3695053.3731024.
URLhttps://doi.org/10.1145/3695053.3731024.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in Telecom-
munications and Signal Processing). Wiley-Interscience, USA, 2006. ISBN 0471241954.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=shpkpVXzo3h.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: efficient finetuning
of quantized llms. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, NIPS °23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Jordan Dotzel, Yuzong Chen, Bahaa Kotb, Sushma Prasad, Gang Wu, Sheng Li, Mohamed S. Ab-
delfattah, and Zhiru Zhang. Learning from students: applying t-distributions to explore accurate
and efficient formats for llms. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR .org, 2024.

DaYou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, Xiaowen Chu, and Ningyi Xu. BitDis-
tiller: Unleashing the potential of sub-4-bit LLMs via self-distillation. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 102-116, Bangkok, Thailand, Au-
gust 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.7. URL
https://aclanthology.org/2024.acl-1long.7/.

11

http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1606.04838
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2505.14669
https://doi.org/10.48550/arXiv.2505.14669
https://doi.org/10.1145/3695053.3731024
https://openreview.net/forum?id=shpkpVXzo3h
https://openreview.net/forum?id=shpkpVXzo3h
https://aclanthology.org/2024.acl-long.7/

Under review as a conference paper at ICLR 2026

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dhar-
mendra S. Modha. Learned step size quantization. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=rkgO66VKDS.

R. A. Fisher. Statistical Methods for Research Workers, pp. 66-70. Springer New York, New
York, NY, 1992. ISBN 978-1-4612-4380-9. doi: 10.1007/978-1-4612-4380-9_6. URL https:
//doi.org/10.1007/978-1-4612-4380-9_6.

Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In The Thirteenth Inter-
national Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=tcsZt 9ZNKD.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL https://
arxiv.orqg/abs/1606.08415.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2(5):359-366, 1989. ISSN 0893-6080. doi: https:
//doi.org/10.1016/0893-6080(89)90020-8. URL https://www.sciencedirect.com/
science/article/pii/0893608089900208.

Sergey loffe and Christian Szegedy. Batch normalization: accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on In-
ternational Conference on Machine Learning - Volume 37, ICML’15, pp. 448-456. JMLR.org,
2015.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W.
Mahoney, and Kurt Keutzer. Squeezellm: dense-and-sparse quantization. In Proceedings of the
41st International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Tanishq Kumar, Zachary Ankner, Benjamin Frederick Spector, Blake Bordelon, Niklas Muen-
nighoff, Mansheej Paul, Cengiz Pehlevan, Christopher Re, and Aditi Raghunathan. Scaling laws
for precision. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=wglPCg3CUP.

Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Miiller. Efficient Back-
Prop, pp. 9-48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-
642-35289-8. doi: 10.1007/978-3-642-35289-8_3. URL https://doi.org/10.1007/
978-3-642-35289-8_3.

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Lingi Song, Zhenan
Sun, and Ying Wei. Duquant: Distributing outliers via dual transformation makes stronger quan-
tized LLMs. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=mp8u2Pcmqgz.

Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei Cai, and Bohan Zhuang. QLLM: Ac-
curate and efficient low-bitwidth quantization for large language models. In The Twelfth Interna-
tional Conference on Learning Representations, 2024a. URL https://openreview.net/
forum?id=FIplmUWdm3.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. LLM-QAT: Data-free quantization aware
training for large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
Findings of the Association for Computational Linguistics: ACL 2024, pp. 467—484, Bangkok,
Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-acl.26. URL https://aclanthology.org/2024.findings-acl.26/!

Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei Zhao, Scott Roy,
Lisa Jin, Yunyang Xiong, Yangyang Shi, Lin Xiao, Yuandong Tian, Bilge Soran, Raghuraman

12

https://openreview.net/forum?id=rkgO66VKDS
https://doi.org/10.1007/978-1-4612-4380-9_6
https://doi.org/10.1007/978-1-4612-4380-9_6
https://openreview.net/forum?id=tcsZt9ZNKD
https://openreview.net/forum?id=tcsZt9ZNKD
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://openreview.net/forum?id=wg1PCg3CUP
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://openreview.net/forum?id=mp8u2Pcmqz
https://openreview.net/forum?id=FIplmUWdm3
https://openreview.net/forum?id=FIplmUWdm3
https://aclanthology.org/2024.findings-acl.26/

Under review as a conference paper at ICLR 2026

Krishnamoorthi, Tijmen Blankevoort, and Vikas Chandra. Paretoq: Improving scaling laws in ex-
tremely low-bit LLM quantization. In The Thirty-ninth Annual Conference on Neural Information
Processing Systems, 2025. URL https://openreview.net/forum?id=PMSNd8xTHp.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits, 2024a. URL https://arxiv.orqg/abs/2402.17764.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei Chao,
and Rongrong Ji. Affinequant: Affine transformation quantization for large language models. In
ICLR, 2024b. URL https://openreview.net/forum?id=o0f2rhALg81.

Vladimir Malinovskii, Denis Mazur, Ivan Ilin, Denis Kuznedelev, Konstantin Pavlovich
Burlachenko, Kai Yi, Dan Alistarh, and Peter Richtarik. PV-tuning: Beyond straight-through
estimation for extreme LLM compression. In The Thirty-eighth Annual Conference on Neu-
ral Information Processing Systems, 2024. URL https://openreview.net/forum?id=
YVvASUFQI37.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer Publishing
Company, Incorporated, 1 edition, 2014. ISBN 1461346916.

Nvidia. Nvidia turing gpu architecture, 2018. URL https://images.nvidia.
com/aem—dam/en—-zz/Solutions/design-visualization/technologies/
turing-architecture/NVIDIA-Turing—-Architecture-Whitepaper.pdfl

Nvidia. Nvidia ampere gal02 gpu architecture, 2021. URL https://www.nvidia.com/
content/PDF/nvidia—ampere—-ga—-102-gpu—architecture-whitepaper-v2.
pdf.

Nvidia. Nvidia rtx blackwell gpu architecture, 2025. URL |https://
images.nvidia.com/aem—dam/Solutions/geforce/blackwell/
nvidia-rtx-blackwell-gpu—-architecture.pdfl

Andrei Panferov, Jiale Chen, Soroush Tabesh, Roberto L. Castro, Mahdi Nikdan, and Dan Alistarh.
QuEST: Training accurate LLMs over highly-compressed weights and activation. In Sparsity in
LLMs (SLLM): Deep Dive into Mixture of Experts, Quantization, Hardware, and Inference, 2025.
URL https://openreview.net/forum?id=E1gAzv9fNk.

Bita Darvish Rouhani, Nitin Garegrat, Tom Savell, Ankit More, Kyung-Nam Han, Ritchie
Zhao, Mathew Hall, Eric Chung Jasmine Klar, Yuan Yu, Michael Schulte, Ralph Wit-
tig, Ian Bratt, Nigel Stephens, Jelena Milanovic, John Brothers, Pradeep Dubey, Marius
Cornea, Alexander Heinecke, Andres Rodriguez, Martin Langhammer, Summer Deng, Maxim
Naumov, Paulius Micikevicius, Michael Siu, and Colin Verrilli. Ocp microscaling for-
mats (mx) specification, 2023. URL https://www.opencompute.org/documents/
ocp—-microscaling-formats—-mx-vl-0-spec—-final-pdf.

C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27(3):379—423, 1948. doi: https://doi.org/10.1002/j.1538-7305.1948.tb01338 x.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/7.1538-7305.
1948.tb01338.x.

Wengqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhigian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=8WuvhhOLYW.

Xuan Shen, Zhenglun Kong, Changdi Yang, Zhaoyang Han, Lei Lu, Peiyan Dong, Cheng Lyu,
Chih hsiang Li, Xuehang Guo, Zhihao Shu, Wei Niu, Miriam Leeser, Pu Zhao, and Yanzhi
Wang. Edgeqat: Entropy and distribution guided quantization-aware training for the accelera-
tion of lightweight 1lms on the edge. CoRR, abs/2402.10787, 2024. URL https://doi.org/
10.48550/arXiv.2402.10787.

