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Abstract

We introduce a formal statistical definition for the problem of backdoor detection
in machine learning systems and use it to analyze the feasibility of such problem,
providing evidence for the utility and applicability of our definition. The main
contributions of this work are an impossibility result and an achievability result
for backdoor detection. We show a no-free-lunch theorem, proving that universal
backdoor detection is impossible, except for very small alphabet sizes. Further-
more, we link our definition to the probably approximately correct (PAC) learn-
ability of the out-of-distribution detection problem, establishing a formal connec-
tion between backdoor and out-of-distribution detection.

1 Introduction

Safe and trustworthy Machine Learning (ML) systems remain elusive [8, 15], for reasons that are
intrinsic, like poor interpretability [1, 13], and due to external threats, including inference time
adversarial inputs [6, 8, 4] and training time poisoning and backdoor attacks [5]. As the scale, com-
plexity and training data requirements of modern deep neural network architectures has grown, many
users resort to using and/or fine-tuning pre-trained models. Consequently, purposefully implanted
backdoors pose a security risk for ML systems.

In the classic backdoor threat model, a malicious actor may provide poisoned data, affecting the
behavior of trained ML model. For certain, poisoned inputs, which are modified in a specific way,
known to the attacker, the model then provides erroneous predictions. While there are many ways
such a backdoor could be embedded into a model, prior work shows that poisoning even a small frac-
tion of training data yields models with stealthy and effective backdoors [12]. To detect a backdoor,
the model user (i.e., the defender) has access to a, typically small, validation dataset of clean inputs.
In the Model Backdoor Detection (MBD) problem [9, 7], the defender wishes to detect if the model
itself contains a backdoor. In the Input Backdoor Detection (IBD) problem [10, 11], the defender
wants to test if a specific test input is poisoned or not. Yet, despite several years of research, the field
is still plagued by the cat-and-mouse game between attacks and defenses, with no end in sight. Un-
like the work on adversarial perturbation attacks, for instance, “certifiable” defenses have remained
elusive. We argue that this is in part because, despite the large body of work in the area, backdoor
detection has not been formally defined, at least not in a precise and well-posed manner. This lack of
formal treatment has negative consequences as it impedes fair and consistent comparison between
methods.

Contributions. In this paper, we present the first precise statistical formulation of the MBD and
IBD problems (Section 2.1). This formulation enables several new insights on backdoor detection.
(1) Relationship to well-known statistical problems: Our formulation unifies MBD, IBD and even
Out-Of-Distribution (OOD) detection within a common framework and we reduce these problems to
standard statistical hypothesis testing problems. (2) Infeasibility: Leveraging these reductions, we
conclude that under realistic assumptions, universal (adversary-unaware) backdoor detection is not
possible for an infinite alphabet of the training data. (3) Bound for finite alphabet size: For a finite
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data alphabet, we provide a bound on the achievable error probability given a fixed training set size.
These bounds are evaluated for commonly used datasets in ML, showing that universal backdoor
detection is only achievable for very small alphabets. (4) Connections to Probably Asymptotically
Correct (PAC) learning theory of OOD detection: Detecting a backdoor in training data is equivalent
to a binary Neyman-Pearson hypothesis test if OOD detection is PAC learnable as defined in [3].

2 Theoretical Formulation and Results

We focus on MBD and IBD in the case where the attacker has limited control over the training
data and is able to poison a certain portion of the dataset. The training itself is performed using
a standard method, e.g., Stochastic Gradient Descent (SGD). For an extensive overview of other
empirical backdoor problems, the reader is referred to, e.g., [15].

2.1 Formulating Model Backdoor Detection (MBD)

Overview. After N samples of training data are collected, the backdoor attacker has the option of
poisoning a portion of the training data, by replacing each clean sample with a poisoned sample.
This poisoning may alter, e.g., images as well as their labels. Subsequently, an Artificial Neural
Network (ANN) is trained on the resulting training set. Given the resulting trained network (i.e.,
the network parameters), the task of the backdoor detector is to determine whether the training data
had been poisoned. The detector may obtain M additional clean samples, e.g., by independently
collecting additional data. We assume that the backdoor attacker has no access to these samples.

Dataset and training. Consider a, possibly stochastic, training algorithm A (e.g., SGD), that trains
a model on training data1 DN = (X1, X2, . . . , XN ), consisting of N i.i.d. random variables, dis-
tributed like X ∼ P , as input and produces a parameter vector θ = A(DN ) as output.

Clean data. Let P0 ∈ P(X ) be the probability distribution on X of clean samples and let D(0)
N =

(X
(0)
1 , X

(0)
2 , . . . , X

(0)
N ) be a clean dataset, consisting of N i.i.d. random variables, drawn from P0.

Backdoor. To backdoor a model trained on the clean dataset, an adversary may replace some
training samples with poisoned samples drawn from a different distribution Pb ∈ P(X ). As a
training sample may include the data and the label, the adversary could change the data and label.

Poisoned training data. Assuming that a fraction γ ∈ (0, 1] of the training data is poisoned,
the poisoned training dataset D(1)

N = (X
(1)
1 , X

(1)
2 , . . . , X

(1)
N ) is independently drawn according to

P1 = γPb + (1− γ)P0, i.e., according to Pb with probability γ and from P0 with probability 1− γ.

Additional clean data. Furthermore, let D′
M = (X ′

1, X
′
2, . . . , X

′
M ) ∼ PM

0 be M i.i.d. additional
clean samples distributed according to P0. These samples correspond to clean validation data or
may have been collected by the backdoor detector prior to making a decision.

Model Backdoor Detection. The backdoor detector is a function g, that takes θ = A(D(j)
N ) and

additional data D′
M as its input and outputs 0 for “backdoor” and 1 for “no backdoor”. For MBD,

we require the detector to determine j with high probability. For ease of notation, we use a Bernoulli-
1
2 random variable J ∼ B( 12 ) and define the input for the detector as Q = (A(D(J)

N ),D′
M ), such

that the error probability Pr{g(Q) ̸= J} of the detector is well-defined.

