
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Divide, Conquer, and Coalesce: Meta Parallel Graph Neural
Network for IoT Intrusion Detection at Scale

Anonymous Author(s)∗

ABSTRACT
This paper proposes Meta Parallel Graph Neural Network (MPGNN)
to establish a scalable Network Intrusion Detection System (NIDS)
for large-scale Internet of Things (IoT) networks. MPGNN leverages
a meta-learning framework to optimize the parallelism of GNN-
based NIDS. The core of MPGNN is a coalition formation policy that
generates meta-knowledge for partitioning a massive graph into
multiple coalitions/subgraphs in a way that maximizes the perfor-
mance and efficiency of parallel coalitional NIDSs. We propose an
offline reinforcement learning algorithm, called Graph-Embedded
Adversarially Trained Actor-Critic (G-ATAC), to learn a coalition
formation policy that jointly optimizes intrusion detection accuracy,
communication overheads, and computational complexities of coali-
tional NIDSs. In particular, G-ATAC learns to capture the temporal
dependencies of network states and coalition formation decisions
over offline data, eliminating the need for expensive online interac-
tions with large IoT networks. Given generated coalitions, MPGNN
employs E-GraphSAGE to establish coalitional NIDSs which then
collaborate via ensemble prediction to accomplish intrusion detec-
tion for the entire network. We evaluate MPGNN on two real-world
datasets. The experimental results demonstrate the superiority of
our method with substantial improvements in F1 score, surpassing
the state-of-the-art methods by 0.38 and 0.29 for the respective
datasets. Compared to the centralized NIDS, MPGNN reduces the
training time of NIDS by 41.63% and 22.11%, while maintaining an
intrusion detection performance comparable to centralized NIDS.

KEYWORDS
Network intrusion detection, graph neural network, offline rein-
forcement learning, scalability

1 INTRODUCTION
The Internet of Things (IoT) [11] has brought about a paradigm shift
in the way we interact with the environment, enabling seamless
connectivity and automation across diverse domains such as smart
homes, healthcare, and transportation. According to the forecast
from the International Data Corporation, the number of IoT devices
connected to the Internet is projected to surpass 41 billion by 2025
[22]. The massive connectivity of IoT networks is increasingly chal-
lenged by nonconventional security risks. Millions of IoT devices
are collecting a vast trove of sensitive information, encompassing
location data, health records, biometric features, and user behav-
ioral patterns, which, if not adequately safeguarded, may become
susceptible to severe privacy breaches and potential misuse by mali-
cious entities [1]. Furthermore, the inherent resource limitations of
IoT devices only allow minimal deployments of defensive strategies
onboard, exacerbating the vulnerability of IoT devices to security
risks. Consequently, there is a pressing need for a security solution
to enhance the overall security posture of large-scale IoT networks
and safeguard the privacy and integrity of IoT data.

The Network Intrusion Detection System (NIDS) serves as a ro-
bust defense mechanism against potential threats in IoT networks.
By actively monitoring suspicious activities and unauthorized ac-
cess attempts, NIDS can promptly identify malicious behaviors and
implement mitigation measures. Earlier works on IoT NIDS pri-
marily relied on rule-based and signature-based techniques [5, 29],
which often encounter limitations when confronted with previ-
ously unseen attacks. Therefore, IoT NIDS gradually incorporates
machine learning (ML) methods, deep learning (DL) in particular,
to enable the detection of complex and evolving threats by directly
learning from network flow data and identifying patterns that may
not be captured by rule-/signature-based approaches. Among state-
of-the-art DL techniques for NIDS, Graph Neural Networks (GNNs)
have emerged as the focal point of attention [10, 17, 35, 37]. NIDS
typically operates on network flow data (e.g., NetFlow [7]) which
can naturally be represented in a graph format. The detection of
malicious lows relies on extracting insights from both the topologi-
cal information and the details embedded in edge features. GNNs
are tailored for processing graph-structured data, and are able to
leverage the inherent structure of the graph by incorporating re-
lational inductive biases into the DL architecture. This capability
empowers GNNS to efficiently learn, reason, and generalize from
IoT network traffic data, enabling GNN-based NIDS to capture com-
plex relationships and dependencies among network entities and
identify malicious behaviors.

While GNN-based NIDSs have demonstrated satisfactory per-
formance on open datasets [10, 17, 35, 37], they have overlooked
several essential factors that are critical for the practical imple-
mentation of NIDS in real-world IoT networks. 1) The rapid ex-
pansion of IoT networks makes it thorny to ensure the timeliness
of GNN-based NIDS. To accomplish network intrusion detection
with GNNs, NIDS must collect IoT network states to construct a
graph to represent device status (i.e., node features) and their in-
teraction patterns (i.e., edge features). However, for large-scale IoT
networks, the graph data size can reach the order of gigabytes,
leading to substantial communication and latency overhead dur-
ing the graph construction process. Moreover, the computational
complexity of processing a massive graph exceeds the capabili-
ties of resource-constrained IoT devices, leading to unacceptable
detection delays in detecting intrusions. These challenges necessi-
tate a scalable NIDS capable of handling the sheer volume of IoT
devices and ensuring timely and responsive intrusion detection.
2) Parallel and distributed processing is an intuitive solution to
improve the scalability of GNN-based NIDS for large-scale IoT net-
works. However, the inherent properties of GNN pose significant
challenges to achieving parallelism. In contrast to traditional DL
techniques that typically operate on structured and independent
training samples (e.g., image processing), GNNs inherently capture
the dependencies among training samples through interconnections
between vertices. Commonly used distributed learning frameworks
(e.g., Federated Learning [19, 33]) disrupt the analysis of vertex

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Arbitrary
policy

𝐬 𝐚

𝑟 Benign
MaliciousBenign

MaliciousBenign
Malicious

Offline

data
{𝐬, 𝐚, 𝐬′, 𝑟}

Large-scale
IoT network

Coalitional
NIDS

Intrusion Detection

GNN-embedded Critic
(Follower)

S
ta

ck
el

b
er

g
 g

am
e

Offline Graph Reinforcement Learning (G-ATAC)

Coalitional Intrusion Detection with E-GraphSAGE

Attributed
graph

Coalitional NIDS
(E-GraphSAGE)

Malicious flow
detection

Coalitional NIDSs

IoT network

Benign
MaliciousBenign

MaliciousBenign
Malicious

Benign
MaliciousBenign

MaliciousBenign
Malicious

…

Coalition 1

Coalition N Attributed
graph

Coalitional NIDS
(E-GraphSAGE)

Malicious flow
detection

Coalition

Formation Policy

… …

E
n

se
m

b
le

 p
re

d
ic

ti
o

n

Detection results for

the entire IoT network

Coalition formation

C
o
a

li
ti

o
n

 F
o

rm
a
ti

o
n

 P
o

li
cy

(M
et

a-
k
n

o
w

le
d

g
e)

Generation of Coalition Formation Policy

GNN-embedded Actor
(Leader)

Figure 1: Overview of MPGNN for intrusion detection.

dependencies, rendering them unsuitable for GNN implementa-
tion. Hence, developing an efficient parallel framework for GNN
becomes pivotal in achieving scalability for NIDS. 3) The unique
properties of IoT intrusion detection further complicate the de-
sign of scalable NIDS. Handling massive graphs in GNNs typically
involves generating subgraphs with pruned vertices and dependen-
cies. However, the majority of network traffic in IoT networks is
benign, and injudicious samplings of vertices and connections for
subgraph generations could easily result in the information loss
of malicious attack patterns, and lead to significant performance
degradation of intrusion detection. Furthermore, the size of sub-
graphs determines the communication overhead and computational
complexity for running GNNs, which, together with IoT network
conditions and device computing capacities, affects the timeliness
of intrusion detection. Additionally, the extensive geographical cov-
erage of large-scale IoT networks gives rise to the possibility of
spatial heterogeneity in malicious patterns. Incorporating location
awareness into IoT NIDS to account for this spatial heterogeneity
holds great promise in enhancing intrusion detection performance.

To address the aforementioned challenges, we propose Meta Par-
allel Graph Neural Network (MPGNN) to establish a scalable NIDS
for large-scale IoT networks. As illustrated in Fig.1, MPGNN facil-
itates the formation of regional coalitions and selects a high-end
device (e.g., edge servers, smart home hubs, industrial gateways,
etc.) as a coalition head to perform coalitional intrusion detection
using GNNs. This enables the decomposition of a large-scale NIDS
into multiple parallel coalitional NIDSs, which reduces the commu-
nication overhead and computational complexity of GNN-based
intrusion detection to a scale that is manageable for coalition heads.
Particularly, we develop a learning-based coalition formation policy
for MPGNN, which is tailored to uncover the obscured impacts of
dynamic network states, diverse device capabilities, and heteroge-
neous malicious patterns on the performance of coalitional NIDSs.
The novelty and contribution of our method are summarized as
follows:

1) MPGNN presents a novel meta-learning framework for paral-
lel GNN-based NIDS in large-scale IoT networks. MPGNN consists
of two loosely coupled phases: coalition formation and coalitional
intrusion detection. The coalition formation policy generates meta-
knowledge for partitioning the massive IoT network into multiple
sub-networks (i.e., coalitions) in a way that maximizes the perfor-
mance and efficiency of coalitional intrusion detection. In the phase
of coalitional intrusion detection, E-GraphSAGE [17] is utilized to
establish GNN-based NIDS for each coalition. E-GraphSAGE im-
proves the representation of flow features and topological patterns,
thereby boosting the capability of identifying malicious traffic flows.
Coalitional NIDSs operate collaboratively via ensemble learning to
complete the intrusion detection for the entire IoT network.

2) We propose an offline reinforcement learning method called
Graph-Embedded Adversarially Trained Actor-Critic (G-ATAC) to
learn a coalition formation policy. G-ATAC embeds Graph Con-
volutional Network (GCN) in the ATAC framework [6] to better
characterize the impact of network topological information on the
utility of coalition formation. G-ATAC optimizes coalition forma-
tion by jointly considering the intrusion detection accuracy, commu-
nication overheads, and computational complexities of coalitional
NIDSs. In particular, G-ATAC captures the temporal dependencies
of network states and coalition formation decisions over offline
data, which avoids substantial communication overhead and la-
tency incurred by interacting with large-scale IoT networks in an
online manner.

3) We carry out systematic experiments on real-world datasets to
evaluate the performance of MPGNN. Compared to the centralized
NIDS, MPGNN achieves a 41.63% (22.11%) reduction in training time
of GNN-based NIDS on the NF-ToN-IoT-V2 (NF-CSE-CIC-IDS2018-
V2) dataset. MPGNN also reduces the scale of NIDS 3.3× while
maintaining the performance of intrusion detection (in terms of ac-
curacy, precision, recall, and F1-score) close to the centralized NIDS.
Besides, in comparison with other parallel realizations, MPGNN
improves F1 score by 0.38 and 0.29 on two datasets, respectively.

The rest of the paper is organized as follows: Section 2 reviews
related works. Section 3 shows the design of MPGNN. Section 4
presents the experimental results, followed by the conclusion in
Section 5. For readers of interest, pseudocodes of MPGNN, detailed
experimental settings, and supplementary results are given in Ap-
pendix A, B, C, respectively.

