
Prioritized Asynchronous Belief Propagation

Jiarong Jiang jiarong@umiacs.umd.edu

University of Maryland, College Park, MD 20740

Taesun Moon tsmoon@umiacs.umd.edu

University of Maryland, College Park, MD 20740

Hal Daumé III hal@umiacs.umd.edu

University of Maryland, College Park, MD 20740

Jason Eisner jason@cs.jhu.edu

Johns Hopkins University, Baltimore, MD 21218

Abstract

Message scheduling is shown to be very
effective in belief propagation (BP) algo-
rithms. However, most existing schedul-
ing algorithms use fixed heuristics regard-
less of the structure of the graphs or prop-
erties of the distribution. On the other
hand, designing different scheduling heuris-
tics for all graph structures are not feasible.
In this paper, we propose a reinforcement
learning based message scheduling framework
(RLBP) to learn the heuristics automatically
which generalizes to any graph structures and
distributions. In the experiments, we show
that the learned problem-specific heuristics
largely outperform other baselines in speed.

1. Introduction

Probabilistic graphical models (Pearl, 1988; Wain-
wright & Jordan, 2008; Jordan, 1999) play an impor-
tant role in representing complex distributions and de-
pendencies between random variables for many real
world applications. Many approximate inference al-
gorithms have been proposed to solve the problem
efficiently. One of the most common methods is
message-passing algorithms such as loopy belief propa-
gation (Murphy et al., 1999; Ihler et al., 2005; Yedidia
et al., 2000). The idea behind this is to pass messages
between adjacent nodes until the fixed points of the
beliefs are achieved.

Inferning Workshop at 30 th International Conference on
Machine Learning, Atlanta, Georgia, USA, 2013. Copy-
right 2013 by the author(s).

It is shown in Elidan (2006) that asynchronous prop-
agation can achieve better convergence compared to
synchronous methods and thus initiated interest in
studying message scheduling schemes. However, most
existing research only focuses on manually designed
heuristics. For example, Wainwright et al. proposed a
tree reparameterization algorithm as message schedul-
ing for asynchronous propagation. Elidan (2006) or-
ders the messages in the order of the differences be-
tween two consecutive values of the message. Yedidia
et al. (2005); Vila Casado et al. (2010) also design spe-
cific scheduling for LDPC decoding problems.

In contrast with standard scheduling algorithms, in
this paper, we explore automatically scheduling mes-
sages for any graph structure and distribution. To
achieve this, we formalized the learning of the ordering
as a Markov Decision Process (MDP) and associate the
final reward with the convergence speed. The ordering
can be viewed as a linear policy of the MDP. The goal
is trying to learn a good policy such that the corre-
sponding scheduling can achieve a better convergence
speed. In the experiments, we show that that for the
graphs that the heuristics are automatically learned,
the learned heuristics performs better than the base-
lines. We also notice that the learned weights reveal
some useful features to consider in the scheduling.

2. Background

In this paper, we consider the problem of marginal
inference on undirected and discrete graphical models.
Formally, we denote a graph G = (X,E) and let x =
{x1, ..., xm} to be the random variables associated with
nodes in X. The exponential family distribution p over

Prioritized Asynchronous Belief Propagation

the random variables is defined as follows:

pθ(x) = exp[〈θ, φ(x)〉 −A(θ)] (1)

where φ(x) is the sufficient statistics of x and θ is
the canonical or exponential parameters. A(θ) =
log
∑
x exp[〈θ, φ(x)〉] is the log-partition function. In

this paper, we will focus on solving the marginal prob-
lem which is inferring marginal distribution p(x) for
all x.

2.1. Belief Propagation

Belief propagation (Murphy et al., 1999; Ihler et al.,
2005; Yedidia et al., 2000) (or sum-product) algorithm
is the standard message-passing algorithm for inferring
marginal distributions over random variables. It is a
fixed point iteration algorithm where the fixed point
is the exact solution to trees or polytrees structures
(Pearl, 1988). On loopy graphs, they are not guaran-
teed to converge, but if they do, the final estimates are
shown to be reasonably good (Yedidia et al., 2000).