Possible data distributions. The last observation to obtain a well-defined backdoor detection prob-
lem is that we need to avoid the possibility of P0 = Pb. Detection is impossible if the clean and
the backdoor distributions are identical. We opt for the general approach of defining a suitable set
P ⊆ P(X )2 that contains all possible clean and backdoor distribution pairs (P0, Pb) ∈ P .

These discussions then naturally lead to the following central definition.

Definition 1. The MBD problem for a training algorithm A is determined by the following quanti-
ties: γ ∈ (0, 1], N ∈ N, M ∈ N, and P ⊆ P(X )2.

1The training sample X may be a vector that includes data and label.
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Fixing these quantities, we define the risk of a backdoor detector g associated with (P0, Pb) as

R(g;P0, Pb) := Pr{g(Q) ̸= J} =
1

2

∑
j=0,1

Pr{g(A(D(j)
N ),D′

M ) ̸= j}. (1)

We say that a backdoor detector is α-error for some α ∈ [0, 1
2 ] if, for every pair (P0, Pb) ∈ P , the

risk is bounded by
R(g;P0, Pb) ≤ α. (2)

Remark 1. Instead of bounding the risk as in (2), it may seem more natural to require Pr{g(Q) ̸=
j|J = j} ≤ α for both j = 0, 1, but note that Pr{g(Q) ̸= j|J = j} ≤ 2α for j = 0, 1 immediately
follows from (2).

2.2 (In)feasibility of Model Backdoor Detection

It will be useful to consider easier problems than α-error detection, as defined in Definition 1 and
establish reductions. To this end, we consider four different Types of detectors. All these detectors
need to infer J , but different inputs are available to them:

0. g0(Q0) with Q0 = Q = (A(D(J)
N ),D′

M ): The default detector as used in Definition 1.

1. g1(Q1) with Q1 = (D(J)
N ,D′

M ): Provide the detector with the training dataset D(J)
N and

M independent clean samples D′
M .

2. g2(Q2) with Q2 = (D(J)
N , P0): Provide the detector with the training dataset D(J)

N , and
with the clean data distribution P0.

3. g3(Q3) with Q3 = (D(J)
N , P0, Pb): Provide the detector with the training dataset D(J)

N ,
the clean distribution P0 and with the backdoor distribution Pb. This is a binary Neyman-
Pearson hypothesis testing problem between PN

0 and PN
1 .

We assume that detectors of Types 2 and 3 have access to P0 (and Pb for a Type 3 detector) in terms
of evaluation of the distribution, and also have the ability to sample from the distribution. We thus
consider Types 2 and 3 as randomized detectors to account for sampling. The definitions of risk and
α-error detection of g2, g3 apply mutatis mutandis as in Definition 1, where the probability in (1) is
also taken over the randomness of g.

Remark 3 proposes an ordering of the Types of detectors, according to the information provided.

In Section 2.2.1 we will show that for a reasonable P , α-error Type 2 detection is impossible with
α < 1

2 . The reduction argument in Remark 3 thus ensures that α-error detection with α < 1
2 is also

impossible for Type 0 and Type 1 detectors.

We can resolve the situation for a Type 3 detector using the Neyman-Pearson lemma.
Lemma 1. Given a Type 3 backdoor detector g3(DN , P0, Pb), for any pair (P0, Pb) ∈ P(X )2

R(g3;P0, Pb) ≥
1

2
− 1

2
TV(PN

0 , PN
1 ) ≥ 1

2
− γN

2
TV(P0, Pb), (3)

where the first equality in (3) can be achieved by the Neyman-Pearson detector. Thus, an α-error
detector of Type 3 can only exist if α ≥ 1

2 − γN
2 TV(P0, Pb) for all (P0, Pb) ∈ P .

See proof in Appendix A.3 .

Before analyzing Types 1 and 2, we specify the set of allowable distributions P using Lemma 1.

Merely excluding the identity P0 ̸= Pb, i.e., P = {(P0, Pb) ∈ P(X )2 : P0 ̸= Pb} is not sufficient.
Example 1. Let g3(DN , P0, P1) be an α-error Type 3 detector and assume that X is infinite, i.e.,
|X | = ∞. Let P be given as above, ensuring only that P0 ̸= Pb. For any ε > 0, we can then choose2

(P0, Pb) ∈ P with 0 < TV(P0, Pb) ≤ 2
γN ε. By Lemma 1, we have α ≥ 1

2 − γN
2 TV(P0, Pb) ≥

1
2 − ε. As ε > 0 was arbitrary, we have α = 1

2 .

2Without loss of generality, we can assume X = N. Then, this can, e.g., be achieved by P0 =
U({0, 1, 2, . . . , ⌊ γN

2ε
⌋}) and P1 = U({1, 2, . . . , ⌊ γN

2ε
⌋}). We use U(·) to denote a uniform distribution on

a finite set.
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Lemma 1 and Example 1 show that even for a Type 3 detector, we need TV(P0, Pb) >
1−2α
γN for all

(P0, Pb) ∈ P , in order for α-error detection to be achievable. In the following we will assume that
P is the set of probability distributions P0, Pb with TV(P0, Pb) ≥ 1− β, for some fixed β ∈ [0, 1).
This strong requirement is motivated by the fact that in this case, 1−γ+γβ

2 -error Type 3 detection is
achievable with only N = 1 sample.
Remark 2. Thorough reasoning and examples, illustrating why total variation distance is the pre-
ferred distance measure for distribution hypothesis testing can be found in [2, Section 1.2].

2.2.1 Impossibility

In the following we prove an impossibility result, which implies that for an infinite alphabet X , the
error probability (as given in Definition 1) of any detector (of Type 0, Type 1 or Type 2) is 1

2 , the
error probability of a random guess. Additionally, for finite X , we provide a lower bound on the
size of the training set N , as a function of α.
Theorem 1. Fix N ∈ N, α ∈ (0, 1

2 ], β ∈ [0, 1], and P = {(P0, Pb) : TV(P0, Pb) ≥ 1 − β}. Let
g2(DN , P0) be an α-error Type 2 detector. For |X | = ∞, we then have necessarily α = 1

2 , while
for |X | < ∞, we have

N ≥ log 2α

2
+

√
(log 2α)2

4
+ (β|X | − 1) log

1

2α
. (4)

See proof in Appendix A.3 .