2 RELATEDWORKS
The advent of Deep Learning (DL) techniques, including Convolu-
tional Neural Networks (CNNs) [16], Recurrent Neural Networks
(RNNs) [34], have led to the proposal of DL-based NIDSs [14, 15, 36].
CNN-based NIDS [26, 28, 32] constructs network traffic as grid data.
For instance, Xu et al. [32] described a flow as a grayscale image
series, which can be fed into a 3D-CNN in chronological order to ex-
tract features reserving the relevance between packets. RNN-based
NIDS [25, 36, 38] employ sequence data analysis for network flow
identification. For example, Studiawan et al.[25] modeled the log
messages in the system as sentences, and proposed a Gated Recur-
rent Unit (GRU) based sentiment analysis method to detect negative
sentiment and consequently facilitate intrusion detection. However,

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Divide, Conquer, and Coalesce: Meta Parallel Graph Neural Network for IoT Intrusion Detection at Scale Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

these methods overlook the spatial correlations of network traffic,
hence limiting their ability to detect complex anomalies.

Recent approaches have endeavored to address this issue by
leveraging graph-structured data to characterize the topological in-
formation of inter-node communications. Xiao et al. [30] proposed
a graph embedding-based IDS, which utilized the first-order and
the second-order graphs to learn the latent features from individual
hosts and the global network, respectively. One notable limitation
of [30] is its reliance on the transductive graph embedding method,
which restricts its classification ability. Zhou et al. [35] employed a
12-layer Graph Convolutional Network (GCN) to capture the un-
derlying structural information within the communication graph
for botnet identification. However, this model focuses solely on
extracting topological information related to botnets, neglecting
the statistical features of network flows. Lo et al.[17] represented
network flows as an attributed graph where the edge attributes
correspond to the features of the network flows, and introduced
a GNN-based edge classification model called E-GraphSAGE to
realize intrusion detection. Zhu et al. [37] drew inspiration from
graph theory and introduced the concept of line graph [13] to de-
velop a Line-GraphSAGE algorithm for edge feature aggregation
and network flow classification. Duan et al. [10] converted network
traffic into a spatiotemporal line graph to incorporate both tempo-
ral and spatial information and utilized a dynamic line graph neural
network (DLGNN) for intrusion detection. However, the previous
research has primarily focused on improving the performance of
intrusion detection, neglecting the evaluation of the suitability in
field implementations.

The majority of precious works adopted the centralized learning
paradigm, which is deemed unsuitable for large-scale IoT networks
due to the significant communication overhead, high computational
complexity, and large response time. Popoola et al. [19] proposed a
Federated Deep Learning (FDL) based intrusion detection method,
which adopted the DNN architecture to identify local anomalies
while employing the Federated Averaging (FedAvg) algorithm to
aggregate the updates of local models to overcome the absence of
certain data categories in local networks. Yang et al.[33] proposed a
cloud-edge collaboration-based intrusion detection method, which
involved a Temporal Convolutional Network (TCN) at the edge
and an FL architecture to coordinate multiple intrusion detection
models across different parties. Although the above methods offer
distributed realizations for NIDS, they may disrupt the analysis of
network topological information using GNNs. In this paper, we
propose a Meta Parallel Graph Neural Network (MPGNN) architec-
ture, which achieves efficient parallelism for GNN-based NIDSs in
large-scale IoT networks.

3 META PARALLEL GRAPH NEURAL
NETWORK FOR PARALLEL NIDS

This section presents the framework of Meta Parallel Graph Neural
Network (MPGNN) for parallel NIDS in large-scale IoT networks.

3.1 Parallel NIDS over Large-Scale IoT Networks
Our work considers typical scenarios of large-scale IoT networks,
including smart cities [3], industrial Internets [23], and intelli-
gent transportation systems[9]. These IoT networks comprise a

diverse range of devices such as sensors, actuators, smart devices,
and embedded systems, which are collectively indexed by N =

{1, 2, . . . , 𝑁 }. The computing capacity of these devices exhibits sig-
nificant variations. For example, high-end devices (e.g., intelligent
industrial gateways [24]) can be equipped with multi-core CPUs
and general-purpose GPUs to support complicated computations,
while low-end devices (e.g., sensors) only possess microcontrollers
or low-power processors with minimal processing capabilities. As
we will see later, this heterogeneity in device computing capacities
offers an opportunity for establishing parallel GNN-based NIDS.

NIDS for IoT networks operates on flow-based network data.
These flows are identified by flow endpoints (e.g., IP address, L4
port number, L4 protocol of IoT devices), and annotated by a set
of flow fields (e.g., the number of packets, number of bytes, flow
duration, etc.) that provide details about the flows. GNN-based
NIDSs represent flow data in a graph format 𝐺 = ⟨V, E⟩, where
the flow endpoints are mapped to graph node setV , and network
flows are mapped to graph edge set E. The GNN takes graph 𝐺
as the input and analyzes topological information in edge features
for the classification of malicious flows. However, the graph 𝐺
of a large-scale IoT network is massive, which poses significant
challenges to the timeliness of NIDS. Note that most existing GNN-
based NIDSs [10, 17, 35, 37] are carried out in a centralized manner.
These methods cause excessive computational complexity for GNN
training and inference when applied to massive graphs, and there-
fore cannot be implemented IoT devices, including high-end ones.
Therefore, the centralized realization of large-scale NIDS often rests
on the Cloud to guarantee efficient processing of GNNs. Neverthe-
less, constructing massive graphs on Cloud tends to incur large
communication overhead as NIDS must collect network flow data
of the entire IoT network. Further considering the congested trans-
mission of Internet backhaul to the remote Cloud, the delay for
graph construction becomes intolerable.

This motivates us to propose MPGNN for establishing a parallel
GNN-based NIDS. The key philosophy of MPGNN is to decompose
the large-scale NIDS into multiple regional NIDSs whose commu-
nication overhead and computational complexity are manageable
by high-end IoT devices. MPGNN follows a meta-learning frame-
work and realizes parallel NIDS with two phases, namely coalition
formation and conditional intrusion detection. During the coalition
formation phase, MPGNN generates coalition formation policies
to split the entire IoT network into multiple coalitions and selects
a high-end IoT device for each generated coalition. The coalition
head collects network flow features of devices within the coali-
tion, and leverages GNN to establish a coalitional NIDS. These
coalitional NIDSs operate in parallel, and work collaboratively to
accomplish intrusion detection for large-scale IoT networks. In the
following subsections, we give the details about coalition formation
and coalitional intrusion detection.

3.2 Coalition Formation with Offline Graph
Reinforcement Learning

The coalition formation policy generates coalitions based on the
current state of IoT networks. Its output is a membership matrix
P ∈ R𝑁×𝐾 , where 𝑁 is the total number of devices in the IoT
network and 𝐾 is the number of coalitions to be formed. The entry

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

𝑝𝑛,𝑘 ∈ P ∈ [0, 1] denotes the inclination of including device 𝑛 in
coalition 𝑘 . The coalitions are formed based on the membership
matrix P and a predetermined threshold 𝛿 . If the inclination 𝑝𝑛𝑘 ≥ 𝛿 ,
then device 𝑛 is included in coalition 𝑘 . Mathematically, coalitions
can be defined by

C𝑘 = {𝑛 | 𝑝𝑛𝑘 ≥ 𝛿, 𝑛 ∈ N , 𝑝𝑛𝑘 ∈ P} , 𝑘 = 1, 2, . . . , 𝐾 . (1)

Based on the above definitions, it is easy to see that a device can
be associated with multiple coalitions. This overlap among coali-
tions is desirable in our problem for two reasons. Firstly, there is a
possibility that certain devices contain critical patterns for identi-
fying malicious network flows, and consequently, including these
devices in multiple coalitions serves to improve the overall perfor-
mance of coalitional intrusion detection. Secondly, IoT devices in
the overlap between coalitions have the opportunity to leverage
collaborative knowledge from multiple coalitional NIDSs through
ensemble prediction. This presents a promising avenue for enhanc-
ing the stability of intrusion detection, particularly in the face of
stealthy malicious attacks.

Before presenting the design of the coalition formation policy,
it is essential to elucidate the impact of coalition formation on the
performance of coalitional NIDS.

How does coalition formation affect coalitional NIDS? The
coalition formation influences the timeliness and intrusion detec-
tion accuracy of coalitional NIDS. 1) Impact on Timeliness. The
timeliness of coalitional NIDS depends on the time complexity of
GNN and the state of IoT networks. The time complexity of GNN-
based coalitional NIDS is determined by the size of the formed
coalitions. For example, the complexity of E-GraphSAGE for coali-
tional intrusion detection is O(|C||EC |) [17] where |C| is the num-
ber of devices in the coalition and |EC | denotes the number of
flows in the coalition. Given the fixed time complexity of GNN,
the delay for running GNN-based NIDS is further affected by the
states of IoT networks. Specifically, the delay for network flow
data collection (which is required to construct the graph input to
GNN-based NIDS) is determined by transmission rates between the
coalition head and other members; the delay for GNN processing
depends on the available computing resources of the coalition head.
In particular, the network traffic incurred during NIDS interacts
with the inherent dynamics of the IoT network, which forms the
evolution of IoT network states and poses the need for periodic
adjustments of collation. 2) Impact on Intrusion Detection Ac-
curacy. The effectiveness of GNN-based NIDS heavily relies on the
quality and representativeness of network flow data utilized for
training. However, the network flow data often exhibits substan-
tial skewness. Consequently, the indiscriminate down-sampling
of the entire IoT network may result in significant information
losses about the malicious flows. To empirically substantiate this
claim, we employ random graph sampling to generate coalitions
on the NF-ToN-IoT-V2 [21] dataset. Fig. 2 shows the distribution
of attack types in generated coalitions, which demonstrates that
numerous types of malicious attacks are under-represented. This
deficiency in representation adversely impacts the performance of
coalitional NIDSs, as evidenced by the inferior intrusion detection
performance depicted in Fig. 3.

It is difficult to precisely characterize the above impacts, espe-
cially considering the temporal dependency of coalition formations

be
ni

gn
ba

ck
do

or
dd

os do
s

in
je

ct
io

n
m

itm
pa

ss
wo

rd
ra

ns
om

wa
re

sc
an

ni
ng xs

s

Attack types

0.00
0.05
0.10
0.15
0.20
0.25

D
is

tr
ib

ut
io

n
of

 a
tt

ac
k

ty
pe

s
in

 C
oa

lit
io

n
#

4

#1 #2 #3 #4 #5 Overall
Coalition Index

0.0

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

ut
io

n
of

 a
tt

ac
k

ty
pe

s Attack types
benign
backdoor
ddos
dos
injection
mitm
password
ransomware
scanning
xss

Figure 2: Distributions of attack types in random coalitions.

be
ni

gn

ba
ck

do
or

dd
os do
s

in
je

ct
io

n

m
itm

pa
ss

wo
rd

ra
ns

om
wa

re

sc
an

ni
ng xs

s

Attack types

0.0
0.2
0.4
0.6
0.8
1.0

D
et

ec
ti

on
 o

f a
tt

ac
k

ty
pe

s
 in

 c
oa

lit
io

n
#

4
(F

1
sc

or
e)

Mean F1 score of

coalitional NIDSs: 0.42

0.83

Gap: 0.41

Figure 3: F1 score of coalitional NIDSs in random coalitions.

and IoT network states. Therefore, we propose a learning-based
coalition formation policy. Particularly, we leverage the offline
reinforcement learning framework to eliminate the overhead of
collecting diverse interaction data. Next, we convert the coalition
formation problem into a Markov decision process and propose an
offline graph reinforcement learning algorithm as a solution.