13

https://openreview.net/forum?id=PMSNd8xTHp
https://arxiv.org/abs/2402.17764
https://openreview.net/forum?id=of2rhALq8l
https://openreview.net/forum?id=YvA8UF0I37
https://openreview.net/forum?id=YvA8UF0I37
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf
https://openreview.net/forum?id=ElgAzv9fNk
https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://openreview.net/forum?id=8Wuvhh0LYW
https://doi.org/10.48550/arXiv.2402.10787
https://doi.org/10.48550/arXiv.2402.10787

Under review as a conference paper at ICLR 2026

Philippe Tillet, H. T. Kung, and David Cox. Triton: an intermediate language and compiler for
tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, MAPL 2019, pp. 10-19, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450367196. doi:
10.1145/3315508.3329973. URL https://doi.org/10.1145/3315508.3329973.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Herve Jegou. Training data-efficient image transformers amp; distillation through attention.
In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 10347—
10357. PMLR, 18-24 Jul 2021. URL https://proceedings.mlr.press/v139/
touvronzla.html.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971,

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL |https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053clcd4a845aa—Paper.pdfl

Haocheng Xi, ChangHao Li, Jianfei Chen, and Jun Zhu. Training transformers with 4-bit integers.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=H9hW1fMT6O.

Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, and Fengbo Ren. Learning in the
frequency domain. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1737-1746, 2020. doi: 10.1109/CVPR42600.2020.00181.

Kohei Yamamoto. Learnable Companding Quantization for Accurate Low-bit Neural Net-
works . In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 5027-5036, Los Alamitos, CA, USA, June 2021. IEEE Computer Society. doi: 10.
1109/CVPR46437.2021.00499. URL https://doi.ieeecomputersociety.org/10.
1109/CVPR46437.2021.00499.

Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang, Qi-
jing Huang, Yida Wang, Michael Mahoney, and Kurt Keutzer. Hawq-v3: Dyadic neural network
quantization. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pp. 11875-11886. PMLR, 18-24 Jul 2021. URL https://proceedings.mlr.press/
v139/yao2la.html.

Davis Yoshida. Nf4 isn’t information theoretically optimal (and that’s good), 2023. URL https:
//arxiv.org/abs/2306.06965.

14

https://doi.org/10.1145/3315508.3329973
https://proceedings.mlr.press/v139/touvron21a.html
https://proceedings.mlr.press/v139/touvron21a.html
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=H9hWlfMT6O
https://openreview.net/forum?id=H9hWlfMT6O
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00499
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00499
https://proceedings.mlr.press/v139/yao21a.html
https://proceedings.mlr.press/v139/yao21a.html
https://arxiv.org/abs/2306.06965
https://arxiv.org/abs/2306.06965

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 KERNEL IMPLEMENTATION

In this section, we present an example implementation of Algorithm [TJusing the Triton (Tillet et al.l
2019) programming language.

Nvidia GPUs provide extensive support for low-precision tensor core operations, allowing expen-
sive high-precision matrix multiplications to be replaced with low-precision alternatives, leading to
higher compute throughput and lower energy consumption. For example, the Nvidia Blackwell ar-
chitecture (Nvidia, [2025) provides tensor core support for the MX FP4(Rouhani et al., 2023) data
type. As another example, the Turing (Nvidial 2018)) and Ampere (Nvidia, [2021) architectures pro-
vide support for the INT4 data type. We list in Table[6]the representable values for both data types.

Binary Representation | Signed INT4 | MX FP4
0b0000 0 0
0b0001 1 0.5
0b0010 2 1
0b0011 3 1.5
0b0100 4 2
0b0101 5 3
0b0110 6 4
0b0111 7 6
0b1000 -8 0
0b1001 -7 -0.5
0b1010 -6 -1
0b1011 -5 -1.5
0b1100 -4 -2
0b1101 -3 -3
0b1110 -2 -4
Ob1111 -1 -6

Table 6: Signed INT4 vs. MXFP4

Table[/|shows the values that BBQ can represent.