For a fixed dataset alphabet size |X | and allowed error probability α, the bound (4) gives the min-
imum size of the training set N for the error level α to be achievable. Note the following special
cases in terms of α, β: i) For α = 1

2 , the bound (4) is always satisfied as the RHS is 0, showing that
1
2 -error detection is always achievable. This coincides with the error probability of a random guess.
ii) The bound (4) is monotonically decreasing in α and for α → 0, it approaches β|X |. iii) In case
β = 0, the bound (4) is always satisfied as the RHS is zero for α ∈ (0, 1

2 ] in this case. This shows
that α-error detection is always possible if P0 and Pb have disjoint support, i.e. TV(P0, Pb) = 1.

For an infinite alphabet X , (4) needs to be satisfied for arbitrarily large values of |X |. For finite
training set size N , this is only possible if α = 1

2 as then, log 1
2α = 0. Thus, in this case, for

any Type 2 detector, there is a particular clean distribution and backdoor strategy, such that this
detector performs no better than random guessing. For fixed α and β, we can use (4) to determine
the minimum size of the training set N for popular datasets, for α error probability to be achievable
by a Type 2 detector. To this end, we use the width W , height H , number of channels C and color
depth P of an image dataset to compute |X | = PWHC . For categorical datasets, we may multiply
the number of categories for all the properties recorded in the dataset to obtain |X |. The resulting
value for the bound in (4) is given in Table 1 for several popular datasets. As can be seen by these
numbers, this universal backdoor detection is infeasible for all, but the smallest tabular datasets.
Note also, that the impossibility of Type 2 backdoor detection automatically precludes the existence
of Type 1 or Type 0 error detectors with equal performance by the reduction argument in Remark 3.

2.2.2 Achievability

In this section we are going to show that achievability is possible and that it is related to the size of the
alphabet |X |. We consider a Type 2 detector and give a criterion for α-error detection achievability:

Theorem 2. Considering the backdoor detection setup of Definition 1 with P = {(P0, Pb) :
TV(P0, Pb) ≥ 1 − β} and a finite alphabet |X | < ∞. There exists an α-error Type 2 detector
if

α > 2|X | exp
(
−2Nγ2(1− β)2

|X |2

)
, (5)

See proof in Appendix A.3 .

Note the following special cases in terms of α, β and γ: i) For α = 0, (5) cannot be satisfied,
showing that 0-error detection cannot be achieved. ii) The case β = 1 allows for P0 = Pb and thus
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no α-error detector exists for α ∈ [0, 1
2 ) in this case and (5) cannot be satisfied. iii) For γ = 1,

P0 = Pb are identical, no α-error detector exists for α ∈ [0, 1
2 ), and (5) cannot be satisfied.

2.2.3 Connections to PAC-Learnability of OOD Detection

Table 1: Lower bound (4) on N evaluated for
popular datasets with α = 0.1 and β = 0.001.

Dataset |X | N

Lisa Traffic Sign 256307200 ≥ 10369904

ImageNet 256150528 ≥ 10181252

CIFAR10 2563072 ≥ 103697

MNIST 256784 ≥ 10942

B/W MNIST 2784 ≥ 10116

Adult ≥ 1021.86 ≥ 109

Heart Disease ≥ 1013.51 ≥ 105

Iris ≥ 106.35 ≥ 101

Note that a Type 1 detector essentially needs to
solve an OOD detection problem. In this case, we
are provided samples and the detector g1 needs to
determine if the N samples DN were drawn from
the same distribution as D′

M .

The goal of this section is to prove Theorem 3. This
theorem has an interesting implication in case the
OOD detection problem is PAC-learnable: If an
α-error Type 3 backdoor detector g3 exists, then
(α+ ϵ)-error detection is also possible for a Type 1
detector for any ϵ > 0. Thus, essentially Types 1
to 3 all become equivalent if OOD detection is PAC-
learnable. Note here that Type 3 detection is com-
pletely characterized by Lemma 1.

The PAC-learnability of the detector in Type 1 was analyzed in [3]. We fist restate a special case of
the definition of (weak) PAC-learnability as given in [3, Def. 1].
Definition 2. For distributions P0, Pb on X , the OOD-risk of a function f : X → {0, 1}, w.r.t. the
Hamming distance, is defined as

R̄(f, P0, Pb) := Pr{f(X(J)) ̸= J} =
1

2
Pr{f(X(0)) = 1}+ 1

2
Pr{f(X(1)) = 0}. (6)

Given a space of probability function P , OOD-detection is PAC-learnable on P if there exists an
algorithm G :

⋃∞
m=1 Xm → {0, 1}X and a monotonically decreasing sequence ϵ(m) such that

limm→∞ ϵ(m) = 0 and for all (P0, Pb) ∈ P , and all m ∈ N we have
E[R̄(G(D′

m), P0, Pb)]− inf
f

R̄(f, P0, Pb) ≤ ϵ(m), (7)

where the expectation is taken w.r.t. D′
m and the infimum is over {0, 1}X , i.e., all f : X → {0, 1}.

Appendix A.2 shows how Definition 2 is a special case of [3, Def. 1]. We consider PAC-learnability
on the N -dimensional product space, i.e., on XN with distributions PN

0 , PN
b . We can now connect

PAC-learnability to the existence of α-error detectors of Types 1 and 3.
Theorem 3. Consider the setup of Definition 1, with fixed γ ∈ (0, 1], N ∈ N and P . Let P ′ be the
set of N -fold products of (P0, P1), i.e., P ′ = {(PN

0 , (γPb + (1− γ)P0)
N ) : (P0, Pb) ∈ P}. Then,

OOD-detection is PAC-learnable on P ′ if and only if the following holds for any ϵ > 0 and any
Type 3 detector g3(DN , P0, Pb): We can find M ∈ N and a Type 1 detector g1(DN ,D′

M ), which
satisfies R(g1, P0, Pb) ≤ R(g3, P0, Pb) + ϵ for every (P0, Pb) ∈ P .