Coalition formation as a Markov decision process. Due to
the dynamic state of IoT networks, the coalition formation problem
is formulated as a sequential decision-making process. The timeline
is discretized into decision cycles, and a coalition formation decision
is generated in each decision cycle. We note that the time scale
of coalition formation (e.g., in hours) is much larger than that of
coalitional intrusion detection (e.g., in milliseconds). The Markov
Decision Process (MDP) for coalition formation can be defined by
(S,A,T , 𝑅,𝛾), where S is the state space,A is the action space, T
is the transition probability, 𝑅 is the reward function, and 𝛾 ∈ [0, 1)
is the time discount factor. At the beginning of decision cycle 𝑡 ,
the learner observes state s𝑡 ∈ S of the IoT network, which may
include the topological information, device energy state, device
memory state, device bandwidth resource, etc. Then, the coalition
formation policy 𝜋 : S → A generates a decision a𝑡 ∈ A based
on the observed state, expressed as a𝑡 ← 𝜋 (s𝑡). Here, the a𝑡 takes
the form of membership matrix P. The reward of decision a𝑡 under
s𝑡 is determined by reward function 𝑅, i.e., 𝑟𝑡 = 𝑅(s𝑡 , a𝑡). At the
end of decision cycle 𝑡 , the IoT network transits to a new state s𝑡+1
based on the transition probability T , i.e., s𝑡+1 ∼ T (·|s𝑡 , a𝑡). In each
decision cycle 𝑡 , the objective is to maximize a sum of discounted
rewards starting from 𝑡 , i.e., 𝑅𝑡 =

∑∞
𝜏=𝑡 𝛾

𝜏−𝑡𝑟𝜏 . More details about
the MDP for coalition formation are given in Appendix A.

Reinforcement learning (RL) serves as a potent tool for solving
MDPs. However, RL algorithms typically operate in an online learn-
ing manner, which involves experience collection via iterative inter-
actions with the environment. This process can be time-consuming,
especially considering the large timescale of coalition formation.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Divide, Conquer, and Coalesce: Meta Parallel Graph Neural Network for IoT Intrusion Detection at Scale Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Additionally, online RL algorithms spend considerable time in pol-
icy exploration, which can result in arbitrary poor performance for
intrusion detection and leave IoT networks vulnerable to malicious
attacks. To address these issues, MPGNN leverages offline graph
reinforcement learning to establish a coalition formation policy
based on historical data.

Offline graph reinforcement learning We propose an offline
graph reinforcement learning method, namely Graph-Embedded
Adversarially Trained Actor-Critic (G-ATAC), to learn a coalition
formation policy. It utilizes ATAC [6] as a basic offline reinforcement
learning framework, which guarantees robust policy improvement,
i.e., maintaining safe policy improvement across large and anchored
hyperparameter choices. G-ATAC incorporates GNN as the learning
engine to effectively capture complicated topological information
and dependencies of IoT devices.

G-ATAC operates on an offline dataset D that is collected by
implementing arbitrary coalition formation policy (e.g., random for-
mation) to IoT networks. A data sample d ∈ D in historical dataset
is denoted by d = (s, a, 𝑟 , s′) where 𝑟 = 𝑅(s, a), s′ ∼ T (·|s, a). G-
ATAC follows the Actor-Critic framework to handle the continuous
action space of the membership matrix, and utilizes Graph Convo-
lutional Network (GCN) to construct the Actor 𝜋 (s;Θ𝜋) and Critic
𝑄 (s, a;Θ𝑄) for G-ATAC, where Θ𝜋 and Θ𝑄 denote the trainable
parameters of Actor and Critic, respectively. The Actor takes state s
as input and directly outputs a membership matrix a← P for coali-
tion formation. Using GCNs, the input state of actor s, s′ ∈ S are
written in the form of {A,X}, where A denotes the adjacent matrix
with 𝑎𝑖 𝑗 ∈ A characterizing the communication frequency between
device 𝑖 and 𝑗 ; X represents device features (e.g., energy state, com-
puting capacity, distribution of attacks, etc.) that may affect the
coalition formation and the performance coalitional NIDSs. Sup-
pose the GCN of Actor has 𝐿 Graph Convolutional Layers (GCLs),
the propagation of 𝑙-th GCL can be expressed as:

H(𝑙+1) = 𝜎
(
D̃−

1
2 ÃD̃−

1
2H(𝑙)W(𝑙)

)
(2)

where H(𝑙) is the matrix of activations in the 𝑙-th layer (H(0) de-
notes the input node features X); W(𝑙) is trainable weights in 𝑙-th
layer; Ã = A + I𝑁 is the weighted adjacent matrix with added self-
loops with D̃𝑖𝑖 = Σ 𝑗 Ã𝑖 𝑗 ; 𝜎 (·) is the activation function. The output
of the last GCL is the membership matrix, i.e., P← H𝐿 . Regarding
Critic 𝑄 (s, a;Θ𝑄), it employs the same architecture as the Actor. It
takes a = P and s = {A,X} as the input, and outputs the predicted
Q-values that are used for updating the Actor.

We illustrate the learning process of G-ATAC in Fig. 4. G-ATAC
completes training by following a Stackelberg Game [31], with
Actor acting as Leader and Critic acting as Follower. This process
can be expressed by the objectives below:

𝜋∗ ∈ argmax𝜋∈Π LD (𝜋,𝑄𝜋)
s.t. 𝑄𝜋 ∈ argmin𝑄∈Q LD (𝜋,𝑄) + 𝛽ED (𝜋,𝑄)

(3)

where LD (𝜋,𝑄) = ED [𝑄 (s, 𝜋) −𝑄 (s, a)] is the loss term related
to relative pessimism, ED (𝜋,𝑄) = ED [(𝑄 (s, a) −𝑟 −𝛾𝑄 (s′, 𝜋))2] −
min𝑄 ′∈Q ED [(𝑄 ′ (s, a) − 𝑟 − 𝛾𝑄 (s′, 𝜋))2] is the term used to ap-
proximate Bellman consistency, and 𝛽 > 0 is used to balance the
importance of the above two terms. The objective of Actor is to

Offline dataset

{𝐬, 𝐚, 𝐬′, 𝑟}

𝐗

A

𝐬
𝐬

Actor Network (GCN) Critic network (GCN)

Graph
Conv1

Membership
Matrix

𝜋(𝐬)

𝜋(𝒔)

𝑄(𝐬, 𝜋)

Predicted
Q-value

Topological
information

Device statistical
features

𝐬 = {𝐗,𝐀}

Attributed
graph

Graph
Conv2

Graph
Conv1

Graph
Conv2

Loss of Actor: l

Entropy

Adjustment

Loss of Crtic: Ql

(,)Q
Relative Pessimism Loss(,)Q−

Bellman

Consistency(,)Q

Max Min
Stackelberg

game

Figure 4: The framework of G-ATAC.

maximize the evaluation value assigned by the Critic, while Critic
evaluates policy with a relatively pessimistic attitude.

To mitigate the deadly triad [27], E𝐷 combines temporal differ-
ence (td) losses of Critic and delayed targets [2], denoted as:

E𝑤D = (1 −𝑤)EtdD (𝑄,𝑄, 𝜋) +𝑤E
td
D (𝑄,𝑄, 𝜋) (4)

where EtdD (𝑄,𝑄
′, 𝜋) = ED [(𝑓 (s, a) − 𝑟 − 𝛾𝑄 ′ (s′𝜋))2], 𝑄 is target

network, and𝑤 is the importance weight. Then, the loss of Critic
can be expressed as ℓ𝑄 = LD (𝜋,𝑄)+𝛽E𝑤D (𝜋,𝑄). To avoid the local
optimality, Actor adopts the adaptive policy entropy adjustment
[12]. Specifically, Actor adds a Lagrange relaxation term in its loss
ℓ𝜋 . The Lagrange relaxation term is defined as 𝛼 (ED [𝜋 log𝜋] −
Δmin), where ED [𝜋 log𝜋] is the entropy of the current policy,
and Δmin is the expected minimum policy entropy, and 𝛼 is an
adaptive weight. In brief, the loss of Actor can be described as
ℓ𝜋 (𝜋, 𝛼) = −LD (𝜋,𝑄) − 𝛼 (ED [𝜋 log𝜋] − Δmin). The training of
Actor and Critic is realized by the Double Q Residual Algorithm
(DQRA) [6]. The detailed training process of G-ATAC is provided
in Algorithm 2, Appendix A.

3.3 Coalitional NIDS with E-GraphSAGE
Given formed coalitions in the previous phase, MPGNN proceeds
to establish a coalitional NIDS within each coalition. Each coalition
C𝑘 first chooses a high-end device (with joint optimization of com-
puting capacity, energy resource, and communication efficiency) as
the coalition head, denoted as ℎ𝑘 . The head is responsible for gath-
ering and analyzing the real-time network flows, and performing
coalitional intrusion detection within coalition C𝑘 .

The flows in coalition C𝑘 are modeled as an attributed undirected
multigraph, denoted as𝐺NID,𝑘 = (Vip,𝑘 ×Vport,𝑘 , EC𝑘 , E𝑘). Specif-
ically, the vertices of 𝐺NID,𝑘 are identified by the flow endpoints,
i.e.,Vip,𝑘 (source IP, destination IP) andVport,𝑘 (source port, des-
tination port), and the edge features E𝑘 represent the statistical
characteristics of network flows in C𝑘 , e.g., the number of packets,
number of bytes, flow duration, etc. It is essential to note that the
vertex represents a port of an IoT device.

Given constructed attributed multigraphs, we convert the coali-
tional intrusion detection into an edge classification problem, then
solve it with E-GraphSAGE [17]. E-GraphSAGE possesses a distinc-
tive capability of analyzing edge features, making it well-suited for
edge classification. The inputs to E-GraphSAGE are the set of edge
features, denoted by {e𝑢𝑣,∀𝑢𝑣 ∈ EC𝑘 }, and the set of node features,
denoted by {x𝑣,∀𝑣 ∈ C𝑘 }. E-GraphSAGE performs aggregation of
edge features centered on the vertices in each layer. Consider a
GNN with 𝐿 E-GraphSAGE layers, the aggregated embedding of

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

the neighborhood edges of the vertex 𝑣 in the 𝑙-th layer is:

h𝑙N(𝑣) = AGG𝑙
(
{e𝑙−1𝑢𝑣 ,∀𝑢 ∈ N (𝑣), 𝑢𝑣 ∈ E}

)
(5)

where e𝑘−1𝑢𝑣 is the feature embedding of edge𝑢𝑣 in the neighborhood
N(𝑣) in the 𝑙−1 layer, and AGG𝑙 (·) is the aggregation function of 𝑙-th
layer. Our work utilizes mean function as the aggregation function,
and therefore Eqn.(5) simplifies to h𝑙N(𝑣) =

∑
𝑢∈N(𝑣),𝑢𝑣∈E

e𝑙−1𝑢𝑣

|N (𝑣) |𝑒 ,
where |N (𝑣) |𝑒 denotes the number of edges in the neighborhood.
After the aggregation of neighborhood edges, the embedding of
node 𝑣 is updated as follows by connecting the previous layer node
embedding h𝑙−1𝑣 with the current neighborhood embedding h𝑙N(𝑣) :

h𝑙𝑣 = 𝜎
(
W𝑙concat

(
h𝑙−1𝑣 , h𝑙N(𝑣)

))
(6)

whereW𝑙 is the trainable weight matrix of the 𝑙-th layer, concat
represents concatenation, and 𝜎 (·) is the nonlinear activation func-
tion. The final node embedding of node 𝑣 is the output of the last
layer, denoted as z𝑣 = h𝐿𝑣 . The final embedding of the edge 𝑢𝑣 is
obtained by concatenating the final node embeddings of the two
endpoints, which can be denoted as z𝑢𝑣 = concat (z𝑢 , z𝑣).

