

000 001 002 003 004 005 PROTEINAE: PROTEIN DIFFUSION AUTOENCODERS 006 FOR STRUCTURE ENCODING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Developing effective representations of protein structures is essential for advancing protein science, particularly for protein generative modeling. Current approaches often grapple with the complexities of the $SE(3)$ manifold, rely on discrete tokenization, or the need for multiple training objectives, all of which can hinder the model optimization and generalization. We introduce PROTEINAE, a novel and streamlined protein diffusion autoencoder designed to overcome these challenges by directly mapping protein backbone coordinates from $E(3)$ into a continuous, compact latent space. PROTEINAE employs a non-equivariant Diffusion Transformer with a bottleneck design for efficient compression and is trained end-to-end with a single flow matching objective, substantially simplifying the optimization pipeline. We demonstrate that PROTEINAE achieves state-of-the-art reconstruction quality, outperforming existing autoencoders. The resulting latent space serves as a powerful foundation for a latent diffusion model that bypasses the need for explicit equivariance. This enables efficient, high-quality structure generation that is competitive with leading structure-based approaches and significantly outperforms prior latent-based methods. Code is available at https://github.com/OnlyLoveKFC/ProteinAE_v1.

1 INTRODUCTION

028
029
030 Proteins serve as the foundation of life. Protein structures, determined by the folding of various
031 amino acid sequences, dictate their biological functions and behaviors. Understanding and repre-
032 senting these structures is important for various protein tasks, typically protein generative modeling.
033 A dominant paradigm for visual generative models involves a two-step process (Esser et al., 2021;
034 Rombach et al., 2022): initially compressing the pixel input into a compact latent representation
035 with visual autoencoders (tokenizers), and then performing generative modeling within this latent
036 space. This paradigm significantly enhances both efficiency and performance of modeling complex
037 visual distributions. In contrast to the visual domain, which are typically represented at the pixel
038 level and are high-dimensional, protein structures are represented by continuous atom coordinates
039 in a lower dimensional space, i.e., 3D Euclidean space ($E(3)$) and differ greatly in size due to their
040 diverse amino acid sequence lengths (Jumper et al., 2021; Abramson et al., 2024). These character-
041 istics require new recipes for creating protein structure autoencoders and necessitate the exploration
042 of more efficient protein generative modeling methods.

043 Researchers have made several attempts to encode protein structures with autoencoders. Pioneering
044 efforts in this area include the ESM3 VQ-VAE tokenizer (Hayes et al., 2025) and the DPLM-2
045 lookup-free quantization (LFQ) tokenizer (Wang et al., 2024; 2025), which were among the first to
046 convert continuous 3D coordinates into discrete tokens to jointly model sequences and structures
047 used in generative masked language models. (Yuan et al., 2025) proposes AminoAseed with further
048 codebook improvements. While achieving initial success, these autoencoders are not ideal in the
049 following aspects: (i) operating on the intricate $SE(3)$ manifold (involving translations and frame
050 rotations) necessitates incorporating equivariance and physical constraints, thus introducing com-
051 plexity to the latent space and the design of model architecture; (ii) discretizing continuous atom
052 coordinates to tokens leads to a loss of reconstruction accuracy; (iii) requiring the combination of
053 complex training objectives (e.g., FAPE loss, distance loss, violation loss, KL loss, etc.), which de-
mands tuning individual weights for each term; (iv) being limited to a fixed input size (sequence
length) and lacking a compact bottleneck latent space for efficient generative modeling. These raise

054 the question: *Could we design a simpler, more accurate, and effective protein autoencoder in a*
 055 *continuous, compact latent space?*

056
 057 In this work, we propose PROTEINAE, a
 058 protein diffusion autoencoder designed for effec-
 059 tive and efficient structure encoding and genera-
 060 tion. Specifically, PROTEINAE operates in a
 061 non-equivariant manner, and conducts autoen-
 062 coding protein backbone atoms (C_α, N, C, O)
 063 directly on $E(3)$, avoiding the discretization.
 064 Inspired by recent works on denoising autoen-
 065 coders (Chen et al., 2025), PROTEINAE em-
 066 ploys a simple diffusion loss for training, which
 067 makes the learned structural representations
 068 maximize the ELBO of the likelihood of the in-
 069 put protein structures, which is similarly vali-
 070 dated by AlphaFold3 (Abramson et al., 2024).
 071 An architecture comparison between the tradi-
 072 tional protein autoencoder ESM3 structure au-
 073 toencoder and PROTEINAE is shown in Fig. 1.
 074 ESM3 structure autoencoder employs a stan-
 075 dard VQ-VAE framework (Esser et al., 2021)
 076 with a modified geometry-based transformer
 077 encoder on $SE(3)$ and focuses more on the
 078 local structural pattern. In contrast, PRO-
 079 TEINAE’s encoder and decoder are designed
 080 with scalable Diffusion Transformers (DiT)
 081 (Peebles & Xie, 2023). The encoder maps the
 082 protein backbone atom coordinates to a latent
 083 representation z . We also incorporate a bottleneck
 084 design by downsampling the protein in length and
 085 channel dimensions, which is common in vision
 086 for efficiency (Ronneberger et al., 2015). The
 087 decoder takes z as a condition and predicts the
 088 clean structure or velocity from noisy structures.
 089 At inference time, protein structures are recon-
 090 structed from the noisy coordinates with latent
 091 representation z via a diffusion sampler.

092 Building on this protein autoencoder, we can further perform downstream structural latent analysis,
 093 such as protein latent diffusion modeling (PLDM) and physicochemical prediction. Previous gener-
 094 ative methods are mostly structure-based diffusion models over $SE(3)$ (Yim et al., 2023b;a; Watson
 095 et al., 2023; Bose et al., 2023), but they face challenges with equivariance and physical constraints
 096 such as bond lengths and angles (Yim et al., 2025). Protein multi-modal models like ESM3 use iter-
 097 ative decoding to generate discrete structure tokens, but their generation quality is not as expected.
 098 (Yim et al., 2025) proposes a hierarchical structure latent diffusion model, but the latent diffusion
 099 is conducted on the contact map and still relies on FrameFlow (Yim et al., 2023a) at the second
 100 fine-grain stage. Based on the lightweight PROTEINAE, we develop a scalable PLDM. It employs a
 101 standard DiT architecture, bypassing the need for explicit equivariance or physical constraints, and
 102 eliminates the computationally expensive triangle attention module for better efficiency.