See proof in Appendix A.3 .
Corollary 1. If OOD-detection is PAC-learnable on P ′, we have the following: If α-error backdoor
detection is possible in the easier case of Type 3 detection, which is completely characterized by
Lemma 1, then (α + ϵ)-error detection is also possible for a Type 1 detector for any ϵ > 0. Con-
sequently, the achievability of backdoor detection for Types 1 to 3 detectors are all equivalent up to
topological closure if OOD-detection is PAC-learnable on P ′.

2.3 Generalizing to Input Backdoor Detection

We generalize Definition 1 to IBD. Let g′(Q′) take input Q′ = (Q, X(I)) = (A(D(J)
N ),D′

M , X(I)),
where a random variable I on {0, 1} determines if X(I) was drawn as X(0) ∼ P0 (I = 0) or as3

X(1) ∼ Pb (I = 1). We define a general target function t(j, i) ∈ {0, 1} and require that a backdoor
detector satisfies g′(Q′) = t(J, I) with high probability. In this case, it is beneficial to allow for an
arbitrary probability distribution PJI of (J, I) on {0, 1}2. This leads to the following definition

3Note, that X(1) is distributed according to Pb and not according to P1 = (1− γ)P0 + γPb.
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Definition 3. A backdoor detection problem for a training algorithm A is determined by the
following quantities: γ ∈ (0, 1], N ∈ N, M ∈ N, P ⊆ P(X )2, PJI ∈ P({0, 1}2), and
t : {0, 1}2 → {0, 1}. Fixing these quantities, we define the risk of a backdoor detector g′ as-
sociated with (P0, Pb) as R(g′;P0, Pb) := Pr{g′(Q′) ̸= t(J, I)}, where the probability is w.r.t.
Q′ = (A(D(J)

N ),D′
M , X(I)) and (J, I) ∼ PJI . We say that a backdoor detector is α-error for some

α ∈ [0, 1
2 ] if, for every pair (P0, Pb) ∈ P , the risk is bounded by R(g′;P0, Pb) ≤ α.

OOD can be modeled using the target function t(j, i) for MBD, IBD and OOD Figure 1.

0 1

0 0 –

1 1 –

i

j

(a) tMBD(j, i) = j.

0 1

0 0 –

1 0 1

i

(b) tIBD(j, i) = i.

0 1

0 0 1

1 – –

i

(c) tOOD(j, i) = tIBD(j, i) = i.

Figure 1: Target function t(j, i) for different backdoor detection flavors.

Note that several cells in the diagrams in Fig. 1 are grayed out. This reflects the fact that for certain
flavors of backdoor detection, specific combinations of (j, i) are not relevant. For MBD for instance,
we are not interested in whether the target sample X(I) contains a backdoor and we can thus assume
I = 0 in this case, effectively reducing this case to the problem introduced in Section 2.1 with M+1
samples being drawn from P0, i.e., (D′

M , X(0)) = D′
M+1, available to the detector. Conversely, the

case of a clean model, i.e., j = 0 and a sample with a backdoor, i.e., i = 1 is not realistic for IBD
and we set PJI(0, 1) = 0 in this case. By setting J = 0 (i.e., model is trained on clean data and
PJI(1, 0) = PJI(1, 1) = 0) and using tOOD(j, i) = tIBD(i, 0) = i, we obtain an OOD detection
problem, where the detector has access to a model A(D(0)

N ) trained on clean data and additional
clean data D′

M . The detector then needs to determine whether X(I) is in-distribution (I = 0) or
out-of-distribution (J = 1). To showcase, how our result from Sections 2.2.1 and 2.2.2 carry over
to other variants of backdoor detection, we will directly use Theorem 1 to derive a similar result
for IBD. In analogy to the different Types of MBD detectors introduced in Section 2, we have a
Type 2 detector g′2(Q

′
2) with Q′

2 = (D(J)
N ′ , P0, X

(I)) for IBD. For such a detector we can leverage a
reduction argument to obtain the following.

Corollary 2. Let g′2(D
(J)
N ′ , P0, X

(I)) be a Type 2 detector for an IBD problem with r =
min{PJI(0, 0), PJI(1, 1)} > 0 and P = {(P0, Pb) : TV(P0, Pb) ≥ 1 − β}. Then, if g′2 is α-
error, we have α ≥ r if |X | = ∞, and for |X | < ∞, we obtain

N ≥
log α

r

2
+

√
(log α

r )
2

4
+ (β|X | − 1) log

r

α
. (8)

See proof in Appendix A.3 .

3 Conclusions

We provided a formal statistical definition of backdoor detection and investigated the feasibility of
backdoor detection. We concluded that under realistic assumptions, universal (adversary-unaware)
backdoor detection is not possible. Thus, effective backdoor detectors need to be adversary-aware.
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A Appendix

A.1 Ordering of detector Types

Remark 3 (Ordering of detector Types). Types 0 to 3 are listed in order of decreasing difficulty as,
e.g., more information is provided to a Type 3 detector than to a Type 2 detector. Thus, an α-error
detector g immediately provides an α-error Type 1 detector g1, which in turn immediately provides
an α-error Type 2 detector g2, which yields an α-error detector g3 of Type 3. Thus, we can define a
total ordering on the different Types of detectors, using A ≺ B to signify that A can be derived from
B: Q0 ≺ Q1 ≺ Q2 ≺ Q3. The formal argument, showing this claim can be found in Lemma 2.

A.2 Definition 2 is a special case of [3, Def. 1]

Remark 4. Definition 2 is a special case of [3, Def. 1] in several ways4: i) The hypothesis space
is the complete function space H = {0, 1}X , of functions f : X → {0, 1}. ii) The loss function,
as used in [3, Eq. (1)] is the Hamming distance, i.e., ℓ(y, y′) = 1 if and only if y ̸= y′. iii) We
are purely concerned with one-class novelty detection, i.e., K = 1 in [3, Sec. 2]. Therefore we do
not take YO and YI into account, as YI ≡ 1 and YO ≡ 2. iv) Note that (P0, Pb) ∈ P play the
role of (DXO

, DXI
) and the complete domain space is then given by DXY = {DXY : DXY =

1
2P0 +

1
2Pb, (P0, Pb) ∈ P}. Besides, strong PAC-learnability [3, Def. 2] implies weak learnability.