To accomplish intrusion detection, it is necessary for the final
edge embedding to go through a liner layer, which enables the
acquisition of the predicted label for each edge. The loss function
used for training the E-GraphSAGE model is defined as ℓNID =

𝐻 (𝑌,𝑌), where 𝑌 is the predicted labels by E-GraphSAGE and
𝑌 represents the true labels, and 𝐻 (·) is the cross-entropy loss
function. During the training process, the trainable parameters
are optimized using an Adam optimizer. A detailed procedure for
intrusion detection is provided in Algorithm 3 in Appendix A.

Ensemble prediction with coalitional NIDSs. Recall that
the formed coalitions contain the overlap of IoT devices, we lever-
age ensemble prediction to combine the intrusion detection re-
sults of multiple coalitional NIDSs. Let ŷ𝑘 (𝑢𝑣) = Φ𝑘 (𝑢𝑣) denotes
the classification (i.e., intrusion detection) of edge 𝑢𝑣 in coalition
𝑘 , where Φ𝑘 (·) denotes the coalitional NIDS for coalition 𝑘 and
ŷ𝑘 (𝑢𝑣) = {𝑦𝑘,𝑧 (𝑢𝑣)}𝑍𝑧=1 denotes the confidence vector for 𝑍 attack
types. We letK(𝑢𝑣) denote the set of coalitions that contain𝑢 and 𝑣 ,
then the ensemble prediction of edge 𝑢𝑣 is performed by coalitional
NIDSs {Φ𝑘 }𝑘∈K (𝑢𝑣) . The ensemble prediction result of edge 𝑢𝑣 is:

ŷ(𝑢𝑣) = 1
|K(𝑢𝑣) |

∑︁
𝑘∈K (𝑢𝑣) ŷ𝑘 (𝑢𝑣), (7)

and the class of edge 𝑢𝑣 is determined by argmax𝑧 𝑦𝑧 (𝑢𝑣).

4 EXPERIMENT
4.1 Experiment Setting

Datasets and Preprocessings. We evaluate the performance of
MPGNN on two real-world datasets: NF-ToN-IoT-V2 [21] and NF-
CSE-CIC-IDS2018-V2[21]. The NF-ToN-IoT-V2 dataset comprises 10
categories (16,940,496 samples), including 9 types of attacks (63.99%
of the total) and benign instances. The NF-CSE-CIC-IDS2018-V2
dataset consists of 15 categories (18,893,708 samples), mapped into 7
classes, including 6 types of attacks (11.95% of the total) and benign
samples. The detailed information on both datasets is available in
Appendix B.1. The data preprocessing encompasses 1) imbalance

mitigation, 2) IoT device sampling, 3) training and test data prepa-
ration, and 4) offline datasets construction (for G-ATAC). Details
about data preprocessing can be found in Appendix B. After the pre-
processing, the two datasets contain 252,020 and 348,485 endpoints,
respectively.

Baselines and Metrics. We compare MPGNN with centralized
NIDS and other parallel realizations with commonly used network
partitioning strategies, including random partitioning, Louvain par-
titioning [4], FastGreedy partitioning [8], andDL-based partitioning
[18]. MPGNN, random partitioning, and DL-based partitioning di-
vide the network into five coalitions, whereas Louvain partitioning
and FastGreedy partitioning automatically determine the optimal
number of coalitions.

The performance of MPGNN is assessed from two perspectives:
intrusion detection performance and complexity. Specifically, four
metrics, i.e., accuracy (ACC), precision (PRE), recall (REC), F1 score
(F1), are used to evaluate the performance of intrusion detection.
Two metrics, i.e., Training Time (TT) and Memory Size (SIZE), are
used to the complexity of MPGNN. Besides, to assess the scale
of coalitions, we introduce the average number of nodes (AN) of
coalitions as another evaluation metric. Detailed definitions of the
aforementioned metrics are provided in Appendix B.

4.2 Results and Discussions
Comparison with baselines. The performance of MPGNN and
baselines are summarized in Table 1. Intuitively, the centralized
NIDS gives the highest intrusion detection accuracy as it avoids in-
formation losses. Among all parallel realizations, MPGNN achieves
the best performance for intrusion detection, providing an aver-
age accuracy of 83.39% and 90.28% on two datasets, respectively,
aligning closely with the performance of the centralized NIDS (i.e.,
84.59% and 92.42%). We see that MPGNN-MLP has a noticeable
performance decline on both datasets compared to MPGNN, which
justifies the efficacy of using GNNs in coalition formation. How-
ever, the detection accuracy of MPGNN-MLP still far outperforms
the other traditional graph partitioning schemes. This indicates
that utilizing learning-based strategies for coalition formation is
beneficial.

Moreover, in comparison with the centralized model, MPGNN
achieves a remarkable 41.63% (22.11%) reduction in training time
and a 15.06% (8.53%) decrease in memory consumption on the NF-
ToN-IoT-V2 (NF-CSE-CIC-IDS2018-V2) dataset. These findings indi-
cate the effectiveness of MPGNN for computational burden opti-
mization and the potential for deployment at high-end IoT devices.
Additionally, the average coalition size of MPGNN is 61 nodes and
62.2 nodes, respectively, a significantly reduced scale when com-
pared with that of the centralized network. This disparity in scale
underscores the efficacy of MPGNN in mitigating communication
overhead and computational complexity.

Fig.5 depicts the data distribution of attack types for coalitions
generated by Random, FastGreedy, and MPGNN on the NF-ToN-
IoT-V2 dataset. (The corresponding results on the NF-CSE-CIC-IDS-
2018-V2 dataset are available in Fig.12). It can be observed in Fig. 5
that the data distribution of coalitions generated by Random and
FastGreedy exhibits a pronounced imbalance, causing the exclusion
of certain types of attacks. This imbalance may lead to inferior

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Divide, Conquer, and Coalesce: Meta Parallel Graph Neural Network for IoT Intrusion Detection at Scale Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Performance of MPGNN and baselines.

Dataset Method ACC REC PRE F1 TT(s) SIZE(MB) AN

N
F-
To

N
-I
oT

-V
2

Global 84.59% 0.88 0.81 0.83 772.48 181.00 200.0
MPGNN 83.39% 0.86 0.80 0.82 450.86 153.75 61.0

MPGNN-MLP[18] 78.11% 0.81 0.79 0.77 389.49 146.60 125.2
Random 51.06% 0.48 0.50 0.42 309.24 108.55 71.2

Louvain [4] 28.99% 0.23 0.22 0.17 120.45 39.07 28.6
FastGreedy [8] 55.03% 0.50 0.43 0.44 274.75 95.88 66.7

N
F-
C
SE

-C
IC

-I
D
S2

01
8-
V
2 Global 92.42% 0.86 0.80 0.79 583.87 250.85 200.0

MPGNN 90.28% 0.83 0.80 0.78 454.76 229.46 62.2
MPGNN-MLP [18] 85.10% 0.80 0.74 0.72 417.02 188.99 95.8

Random 61.13% 0.59 0.22 0.49 274.98 134.95 71.2
Louvain [4] 23.11% 0.22 0.14 0.12 150.86 57.24 40.0

FastGreedy [8] 18.31% 0.23 0.08 0.11 85.39 38.97 33.3

detection performance. In contrast, the coalitions generated by
MPGNN exhibit a balanced distribution of attack types, which
contributes to the performance enhancement in intrusion detection.

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

Coalition Index

P
ro

p
o

rt
io

n

Random

0.00

0.25

0.50

0.75

1.00

1 3

P
ro

p
o

rt
io

n

Fastgreedy

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

P
ro

p
o

rt
io

n

Attack types

Benign

backdoor

ddos

dos

injection

mitm

password

ransomware

scanning

xss

MPGNN

Coalition Index

2

Coalition Index

Figure 5: Distribution of attack types within coalitions

Coalition size. Fig. 6 shows the size of coalitions generated by
MPGNN and other parallel realizations on NF-ToN-IoT-V2. As afore-
mentioned, the coalition size directly affects the communication
and computation overheads of coalition NIDS. To guarantee the effi-
ciency of coalitional NIDS, the coalition size should not be kept low.
We can see from Fig. 6 that the average coalition size of MPGNN is
61.0, providing a scale reduction of 3.3× compared to the original
IoT network (with the size of 200). However, it is important to note
that solely focusing on reducing the communication and computa-
tion overhead may lead to performance degradation in intrusion
detection. For instance, the Louvain method produces an average
coalition size of 28.57, which is too small to provide sufficient data
for training a well-performing coalitional NIDS. Additionally, by
analyzing the results presented in Table 1 and Fig. 6, we can infer
that allowing appropriate overlap among coalitions helps improve
the performance of intrusion detection. However, the degree of
overlapping should be judiciously determined, otherwise, it may
lead to a large coalition size that harms the efficiency of coalitional
NIDS, e.g., MPGNN-MLP.

Performance breakdown to coalitions and attack types.We
then provide a comprehensive assessment of MPGNN by breaking
down its intrusion detection performance to each formed coali-
tion and each type of attack. Given the performance breakdown
for NF-ToN-IoT-V2 in Table 2, we see that the intrusion detection
performances of the five coalitional NDIS are similar to each other,
with macro average around 0.86 and F1-scores around 0.81. In terms
of specific attack types, the average F1-scores for Backdoor, DoS,
Ransomware, and Scanning with all five coalitional NIDSs are high,

Fast Greedy

Average coalition size: 66.67

overlapped device: 0

Louvain

Average coalition size: 28.57

overlapped device: 0

MPGNN

Average coalition size: 61.0

overlapped device: 105

MPGNN-MLP

Average coalition size: 125.2

overlapped device: 426

Random

Average coalition size: 71.2

overlapped device: 156

Figure 6: Comparison of coalition size.

Table 2: Performance breakdown (NF-ToN-IoT-V2)

Coalition1 Coalition2 Coalition3 Coalition4 Coalition5 Average
Metrics REC F1 REC F1 REC F1 REC F1 REC F1 REC F1
Benign 0.84 0.88 0.85 0.91 0.85 0.91 0.87 0.92 0.87 0.91 0.86 0.91
Backdoor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00

DoS 0.93 0.92 0.94 0.93 0.90 0.92 0.91 0.93 0.95 0.93 0.93 0.93
DDoS 0.92 0.75 0.90 0.80 0.95 0.67 0.94 0.77 0.93 0.74 0.93 0.75

Injection 0.69 0.78 0.64 0.75 0.65 0.76 0.65 0.76 0.58 0.71 0.64 0.75
MITM 0.59 0.53 0.65 0.50 0.61 0.53 0.58 0.54 0.65 0.49 0.62 0.52

Password 0.87 0.81 0.88 0.77 0.84 0.81 0.89 0.81 0.87 0.76 0.87 0.79
Ransomware 0.98 0.97 0.99 0.98 0.99 0.97 1.00 0.98 0.97 0.96 0.99 0.97
Scanning 0.97 0.92 0.97 0.94 0.97 0.95 0.97 0.95 0.96 0.95 0.97 0.94

XSS 0.77 0.65 0.77 0.64 0.85 0.62 0.88 0.64 0.75 0.63 0.80 0.64
Macro Avg. 0.85 0.82 0.86 0.82 0.86 0.81 0.87 0.83 0.85 0.81 0.86 0.82

(a) global model (b) the average of sub-network models

Figure 7: Normalized confusion matrix on NF-ToN-IoT-v2

around 1.00, 0.93, 0.97, and 0.94, respectively. These attack types ex-
hibit prominent spatial correlations, making them easily detectable
with GNN. Fig. 7 further provides normalized confusion matrices
for centralized NIDS and MPGNN. It can be observed that the detec-
tion performance of each attack type achieved by MPGNN closely
approximates that of centralized NIDS.