103 We rigorously evaluate PROTEINAE on the CASP14 and CASP15 benchmarks, demonstrating state-
 104 of-the-art reconstruction quality. We further show that the learned latent space is highly effective
 105 for physicochemical property prediction. Finally, our PLDM is competitive with leading structure-
 106 based generative models and substantially outperforms existing latent-based methods in both sample
 107 quality and efficiency. Our primary contributions are:

- **PROTEINAE: A Simple and Effective Protein Diffusion Autoencoder.** We introduce a non-equivariant autoencoder based on Diffusion Transformers that operates directly on backbone atom coordinates in $E(3)$. It learns a continuous, compact latent representation using a single flow-matching loss, avoiding the complexities of $SE(3)$ manifold and discrete tokenization.
- **High-Fidelity Encoding for Downstream Generative and Predictive Tasks.** PROTEINAE achieves state-of-the-art protein structure reconstruction. Its learned latent space enables accurate physicochemical property prediction and serves as the basis for protein

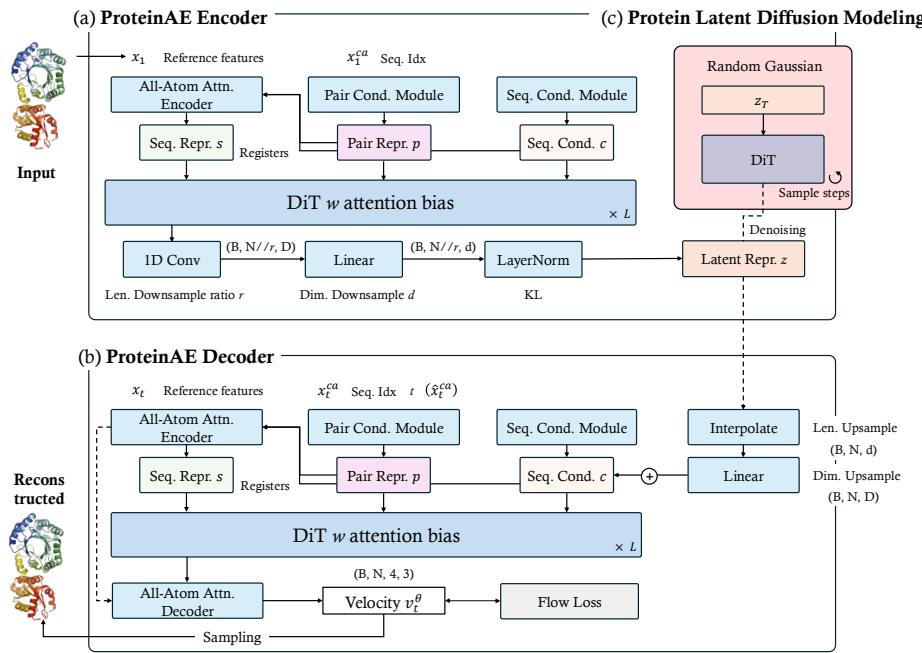


Figure 2: **Overall architecture of PROTEINAE.** (a) The encoder maps a protein structure to a latent representation z ; (b) The flow decoder predicts the velocity field v_t^θ for structure reconstruction conditioned on z ; (c) Downstream tasks like PLDM operating over the learned latent space.

latent diffusion model (PLDM) that significantly outperforms latent-based methods and is competitive with leading structure-based generative approaches with improved efficiency.

2 PROTEINAE: PROTEIN DIFFUSION AUTOENCODERS

As illustrated in Fig. 2, PROTEINAE employs an encoder-decoder architecture for learning latent protein structure representations. We explain abbreviations of some components in Fig. 2 in *italics*.

Feature Preparation Both the encoder and decoder take a protein backbone structure $x \in \mathbb{R}^{N \times 4 \times 3}$ as input (x_1 for the encoder, representing the clean structure, and x_t for the decoder, representing the noisy structure at timestep t ; N denotes the protein length). Given the input structure, initial residue-level features are constructed. The pair representation p (*Pair Repr.*) and sequence condition feature c (*Seq. Cond.*) are generated through the Pair Condition Module (*Pair Cond. Module*) and Sequence Condition Module (*Seq. Cond. Module*), respectively. For the encoder, inputs to these modules include x^{ca} and sequence index features. For the decoder (inputs shown in gray below), the diffusion timestep t and self-condition \hat{x}_t^{ca} are added to the Pair Condition Module inputs, and the latent representation z is added to the output of the Sequence Condition Module. Reference amino acid features f are used by both modules. The feature preparation process can be summarized:

$$p = \text{PairCondModule}(x^{ca}, f^{\text{seq_idx}}, t, (\hat{x}_t^{ca})), \quad (1)$$

$$c = \text{SeqCondModule}(f) + z. \quad (2)$$

Note that inputs shown in gray are specific to the decoder. These initial token-level features (p and c) are used alongside the atom-level input x . A lightweight All-Atom Attention Encoder (*All-Atom Attn. Encoder*) processes the atom-level features from x to generate a token-level sequence representation s (*Seq. Repr.*). This module also outputs skip connection features ($q^{\text{skip}}, c^{\text{skip}}, p^{\text{skip}}$) used later in the decoder pipeline. The output of the All-Atom Attention Encoder is:

$$s, q^{\text{skip}}, c^{\text{skip}}, p^{\text{skip}} = \text{AllAtomAttnEncoder}(x, p, c, f). \quad (3)$$