A.3 Proofs

Lemma 2. Let gl be a detector as listed in Section 2 with input Ql for l ∈ {0, 1, 2}, where we set
g0 = g and Q0 = Q. If gl is α-error in the sense of Definition 1, then for m ∈ {1, 2, 3} and m > l
we can find a backdoor detector gm with input Qm that is also α-error.

Proof of Lemma 2. It is sufficient to show the lemma for m = l + 1. The claim then follows by
applying the result repeatedly.

In the case l = 2 (and m = 3) we obtain g3 with R(g3, P0, Pb) = R(g2, P0, Pb) by g3(D, P0, Pb) =
g2(D, P0).

For l = 1, we can define the randomized detector g2(D, x, P0) to first draw M i.i.d. samples D′
M ∼

PM
0 and then yield g2(D, P0) = g1(D,D′

M ).

Finally, for l = 0 we obtain g1 with equal risk by defining g1(D,D′) = g(A(D),D′).

Lemma 1. Given a Type 3 backdoor detector g3(DN , P0, Pb), for any pair (P0, Pb) ∈ P(X )2

R(g3;P0, Pb) ≥
1

2
− 1

2
TV(PN

0 , PN
1 ) ≥ 1

2
− γN

2
TV(P0, Pb), (3)

where the first equality in (3) can be achieved by the Neyman-Pearson detector. Thus, an α-error
detector of Type 3 can only exist if α ≥ 1

2 − γN
2 TV(P0, Pb) for all (P0, Pb) ∈ P .

Proof of Lemma 1. Fix (P0, Pb) and let Q = {x ∈ XN : g3(x, P0, Pb) = 1} to obtain

1−R(g3;P0, Pb) =
1

2

∑
j∈{0,1}

Pr{g3(D(j)
N , P0, Pb) = j} (9)

=
1

2

∫
1Q dPN

1 +
1

2

∫
1Qc dPN

0 (10)

=
1

2
+

1

2

∫
1Q dPN

1 − 1

2

∫
1Q dPN

0 (11)

=
1

2
+

1

2

∫
1Q d(PN

1 − PN
0 ) (12)

4The following symbols use the notation from [3, Sec. 2]: H, XO , XI , YO , YI , DXO , DXI , DXY , DXY ,
ℓ(·, ·), K.
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≤ 1

2
+

1

2
TV(PN

0 , PN
1 ) (13)

≤ 1

2
+

N

2
TV(P0, P1) (14)

≤ 1

2
+

γN

2
TV(P0, Pb), (15)

where (13) is a consequence of [14, Exercise 1.17]. Also using [14, Exercise 1.17], we see that
equality in (13) is achieved for the Neyman-Pearson detector

g3(DN , P0, Pb) = 1

{
dPN

1

dPN
0

(DN ) ≥ 1

}
. (16)

The last two steps (14) and (15) follow from Lemma 3.

Theorem 1. Fix N ∈ N, α ∈ (0, 1
2 ], β ∈ [0, 1], and P = {(P0, Pb) : TV(P0, Pb) ≥ 1 − β}. Let

g2(DN , P0) be an α-error Type 2 detector. For |X | = ∞, we then have necessarily α = 1
2 , while

for |X | < ∞, we have

N ≥ log 2α

2
+

√
(log 2α)2

4
+ (β|X | − 1) log

1

2α
. (4)

Proof of Theorem 1. For brevity we assume P0 to be given and drop it as an argument to
g2(D(j)

N , P0) = g2(DN ). Assume that g2 is an α-error detector. Without loss of generality, we
will assume |X | = K ∈ N and set X = {1, . . . ,K}. The case |X | = ∞ will follow by letting
K → ∞.

Choose P0 = U(X ), the uniform distribution on X = {1, . . . ,K}. For an arbitrary, vector y =
(y1, y2, . . . , yM ) ∈ XM , let Qy be the discrete uniform distribution on the elements of y. Note that
this is only the uniform distribution on the set {ym : m = 1, . . . ,M} if all components of y are
different. Clearly, we have TV(P0,Qy) ≥ 1 − M

K . Thus, by choosing M ≤ βK it is ensured that
TV(P0,Qy) ≥ 1− β.

Let Y = (Y1, Y2, . . . YM ) be a random vector with M elements, each drawn i.i.d. according to Ym ∼
P0. We now draw another random vector Z with N elements Z = {Zn}n=1,2,...,N according to
Zn = (1−Gn)X

(0)
n +GnYVn

, where Vn ∼ U({1, 2, . . . ,M}) and Gn ∼ B(γ) are all independently
drawn for n = 1, 2, . . . , N . Thus, Vn is uniformly drawn from {1, 2, . . . ,M} and Gn satisfies
Pr{Gn = 1} = γ and Pr{Gn = 0} = 1− γ.

We note the following two facts about this construction:

1. The marginal distribution of every Zn ∈ Z is P0, but the selection is non-i.i.d. as Zn and
Zn′ depend on each other through Y. However, when conditioning on the fact that all
components of V = (V1, V2, . . . , VN ) are pairwise distinct, then the random variables YVn

and YV ′
n

are independent for n ̸= n′ and thus Z is a vector of i.i.d. variables distributed
according to P0.

2. When conditioning on Y = y, we have a different situation, where Zn ∼ (1−γ)P0+γQy

are i.i.d., and by choosing M ≤ βK, we have (P0,Qy) ∈ P .

Let |V| = |{V1, V2, . . . , VN}| = N be the event that V contains pairwise distinct elements, i.e., no
repetitions occur. Using the first fact above, we calculate

Pr{g2(Z) = 1} (17)

≤ Pr
{
g2(Z) = 1

∣∣∣|V| = N
}
+ Pr{|V| ≠ N} (18)

≤ Pr
{
g2(Z) = 1

∣∣∣|V| = N
}
+ 1− M !