Precision | Possible Values of ¢
4| -8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7
3| -4,-3,-2,-1,0,1,2,3
2 | -1.5,-0.5,0.5,1.5
1] -0.50.5

Table 7: Values that BBQ can represent. As shown, for b = 4, BBQ can be encoded as INT4. For
b = 3, BBQ can be encoded as INT4 or FP4. For b € {1, 2}, BBQ can be encoded as FP4.

Since b = 3 can be encoded by both INT4 and FP4, we present an example triton kernel for BBQ
with 3-bit quantization following Algorithm [T}

@triton.jit
def bbg(
X_ptr,
h_ptr,
rsigma_ptr,
agmz_ptr,
ROW_SIZE: tl.constexpr,
BLOCKSIZE: tl.constexpr=128,
DTYPE: tl.constexpr = "int4"

15

Under review as a conference paper at ICLR 2026

rid = tl.program_id(axis=0)

cid = tl.program_id(axis=1)

xrids = rid *x BLOCKSIZE + tl.arange (0, BLOCKSIZE) [:, None]
xcids = cid % BLOCKSIZE + tl.arange (0, BLOCKSIZE) [None, :]
xids = xrids * ROW_SIZE + =xcids

hrids = tl.arange (0, BLOCKSIZE) [:, None]
hcids = tl.arange (0, BLOCKSIZE) [None, :]
hids = hrids * BLOCKSIZE + hcids

load a block of x
x = tl.load(x_ptr + xids)

load pre-computed hadamard matrix shared across the entire kernel

h = tl.load(h_ptr + hids)
load reciprocal of sigma
rsigma = tl.load(rsigma_ptr)

hadamard transform
v = tl.dot(x, h) x rsigma

accelerated normal CDF and rounding
gmz = normal_cdf_and_round_3bit (v, DTYPE)

pack two 4-bit data type into a single byte

shift = tl.arange (0, 2) [None, None, :] x 4
qmz = tl.reshape(gmz, (BLOCKSIZE, BLOCKSIZE // 2, 2)) << shift
gmz = tl.xor_sum(gmz, axis=-1, keep_dims=False)

write quantized data to memory
gmzrids = rid % BLOCKSIZE + tl.arange (0, BLOCKSIZE) [:, None]

gmzcids = cid x (BLOCKSIZE // 2) + tl.arange (0, BLOCKSIZE // 2) [None,

qmzids = gmzrids % (ROW_SIZE // 2) + gmzcids
tl.store(gmz_ptr + gmzids, gmz)

Next, we show the definition of function normal_cdf_and_round_3bit. We pre-compute ®~! (2%) for
all possible values of ¢, and use a binary search method to decide which ¢ should be the result of quan-
tization, and lastly, directly use the binary representation of ¢ — 20=1 _ » according to Table |6, For
3-bit quantization, the 8 pre-computed values of ! (), for i € {0,1,2,3,4,5,6, 7}, are {-oc, -
1.1503493803760083, -0.6744897501960818, -0.3186393639643752, 0.0, 0.3186393639643752,
0.6744897501960818, 1.1503493803760083}. The corresponding values of i — 2°~1 — 2 are
{—4,-3,-2,-1,0,1,2,3}.

@triton.jit
def normal_cdf_and_round_3bit (v: tl.tensor, DTYPE: tl.constexpr):
if DTYPE == "int4":
agmz = tl.where(
v >= 0.0,
tl.where (
v >= 0.6744897501960818,
tl.where(v >= 1.1503493803760083, 0b0011, 0b0O010),
tl.where(v >= 0.3186393639643752, 0b0001, 0b0O0O0O),
)y
tl.where (
v >= -0.6744897501960818,
tl.where(v >= -0.3186393639643752, 0b1111, 0bl1110),
tl.where(v >= -1.1503493803760083, 0b1101, 0b1100),
)
) .to(tl.int8)

16

]

Under review as a conference paper at ICLR 2026

return gqmz
elif DTYPE == "fp4":
amz = tl.where(
v >= 0.0,
tl.where (
v >= 0.6744897501960818,
tl.where(v >= 1.1503493803760083, 0b0101, 0Ob0100),
tl.where(v >= 0.3186393639643752, 0b0010, ObL0O0OOO),
),
tl.where(
v >= -0.6744897501960818,
tl.where(v >= -0.3186393639643752, 0b1010, 0bl1l00),
tl.where(v >= -1.1503493803760083, 0pbl101, OblllO0),
)
) .to(tl.int8)
return qmz

A.2 ABLATION ON EXPONENTIAL MOVING AVERAGE OF o

Results in Table [3| are conducted without keeping an EMA of 1/0 during training and use it for
inference. In this section, we show both variants of BBQ achieve identical perplexity.