162 More details regarding the All-Atom Attention mechanism are provided in the next paragraph.
 163

164 **Diffusion Transformers and All-Atom Attention** Unlike many previous structure-based diffu-
 165 sion or representation learning models that rely on geometric equivariance, PROTEINAE adopts a
 166 non-equivariant architecture, forming the core of our feature processing, encoder, and decoder. This
 167 choice aligns with recent works such as AlphaFold3 (Abramson et al., 2024) and Proteina (Geffner
 168 et al., 2025), which feature stacks of conditioned and biased multi-head self-attention layers com-
 169 bined with transition blocks and residual connections. Operating on sequence and pair representa-
 170 tions, these layers are optionally enhanced with attention biases derived from geometric relationships
 171 in the input structures. The input tokens are further augmented with additional registers (Darcet
 172 et al., 2023). To effectively handle variable-length protein inputs, we employ Rotary Positional En-
 173 codings (RoPE) (Su et al., 2024) instead of traditional absolute positional encodings. The Diffusion
 174 Transformer (DiT) architecture is utilized in three distinct parts of our model: (i) the All-Atom At-
 175 tention modules during feature preparation and decoding, (ii) the core token-level Attention stacks in
 176 the PROTEINAE Encoder and Decoder, and (iii) the token-level Attention in the subsequent PLDM
 177 stage. We note that pair bias is incorporated in the DiT stacks of the PROTEINAE Encoder and
 178 Decoder, as well as within the All-Atom Attention modules, but it is omitted in the PLDM stage.
 179 A DiT block operating on sequence (s) and condition (c) representations, potentially incorporating
 180 pair bias (p, β_{ij}), can be summarized as:

$$s^l = \text{DiT_pair_bias}(s^{l-1}, p, c, \beta_{ij}), \quad (4)$$

$$s^l = s^l + \text{TransitionBlock}(s^l, c), \quad (5)$$

181 where l denotes the l -th layer in a stack of L blocks. β_{ij} here represents the attention mask. A
 182 comprehensive algorithm is provided in the Appendix A.1.

183 To explicitly model and generate atom-level details for the backbone structure, we incorporate All-
 184 Atom Attention Encoder and Decoder modules, inspired by AlphaFold3 but implemented with fewer
 185 parameters. These modules utilize sequence-local atom attention, allowing interactions among all
 186 backbone atoms within a defined sequence neighborhood. This approach offers richer local inter-
 187 action modeling compared to methods relying solely on KNN graphs, such as those adopted in the
 188 ESM3 VQ-VAE pipeline (see Fig. 1). The All-Atom Attention Encoder, described previously as part
 189 of feature preparation, aggregates atom-level features from the input structure into token-level rep-
 190 resentations. For consistency within the All-Atom Attention mechanisms, we fix reference features
 191 f (including positions, charge, mask, elements, and atom name characters) based on the standard
 192 Glycine (GLY) residue from the Chemical Components Dictionary (CCD). The All-Atom Attention
 193 Decoder operates after the DiT stack in the decoder pipeline. It takes the final sequence representa-
 194 tion s^L from the DiT stack and broadcasts token-level features back to atom-level. After computing
 195 atom attention, it projects these features to predict the noise velocity $v_t^\theta \in \mathbb{R}^{N \times 4 \times 3}$ in coordinate
 196 space. The output prediction of the All-Atom Attention Decoder is summarized as:

$$v_t^\theta = \text{AllAtomAttnDecoder}(s^L, q^{\text{skip}}, c^{\text{skip}}, p^{\text{skip}}, \beta_{ij}). \quad (6)$$

201 Note that while the DiT stack and All-Atom Attention modules are distinct components operating
 202 in sequence, their underlying attention mechanisms share principles of conditioned and biased self-
 203 attention.

204 **Autoencoder Bottleneck** To obtain a compact latent representation z and improve the efficiency
 205 of subsequent generative modeling, we introduce two types of bottleneck compression within the
 206 encoder pipeline (Fig. 2a): a *length* bottleneck and a *dimension* bottleneck. Following the stack of
 207 DiT layers, we obtain the sequence representation s^L . For the length bottleneck, we apply one or
 208 more 1D convolution layers with a kernel size of 3 and a stride of 2. This downsamples the protein
 209 length from N to $N_{\text{down}} = N/r$, where r is the total downsampling ratio. Subsequently, for the
 210 dimension bottleneck, a linear layer projects the sequence representation from its token dimension
 211 D to a reduced bottleneck dimension d . This compression process can be summarized as:

$$z = \underbrace{\text{LinearNoBias}}_{\text{Dimension downsample}} \left(\underbrace{\text{Conv1d}(\text{stride} = 2, \text{kernel} = 3) . (\text{transpose}(s^L))}_{\text{Length downsample}} \right). \quad (7)$$

216 Here, $\text{transpose}(\cdot)$ denotes the batch transpose, transforming a tensor of shape (B, N, D) to
 217 (B, D, N) for convolution. The resulting latent representation z has shape (B, N_{down}, d) .
 218

219 In the decoder pipeline, the latent representation z needs to be upsampled and expanded to match
 220 the target protein length N_{target} and channel size of conditioning features before being added (Eq. 2).
 221 This upsampling process involves expanding the dimension of z and then interpolating its length:
 222

$$223 z_{\text{upsampled}} = \text{transpose} \left(\text{Interpolate} \left(\text{transpose} \left(\underbrace{\text{LinearNoBias}(z)}_{\text{Dimension upsample}}, N_{\text{target}} \right) \right) \right). \quad (8)$$

226 **Replace KL regularization with LayerNorm** Unlike traditional VAEs that employ a KL regu-
 227 larization loss on the latent feature z , we apply LayerNorm without learnable scales following DiTo
 228 (Chen et al., 2025). This operation is applied to the output of the bottleneck (Eq. 7) and yields
 229 the final latent representation z used for both the PROTEINAE decoder and PLDM training. This
 230 approach eliminates the need for KL loss weight tuning and empirically demonstrates better recon-
 231 struction performance. Furthermore, by normalizing the latent space in this manner, we can directly
 232 train the PLDM on z without requiring additional normalization within the diffusion process (Rom-
 233 bach et al., 2022). In conclusion, this design choice simplifies the overall training procedure for both
 234 PROTEINAE and PLDM.

235 **Autoencoder Pipelines** Having introduced the core architectural components, we now detail their
 236 arrangement within the PROTEINAE encoder and decoder pipelines (Fig. 2).
 237

238 *Encoder* (Fig. 2a) takes a native protein structure (x_1) as input. As described in "Feature prepara-
 239 tion", this structure is used to derive initial sequence (s), pair (p), and condition (c) features. These
 240 features are processed through a stack of DiT blocks incorporating pair bias. The resulting repre-
 241 sentation then undergoes a bottleneck stage, which compresses both the length and dimension of the
 242 feature maps (as detailed in Autoencoder Bottleneck). Finally, the compressed latent representation
 243 z is normalized via LayerNorm before being passed to the decoder or used for downstream tasks.
 244