MN (M −N)!
(19)

≤ Pr
{
g2(Z) = 1

∣∣∣|V| = N
}
+ 1−

(
1− N

M

)N

(20)
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= Pr
{
g2(D(0)

N ) = 1
}
+ 1−

(
1− N

M

)N

(21)

= 2− Pr{g2(D(0)
N ) = 0} −

(
1− N

M

)N

(22)

≤ 2− Pr{g2(D(0)
N ) = 0} − exp

−N2

M −N
, (23)

where we used the union bound as well as the inequality log(1 + x) ≥ x
1+x .

Using the second fact from above, we condition on Y = y and then have Z i.i.d. according to
P1 = (1− γ)P0 + γPb for a valid backdoor distribution Pb = Qy. We then write

1

2
Pr{g2(D(0)

N ) = 0}+ 1

2
Pr{g2(Z) = 1} (24)

=
1

2
Pr{g2(D(0)

N ) = 0}+ 1

2
K−M

∑
y∈XM

Pr
{
g2(Z) = 1

∣∣Y = y
}

(25)

= K−M
∑

y∈XM

(
1

2
Pr
{
g2(D(0)

N ) = 0
}
+

1

2
Pr
{
g2(Z) = 1

∣∣Y = y
})

(26)

= K−M
∑

y∈XM

(
1

2
Pr
{
g2(D(0)

N ) = 0
}
+

1

2
Pr
{
g2(D(1)

N ) = 1
∣∣Y = y

})
(27)

≥ K−M
∑

y∈XM

(1− α) (28)

= 1− α. (29)

In total we have

1− α
(29)
≤ 1

2
Pr{g2(D(0)

N ) = 0}+ 1

2
Pr{g2(Z) = 1} (30)

(23)
≤ 1

2

(
Pr{g2(D(0)

N ) = 0}+ 2− Pr{g2(D(0)
N ) = 0} − exp

−N2

M −N

)
(31)

= 1− 1

2
exp

−N2

M −N
(32)

and thus

α ≥ 1

2
exp

−N2

M −N
. (33)

This already resolves the case |X | = ∞ as we can then let K → ∞ and M = ⌊βK⌋ → ∞, showing
that α = 1

2 for |X | = ∞.

On the other hand, for |X | < ∞, we choose K = |X |, M = ⌊βK⌋ and obtain (4) by

α ≥ 1

2
exp

−N2

M −N
(34)

− log 2α ≤ N2

⌊βK⌋ −N
(35)

0 ≤ N2 −N log 2α+ ⌊βK⌋ log 2α (36)

N ≥ log 2α

2
+

√
(log 2α)2

4
− ⌊βK⌋ log 2α (37)

N ≥ log 2α

2
+

√
(log 2α)2

4
+ (βK − 1) log

1

2α
(38)

10



Theorem 2. Considering the backdoor detection setup of Definition 1 with P = {(P0, Pb) :
TV(P0, Pb) ≥ 1 − β} and a finite alphabet |X | < ∞. There exists an α-error Type 2 detector
if

α > 2|X | exp
(
−2Nγ2(1− β)2

|X |2

)
, (5)

In the proof of this theorem, the auxiliary Lemmas 3 and 4 are used, which are provided in Ap-
pendix A.4.

Proof of Theorem 2. In the following we will show that the detector

g(DN , P0) =

{
1 TV(P0, SN ) ≥ γ 1−β

2

0 otherwise
(39)

is α-error if (5) is satisfied. Here, the distribution SN is the so-called type of DN , i.e.,

SN (x) =
1

N

N∑
n=1

1x(Xi), (40)

where for any x ∈ X , 1x(Xn) is the indicator function that takes value 1 if Xn = x and 0 otherwise.

In Lemma 4 it is shown that the type SN is close to the true distribution P with high probability. We
can now analyze the error probability of the detector (39) for P = P1, i.e.,

Pr{g(D(1)
N , P0) = 0} = Pr

{
TV(S

(1)
N , P0) ≤ γ

1− β

2

}
(41)

≤ Pr

{
TV(S

(1)
N , P0) ≤

TV(P0, P1)

2

}
(42)

≤ Pr

{
TV(S

(1)
N , P1) ≥

TV(P0, P1)

2

}
(43)

≤ Pr

{
TV(S

(1)
N , P1) ≥ γ

1− β

2

}
(44)

≤ 2|X | exp
(
−2Nγ2(1− β)2

|X |2

)
, (45)

where we used Lemma 4 in (45) and the fact that TV(P0, P1) = γ TV(P0, Pb) ≥ (1 − β)γ by
Lemma 3 in (42) and (44). Similarly, we obtain that the error probability for j = 0 is upper bounded
by the same expression

Pr{g(D(0)
N , P0) = 1} = Pr

{
TV(S

(0)
N , P0) ≥ γ

1− β

2

}
(46)

≤ 2|X | exp
(
−2Nγ2(1− β)2

|X |2

)
, (47)

applying Lemma 4 in (47).

Thus, we have shown that g, as defined in (39), is α-error, provided that (5) holds.

Theorem 3. Consider the setup of Definition 1, with fixed γ ∈ (0, 1], N ∈ N and P . Let P ′ be the
set of N -fold products of (P0, P1), i.e., P ′ = {(PN

0 , (γPb + (1− γ)P0)
N ) : (P0, Pb) ∈ P}. Then,

OOD-detection is PAC-learnable on P ′ if and only if the following holds for any ϵ > 0 and any
Type 3 detector g3(DN , P0, Pb): We can find M ∈ N and a Type 1 detector g1(DN ,D′

M ), which
satisfies R(g1, P0, Pb) ≤ R(g3, P0, Pb) + ϵ for every (P0, Pb) ∈ P .