Table 3 shows the performance breakdown of MPGNN on the
NF-CSE-CIC-IDS2018-V2 dataset. The average recall and average
F1-score of five coalitional NIDSs generated by MPGNN are 0.83
and 0.78, respectively. Notably, the recall and F1-score for DoS, Bot,
and BruteForce stand out high, approaching 1.00. This is due to
the distinct spatial characteristics and adequate training samples
of these attack types. In contrast, the recall and F1 score for Web
attack are low, because the data samples of Web attack are limited
(3502 samples). This implies that the insufficient sample size may
become a performance bottleneck of MPGNN.

Device capacities within coalitions. Fig. 8 depicts the comput-
ing resource of IoT devices within coalitions generated by MPGNN.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Performance breakdown (NF-CSE-CIC-IDS2018-V2)
Coalition1 Coalition2 Coalition3 Coalition4 Coalition5 Average

Metrics REC F1 REC F1 REC F1 REC F1 REC F1 REC F1
Benign 0.96 0.64 0.94 0.71 0.93 0.70 0.96 0.72 0.82 0.56 0.92 0.67

BruteForce 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Bot 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DoS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DDoS 0.93 0.96 1.00 0.99 0.71 0.83 0.84 0.91 0.98 0.99 0.89 0.94

Infiltration 0.36 0.52 0.56 0.70 0.55 0.69 0.55 0.70 0.31 0.44 0.47 0.61
Web Attacks 0.47 0.13 0.46 0.54 0.77 0.06 0.62 0.08 0.48 0.34 0.56 0.23
Macro Avg. 0.82 0.75 0.85 0.85 0.85 0.75 0.85 0.77 0.80 0.76 0.83 0.78

Coalition 1 Coalition 2 Coalition 3 Coalition 4 Coalition 5

Figure 8: Visualization of device capacities in coalitions.

Table 4: Results of ablation experiments

Dataset Experimental Setting ACC REC PRE F1 TT(s) SIZE(MB) AN

N
F-
To

N
-I
oT

-V
2

MPGNN 83.39% 0.86 0.80 0.82 450.86 153.75 61.0
MPGNN-MLP 78.11% 0.81 0.79 0.77 389.49 146.6 125.2

MPGNN-unweighted A 44.69% 0.54 0.46 0.43 212.11 76.67 44.2
MPGNN w.o. DQRA 82.81% 0.83 0.76 0.78 481.31 176.32 57.6

N
F-
C
SE

-C
IC

-I
D
S2

01
8-
V
2 MPGNN 90.28% 0.83 0.80 0.78 454.76 229.46 62.2

MPGNN-MLP 85.10% 0.80 0.74 0.72 417.0237 188.99 95.8
MPGNN-unweighted A 40.93% 0.44 0.31 0.34 226.54 106.85 57.0
MPGNN w.o. DQRA 88.70% 0.80 0.82 0.76 451.12 225.97 61.8

The nodes denote the IoT devices, and the size of the nodes is pro-
portional to the amount of computing resources. The links denote
the communication connections between IoT devices. Nodes in
different coalitions are assigned with different colors. Based on the
result in Fig. 8, we see that high-end devices are assigned to coali-
tions in a balanced manner. It can be observed that each coalition
includes at least one high-end device that is capable of running
coalitional NIDS.

Ablation experiments. We further conduct ablation experi-
ments to evaluate the efficacy of designing elements of MPGNN.
The experimental results are summarized in Tabel 4. MPGNN-MLP
replaces the GNN in coalition formation policy (i.e., offline graph re-
inforcement learning) with MLP. We see from Table 4 that MPGNN-
MLP leads to a noticeable decline in intrusion detection perfor-
mance on both datasets. Additionally, MPGNN increases the aver-
age coalition size, which increases the computational complexity of
coalitional NIDS. MPGNN-unweighted A substitutes the weighted
adjacent matrix with a binary matrix to conduct a confirmatory
experiment. As shown in Table 4, for both datasets, neglecting
the interaction patterns between nodes causes severe performance
degradation in intrusion detection, as this process loses the topo-
logical information of IoT networks. MPGNN w.o. DQRA removes
the DQRA mechanism in the training process of G-ATAC. The
experimental results show a slight decrement in the intrusion de-
tection performance. This is because the absence of DQRA may
cause overestimation during training.
𝛽 is the hyperparameter used to balance the importance of rela-

tive pessimism and Bellman consistency in Eqn. (3). Table 5 presents
the impact of 𝛽 values on the performance of intrusion detection.

Table 5: Intrusion detection performance with different 𝛽

Dataset 𝛽 value ACC REC PRE F1
𝛽 = 1 58.41% 0.5949 0.5419 0.5353

NF-ToN 𝛽 = 4 83.39% 0.8581 0.8014 0.8187
-IoT-V2 𝛽 = 16 77.19% 0.7730 0.7303 0.7270

𝛽 = 64 73.30% 0.7574 0.7200 0.7052
𝛽 = 1 78.87% 0.6995 0.6351 0.6141

NF-CSE-CIC 𝛽 = 4 90.28% 0.8337 0.8039 0.7769
-IDS2018-V2 𝛽 = 16 81.89% 0.7529 0.7139 0.6943

𝛽 = 64 90.34% 0.8462 0.8109 0.7836

1 4 16 64
Value of

0

50

100

150

200

250

Av
er

ag
e

no
de

 n
um

Average node num

0

25

50

75

100

125

150

175

200

Av
er

ag
e

m
em

or
y

si
ze

 (
M

B)

Average memory size

(a) results on NF-ToN-IoT-V2
1 4 16 64

Value of

0

50

100

150

200

250

Av
er

ag
e

no
de

 n
um

Average node num

0

50

100

150

200

250

300

Av
er

ag
e

m
em

or
y

si
ze

 (
M

B)

Average memory size

(b) results on NF-CSE-CIC-IDS2018-V2

Figure 9: The mean and standard deviation of node numbers
and memory size with different 𝛽

The coalitional NIDSs achieve optimal performance with 𝛽 = 16
on the NF-ToN-IoT-V2 dataset, and with 𝛽 = 64 on the NF-CSE-
CIC-IDS2018-V2 dataset. Fig. 9 visualizes the mean and standard
deviation of node numbers and memory size across coalitions with
varying 𝛽 values. We see that the choice of 𝛽 value significantly
impacts the scale and the memory consumption of coalitions. In Fig.
9, on the NF-CSE-CIC-IDS2018-V2 dataset, 𝛽 = 64 results in a con-
siderably larger average coalition scale compared to other 𝛽 values,
potentially explaining the improvement in detection performance.

5 CONCLUSION
This paper proposed MPGNN to provide a parallel framework for
GNN-based NIDS in large-scale IoT networks. MPGNN leverages a
meta-learning framework that learns a coalition formation policy as
meta-knowledge to divide the large-scale IoT network into several
loosely coupled subnetworks (i.e., coalitions), and then performs
coalitional network intrusion detection with reduced communica-
tion overhead and computational complexity manageable high-end
devices in the IoT network. We proposed an offline graph reinforce-
ment learning method to obtain a coalition formation policy. Fi-
nally, MPGNN utilizes E-GraphSAGE to establish coalitional NIDSs,
which work collaboratively via ensemble prediction to accomplish
intrusion detection for large-scale IoT networks. We evaluated the
proposed method on two real-world datasets and compared it with
the centralized NIDS and parallel realizations supported by Ran-
dom, Louvain, and FastGreedy. The experimental results validate
the efficacy of MPGNN. While MPGNN is presented for network
intrusion detection for large IoT networks, its potential extends to
other scenarios that involve judicious parallelism of graph neural
networks.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Divide, Conquer, and Coalesce: Meta Parallel Graph Neural Network for IoT Intrusion Detection at Scale Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Sarhad Arisdakessian, Omar Abdel Wahab, Azzam Mourad, Hadi Otrok, and

Mohsen Guizani. 2022. A Survey on IoT Intrusion Detection: Federated Learning,
Game Theory, Social Psychology, and Explainable AI as Future Directions. IEEE
Internet of Things Journal 10, 5 (2022), 4059–4092.

[2] Leemon Baird. 1995. Residual Algorithms: Reinforcement Learning with Function
Approximation. In Machine Learning Proceedings 1995. Elsevier, 30–37.

[3] Michael Batty, KayWAxhausen, Fosca Giannotti, Alexei Pozdnoukhov, Armando
Bazzani, Monica Wachowicz, Georgios Ouzounis, and Yuval Portugali. 2012.
Smart Cities of the Future. The European Physical Journal Special Topics 214
(2012), 481–518.

[4] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast Unfolding of Communities in Large Networks. Journal of Statistical
Mechanics: Theory and Experiment 2008, 10 (2008), P10008.

[5] Christian Cervantes, Diego Poplade, Michele Nogueira, and Aldri Santos. 2015.
Detection of sinkhole attacks for supporting secure routing on 6LoWPAN for
Internet of Things. In 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM). IEEE, 606–611.

[6] Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. 2022. Adversar-
ially Trained Actor Critic for Offline Reinforcement Learning. In International
Conference on Machine Learning. PMLR, 3852–3878.

[7] Benoit Claise. 2004. Rfc 3954: Cisco Systems Netflow Services Export Version 9.
[8] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. 2004. Finding Commu-

nity Structure in Very Large Networks. Physical Review E 70, 6 (2004), 066111.
[9] George Dimitrakopoulos and Panagiotis Demestichas. 2010. Intelligent Trans-

portation Systems. IEEE Vehicular Technology Magazine 5, 1 (2010), 77–84.
[10] Guanghan Duan, Hongwu Lv, Huiqiang Wang, and Guangsheng Feng. 2022.

Application of A Dynamic Line Graph Neural Network for Intrusion Detection
with Semisupervised Learning. IEEE Transactions on Information Forensics and
Security 18 (2022), 699–714.

[11] Dave Evans. 2011. The Internet of Things. How the Next Evolution of the Internet
is Changing Everything, Whitepaper, Cisco Internet Business Solutions Group (IBSG)
1 (2011), 1–12.

[12] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
Actor-critic: Off-policy Maximum Entropy Deep Reinforcement Learning with
A Stochastic Actor. In International Conference on Machine Learning. PMLR,
1861–1870.

[13] Frank Harary and C St JA Nash-Williams. 1965. On Eulerian and Hamiltonian
Graphs and Line Graphs. Canad. Math. Bull. 8, 6 (1965), 701–709.

[14] Ryan Heartfield, George Loukas, Anatolij Bezemskij, and Emmanouil Panaousis.
2020. Self-configurable Cyber-physical Intrusion Detection for Smart Homes
Using Reinforcement Learning. IEEE Transactions on Information Forensics and
Security 16 (2020), 1720–1735.

[15] Feng Jiang, Yunsheng Fu, Brij B Gupta, Yongsheng Liang, Seungmin Rho, Fang
Lou, Fanzhi Meng, and Zhihong Tian. 2018. Deep Learning Based Multi-channel
Intelligent Attack Detection for Data Security. IEEE Transactions on Sustainable
Computing 5, 2 (2018), 204–212.

[16] Alex Krizhevsky, Ilya Sutskever, andGeoffrey EHinton. 2012. Imagenet Classifica-
tion with Deep Convolutional Neural Networks. Advances in Neural Information
Processing Systems 25 (2012).

[17] Wai Weng Lo, Siamak Layeghy, Mohanad Sarhan, Marcus Gallagher, and Mar-
ius Portmann. 2022. E-graphsage: A Graph Neural Network Based Intrusion
Detection System for Iot. In NOMS 2022-2022 IEEE/IFIP Network Operations and
Management Symposium. IEEE, 1–9.