245 *Decoder* (Fig. 2b) operates within the flow matching framework, taking a noisy protein structure
 246 (x_t) at timestep t as input. Similar to the encoder, x_t is used for feature preparation to obtain
 247 initial s, p, c features. A key distinction is that the latent representation z (from the encoder during
 248 training, or sampled during inference) is upsampled and incorporated as conditioning information
 249 into the sequence condition feature c . These conditioned features (s, p , and the modified c) are then
 250 processed by a stack of DiT blocks with pair bias, mirroring the encoder's architecture. The output
 251 from the DiT stack is fed into an All-Atom Attention Decoder, which predicts the velocity vector v_t^θ
 252 required for structure reconstruction via ODE integration (Appendix A.2).
 253

254 **Reconstruction Loss** PROTEINAE is trained using a simple flow-matching loss, with no other
 255 auxiliary losses. The objective is to train the model to predict the velocity vector field v_t^θ at noisy
 256 structure x_t and timestep t , conditioned on the latent representation z . The target velocity field in
 257 flow matching is defined as $v(t) = x_1 - x_0$. The input structures x_1, x_t , the noise x_0 , and the
 258 predicted velocity v_t^θ are all represented as tensors in $\mathbb{R}^{4N \times 3}$. The PROTEINAE's training objective
 259 is:

$$260 \min_{\theta} \mathbb{E}_{x_1 \sim p_{\text{ds}}(x), x_0 \sim \mathcal{N}(0, I), t \sim p(t)} \left[\frac{1}{4N} \|v_t^\theta(x_t, t, z) - (x_1 - x_0)\|_2^2 \right], \quad (9)$$

261 where $p_{\text{ds}}(x)$ is the data distribution, $p(t)$ is the timestep sampling distribution, and $v_t^\theta(x_t, t, z)$ is
 262 the velocity predicted by the decoder network. Following common practice in structure-based flow
 263 matching models, we use the t -sampling distribution $p(t) = 0.02\mathcal{U}(0, 1) + 0.98\mathcal{B}(1.9, 1.0)$.
 264

265 3 EXPERIMENT

266 3.1 EXPERIMENTAL SETUP

267 **Dataset and Model Configuration** We use the AFDB-FS (Jumper et al., 2021; Lin et al., 2024)
 268 dataset for training PROTEINAE and PLDM. This is a large-scale dataset of single-chain protein
 269

structures derived from the AlphaFold Protein Structure Database (AFDB) through sequential filtering and clustering steps utilizing sequence-based MMseqs2 (Steinegger & Söding, 2017) and structure-based Foldseek (Van Kempen et al., 2024). It contains 588,318 structures with lengths ranging from 32 to 256 residues. For PROTEINAE training, we apply random global rotation to the protein structures as data augmentation. For structure reconstruction evaluation, we use the benchmark sets from CASP 14 and CASP 15. We use ATLAS Vander Meersche et al. (2024), a protein molecular dynamics (MD) dataset for downstream flexibility prediction. For our reconstruction and downstream results, we primarily use a default PROTEINAE configuration. The encoder and decoder DiT stacks have $L = 5$ layers and a token dimension $D = 256$. The bottleneck is configured with a length downsampling ratio $r = 1$ (i.e., no length downsampling) and compresses the dimension from $D = 256$ to a latent dimension $d = 8$. The PLDM is also based on a DiT architecture with 200M parameters, featuring $L = 15$ and $D = 768$. Different configurations and their impact on performance are explored in the ablation studies. The overall details can be found in Appendix A.4.

3.2 STRUCTURE RECONSTRUCTION

Table 1: Different protein autoencoders’ structure reconstruction quality measured by RMSD (\downarrow). Lower is better. **Bold** indicates the best performance. *Note that ProToken and DPLM-2 can only process proteins under 2,048 residues.

	Methods	CASP14			CASP15	
		T	T-dom	oligo	TS-domains	oligo
C_α RMSD	CHEAP (Lu et al., 2024)	11.15 \pm 9.88	8.99 \pm 9.18	9.93 \pm 10.55	10.22 \pm 11.23	9.22 \pm 12.57
	ESM3 VQ-VAE (Hayes et al., 2025)	1.02 \pm 1.82	0.66 \pm 0.42	3.08 \pm 7.39	1.23 \pm 1.26	1.94 \pm 2.43
	ProToken* (Lin et al., 2023a)	0.99 \pm 0.69	0.96 \pm 0.58	1.15 \pm 1.12	1.15 \pm 1.00	1.18 \pm 0.89
	DPLM-2* (Wang et al., 2024)	1.99 \pm 2.03	1.87 \pm 1.78	2.70 \pm 5.05	3.31 \pm 5.69	3.50 \pm 6.23
	PROTEINAE	0.23\pm0.15	0.22\pm0.11	0.31\pm0.22	0.28\pm0.20	0.37\pm0.50

A comprehensive benchmark analysis in Table 1 reveals that our proposed model exhibits clear and consistent superiority in the task of protein structure reconstruction. We give a comprehensive reviews of these baselines in Appendix B. PROTEINAE systematically outperforms all baseline methods, including prominent vector-quantized autoencoders, across the full suite of challenging targets from the CASP14 and CASP15 assessments. This robust outperformance holds true irrespective of the protein’s structural class or complexity. The performance margin of PROTEINAE is particularly pronounced when reconstructing targets of high structural complexity. For challenging oligomeric assemblies, where many baseline models show a marked degradation in quality, our approach consistently maintains a high degree of fidelity. This capability underscores the robustness of our framework in capturing the intricate spatial arrangements and fine-grained geometric details that are often lost by competing methods. Collectively, these results strongly suggest that the diffusion autoencoder framework is more effective at modeling the manifold of protein structures than discrete, vector-quantized approaches. By circumventing the information bottlenecks inherent to tokenization, our model learns a richer and more expressive latent representation. This leads to significantly more accurate and reliable reconstructions, establishing a new state of the art in high-fidelity protein structure encoding. It is noting that CHEAP consistently records the poorest performance; this is an anticipated outcome, as it relies on encoding features from ESM2, thereby inheriting its limitations and being fundamentally capped by ESMFold’s prediction accuracy.