In the proof of this theorem, the auxiliary Lemma 5 is used, which is provided in Appendix A.4
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Proof of Theorem 3. Assume first that OOD-detection is PAC-learnable on P ′, fix ϵ > 0 and let g3
be any Type 3 detector. By Lemma 5, we know that there is a Type 1 detector gM1 with some M
such that ϵ(M) ≤ ϵ, satisfying (85). Noting that 1

2 −
1
2 TV(PN

0 , PN
1 ) ≤ R(g3, P0, Pb) by Lemma 1

completes this part of the proof.

On the other hand, let g3 be the Type 3 Neyman-Pearson detector that satisfies R(g3, P0, Pb) =
1
2 − 1

2 TV(PN
0 , PN

1 ), which exists by Lemma 1. By our assumptions, for any k ∈ N we can find a
Type 1 detector ĝk1 with M = M(k) satisfying

1

2
TV(PN

0 , PN
1 )− 1

2
+R(ĝk1 , P0, Pb) ≤

1

k
. (48)

We can find a monotonically increasing sequence km for m = 1, 2, . . . with limm→∞ km =
∞, that satisfies M(km) ≤ m. Using the sequence of Type 1 detectors5 gm1 (DN ,D′

m) =

ĝkm
1 (DN , [D′

m]
M(km)
1 ) and ϵ(m) = 1

km
, we have for every (P0, Pb) ∈ P ,

ϵ(m) ≥ 1

2
TV(PN

0 , PN
1 )− 1

2
+R(ĝkm

1 , P0, Pb) (49)

=
1

2
TV(PN

0 , PN
1 )− 1

2
+R(gm1 , P0, Pb). (50)

This completes the proof as limm→∞ ϵ(m) = limm→∞
1
km

= 0 and thus, PAC learnability is
guaranteed by Lemma 5.

Corollary 2. Let g′2(D
(J)
N ′ , P0, X

(I)) be a Type 2 detector for an IBD problem with r =
min{PJI(0, 0), PJI(1, 1)} > 0 and P = {(P0, Pb) : TV(P0, Pb) ≥ 1 − β}. Then, if g′2 is α-
error, we have α ≥ r if |X | = ∞, and for |X | < ∞, we obtain

N ≥
log α

r

2
+

√
(log α

r )
2

4
+ (β|X | − 1) log

r

α
. (8)

Proof of Corollary 2. Assuming that this detector is α-error implies

α ≥ R(g′2, P0, Pb) ≥ PJI(0, 0)Pr{g′2(Q′
2) ̸= 0|J = I = 0}

+ PJI(1, 1)Pr{g′2(Q′
2) ̸= 1|J = I = 1} (51)

≥ r
(
Pr{g′2(Q′

2) ̸= 0|J = I = 0}+ Pr{g′2(Q′
2) ̸= 1|J = I = 1}

)
. (52)

Now consider the MBD problem with γ = 1 and the training set size N ′ = N + 1. We can define a
Type 2 detector6 g2(DN ′ , P0) = g′2(DN , P0, XN ′) with risk

R(g2, P0, Pb) =
1

2
Pr{g′2(Q′

2) ̸= 0|J = I = 0}+ 1

2
Pr{g′2(Q′

2) ̸= 1|J = I = 1} (53)

≤ 1

2r
α. (54)

From Theorem 1, we now know that 1
2rα ≥ 1

2 if X = N and obtain (8) for |X | < ∞.

A.4 Auxiliary Results

This appendix contains auxiliary results, which are utilized in the proofs provided in Appendix A.3.
Lemma 3 (Properties of Total Variation). The total variation between two probability distributions
P0, P1 ∈ P(X ), is given by

TV(P0, P1) = ∥P0 − P1∥TV := sup
A

|P0(A)− P1(A)|, (55)

5We use the notation [x]lk = [(x1, x2, . . . , xN )]lk = (xk, xk+1, . . . , xl) for slicing.
6If γ > 0 for the IBD problem, randomly replace elements of DN by independently drawn realizations of

P0.
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where the supremum is over all measurable sets A ⊆ X . We then have

∥P0 − P1∥TV = 2 inf
X0,X1:PX0

=P0,PX1
=P1

Pr{X0 ̸= X1}, (56)

where the infimum is over all random variables X0, X1 on X , such that the marginal distributions
satisfy PX0

= P0, PX1
= P1. For P ′

0, P
′
1 ∈ P(Y), we have

∥P0 − P1∥TV ≤ ∥P0 × P ′
0 − P1 × P ′

1∥TV ≤ ∥P0 − P1∥TV + ∥P ′
0 − P ′

1∥TV. (57)

and thus ∥P0 − P1∥TV ≤ ∥PN
0 − PN

1 ∥TV ≤ N∥P0 − P1∥TV. Furthermore, for γ ∈ [0, 1],

∥P0 − (1− γ)P0 − γP1∥TV = γ∥P0 − P1∥TV (58)

Proof. The characterization (56) can be found in [14].

To show the first inequality in (57), observe that

∥P0 × P ′
0 − P1 × P ′

1∥TV = sup
B

|[P0 × P ′
0](B)− [P1 × P ′

1](B)| (59)

≥ sup
A

|[P0 × P ′
0](A× Y)− [P1 × P ′

1](A× Y)| (60)

= ∥P0 − P1∥TV. (61)

To show the second inequality in (57), we use (56) and for an arbitrary ε > 0, choose (X0, X1) ⊥
(Y0, Y1) such that PX0

= P0, PX1
= P1, PY0

= P ′
0, PY1

= P ′
1, and

∥P0 − P1∥TV + ε ≥ 2Pr{X0 ̸= X1}, (62)

∥P ′
0 − P ′

1∥TV + ε ≥ 2Pr{Y0 ̸= Y1}. (63)

Clearly PX0,Y0
= P0 × P ′

0 as well as PX1,Y1
= P1 × P ′

1 and thus by (56),

∥P0 × P ′
0 − P1 × P ′

1∥TV ≤ 2Pr{(X0, Y0) ̸= (X1, Y1)} (64)
≤ 2Pr{X0 ̸= X1}+ 2Pr{Y0 ̸= Y1} (65)

≤ ∥P0 − P1∥TV + ∥P ′
0 − P ′

1∥TV + 2ε. (66)

As ε > 0 was arbitrary, this proves (57).