[18] Azade Nazi, Will Hang, Anna Goldie, Sujith Ravi, and Azalia Mirhoseini. 2019.
A Deep Learning Framework for Graph Partitioning. ICLR (2019).

[19] Segun I Popoola, Ruth Ande, Bamidele Adebisi, Guan Gui, Mohammad Ham-
moudeh, and Olamide Jogunola. 2021. Federated Deep Learning for Zero-day
Botnet Attack Detection in IoT-edge Devices. IEEE Internet of Things Journal 9, 5
(2021), 3930–3944.

[20] Mohanad Sarhan, Siamak Layeghy, Nour Moustafa, and Marius Portmann. 2021.
Netflow Datasets for Machine Learning-based Network Intrusion Detection Sys-
tems. In Big Data Technologies and Applications: 10th EAI International Conference,
BDTA 2020, and 13th EAI International Conference on Wireless Internet, WiCON
2020, Virtual Event, December 11, 2020, Proceedings 10. Springer, 117–135.

[21] Mohanad Sarhan, Siamak Layeghy, and Marius Portmann. 2022. Evaluating
Standard Feature Sets towards Increased Generalisability and Explainability of
ML-based Network Intrusion Detection. Big Data Research 30 (2022), 100359.

[22] Michael Shirer and Carrie MacGillivray. 2019. The Growth in Connected Iot
Devices is Expected to Generate 79.4 zb of Data in 2025, According to A New Idc
Forecast. IDC. com. https://www. idc. com/getdoc. jsp (2019).

[23] Emiliano Sisinni, Abusayeed Saifullah, Song Han, Ulf Jennehag, and Mikael
Gidlund. 2018. Industrial Internet of Things: Challenges, Opportunities, and
Directions. IEEE Transactions on Industrial Informatics 14, 11 (2018), 4724–4734.

[24] StereoLabs. 2023. ZED Box. https://www.stereolabs.com/zed-box/
[25] Hudan Studiawan, Ferdous Sohel, and Christian Payne. 2020. Anomaly Detection

in Operating System Logs with Deep Learning-based Sentiment Analysis. IEEE

Transactions on Dependable and Secure Computing 18, 5 (2020), 2136–2148.
[26] Guosong Sun and Quan Qian. 2018. Deep Learning and Visualization for Identi-

fying Malware Families. IEEE Transactions on Dependable and Secure Computing
18, 1 (2018), 283–295.

[27] Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Intro-
duction. MIT press.

[28] R Vinayakumar, KP Soman, and Prabaharan Poornachandran. 2017. Applying
Convolutional Neural Network for Network Intrusion Detection. In 2017 Inter-
national Conference on Advances in Computing, Communications and Informatics
(ICACCI). IEEE, 1222–1228.

[29] Linus Wallgren, Shahid Raza, and Thiemo Voigt. 2013. Routing attacks and
countermeasures in the RPL-based internet of things. International Journal of
Distributed Sensor Networks 9, 8 (2013), 794326.

[30] Qingsai Xiao, Jian Liu, Quiyun Wang, Zhengwei Jiang, Xuren Wang, and Yepeng
Yao. 2020. Towards Network Anomaly Detection Using Graph Embedding. In
Computational Science–ICCS 2020: 20th International Conference, Amsterdam, The
Netherlands, June 3–5, 2020, Proceedings, Part IV 20. Springer, 156–169.

[31] Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal.
2021. Bellman-consistent Pessimism for Offline Reinforcement Learning. Ad-
vances in Neural Information Processing Systems 34 (2021), 6683–6694.

[32] Congyuan Xu, Jizhong Shen, and Xin Du. 2020. A Method of Few-shot Network
Intrusion Detection Based on Meta-learning Framework. IEEE Transactions on
Information Forensics and Security 15 (2020), 3540–3552.

[33] Run Yang, Hui He, Yixiao Xu, Bangzhou Xin, Yulong Wang, Yue Qu, and Weizhe
Zhang. 2023. Efficient Intrusion Detection toward IoT Networks Using Cloud–
edge Collaboration. Computer Networks 228 (2023), 109724.

[34] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014. Recurrent Neural
Network Regularization. arXiv preprint arXiv:1409.2329 (2014).

[35] Jiawei Zhou, Zhiying Xu, Alexander M Rush, and Minlan Yu. 2020. Automating
Botnet Detection with Graph Neural Networks. arXiv preprint arXiv:2003.06344
(2020).

[36] Xiaokang Zhou, YiyongHu,Wei Liang, JianhuaMa, andQun Jin. 2020. Variational
LSTM Enhanced Anomaly Detection for Industrial Big Data. IEEE Transactions
on Industrial Informatics 17, 5 (2020), 3469–3477.

[37] Huidi Zhu and Jialiang Lu. 2022. Graph-based Intrusion Detection System Using
General Behavior Learning. In GLOBECOM 2022-2022 IEEE Global Communica-
tions Conference. IEEE, 2621–2626.

[38] Konglin Zhu, Zhicheng Chen, Yuyang Peng, and Lin Zhang. 2019. Mobile Edge
Assisted Literal Multi-dimensional Anomaly Detection of In-Vehicle Network
Using LSTM. IEEE Transactions on Vehicular Technology 68, 5 (2019), 4275–4284.

9

https://www.stereolabs.com/zed-box/

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A APPENDIX: DETAILS OF META PARALLEL GRAPH NEURAL NETWORKS (MPGNN)
A.1 State space, transition process, and reward function for reinforcement learning
State Space. Recall that the state space is denoted by S. Because G-ATAC uses GNNs as its learning engine. A state s ∈ S can be represented
by s = {A,X}. A ∈ R𝑀×𝑀 is a weighted adjacent matrix where 𝑎𝑖 𝑗 is the frequency that device 𝑖 transmits messages to device 𝑗 . X = {x𝑖 }𝑖∈N
collects the statistical features of IoT devices in N where x𝑖 denotes the features of IoT device 𝑖 . In our problem, x𝑖 may contain 1) The flow
features associated with the device. These features include the in-degree and out-degree of network flows and the one-hot encoding of
distributions of attack types, which can affect the performance of coalitional NIDS; 2) The energy state of IoT devices. An IoT device can be
connected to the power grid or relies on the battery. The energy state affects the selection of coalition head, for example, a device with low
battery levels cannot accomplish coalitional intrusion detection. 3) Computing capacity of devices. The computing capacity determines the
delay for running GNN-based intrusion detection. 4) The memory state of IoT devices. The coalition head should have enough memory to
load GNNs for running coalition NIDS. 4) The communication bandwidth of IoT devices. The communication bandwidth affects the delay for
the coalition head to collect flow features within the coalition.

Transition. 1) Transition of Energy state. For IoT devices connected to the power grid, their battery states are always set as high. For IoT
devices that use batteries, their energy state is determined by the transition as 𝑏′ = 𝑏 −

∫ 𝑡0+𝑡
𝑡0

𝐼 (𝑡0)𝑑𝑡 , where 𝑏 and 𝑏′ represent the current
energy state and next energy state, respectively, and 𝐼 (𝑡0) denotes the instantaneous current consumed by the circuit of the IoT node at the
specific time 𝑡0. In the experiment, the coalition head incurs large instantaneous currents for running coalition NIDSs, and other IoT devices
only incur low instantaneous currents for supporting routine activities. Regarding the communication state, we consider that the IoT devices
use frequency division multiplexing, and therefore bandwidth consumption is proportional to the number of nodes it communicates. The
state transition of the bandwidth can be represented as 𝑐′

𝑖
= 𝑐𝑖 − 𝜖𝑐 · 𝑛𝑖 , where 𝜖𝑐 is a coefficient of scaling, and 𝑛𝑖 is the number of nodes

with which it communicates.
Reward Function. The reward function for G-ATAC is defined as 𝑟 = 𝑟NID −𝑤𝑎 · 𝑝𝑎 −𝑤𝑐 · 𝑝𝑐 −𝑤𝑏 · 𝑝𝑏 , where 𝑟NID = Σ𝐾

𝑘=1 (F1𝑘 +ACC𝑘)
evaluates the intrusion detection effectiveness for each coalition, with 𝐾 denoting the number of coalitions generated by G-ATAC; F1𝑘 and
ACC𝑘 are the F1-score and accuracy of the intrusion detection model in the 𝑘-th coalition, respectively.

The penalty term 𝑝𝑎 is related to the number of sample categories, defined by 𝑝𝑎 = Σ𝐾
𝑘=1

𝑍−𝐴(𝑘)
𝑍

. Here, 𝐴(𝑘) represents the count of
attack types contained in the 𝑘-th coalition, while 𝑇 denotes the total number of attack types in the dataset. 𝑝𝑐 serves as the penalty
term aimed at mitigating communication overhead by constraining the number of nodes within each coalition. Its formulation is given
by 𝑝𝑐 = Σ𝐾

𝑘=1𝛿𝑐 (𝑘)
𝐶𝑘−𝜉
𝜉

, where 𝜉 signifies the upper threshold for the expected scale of coalitions, 𝐶𝑘 denotes the number of devices in
coalition C𝑘 , and 𝛿 (𝑘) indicates whether the scale of the 𝑘-th coalition surpasses the predefined threshold. Lastly, 𝑝𝑏 serves as the penalty
term employed to evaluate the adequacy of energy and memory resources within selected coalition heads. It is defined as 𝑝𝑏 = Σ𝐾

𝑘=1𝛿𝑏 (𝑘),
where 𝛿𝑏 (𝑖) evaluates whether the energy or memory component in s′ of ℎ𝑘 (i.e., the coalition head in C𝑘) is negative. Additionally,𝑤𝑎 ,𝑤𝑐 ,
and𝑤𝑏 represent the weights that determine the respective contributions of 𝑝𝑎 , 𝑝𝑐 , and 𝑝𝑏 within the reward function. In the experiment,
the𝑤𝑎 is set to 1, while𝑤𝑐 is set to 5, and𝑤𝑏 is set to 50.

A.2 Pseudocodes of MPGNN
The overall framework of MPGNN is available in Algorithm 1. The training of G-ATAC is given is shown in Algorithm 2. The training of
E-GraphSAGE is given in Algorithm 3.

B APPENDIX: DETAILS ABOUT EXPERIMENTAL SETTINGS
B.1 Detailed Information of Intrusion Detection Datasets
Two recently released public datasets namely NF-ToN-IoT-V2 and NF-CSE-CIC-IDS2018-V2 are used in this paper, whose detailed information
is collated in Table 6. The NF-ToN-IoT-V2 dataset is derived from a well-known NIDS dataset namely ToN-IoT [20], which focuses specifically
on IoT networks. Out of the entire number of data flows, which amounts to 16,940,496, 10,841,027 (63.00%) are abnormal samples while
6,099,469 (36.01%) are labeled as benign. The NF-ToN-IoT-V2 dataset consists of 10 distinct categories of samples, which include 9 forms of
attacks as well as benign instances. In total, the dataset includes 43 features, which are associated with respective labels. The NF-CSE-CIC-
IDS2018-V2 dataset is a NetFlow-based variant of CSE-CIC-IDS2018 [20] dataset, which contains network traffic collected over 10 days.
There are 18,893,708 flows in total, of which 2,258,141 (11.95%) are attack samples and 16,635,567 (88.05%) are benign ones. Additionally, the
NF-CSE-CIC-IDS2018-V2 dataset shares the same feature set with the NF-ToN-IoT-V2 dataset.