The message Mts passed from node t to one of its
neighbors s is defined as:

Mts(xs)← κ
∑
x′
t∈Xt

{
exp[θst(xs, xt′) + θt(xt′)]

∏
u∈N(t)\s

Mut(xt′)
} (2)

where κ is the normalization constant. N(t)\s are the
neighbors of t excluding s. When the messages con-
verge, the belief/psuedomarginal distribution for the
node s is given by

µs(xs) = κ exp{θs(xs)}
∏

t∈N(s)

Mts(xs) (3)

For synchronous message-passing, only the old mes-
sages from the previous iteration are used to compute
the messages for the current iteration. However, asyn-
chronous message-passing uses the latest messages for
updates. In Elidan (2006), it is shown that any reason-
able asynchronous BP algorithm converges to a unique
fixed point under the assumptions that are similar to
the synchronous version. They use the residues (dif-
ferences in beliefs between updates) as a priority to
schedule the messages. In this paper, instead of using
the greedy residual schedule, we learn a proper sched-
ule automatically by a reinforcement learner.

3. Message Scheduling with
Reinforcement Learner

We formulate the schedule learning problem as a MDP
and the goal is to learn a policy for the MDP such that

the corresponding ordering can improve the speed of
convergence. Note that in this paper, we will only con-
sider ordering the nodes in the graph, but the learning
framework can be easily generalized to ordering each
message in the graph.

3.1. MDP Formulation

A Markov Decision Process (MDP) (Bellman, 1957;
Puterman, 2009) can be viewed as a memoryless search
process. It consists of a state space S, an action space
A, a transition function T , a reward function R and
the environment E . An agent repeatedly observes the
current state s ∈ S and takes an action a ∈ A. The
environment E then samples the new state s′ from
the transition function T (s′|s, a) and gives a reward
R(s′|a, s). A policy π(a|s) describes how the agent
chooses an action based on its current state.

More specifically, for the schedule learning problem,
the state space S is the graph and its messages/beliefs.
The action to take at each step is choosing a node
x in the graph and compute its messages. Assume
the features associated with node x is φ(x) and the
transition function T is deterministic. The reward is
defined with regard to the convergence speed. Here we
consider a linear policy (priority) which is

πω(s) = arg max
x

ω · φ(x) (4)

where ω is the feature weight vector. The goal is to
maximize the expected reward R = Er∼πω [R(τ)] =

Er∼πω
[
∑T
t=0 rt] where τ = (s0, a0, r0, ..., sT , aT , rT) is

a trajectory. In the current situation, this is equivalent
to minimizing the number of messages passed.

At test time, the transition function is deterministic so
that we always choose the node that has the highest
priority in the current state s. However, at the training
time, we allow the agent to explore the space by a
stochastic policy:

πω(xt) =
1

Z
exp

(
1

T
ω · φ(x)

)
(5)

where T is temperature and Z is a normalization con-
stant. When T → ∞, πω achieves a random choice
over all the nodes while T → 0 only exploits the de-
terministic policy.

To solve this, we apply the standard policy gradient
algorithm (Sutton et al., 2000).

∇ωEτ [R(τ)] =Eτ
[
∇ωpω(τ)

pω(τ)
(R(τ)− b)

]
=Eτ

[
(R(τ)− b)

T∑
t=0

∇ω log π(xt)

] (6)

Prioritized Asynchronous Belief Propagation

where b is some arbitrary baseline. In the last term,
the gradient of each policy decision is:

∇ω log πω(xt) =
1

T

φ(xt)−
∑
x′
t

πω(x′t)φ(x′t)

 (7)

Here we also use the optimal baseline

b =

〈(∑T
t=0∇ω log πω(xt)

)2
R(τ)

〉
〈(∑T

t=0∇ω log πω(xt)
)2〉 (8)

and the averaged gradient

g =

〈(
T∑
t=0

∇ω log πω(xt)

)
(R(τ)− b)

〉
(9)

3.2. Algorithm

A detailed training algorithm is described in Algo-
rithm 1. In the training, assume node and edge po-
tentials are given for a set of training graphs. The
goal is to learn the policy (feature weights) so that the
ordering of the nodes will help the model convergence.
One run on a graph is treated as a trajectory for the
learner.