3.3 DOWNSTREAM STRUCTURAL LATENT ANALYSIS

Unconditional Backbone Generation We assess the performance of PROTEINAE-PLDM on unconditional protein backbone generation against state-of-the-art Structure Diffusion Models (SDMs), Multi-Modal Language Models (MLLMs), and other Latent Diffusion Models (LDMs), with results presented in Table 2. The details of PROTEINAE-PLDM methods are illustrated in Appendix A.3, including the flow training objectives and sampling within the PROTEINAE’s latent space. The evaluation demonstrates that PROTEINAE-PLDM achieves state-of-the-art performance among latent-space generative models. Our approach outperforms those MLLM and LDM baselines, achieving high designability and diversity, where these prior latent-space methods have traditionally struggled. Furthermore, PROTEINAE-PLDM’s performance extends beyond dominating

its own category to rival that of classical SDMs, effectively closing the significant performance gap that has long separated latent- and structure-based diffusion models. PROTEINAE-PLDM can also provide a controllable trade-off with sampling temperature γ , where a higher temperature setting modestly decreases designability in exchange for a notable increase in structural diversity. Visual case studies (Figure 3D, purple indicates helix and yellow indicates sheet) further reveal that samples with high designability converge to common folds, while those with lower designability often represent novel yet physically plausible conformations. We also observe that the model’s tendency to generate varied loop regions, reminiscent of AFDB structures (according to Huguet et al. (2024); Geffner et al. (2025), AFDB’s overall designability is 33%, far from 100% designable), may contribute to these novel topologies and explain the small remaining designability gap to SDMs focused on canonical folds.

Table 2: Unconditional protein backbone generation performance among SDM, MLLM and LDM approaches. Baseline results are adopted from Yim et al. (2025). Metric details are illustrated in Appendix C.

Type	Methods	Des (\uparrow)	Div (\uparrow)	DPT (\downarrow)	Nov (\downarrow)
SDM	RFdiffusion (Watson et al., 2023)	96%	247	0.43	0.71
	ProteinSGM (Lee et al., 2023)	49%	122	0.37	0.51
	FrameFlow PDB (Yim et al., 2023a)	91%	278	0.48	0.65
	FrameFlow AFDB	23%	54	0.42	0.70
MLLM	ESM3 (Hayes et al., 2025)	61%	127	0.37	0.84
	DPLM-2 650M (Wang et al., 2024)	63%	130	0.37	0.72
semi-LDM	LSD (Yim et al., 2025)	69%	203	0.46	0.74
LDM	LatentDiff (Fu et al., 2024)	17%	34	0.51	0.73
	PROTEINAE-PLDM $\gamma = 0.35$	93%	204	0.36	0.70
	PROTEINAE-PLDM $\gamma = 0.5$	86%	228	0.35	0.66

Generation Efficiency We evaluate the generation efficiency of PROTEINAE-PLDM against prominent structure diffusion models, RFDiffusion (Watson et al., 2023) and multi-modal protein language model DPLM-2 650M Wang et al. (2024). The comparison is based on the *average* sampling time and GPU memory required to generate backbones of 200 residues with a batch size of 5 on a single 80G A100 GPU. As illustrated in Fig. 3C, PROTEINAE-PLDM demonstrates substantially higher efficiency than both baselines. It achieves the lowest sampling time (~ 1.6 seconds) while consuming the least GPU memory (~ 0.3 GB). RFDiffusion is the most computationally demanding, requiring ~ 15 seconds and ~ 5 GB of memory. DPLM-2 exhibits intermediate performance, with a sampling time of ~ 3 seconds and memory usage of ~ 1 GB. The remarkable efficiency of PROTEINAE-PLDM is primarily attributed to its dimension bottleneck design and the elimination of triangular attention. This allows the PLDM to operate entirely within a compact, low-dimensional latent space, bypassing the complex geometric or physical constraints inherent to direct structure generation and thereby drastically reducing the computational burden.

Table 3: Physicochemical Property Prediction (Spearman’s $\rho\%$) on ATLAS. Baseline results are adopted from StructTokenBench (Yuan et al., 2025).

Task	Split	Model					
		FoldSeek	ProTokens	ESM3	Vanilla VQ	AminoAseed	PROTEINAE
FlexRMSF	Fold	15.35	13.81	44.53	44.22	44.63	45.36
	SupFam	11.99	7.62	39.68	39.08	40.99	44.71
FlexBFactor	Fold	4.17	6.67	23.60	22.32	21.30	30.87
	SupFam	6.97	5.47	25.80	23.73	21.76	26.54

Effectiveness Analysis To evaluate the downstream effectiveness of the latent space learned by PROTEINAE, we benchmarked its performance on physicochemical property prediction. Following the setup from StructTokenBench (Yuan et al., 2025), we predicted residue-level structural flexibility

(RMSF and B-factor) on the ATLAS dataset. The training details are illustrated in Appendix A.4. As shown in Table 3, PROTEINAE achieves the highest scores across all evaluated tasks and splits, demonstrating a clear advantage over the baseline models. In the task of predicting FlexRMSF, PROTEINAE attains the highest Spearman’s ρ correlation on both fold (close level) and superfamily (more remote) splits, improving upon ESM3 by over 10%. A similar trend is observed in the FlexBFactor prediction, where PROTEINAE again leads in performance across both splits. This indicates that the continuous representations learned by PROTEINAE have effectively captured the generalizable principles governing protein geometry and dynamics.