B.2 Data Preprocessing
The process of data preparation primarily consists of four steps. Firstly, to alleviate the extreme imbalance of data, we proceed by sampling
the two datasets based on their respective attack distributions. Then, the IP addresses within each dataset are arranged in descending order
according to the frequency of their occurrence in both the source IPs and the destination IPs, while the top 200 IPs form a set, denoted as P.
Only the data flows whose source IP and destination IP both exist in P are retained. In practice, it’s observed that this strategy does not

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Divide, Conquer, and Coalesce: Meta Parallel Graph Neural Network for IoT Intrusion Detection at Scale Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Algorithm 1 The overall framework of MPGNN
Input:

Device set N = {1, 2, . . . , 𝑁 }; The number of coalitions to be formed 𝐾 ; Test graph constructed by test set 𝐺_𝑡𝑒𝑠𝑡 ; Coalition formulation
policy set {𝜋 ′1, 𝜋

′
2, ...}; Threshold for coalition formation 𝛿 ; A buffer to storage historical data instances 𝐵𝑈 𝐹𝐹𝐸𝑅 = ∅; Learning Rate

𝐿𝑅𝜋 , 𝐿𝑅𝑄 , 𝐿𝑅N
Output: Detection results for the entire IoT network 𝑌
1: Network Context Extraction : s = {A,X}

// Offline dataset construction
2: Partition the large-scale IoT network by arbitrary policy:
∀𝜋 ′ ∈ {𝜋1, 𝜋2, ...}, P′ ← 𝜋 ′ (𝑠), a← P′,

3: Get coalitions based on a′:
C′
𝑘
= {𝑖 | 𝑝𝑖𝑘 ≥ 𝛿, 𝑖 ∈ N , 𝑝𝑖𝑘 ∈ P′} , 𝑘 = 1, 2, . . . , 𝐾

4: Train coalitional NIDSs in C′
𝑘
, 𝑘 = 1, 2, . . . , 𝐾 in parallel :

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛(𝐺 ′NID𝑘 ;𝜃𝑘) ← ADAM(𝜃𝑘 , 𝐿𝑅N)
5: Calculate reward and state transition, then save instances in buffer:

𝑟 ← 𝑅(s, a), s′ ∼ T (·|s, a) 𝐵𝑈 𝐹𝐹𝐸𝑅.𝑎𝑝𝑝𝑒𝑛𝑑 ({s, a, 𝑟 , s′})
// Generation of coalition formation policy

6: Offline graph reinforcement learning:
𝜋 (s; Θ̂𝜋) ← ADAM(Θ𝜋 , 𝐿𝑅𝜋), 𝑄 (s, a; Θ̂𝑄) ← ADAM(Θ𝑄 , 𝐿𝑅𝑄) (More details are available in Appendix 2)

7: Get the final coalition formation:
P← 𝜋 (s; Θ̂𝜋), C𝑘 = {𝑖 | 𝑝𝑖𝑘 ≥ 𝛿, 𝑖 ∈ N , 𝑝𝑖𝑘 ∈ P} , 𝑘 = 1, 2, . . . , 𝐾

// Coalitional intrusion detection
8: Train the coalitional NIDSs in parallel:

Detection(𝐺NID𝑘 ;𝜃𝑘) ← 𝐴𝐷𝐴𝑀 (𝜃𝑘 , 𝐿𝑅N) (More details are available in Appendix 3)
9: Employ 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛(𝜃𝑖) for real-time detection:
𝑌𝑖 ← 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛(𝐺𝑡𝑒𝑠𝑡 , 𝜃𝑖)

10: Realize real-time intrusion detection of global network via ensemble prediction: 𝑌 ← {𝑌1, 𝑌2, . . . , 𝑌𝐾 }
11: return Detection results for the entire IoT network 𝑌

Table 6: Details of NF-ToN-IoT-V2 and NF-CSE-CIC-IDS2018-v2.

Dateset NF-ToN-IoT-V2 NF-CSE-CIC-IDS2018-v2
Total Number of Flows 16,940,496 18,893,708
Benign Flows Percentage 36.01% 88.05%

Distribution

of Attacks

Class Count Class Count
Backdoor 16,809 BruteForce 120,912

DoS 712,609 Bot 143,097DDoS 2,026,234
Injection 684,465 DoS 483,999
MITM 7,723 DDoS 1,390,270Password 1,153,323

Ransomware 3,425 Infiltration 116,361
Scanning 3,781,419 Web Attacks 3,502XSS 2,455,020

cause too much loss of samples. Thirdly, the sampled dataset is split into a train set and a test set with a ratio of 0.7:0.3, while ensuring that
the samples in both sets are identically distributed.

Finally, it is important to construct the dataset for offline graph reinforcement learning. Various policies (e.g., random policy, expert policy,
extreme policy, etc.) are employed to partition the global network into multiple overlapped coalitions according to the network states (e.g.,
energy condition, memory condition, etc.). Correspondingly, the data flows whose source IP or destination IP fell within each coalition are
constructed as an attributed graph, which is used to train corresponding coalitional NIDS in parallel. The reward is calculated based on the
detection performance and resource consumption. In the end, the tuples consisting of states, actions, rewards, and next states are stored.

The size of datasets for offline reinforcement learning datasets spans from several thousand to tens of millions. In our experiment, we
find that a dataset comprising several thousand samples suffices for the training of coalition formation. We have constructed two datasets

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Algorithm 2 G-ATAC
Input:

Offline dataset for G-ATAC D; Loss term relative weight 𝛽 ; Target network update weight 𝜏 ; Lower bound of policy entropy Δmin;
Threshold 𝛿 ; Initialized adaptive weight 𝛼 ; Training epoch 𝑇 ; Actor learning rate 𝐿𝑅𝜋 ; Critic learning rate 𝐿𝑅𝑄 ; 𝛼 learning rate 𝐿𝑅𝛼

Output: Overlapped coalition set {C1, C2, . . . }
//Training of coalition formation policy

1: Initialized target network: 𝑄1 ← 𝑄1, 𝑄2 ← 𝑄2;
2: for 𝑡 = 1, 2, ...,𝑇 do
3: Sample minibatch from D: Dmb ← {s, a, 𝑟 , s′}

// Updata Critic:
4: for 𝑄𝑖 , 𝑖 = 1, 2:

LDmb = EDmb
[𝑄𝑖 (s, 𝜋) −𝑄𝑖 (s, a)]

EDmb
= 1

2E
𝑡𝑑
Dmb
(𝑄𝑖 , 𝑄𝑖 , 𝜋) + 1

2E
𝑡𝑑
Dmb
(𝑄𝑖 , 𝑄min, 𝜋)

ℓ𝑄 (𝑄𝑖) = LDmb (𝜋,𝑄𝑖) + 𝛽EDmb
(𝜋,𝑄𝑖)

𝑄𝑖 (Θ̂𝑄𝑖) ← ADAM(Θ𝑄
𝑖
, 𝐿𝑅𝑄)

// Updata Actor :
5: ℓ𝜋 (𝜋, 𝛼) = −LDmb (𝜋,𝑄1) − 𝛼

(
EDmb

[𝜋 log𝜋] − Δmin
)

𝜋 (Θ̂𝜋) ← ADAM(Θ𝜋 , 𝐿𝑅𝜋)
𝛼 ← ADAM(𝛼, 𝐿𝑅𝛼), 𝛼 = max{0, 𝛼}
// Updata target network

6: for (𝑄𝑖 , 𝑄𝑖)𝑖=1,2 :
𝑄𝑖 ← (1 − 𝜏)𝑄𝑖 + 𝜏𝑄𝑖

7: end for
// Formation of coalitions

8: Get membership matrix P← 𝜋 (s; Θ̂𝜋)
9: for 𝑘 = 1, 2, ... do
10: C𝑘 = {𝑛 | 𝑝𝑛𝑘 ≥ 𝛿, 𝑛 ∈ N , 𝑝𝑛𝑘 ∈ P} , 𝑘 = 1, 2, . . . , 𝐾
11: end for
12: return Coalition set {C1, C2, . . . , C𝐾 };

for offline reinforcement learning-based coalition formation based on NF-ToN-IoT-V2 and NF-CSE-CIC-IDS2018-v2, which are denoted as
ToN-Partition and CSE-Partition, respectively.

The ToN-Partition dataset contains a total of 2296 samples, whose distributions of reward and penalty terms are present in Fig. 10.
Concurrently, the CSE-Partition dataset consists of 1840 samples. In this dataset, the distributions of rewards and related penalty terms are
displayed in Fig. 11.

40 30 20 10 0 10
total reward

0

50

100

150

200

Fr
eq

ue
nc

y

2 4 6 8
detection score

0

50

100

150

200

Fr
eq

ue
nc

y

4 3 2 1 0
attack penalty

0

50

100

150

200

250

300

350

400

Fr
eq

ue
nc

y

12.5 10.0 7.5 5.0 2.5 0.0
communication penalty

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

50 40 30 20 10 0
energy penalty

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

Figure 10: Distributions of rewards and penalty terms on the ToN-Partition dataset

B.3 Specifications of platform and architecture of GNNs
MPGNN is implemented in PyTorch. The operation environment includes a 48-core 2.2GHz Intel Xeon Silver 4212 CPU, 64 GB of RAM, and
the 64-bit Ubuntu 20.04 LTS operating system. Regarding software versions, Python 3.8, PyTorch 1.12, and CUDA 11.4 are used.

Regarding the implementation of the model, Actor is set as a two-layer GCN, with the first layer employing the ReLU activation function,
while the output of the second layer is processed by the sigmoid function. And the number of hidden units is set as 128. Critic shares a similar
structure with Actor, with the exception that its second layer produced a one-dimensional output without undergoing any activation function.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Divide, Conquer, and Coalesce: Meta Parallel Graph Neural Network for IoT Intrusion Detection at Scale Conference’17, July 2017, Washington, DC, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Algorithm 3 The learning process of coalitional NIDSs
Input:

Overlapped coalitions {C1, C2, . . . , C𝐾 }; States of IoT devices X; Learning rate of E-GraphSAGE 𝐿𝑅N; Coalition head selecting function
R; The number of E-GraphSAGE layer 𝐿.

Output: Detection results for the entire IoT network 𝑌
1: for ∀𝑘 = 1, 2, . . . , 𝐾 do
2: Determine the coalition head: ℎ𝑘 ← max𝑖 R(𝑋𝑖) s.t. 𝑖 ∈ C𝑘
3: Construct the attributed multigraph of C𝑘 : 𝐺NID𝑘 = (V𝑖𝑝 ×V𝑝𝑜𝑟𝑡 , E, E)

// Establish coalitional NIDS
4: for 𝑙 ← 1 to 𝐿 do
5: for ∀𝑣 ∈ V do
6: h𝑙N(𝑣) ← AGG𝑙

(
{e𝑙−1𝑢𝑣 ,∀𝑢 ∈ N (𝑣), 𝑢𝑣 ∈ E}

)
7: h𝑙𝑣 = 𝜎

(
W𝑙concat

(
h𝑙−1𝑣 , h𝑙N(𝑣)

))
8: end for
9: end for
10: z𝑣 = h𝐿𝑣 , z𝑢𝑣 = concat (z𝑢 , z𝑣), 𝑌𝑘 = MLP(z𝑢𝑣)
11: ℓNIDS = 𝐻 (𝑌𝑘 , 𝑌𝑘)
12: Detection(𝐺NID𝑘 ;𝜃𝑘) ← ADAM (𝜃𝑘 , 𝐿𝑅N)

// Intrusion detection in each coalition
13: Collect real-time network flows and construct attributed multigraphs: 𝐺𝑡𝑒𝑠𝑡𝑘 ← 𝑋𝑡𝑒𝑠𝑡𝑘
14: Identify the real-time network flows: 𝑌𝑘 ← Detection(𝐺𝑡𝑒𝑠𝑡𝑘 ;𝜃𝑘)
15: end for
16: Realize real-time intrusion detection of global network via ensemble prediction: 𝑌 ← {𝑌1, 𝑌2, . . . , 𝑌𝐾 }
17: return Detection results for the entire IoT network 𝑌

40 30 20 10 0 10
total reward

0

25

50

75

100

125

150

175

200

Fr
eq

ue
nc

y

2 4 6 8
detection score

0

25

50

75

100

125

150

175

Fr
eq

ue
nc

y

4 3 2 1 0
attack penalty

0

50

100

150

200

250

300

Fr
eq

ue
nc

y

5 4 3 2 1 0
communication penalty

0

250

500

750

1000

1250

1500

1750

Fr
eq

ue
nc

y

50 40 30 20 10 0
energy penalty

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

Figure 11: Distributions of rewards and penalty terms on the CSE-Partition dataset

Besides, two Adam optimizers with different learning rates are used to update Actor and Critic, respectively. As for the hyperparameters, the
detailed settings are displayed in Table 7.