4-bit | 3-bit | 2-bit | 1-bit
BBQ 25.51 | 26.55 | 31.35 | 49.8
BBQ with EMA of Reciprocal of o | 25.4 | 26.55 | 31.43 | 49.72

Table 8: Perplexity of BBQ vs BBQ with an exponential moving average of 1/0, on LLaMA-95M
pre-trained with 3 billion C4 tokens.

A.3 ZERO-SHOT RESULTS

In this section, we present the zero-shot evaluation perplexity in Table[9] which corresponds to the
models pre-trained in Table[3]

17

Under review as a conference paper at ICLR 2026

Model Dataset | Params n+e | Method | Bits WA | Perplexity
LLaMA | wikitext | 95M None 16 56.11
LLaMA | wikitext | 95M BBQ 4 57.87
LLaMA | wikitext | 95M QuEST | 4 5891
LLaMA | wikitext | 95M LSQ 4 61.62
LLaMA | wikitext | 95M BBQ 3 60.18
LLaMA | wikitext | 95M QuEST | 3 64.21
LLaMA | wikitext | 95M LSQ 3 68.35
LLaMA | wikitext | 95M BBQ 2 70.19
LLaMA | wikitext | 95M QuEST | 2 77.32
LLaMA | wikitext | 95M LSQ 2 80.11
LLaMA | wikitext | 95M BBQ 1 109.66
LLaMA | wikitext | 95M QuEST | 1 172.77
LLaMA | wikitext | 125M None 16 50.26
LLaMA | wikitext | 125M BBQ 4 50.50
LLaMA | wikitext | 125M QuEST | 4 51.31
LLaMA | wikitext | 125M LSQ 4 53.72
LLaMA | wikitext | 125M BBQ 3 50.94
LLaMA | wikitext | 125M QuEST | 3 54.37
LLaMA | wikitext | 125M LSQ 3 58.61
LLaMA | wikitext | 125M BBQ 2 60.47
LLaMA | wikitext | 125M QuEST | 2 69.45
LLaMA | wikitext | 125M LSQ 2 70.61
LLaMA | wikitext | 125M BBQ 1 97.34
LLaMA | wikitext | 125M QuEST | 1 180.33
LLaMA | wikitext | 200M None 16 40.42
LLaMA | wikitext | 200M BBQ 4 42.56
LLaMA | wikitext | 200M QuEST | 4 41.67
LLaMA | wikitext | 200M LSQ 4 4133
LLaMA | wikitext | 200M BBQ 3 41.82
LLaMA | wikitext | 200M QuEST | 3 43.95
LLaMA | wikitext | 200M LSQ 3 426.8
LLaMA | wikitext | 200M BBQ 2 49.53
LLaMA | wikitext | 200M QuEST | 2 54.12
LLaMA | wikitext | 200M LSQ 2 208.5
LLaMA | wikitext | 200M BBQ 1 80.34
LLaMA | wikitext | 200M QuEST | 1 123.19
LLaMA | wikitext | 300M None 16 34.95
LLaMA | wikitext | 300M BBQ 4 38.57
LLaMA | wikitext | 300M QuEST | 4 35.26
LLaMA | wikitext | 300M BBQ 3 36.77
LLaMA | wikitext | 300M QuEST | 3 37.26
LLaMA | wikitext | 300M BBQ 2 41.24
LLaMA | wikitext | 300M QuEST | 2 45.28

Table 9: Zero-shot wikitext perplexity.

A.4 BBQ vs. QUEST
In this section, we illustrate the difference between BBQ and QuEST in Figure[7]

» BBQ and QuEST share the Hadamard transform (()) and RMS normalization (Q)) to re-
shape the distribution to better match the standard Gaussian.