A priority queue is maintained to order the nodes
of the graph. For each iteration, a node is popped
from the queue according to a Boltzmann exploration
policy. Then the relevant messages are updated for
the node and the features (and their priorities) of the
neighboring nodes are also updated. One iteration
is over when there are no more nodes in the priority
queue. If the beliefs are not converged, then push all
the nodes to the priority queue and repeat. Continue
this process until the gradient converges and update
the weight vector ω. Return the final weight vector ω
when the gradient → 0.

During the test time, the learned deterministic policy
will be used to prioritize the nodes and the node with
the highest priority is updated for each step.

3.3. Features

The features we use here include both static features
and dynamic features. The static features are mostly
extracted according to the graph properties once per
inference run. Dynamic features are associated with
real-time updates and a change in the values of dy-
namic features for a node can impact the feature values
for other nodes in the graph.

Algorithm 1 Training Algorithm

Input: Training set with graphs and given poten-
tials.
Initialize the policy parameter ω.
for each graph in the training set do

Initialize the messages and priority queue Q with
all the nodes in the graph.
while the beliefs are not converged or the maxi-
mum number of iterations is not reached do

Pop a node x from Q according to (5).
Compute its messages by (3).
Compute the derivative ∇ω log π(xt|Qt) by (7).
Update the dynamic features of its neighbors.
if the priority queue Q is empty and algorithm
not converged then

Enqueue all the nodes.
end if

end while
Compute the reward of the current trajectory.
Compute the baseline by (8) and gradient by (9).
Update the policy when the gradient converges.

end for

3.3.1. Static Features

The static features are:

• the degrees of the node,

• the dimension of the node,

• the max/min degrees of the neighboring nodes,

• the max/min dimension of the neighboring nodes

3.3.2. Dynamic Features

Dynamic features are those features that change be-
tween iterations or even within a single iteration. Here
we use

• KL divergence and residual between the current
learned belief and previous belief

• the difference between the current and last incom-
ing messages

• the difference between the outgoing messages.

4. Experiments

To empirically evaluate the model, we randomly gen-
erate Ising models according to the experiment setups
in (Elidan, 2006)1: The graphical representation of an

1As ongoing work, we only show the preliminary results
here.

Prioritized Asynchronous Belief Propagation

Ising model is a N×N random grid with a correspond-
ing number of binary variables. The node potentials
are drawn from U [0, 1] and the pairwised potentials

φs,t(Xs, Xt) =

{
exp(λC) if xs = xt

exp(−λC) if xs 6= xt
(10)

where λ ∼ U [−0.5, 0.5] and C is a constant.

We evaluate our reinforcement learning based message
scheduling framework (RLBP) against the standard
loopy belief propagation (LBP) and residual belief pro-
pogation (RBP). We also propose and evaluate against
a novel variant of the RBP where instead of measuring
the L2 differences between belief updates, we use a KL
divergence type of difference (KLBP).

We generate 40 5×5 grid graphs with C = 5. We train
our scheduling policy on the same graphs for which
we report convergence results. LBP converges on 19
graphs and the remaining 3 algorithms converge on 27
graphs. We only try to learn the scheduling on the
27 graphs where either RBP or KLBP converges. In
table 1, we show results in terms of time reduction over
LBP per model. For clarity, LBP is shown as having
0% time reduction over itself. It is clear that RLBP
outperforms all other models by a wide margin.