B.4 Definition of Evaluation Metrics
Four widely used evaluation metrics for detection performance, namely accuracy (ACC), recall (REC), precision (PRE), and F1-score (F1), have
been used in our evaluation. The accuracy quantifies the ratio of correctly classified samples among all samples, which can be calculated as
follows:

𝐴𝐶𝐶 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁 (8)

The recall measures the proportion of all samples accurately identified attack samples to the total number of true attack samples, which can
be calculated as follows:

𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (9)

The precision is defined as the proportion of accurately predicted attacks to the total number of samples predicted as attacks. The calculation
can be expressed as:

𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (10)
13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference’17, July 2017, Washington, DC, USA Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Table 7: The setting of hyperparameters

Hyperparameter Description Default Value
𝐿𝑅𝜋 The initial learning rate of the optimizer for Actor. 5e-7
𝐿𝑅𝑄 The initial learning rate of the optimizer for Critic. 5e-4
𝐿𝑅𝛼 The initial learning rate of the optimizer for 𝛼 . 5e-5
𝛾 The future discount rate of rewards. 0.9
𝛽 The weight to balance the critic loss term ED and LD . 4
𝜏 The update weight of the evaluation network to the target network. 5e-3
𝛼0 The initial value of 𝛼 . 1
N The max training epochs for the offline reinforcement learning model. 2000

BATCH_SIZE The number of training examples used in each iteration during the partition model training. 5
INTERATIONS The number of gradient updates per epoch. 2000

REWARD_SCALE The coefficient used to scale reward. 1

And the F1-score is mathematically defined as the harmonic mean of precision and recall :

𝐹1 = 2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (11)

Here, the 𝑇𝑃,𝑇𝑁, 𝐹𝑃, 𝐹𝑁 represent the numbers of true positives, true negatives, false positives, and false negatives, respectively.
In addition, three supplementary metrics, namely Training Time (TT), Memory Size (SIZE), and Average of Node Number (AN), are

employed to evaluate the effectiveness of resource consumption reduction and scale reduction. Here, the training time refers to the duration
required for attributed graph construction and intrusion detection model training, which accounts for the majority of the time in the process
of detection model training. The memory size denotes the average of the memory usage of the constructed attributed graph in each coalition.
Additionally, the average number of nodes measures the scale of the partitioned coalitions.

C APPENDIX: SUPPLEMENTARY EXPERIMENTAL RESULTS
C.1 Distribution of attack types in formed coalitions (NF-CSE-CIC-IDS2018-V2)
Fig.12 offers a visualization of attack types across all coalitions generated by Random, Louvain, and MPGNN on the NF-CSE-CIC-IDS2018-V2
dataset. As displayed in Fig. 12, it becomes evident that the data distribution of coalitions generated by Random and Louvain exhibits an
evident imbalance, causing the exclusion of certain types of attacks. This imbalance impairs the detection performance. In contrast, coalitions
derived from the MPGNN exhibit a more balanced data distribution, which stands to enhance the effectiveness of coalitional NIDSs.

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

Coalition Index

P
ro

po
rt

io
n

Attack types

Benign

BoT

BruteForce

DDoS

DoS

Infilteration

Web Attacks

Random

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

Coalition Index

P
ro

po
rt

io
n

Attack types

Benign

BoT

BruteForce

DDoS

DoS

Infilteration

Web Attacks

Louvain

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

Coalition Index

P
ro

po
rt

io
n

Attack types

Benign

BoT

BruteForce

DDoS

DoS

Infilteration

Web Attacks

MPGNN

Figure 12: Distribution of attack types in formed coalitions (NF-CSE-CIC-IDS2018-V2)

C.2 Normalized confusion matrix on NF-CSE-CIC-IDS2018-V2
Fig. 13 provides the visualization of normalized confusion matrices of centralized NIDS and MPGNN. As illustrated in Fig. 13, the detection
capability of the coalitional NIDSs generated by MPGNN closely approximates that of centralized NIDS. Specifically, the recall rates for Bot,
Brute-Force, and DoS reach a perfect ratio of 1.0. In contrast, the identification capability of Infiltration and Web attacks is relatively poor,
similar to that of centralized NIDS. This phenomenon can be attributed to the constraints imposed by the limited sample size and the less
distinct characteristics associated with these specific attack categories.

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Divide, Conquer, and Coalesce: Meta Parallel Graph Neural Network for IoT Intrusion Detection at Scale Conference’17, July 2017, Washington, DC, USA

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

(a) global model (b) the average of coalition models

Figure 13: Normalized confusion matrices on NF-CSE-CIC-IDS2018-V2

C.3 Device capacities within Coalitions (NF-ToN-IoT-V2 Dataset)
Fig. 14 presents the computing resource of IoT nodes within coalitions generated by MPGNN. As depicted in Fig.14, the computing resource
of IoT devices across coalitions exhibits a relatively balanced distribution, encompassing nodes with varying resource levels. Furthermore, it
can be seen that each coalition has at least one high-end device that is capable of serving as the coalition head.

Coalition 1 Coalition 2 Coalition 3 Coalition 4 Coalition 5

Figure 14: Visualization of device capacities in formed coalitions (NF-ToN-IoT-V2)

C.4 Ablation experiments with different 𝛽 values
To assess the impact of 𝛽 , which balances the weight between LD and ED in ℓ𝑄 as mentioned in Eqn. (3), we conduct an additional
experiment. Specifically, we consider the values of {40, 41, 42, 43}, and corresponding results on the two datasets are detailed in Table 8.

Table 8: Performance of MPGNN with different 𝛽

Dataset Value ACC REC PRE F1 TT(s) SIZE(MB) AN
𝛽 = 1 58.41% 0.5949 0.5419 0.5353 285.03 100.38 112.6

NF-ToN 𝛽 = 4 83.39% 0.8581 0.8014 0.8187 450.86 153.75 61.0
-IoT-V2 𝛽 = 16 77.19% 0.7730 0.7303 0.7270 460.54 159.64 162.2

𝛽 = 64 73.30% 0.7574 0.7200 0.7052 399.07 147.09 93.6
𝛽 = 1 78.87% 0.6995 0.6351 0.6141 393.80 191.19 57.2

NF-CSE-CIC 𝛽 = 4 90.28% 0.8337 0.8039 0.7769 454.76 229.46 62.2
-IDS2018-V2 𝛽 = 16 81.89% 0.7529 0.7139 0.6943 385.03 204.16 65.8

𝛽 = 64 90.34% 0.8462 0.8109 0.7836 564.41 250.85 158.2

C.5 Ablation experiments regarding the reward functions
As detailed in Appendix A.1, the reward function of OGRL is defined as 𝑟 = 𝑟NID −𝑤𝑎 · 𝑝𝑎 −𝑤𝑐 · 𝑝𝑐 −𝑤𝑏 · 𝑝𝑏 , where𝑤𝑏 is held constant at
50 to ensure the presence of at least one high-end node. In this subsection, we delve into the assessment of the effectiveness of the attack
penalty 𝑝𝑎 and communication penalty 𝑝𝑐 by varying the values of𝑤𝑎 and𝑤𝑐 . Specifically, we evaluate the coalitional NIDS performance

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference’17, July 2017, Washington, DC, USA Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

with distinct combinations of weights such as {(𝑤𝑎 = 1,𝑤𝑐 = 5),(𝑤𝑎 = 1,𝑤𝑐 = 1),(𝑤𝑎 = 5,𝑤𝑐 = 1)}, and provide corresponding results on both
datasets in Table 9.

As outlined in Table 9, when𝑤𝑎 is held constant and𝑤𝑐 is reduced from 5 to 1, the results from both datasets reveal an increase in average
node numbers, suggesting that the communication penalty plays a non-negligible role in controlling the scale of coalitions. Furthermore, we
maintain𝑤𝑐 at 1 while varying the value of𝑤𝑎 from 1 to 5. We can see a considerable increase in memory consumption, and the scale of
coalitions on both datasets. This phenomenon can be attributed to the rise in𝑤𝑎/𝑤𝑐 , which emphasizes the role of the attack penalty in
ensuring the inclusion of all attack categories within each coalition, while restricting the capacity of the communication penalty.

Table 9: Performance of MPGNN with different reward function configurations

Dataset Setting ACC REC PRE F1 TT(s) SIZE(MB) AN

NF-ToN
- IoT-V2

𝑤𝑎 = 1,𝑤𝑐 = 5 83.39% 0.8581 0.8014 0.8187 450.86 153.75 61.0
𝑤𝑎 = 1,𝑤𝑐 = 1 82.80% 0.8545 0.8018 0.8128 453.39 164.08 123.2
𝑤𝑎 = 5,𝑤𝑐 = 1 79.58% 0.8351 0.8008 0.7918 462.67 167.29 154.0

NF-CSE-CIC
-IDS2018-V2

𝑤𝑎 = 1,𝑤𝑐 = 5 90.28% 0.8337 0.8039 0.7769 454.76 229.46 62.2
𝑤𝑎 = 1,𝑤𝑐 = 1 79.56% 0.7532 0.7147 0.6933 409.20 218.27 68.0
𝑤𝑎 = 5,𝑤𝑐 = 1 90.60% 0.8531 0.8544 0.8123 464.86 248.46 76.2

16

	Abstract
	1 Introduction
	2 Related Works
	3 Meta Parallel Graph Neural Network for Parallel NIDS
	3.1 Parallel NIDS over Large-Scale IoT Networks
	3.2 Coalition Formation with Offline Graph Reinforcement Learning
	3.3 Coalitional NIDS with E-GraphSAGE

	4 Experiment
	4.1 Experiment Setting
	4.2 Results and Discussions

	5 Conclusion
	References
	A Appendix: Details of Meta Parallel Graph Neural Networks (MPGNN)
	A.1 State space, transition process, and reward function for reinforcement learning
	A.2 Pseudocodes of MPGNN

	B Appendix: Details about Experimental Settings
	B.1 Detailed Information of Intrusion Detection Datasets
	B.2 Data Preprocessing
	B.3 Specifications of platform and architecture of GNNs
	B.4 Definition of Evaluation Metrics

	C Appendix: Supplementary Experimental Results
	C.1 Distribution of attack types in formed coalitions (NF-CSE-CIC-IDS2018-V2)
	C.2 Normalized confusion matrix on NF-CSE-CIC-IDS2018-V2
	C.3 Device capacities within Coalitions (NF-ToN-IoT-V2 Dataset)
	C.4 Ablation experiments with different values
	C.5 Ablation experiments regarding the reward functions