* In step @), QuEST scales by o*, shifts by 0.5, and uses the clip function to limit values
within a finite range. BBQ uses the ® function to limit values within a finite range, while
simultaneously maximizing the entropy.

18

Under review as a conference paper at ICLR 2026

¢ In step @, both methods use uniform quantization to quantize data. Both methods ensure
the quantized data can be stored in a compute-efficient data type (INT4 or FP4).

* In step B, BBQ applies linear scaling, while QUEST reverses all of the operations it did
before (RMS Normalization, scaling by o*, and shifting by 0.5), as QuEST is a “same-
domain” quantizer. BBQ is a “cross-domain” quantizer, so BBQ does not reverse its pre-
vious operation such as ®, shifting by 2° — 1 and z, multiplication by 2°, division by &
etc. Instead, BBQ applies linear scaling to scale its range to be within [—~, v] where v is a
learnable parameter.

e In step ®), QuEST reverses its Hadamard transform (a unitary operation). BBQ does not
reverse the Hadamard transform because it is a “cross-domain’ quantizer.

® = HT(®) ® = oa(® + 0.5) @ = round(®) ® =clip(@/a-0.5,-8,7)

..||| “h..
30 3

X @ = HT(x) @ = @/o

GQO

0 -30 0 30 -3 0 3
©® =06 *(y/27(b-1)) @ = floor(2”b * ®) - 2~(b-1) -z @ = (@)

Y Y

Figure 7: BBQ vs. QuEST.

o
[

A.5 EXTENSION TO VISION MODELS

While BBQ is designed for language models, we discuss and evaluate a potential extension of BBQ
to vision models. When we naively apply BBQ to vision models without any modification, we
notice, as shown in Figure [§] right, a subset of learned v have magnitudes extremely close to 0.
Since every <y is assigned to a weight channel, if v is small, weights from the corresponding channel
suffers from gradient vanishing. As shown in Figure[8]left, language models do not suffer from such
v collapsing. Instead of making ~ a learnable parameter and initializing y to (o as discussed in
Section 3.5} we propose a BBQ variant, BBQ-Vision, that instead dynamically calculates the value
of v as (o on every forward pass. BBQ-Vision prevents «y from collapsing to 0, since for «y to be 0,
all weights in that channel must also be 0. In addition, BBQ-Vision still preserves some degree of
learnability as the network can modify weights/activations to indirectly control the value of o. We
compare BBQ-Vision against QUEST and LSQ on DeiT (Touvron et al.|2021) and Resnet
with various sizes and show our results in Table[T0] Our preliminary results show BBQ-Vision
can outperform QuEST and LSQ.

19

Under review as a conference paper at ICLR 2026

1200 A

1000

800 A

600

400 1

200+

600

T
0.20

T T
0.25 0.30

0.25 0.30

Figure 8: Histogram of learned 7y on the 2-bit language model LLaMA-95M (left) and 2-bit vision
model DelT-Tiny (right). The x-axis is the value of « and the y-axis is its frequency.

Model Params | Dataset Bits WA | BBQ-Vision QuEST LSQ

DEIT-T M Imagenet-100 | 4 3.85/2.84/74.68 | 3.61/2.91/74.3 | 3.67/2.88/74.88
DEIT-T M Imagenet-100 | 3 2.93/2.89/74.24 | 2.78/2.98/72.2 | 2.81/3.01/71.36
DEIT-T M Imagenet-100 | 2 1.94/3.05/70.16 | 1.93/3.18/67.24 | 1.90/3.23/65.32
DEIT-T M Imagenet-100 | 1 1.00/3.52/53.54 | 1.00/3.67/47.55 | -/-/-

DEIT-S 20M Imagenet-100 | 4 3.82/2.53/79.46 | 3.61/2.51/80.00 | 3.57/2.52/80.04
DEIT-S 20M Imagenet-100 | 3 2.91/2.48/80.88 | 2.78/2.62/79.34 | 2.74/2.64/78.96
DEIT-S 20M Imagenet-100 | 2 1.93/2.76/77.02 | 1.93/2.82/76.18 | 1.83/2.87/74.42
DEIT-S 20M Imagenet-100 | 1 1.00/3.18/66.16 | 1.00/3.37/59.94 | -/-/-