LBP 0% RBP 34.70%
KLBP 39.62% RLBP 55.10%

Table 1. Time reduction in percentage over LBP by prop-
agation framework

Figure 1 shows the number of iterations taken for each
of the 27 graphs. Note some of the results for LBP are
missing because it does not converge. In order to make
the plot easy to read, we order the graphs on the x-axis
by the number of iterations RLBP (red line) takes.

It can be seen that RBP and KLBP also show large re-
ductions in the time to convergence and sometimes one
scheme is better than the other. However, the learned
heuristics (RLBP) performs the best of all most of
time. One interesting observation in the final feature
weights is that the degrees of the node here is a very
indicative feature besides the difference or divergence
of the beliefs, which supports the fact that different
graph structures should have different scheduling for
the messages.

5. Discussion and Future Work

In this paper, we presented a novel, effective algorithm
for learning how to schedule messages automatically
with a reinforcement learner. We restricted our focus

●

●

●

●

●

●

●

●
●

●

●●

●

●

RBP BP KLBP RLBP

0
20

40
60

80
10

0
12

0

ite
ra

tio
ns

 ti
ll

co
nv

er
ge

nc
e

Figure 1. Plot of iterations per model until convergence

here on learning the prioritization for the nodes in the
graph. However, in the general case, we can also apply
the same learning framework to learning or pruning
the specific messages in the belief propagation. If the
graphical model is large with many variables or vari-
ables sitting in a high dimension space, the edge-based
scheduling becomes harder. More complicated models
should be considered such as merging variables and
performing inference on different parts of the graph,
coarse-to-fine message passing, etc.

References

Bellman, Richard. A markovian decision process.
Technical report, DTIC Document, 1957.

Elidan, Gal. Residual belief propagation: Informed
scheduling for asynchronous message passing. In
in Proceedings of the Twenty-second Conference on
Uncertainty in AI (UAI, 2006.

Ihler, Alexander T., Iii, John W. Fisher, Willsky,
Alan S., and Chickering, Maxwell. Loopy belief
propagation: Convergence and effects of message
errors. Journal of Machine Learning Research, 6:
905–936, 2005.

Jordan, Michael I. An introduction to variational
methods for graphical models. In Machine Learn-
ing, pp. 183–233. MIT Press, 1999.

Murphy, Kevin P., Weiss, Yair, and Jordan, Michael I.
Loopy belief propagation for approximate inference:
An empirical study. In In Proceedings of Uncertainty
in AI, pp. 467–475, 1999.

Prioritized Asynchronous Belief Propagation

Pearl, Judea. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausble Inference. Morgan
Kaufmann Pub, 1988.

Puterman, Martin L. Markov decision processes: dis-
crete stochastic dynamic programming, volume 414.
Wiley-Interscience, 2009.

Sutton, Richard S, McAllester, David, Singh, Satinder,
and Mansour, Yishay. Policy gradient methods for
reinforcement learning with function approximation.
Advances in neural information processing systems,
12(22), 2000.

Vila Casado, Andres I, Griot, Miguel, and Wesel,
Richard D. Ldpc decoders with informed dynamic
scheduling. Communications, IEEE Transactions
on, 58(12):3470–3479, 2010.

Wainwright, Martin J and Jordan, Michael I. Graph-
ical models, exponential families, and variational
inference. Foundations and Trends R© in Machine
Learning, 1(1-2):1–305, 2008.

Wainwright, MJ, Jaakkola, T, and Willsky, AS. Tree-
based reparameterization for approximate estima-
tion on loopy graphs. Advances in Neural Informa-
tion Processing Systems, 14.

Yedidia, Jonathan S., Freeman, William T., and
Weiss, Yair. Generalized belief propagation. In IN
NIPS 13, pp. 689–695. MIT Press, 2000.

Yedidia, Jonathan S., Wang, Yige, Wang, Yige, Zhang,
Juntan, Zhang, Juntan, Fossorier, Marc, and Fos-
sorier, Marc. Reduced latency iterative decoding of
ldpc codes. In Proc. of the IEEE Global Communi-
cations Conf, 2005.