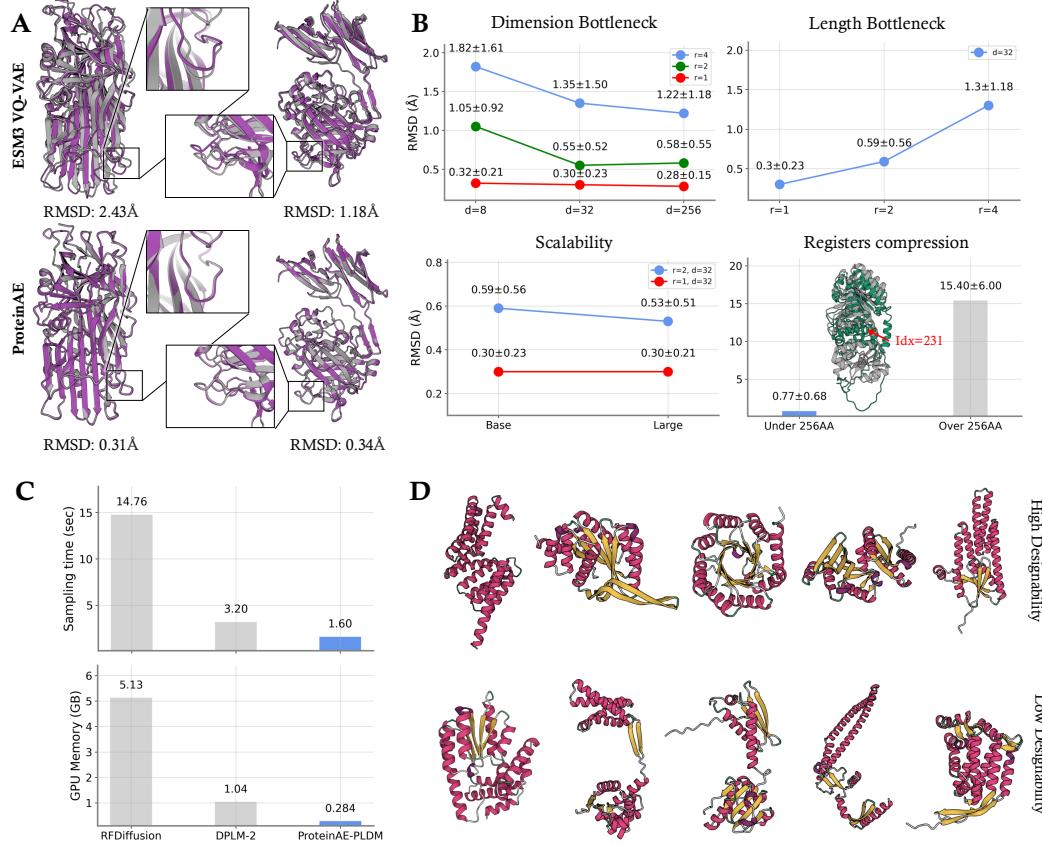


Figure 3: Summary of PROTEINAE reconstruction, generation, and model architecture analysis. (A) Visual comparison of protein structure reconstruction quality between PROTEINAE and ESM3 VQ-VAE. (B) Ablation studies on key architectural components: the impact of dimension and length bottlenecks, evaluation of model scalability with increased parameters, and analysis of using DiT registers for latent compression. (C) Generation efficiency comparison of PROTEINAE-PLDM, RFDiffusion, and DPLM-2, including average sampling time and GPU memory usage. (D) Visual examples of protein backbone structures generated unconditionally by PROTEINAE-PLDM.

3.4 ABLATION STUDY

In this section, we explore the influences of different designs of PROTEINAE. Specifically, we conduct experiments to investigate the impact of the protein length and dimension bottleneck, evaluate the model scalability, and analyze the effectiveness of using registers as an alternative strategy for latent representation. All the results are conducted on CASP15 TS-domains.

Protein Length & Dimension Bottleneck We depict the reconstruction quality of protein length and dimension bottleneck in Fig. 3B. We choose 3 downsampling ratios $r = 1, 2, 4$, where $r = 1$

signifies no length downsampling. We also investigate 3 bottleneck dimensions $d = 8, 32, 256$, where $d = 256$ corresponds to no dimension reduction relative to the full feature dimension. As shown in Fig. 3B, both length and dimension compression impact reconstruction accuracy. Increasing the dimension bottleneck (decreasing d) generally leads to a moderate increase in RMSD, as less information is preserved in the latent space. However, increasing the length downsampling ratio (increasing r) results in a significantly larger degradation in reconstruction quality, with RMSD increasing substantially as r goes from 1 to 4. This indicates that preserving the sequential length dimension is more critical for accurate protein backbone reconstruction than maintaining a large feature dimension.

Scalability We study the scalability of PROTEINAE on two variants: PROTEINAE-Base ($\sim 20M$ parameters) and PROTEINAE-Large ($\sim 100M$ parameters). The results, showing reconstruction quality (RMSD) for these variants under different bottleneck configurations ($r = 1, d = 32$ and $r = 2, d = 32$), are presented in the "Scalability" plot in Fig. 3B. As the model size increases from Base to Large, we observe a slight improvement in reconstruction quality (decrease in RMSD) for the configuration with length downsampling ($r = 2, d = 32$). For the configuration without length downsampling ($r = 1, d = 32$), the RMSD remains low and stable across both model sizes. This indicates that PROTEINAE exhibits positive scalability, where increasing model capacity leads to comparable or slightly improved performance, particularly noticeable when the task is more challenging due to bottlenecking (e.g., with $r = 2$). The plot also reinforces that maintaining the original protein length ($r = 1$) is beneficial for reconstruction accuracy regardless of the model size.

Conditional Decoding using Registers Beyond the bottleneck compression strategy for obtaining the latent representation z , we also explore using the learnable register tokens to compress the structures to fixed collection. The registers are concatenated to the input sequence representation and participate in attention computations (as mentioned in Section 2). Recent works, such as FlexTok (Bachmann et al., 2025), have demonstrated that these tokens can effectively serve as compact latent representations for images. Inspired by this, we investigate a variant, termed PROTEINAE-Register, where the registers from the encoder (z^{reg}) are directly used as the registers in the decoder, enabling conditional generation based on these tokens instead of the bottlenecked latent z . We evaluate the reconstruction quality of PROTEINAE-Register, with results depicted in Fig. 3B. The plot shows that PROTEINAE-Register achieves good reconstruction quality for protein lengths up to 256 residues, which corresponds to the maximum length in our training dataset. However, performance degrades dramatically for structures exceeding this training length limit. Fig. 3B also visualizes an example of this failure mode, showing the reconstruction breaking down abruptly around residue 231 for a longer protein. These results highlight a limitation of directly applying a register-based compression strategy to variable-length protein sequences. The success of registers as latent representations in vision tasks may be partly attributable to the fixed size of image tokens after patchification, a characteristic not present in native protein sequences of arbitrary length. This suggests that for protein structures, alternative compression mechanisms like length and dimension bottlenecks are more robust to variable input sizes, particularly for handling lengths beyond the training distribution. We will also explore a better way to encode protein structures into fixed-length vectors in the future.

4 CONCLUSION AND LIMITATIONS

We introduced PROTEINAE, a novel protein diffusion autoencoder that maps protein backbone structures into a continuous, compact latent space using a non-equivariant Diffusion Transformer architecture and a simple flow matching objective. It avoids the operations on intricate SE(3) and discrete representations inherent in existing methods. Building on this learned latent space, we further developed PLDM for structure generation. Our experiments demonstrate that PROTEINAE achieves high reconstruction quality and enables efficient protein structure generation. Despite its capabilities, PROTEINAE still has several limitations that warrant future investigation. For instance, PROTEINAE is currently limited to modeling protein monomers and cannot model other biomolecules such as ligands, DNA, or RNA. Besides, the generative performance of PLDM is not yet significantly outperforming state-of-the-art structure-based generative models. Finally, PLDM exhibits challenges related to sequence length handling, which can lead to structural collapse or unrealistic geometries for certain residues in the generated outputs. We plan to address these limitations and explore extensions to PROTEINAE in future work.