Resnet-10 | 5SM Imagenet-100 | 1 1.00/3.37/63.6 | 1.00/3.40/62.4 | -/-/-

Resnet-18 | 11M Imagenet-100 | 1 1.00/3.12/73.13 | 1.00/3.14/72.28 | -/-/-

Table 10: Entropy/Training Cross Entropy Loss/Evaluation Accuracy of vision models pretrained
on vision datasets

A.6 VALIDATION LOSS VS. TRAINING PROGRESS

In this section we present validation loss vs. training iteration curves for all of our experiments in
Section @] For visualization purposes, we only show the validation loss for the last 90% iterations,
hide the first 10% iterations when learning rate is warming up, and don’t show loss curves for
methods that diverged. For all figures, the y-axis is the validation cross entropy loss, and x-axis is
iterations (batches). For all experiments, we quantize both weights and activations of linear layers to
b bits. In addition, for all QUEST experiments, we use a trust factor of 7' = a* /(2° — 1) as discuss

in QuEST (Panferov et al,[2025).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

val/loss
— LLaMA-95M-LSQ-4 = LLaMA-95M-BBQ-4 — LLaMA-95M-QuEST-4

3.8

3.6

34

Har
reS—e

2k 4k 6k 8k 10k

Figure 9: LLaMA-95M (4-bit) pre-trained on 3 billion C4 tokens (batched over 12 thousand itera-
tions). LSQ is green, QuEST is gray, and BBQ is blue.

val/loss
— LLaMA-95M-LSQ-3 =— LLaMA-95M-BBQ-3 = LLaMA-95M-QuEST-3
4 1
3.8
3.6
3.4

iter

2k 4k 6k 8k 10k

Figure 10: LLaMA-95M (3-bit) pre-trained on 3 billion C4 tokens (batched over 12 thousand itera-
tions). LSQ is pink, QuEST is red, and BBQ is green.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

val/loss
LLaMA-95M-LSQ-2 = LLaMA-95M-BBQ-2 = LLaMA-95M-QuEST-2

3.8

3.6

’

iter

2k 4k 6k 8k 10k

Figure 11: LLaMA-95M (2-bit) pre-trained on 3 billion C4 tokens (batched over 12 thousand itera-
tions). LSQ is yellow, QuEST is purple, and BBQ is orange.

val/loss
— LLaMA-95M-BBQ-1 — LLaMA-95M-QuEST-1

46 \
4.4
4.2 .

4

iter
2k 4k 6k 8k 10k

Figure 12: LLaMA-95M (1-bit) pre-trained on 3 billion C4 tokens (batched over 12 thousand itera-
tions). QuEST is purple and BBQ is orange.

22

Under review as a conference paper at ICLR 2026

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203 3.1
1204 5k 10k 15k
1205
1206
1207
1208
1209
1210
1211

1212
1213 val/loss

1214 = LLaMA-125M-LSQ-3 = LLaMA-125M-BBQ-3 = LLaMA-125M-QuEST-3

1215 3.7
1216
1217 3.6

1218
1219 3.5

1220

1221 3.4
1222

1223 3.3
1224

1225 3.2
1226

1227 5k 10k 15k

1228

1229

1230

1231 Figure 14: LLaMA-125M (3-bit) pre-trained on 5 billion C4 tokens (batched over 20 thousand
1090 iterations). LSQ is green, QUEST is gray, and BBQ is blue.