To show (58), we use (55) and have

∥P0 − (1− γ)P0 − γP1∥TV = sup
A

|P0(A)− (1− γ)P0(A)− γP1(A)| (67)

= sup
A

|γP0(A)− γP1(A)| (68)

= γ∥P0 − P1∥TV. (69)

Lemma 4. Let SN be the type of X = (X1, X2, . . . , XN ), distributed according to PN . For any
t ∈ [0, 1], we then have the bound

Pr {TV(SN , P ) ≥ t} ≤ 2|X | exp
(
−8Nt2

|X |2

)
. (70)

Proof. By using the Hoeffding’s inequality we can bound the probability of the deviation of SN

from its expected value. In particular, we have that

Pr {|SN (x)− P (x)| ≥ t} = Pr {|SN (x)− E[SN (x)]| ≥ t} (71)

≤ 2 exp

(
−2t2∑N

n=1(
1
N − 0)2

)
(72)

= 2 exp

(
−2t2

1
N

)
(73)
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= 2 exp
(
−2Nt2

)
, (74)

where we note that E[SN (x)] = 1
N

∑N
n=1 E[1x[Xn]] = P (x).

The next and final step is to extend the bound to the whole alphabet X . In order to do so, we define
the event Ax = {|SN (x)− P (x)| ≥ t}. We want to bound the probability of the event

A =
⋃
x∈X

Ax = {∃x ∈ X : Ax} . (75)

By applying the union bound we obtain

PrA = Pr

{⋃
x∈X

Ax

}
(76)

≤
∑
x∈X

Pr {Ax} (77)

≤
∑
x∈X

2 exp
(
−2Nt2

)
(78)

= 2|X | exp
(
−2Nt2

)
. (79)

Let us consider the event A = {∃x ∈ X : |SN (x)− P (x)| ≥ t}: this is the error event, i.e.,
the divergence between the observed samples frequency and its expected value diverges more than
a given value t > 0 for at least one x ∈ X . The complement of this event is the event that the
divergence is less than t for all x ∈ X , i.e., the event that the observed frequency is close to the
expected value for all x ∈ X . This can be written as

Ac = {∀x ∈ X , |SN (x)− P (x)| < t}. (80)

Now, Ac implies that ∑
x∈X

|SN (x)− P (x)| < t|X | (81)

1

2

∑
x∈X

|SN (x)− P (x)| < 1

2
t|X | (82)

TV(SN , P ) < t′ (83)

where t′ = 1
2 t|X |. Thus, PrAc ≤ Pr{TV(SN , P ) < t′} and therefore

Pr{TV(SN , P ) ≥ t′} ≤ PrA ≤ 2|X | exp
(
−2Nt2

)
, (84)

where we have used (79). By writing t in terms of t′ in (84), we obtain (70).

Lemma 5. Given P and N ∈ N and letting γ ∈ (0, 1], OOD-detection is PAC-learnable on P ′ =
{(PN

0 , PN
1 ) : (P0, Pb) ∈ P} with P1 = (1− γ)P0 + γPb if and only if the following holds: For the

MBD problem, there exists a sequence of Type 1 backdoor detectors gM1 (DN ,D′
M ) for M = 1, 2, . . .

and a decreasing sequence ϵ(m) with limm→∞ ϵ(m) = 0 such that for any M ∈ N and any pair
(P0, Pb) ∈ P , we have

1

2
TV(PN

0 , PN
1 )− 1

2
+R(gM1 , P0, Pb) ≤ ϵ(M). (85)

Proof. Assume that OOD-detection is PAC-learnable on P ′. By definition we have a function
G :
⋃∞

m=1 XNm → {0, 1}XN

and a monotonically decreasing sequence ϵ′(m) that tends to zero
and satisfies for every (P0, Pb) ∈ P , m ∈ N, that

E[R̄(G(D′
mN ), PN

0 , PN
1 )]− inf

f
R̄(f, PN

0 , PN
1 ) ≤ ϵ′(m), (86)

where the infimum is over all functions f : XN → {0, 1}.
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For any M ∈ N, we define7 gM1 (DN ,D′
M ) := G([D′

M ]mN
1 )(DN ) as well as ϵ(M) =

ϵ′(m), where m is the largest integer such that mN ≤ M . Notice that R(gM1 , P0, Pb) =
E[R̄(G(D′

mN ), PN
0 , PN

1 )] and that inff R̄(f, PN
0 , PN

1 ) = 1
2 − 1

2 TV(PN
0 , PN

1 ) by Lemma 1. We
thus obtain from (86), that for any M ∈ N,

ϵ(M) = ϵ′(m) ≥ E[R̄(G(D′
mN ), PN

0 , PN
1 )]− 1

2
+

1

2
TV(PN

0 , PN
1 ) (87)

= R(gM1 , P0, Pb)−
1

2
+

1

2
TV(PN

0 , PN
1 ). (88)

Noting that ϵ(M) approaches zero completes this part of the proof.

On the other hand, assume that gM1 (DN ,D′
M ) and ϵ(M) satisfy the requirement (85). For any

m ∈ N, we can then define G(D′
mN )(DN ) := gmN (DN ,D′

mN ) and ϵ′(m) = ϵ(mN). We can now
rewrite (85) using E[R̄(G(D′

mN ), PN
0 , PN

1 )] = R(gM1 , P0, Pb) and Lemma 1 to obtain

ϵ′(m) = ϵ(mN) ≥ 1

2
TV(PN

0 , PN
1 )− 1

2
+R(gM1 , P0, Pb) (89)

= E[R̄(G(D′
mN ), PN

0 , PN
b )]− inf

f
R̄(f, PN

0 , PN
1 ). (90)

Thus, we have shown that the algorithm G and the sequence ϵ′ satisfy Definition 2 and OOD-
detection is PAC-learnable on P ′.

7We use the notation [x]lk = [(x1, x2, . . . , xN )]lk = (xk, xk+1, . . . , xl) for slicing.
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