486 5 REPRODUCIBILITY STATEMENT
487488 We demonstrate the dataset and model configuration in Sec. 3.1, the model architecture details in
489 Sec. 2 and Appendix A.1, the training details of different tasks in Appendix A.4.
490491 6 THE USE OF LARGE LANGUAGE MODELS (LLMs)
492493 In the course of writing this paper, a large language model (LLM) was used as a tool to refine
494 the language and grammar of the background section. We meticulously reviewed and revised all
495 content to take full responsibility for the final text. Additionally, we consulted an LLM for the
496 implementation of certain metrics. The underlying code for these metrics was carefully examined
497 and validated to ensure its correctness and appropriateness for our study.
498499 REFERENCES
500501 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
502 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
503 prediction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500, 2024.504 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
505 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.506 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
507 denoising diffusion models in discrete state-spaces. *Advances in neural information processing*
508 systems, 34:17981–17993, 2021.509 Roman Bachmann, Jesse Allardice, David Mizrahi, Enrico Fini, Oğuzhan Fatih Kar, Elmira Amir-
510 loo, Alaaeldin El-Nouby, Amir Zamir, and Afshin Dehghan. Flextok: Resampling images into 1d
511 token sequences of flexible length. *arXiv preprint arXiv:2502.13967*, 2025.512 Avishek Joey Bose, Tara Akhound-Sadegh, Guillaume Huguet, Kilian Fatras, Jarrid Rector-Brooks,
513 Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael Bronstein, and Alexander Tong.
514 Se (3)-stochastic flow matching for protein backbone generation. *arXiv preprint arXiv:2310.02391*, 2023.515 Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
516 flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
517 *arXiv preprint arXiv:2402.04997*, 2024.518 Bo Chen, Zhilei Bei, Xingyi Cheng, Pan Li, Jie Tang, and Le Song. Msagpt: Neural prompting
519 protein structure prediction via msa generative pre-training. *Advances in Neural Information
520 Processing Systems*, 37:37504–37534, 2024.521 Ricky TQ Chen and Yaron Lipman. Riemannian flow matching on general geometries. *arXiv e-
522 prints*, pp. arXiv–2302, 2023.523 Yinbo Chen, Rohit Girdhar, Xiaolong Wang, Sai Saketh Rambhatla, and Ishan Misra. Diffusion
524 autoencoders are scalable image tokenizers. *arXiv preprint arXiv:2501.18593*, 2025.525 Chaoran Cheng, Jiahao Li, Jian Peng, and Ge Liu. Categorical flow matching on statistical mani-
526 folds. *arXiv preprint arXiv:2405.16441*, 2024.527 Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
528 registers. *arXiv preprint arXiv:2309.16588*, 2023.529 Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
530 Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning-
531 based protein sequence design using proteinmpnn. *Science*, 378(6615):49–56, 2022.532 Nicki Skafte Detlefsen, Søren Hauberg, and Wouter Boomsma. Learning meaningful representations
533 of protein sequences. *Nature communications*, 13(1):1914, 2022.

540 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
 541 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-*
 542 *tion*, pp. 12873–12883, 2021.

543 Cong Fu, Keqiang Yan, Limei Wang, Wing Yee Au, Michael Curtis McThrow, Tao Komikado, Koji
 544 Maruhashi, Kanji Uchino, Xiaoning Qian, and Shuiwang Ji. A latent diffusion model for protein
 545 structure generation. In *Learning on Graphs Conference*, pp. 29–1. PMLR, 2024.

546 Tomas Geffner, Kieran Didi, Zuobai Zhang, Danny Reidenbach, Zhonglin Cao, Jason Yim, Mario
 547 Geiger, Christian Dallago, Emine Kucukbenli, Arash Vahdat, et al. Proteina: Scaling flow-based
 548 protein structure generative models. *arXiv preprint arXiv:2503.00710*, 2025.

549 Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert
 550 Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years
 551 of evolution with a language model. *Science*, pp. eads0018, 2025.

552 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 553 *neural information processing systems*, 33:6840–6851, 2020.

554 Guillaume Huguet, James Vuckovic, Kilian Fatras, Eric Thibodeau-Laufer, Pablo Lemos, Riashat
 555 Islam, Cheng-Hao Liu, Jarrid Rector-Brooks, Tara Akhoun-Sadegh, Michael Bronstein, et al.
 556 Sequence-augmented se (3)-flow matching for conditional protein backbone generation. *arXiv*
 557 *preprint arXiv:2405.20313*, 2024.

558 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 559 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
 560 protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.

561 Jin Sub Lee, Jisun Kim, and Philip M Kim. Score-based generative modeling for de novo protein
 562 design. *Nature Computational Science*, 3(5):382–392, 2023.

563 Jiahua Li, Chaoran Cheng, Zuofan Wu, Ruihan Guo, Shitong Luo, Zhizhou Ren, Jian Peng, and
 564 Jianzhu Ma. Full-atom peptide design based on multi-modal flow matching. *arXiv preprint*
 565 *arXiv:2406.00735*, 2024.

566 Xiaohan Lin, Zhenyu Chen, Yanheng Li, Zicheng Ma, Chuanliu Fan, Ziqiang Cao, Shihao Feng,
 567 Yi Qin Gao, and Jun Zhang. Tokenizing foldable protein structures with machine-learned artificial
 568 amino-acid vocabulary. *bioRxiv*, pp. 2023–11, 2023a.

569 Yeqing Lin, Minji Lee, Zhao Zhang, and Mohammed AlQuraishi. Out of many, one: Design-
 570 ing and scaffolding proteins at the scale of the structural universe with genie 2. *arXiv preprint*
 571 *arXiv:2405.15489*, 2024.

572 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
 573 Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
 574 protein structure with a language model. *Science*, 379(6637):1123–1130, 2023b.