1233

1234

1235

1236

1237

1238

1239

1240

1241

val/loss
— LLaMA-125M-LSQ-4 — LLaMA-125M-BBQ-4 — LLaMA-125M-QUEST-4

3.6
3.5
3.4
3.3

3.2

Figure 13: LLaMA-125M (4-bit) pre-trained on 5 billion C4 tokens (batched over 20 thousand
iterations). LSQ is red, QuEST is brown, and BBQ is pink.

iter

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

val/loss
— LLaMA-125M-LSQ-2 — LLaMA-125M-BBQ-2 — LLaMA-125M-QuEST-2

3.8
3.7
3.6
3.5 L S—
—_—
3.4
iter

5k 10k 15k

Figure 15: LLaMA-125M (2-bit) pre-trained on 5 billion C4 tokens (batched over 20 thousand
iterations). LSQ is purple, QUEST is orange, and BBQ is green.

val/loss
— LLaMA-125M-BBQ-1 — LLaMA-125M-QuEST-1

4.3

4.2

3.9
3.8 iter
5k 10k 15k

Figure 16: LLaMA-125M (1-bit) pre-trained on 5 billion C4 tokens (batched over 20 thousand
iterations). QuEST is pink and BBQ is orange.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

val/loss
— LLaMA-200M-BBQ-4 — LLaMA-200M-QuUEST-4

3.3
3.2
3.1
3
———3
5k 10k 15k 20k 25k 30k 35k

Figure 17: LLaMA-200M (4-bit) pre-trained on 10 billion C4 tokens (batched over 40 thousand
iterations). QUEST is green and BBQ is brown.

val/loss
— LLaMA-200M-BBQ-3 = LLaMA-200M-QuEST-3

3.4
3.3
3.2
3.1
3 _iter

5k 10k 15k 20k 25k 30k 35k

Figure 18: LLaMA-200M (3-bit) pre-trained on 10 billion C4 tokens (batched over 40 thousand
iterations). QuEST is pink and BBQ is gray.

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

val/loss
— LLaMA-200M-BBQ-2 — LLaMA-200M-QUEST-2

3.8

3.6

3.4

3.2

iter

—3

10k 20k 30k

Figure 19: LLaMA-200M (2-bit) pre-trained on 10 billion C4 tokens (batched over 40 thousand
iterations). QUEST is orange and BBQ is pink.

val/loss
— LLaMA-200M-BBQ-1 — LLaMA-200M-QuEST-1

3.9
3.8

3.7
iter

5k 10k 15k 20k 25k 30k 35k

Figure 20: LLaMA-200M (1-bit) pre-trained on 10 billion C4 tokens (batched over 40 thousand
iterations). QuEST is green and BBQ is brown.

26

Under review as a conference paper at ICLR 2026

val/loss
— LLaMA-300M-BBQ-4 — LLaMA-300M-QuUEST-4

32 A
3.1

3
2.9
2.8

10k 20k 30k 40k 50k 60k 70k

Figure 21: LLaMA-300M (4-bit) pre-trained on 20 billion C4 tokens (batched over 80 thousand
iterations). QuEST is green and BBQ is brown.

val/loss
LLaMA-300M-BBQ-3 — LLaMA-300M-QUEST-3

3.2

3.1

2.9
iter

10k 20k 30k 40k 50k 60k 70k

Figure 22: LLaMA-300M (3-bit) pre-trained on 20 billion C4 tokens (batched over 80 thousand
iterations). QuEST is orange and BBQ is green.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

val/loss
— LLaMA-300M-QUEST-2 — LLaMA-300M-BBQ-2

33
3.2
3.1
3 _iter

10k 20k 30k 40k 50k 60k 70k

Figure 23: LLaMA-300M (2-bit) pre-trained on 20 billion C4 tokens (batched over 80 thousand
iterations). QUEST is green and BBQ is red.

	Introduction
	Background and Motivation
	Compute Efficient Data Types
	Information Theoretically Optimal Quantization Methods
	Learning is Domain-Agnostic

	Proposed Method
	Step 1: Hadamard Transform
	Step 2: RMS Normalization
	Step 3: Probability Integral Transform
	Step 4 and 5: Uniform Quantization and Unsigned-to-Signed Conversion
	Step 6 and 7: Precision Dependent and Independent Scaling

	Evaluation and Discussion
	Entropy and Learning Capacity
	Inference Speedup
	Ablation

	Limitations
	Conclusion
	Reproducibility statement
	Appendix
	Kernel Implementation
	Ablation on Exponential Moving Average of
	Zero-shot Results
	BBQ vs. QuEST
	Extension to Vision Models
	Validation Loss vs. Training Progress