575 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 576 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

577 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 578 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

579 Amy X Lu, Wilson Yan, Kevin K Yang, Vladimir Gligorijevic, Kyunghyun Cho, Pieter Abbeel,
 580 Richard Bonneau, and Nathan Frey. Tokenized and continuous embedding compressions of pro-
 581 tein sequence and structure. *bioRxiv*, pp. 2024–08, 2024.

582 Amy X Lu, Wilson Yan, Sarah A Robinson, Simon Kelow, Kevin K Yang, Vladimir Gligorijevic,
 583 Kyunghyun Cho, Richard Bonneau, Pieter Abbeel, and Nathan C Frey. All-atom protein genera-
 584 tion with latent diffusion. In *ICLR 2025 Workshop on Generative and Experimental Perspectives*
 585 *for Biomolecular Design*, 2025.

586 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 587 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

594 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 595 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 596 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

597

598 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 599 ical image segmentation. In *Medical image computing and computer-assisted intervention-
 600 MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
 601 ings, part III 18*, pp. 234–241. Springer, 2015.

602 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 603 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
 604 ing*, pp. 2256–2265. pmlr, 2015.

605 Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein sequence searching for
 606 the analysis of massive data sets. *Nature biotechnology*, 35(11):1026–1028, 2017.

607

608 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 609 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

610 Michel Van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee,
 611 Cameron LM Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein struc-
 612 ture search with foldseek. *Nature biotechnology*, 42(2):243–246, 2024.

613

614 Yann Vander Meersche, Gabriel Cretin, Aria Gheeraert, Jean-Christophe Gelly, and Tatiana Ga-
 615 lochkina. Atlas: protein flexibility description from atomistic molecular dynamics simulations.
 616 *Nucleic acids research*, 52(D1):D384–D392, 2024.

617 Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu. Dplm-2:
 618 A multimodal diffusion protein language model. *arXiv preprint arXiv:2410.13782*, 2024.

619

620 Xinyou Wang, Daiheng Zhang, Dongyu Xue, Fei Ye, Shujian Huang, Zaixiang Zheng, Quanquan
 621 Gu, et al. Elucidating the design space of multimodal protein language models. *arXiv preprint
 622 arXiv:2504.11454*, 2025.

623 Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eise-
 624 nach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of
 625 protein structure and function with rfdiffusion. *Nature*, 620(7976):1089–1100, 2023.

626

627 Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah
 628 Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast
 629 protein backbone generation with se (3) flow matching. *arXiv preprint arXiv:2310.05297*, 2023a.

630

631 Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
 632 and Tommi Jaakkola. Se (3) diffusion model with application to protein backbone generation.
 633 *arXiv preprint arXiv:2302.02277*, 2023b.

634

635 Jason Yim, Marouane Jaakik, Ge Liu, Jacob Gershon, Karsten Kreis, David Baker, Regina Barzi-
 636 lay, and Tommi Jaakkola. Hierarchical protein backbone generation with latent and structure
 637 diffusion. *arXiv preprint arXiv:2504.09374*, 2025.

638

639 Xinyu Yuan, Zichen Wang, Marcus Collins, and Huzefa Rangwala. Protein structure tokenization:
 640 Benchmarking and new recipe. *arXiv preprint arXiv:2503.00089*, 2025.

641

642 Yang Zhang and Jeffrey Skolnick. Scoring function for automated assessment of protein structure
 643 template quality. *Proteins: Structure, Function, and Bioinformatics*, 57(4):702–710, 2004.

644

645

646

647

648 A ARCHITECTURE DETAILS
649650 A.1 DIFFUSION TRANSFORMERS AND ALL-ATOM ATTENTION
651652 The yellow background indicates the differences between PROTEINAE and AlphaFold3.
653654 **Algorithm 1** Attention with pair bias and mask

```

655 1: function ATTENTIONPAIRBIAS( $\{\mathbf{s}_i\}$ ,  $\{\mathbf{c}_i\}$ ,  $\{\mathbf{p}_{ij}\}$ ,  $\{\beta_{ij}\}$ ,  $N_{\text{head}}$ )
656 2:    $\mathbf{a}_i \leftarrow \text{AdaLN}(\mathbf{s}_i, \mathbf{c}_i)$ 
657 3:    $\mathbf{q}_i^h = \text{Linear}(\mathbf{s}_i)$ 
658 4:    $\mathbf{k}_i^h, \mathbf{v}_i^h = \text{LinearNoBias}(\mathbf{s}_i)$ 
659 5:    $\mathbf{k}_i^h, \mathbf{v}_i^h = \text{LayNorm}(\mathbf{k}_i^h), \text{LayNorm}(\mathbf{v}_i^h)$ 
660 6:    $\mathbf{k}_i^h, \mathbf{v}_i^h = \text{RoPE}(\mathbf{k}_i^h, \mathbf{v}_i^h)$  ▷ Attention
661 7:    $\mathbf{b}_{ij}^h \leftarrow \text{Linear}(\mathbf{p}_{ij}) + \beta_{ij}$ 
662 8:    $\mathbf{g}_i^h \leftarrow \text{sigmoid}(\text{Linear}(\mathbf{a}_i))$ 
663
664 9:    $A_{ij}^h \leftarrow \text{softmax}_j \left( \frac{1}{\sqrt{c}} (\mathbf{q}_i^h)^T \mathbf{k}_j^h + \mathbf{b}_{ij}^h \right)$ 
665 10:   $\mathbf{s}_i \leftarrow \text{LinearNoBias} \left( \text{concat}_h \left( \mathbf{g}_i^h \circ \sum_j A_{ij}^h \mathbf{v}_j^h \right) \right)$ 
666 11:  return  $\{\mathbf{s}_i\}$ 
667 12: end function

```

671 **Algorithm 2** Diffusion Transformer

```

672 1: function DIFFUSIONTRANSFORMER( $\{\mathbf{s}_i\}$ ,  $\{\mathbf{c}_i\}$ ,  $\{\mathbf{p}_{ij}\}$ ,  $\{\beta_{ij}\}$ ,  $N_{\text{block}}$ ,  $N_{\text{head}}$ )
673 2:   for all  $n \in \{1, \dots, N_{\text{block}}\}$  do
674 3:      $\{\mathbf{s}_i\} = \text{AttentionPairBias}(\{\mathbf{s}_i\}, \{\mathbf{c}_i\}, \{\mathbf{p}_{ij}\}, \{\beta_{ij}\}, N_{\text{head}})$ 
675 4:      $\mathbf{a}_i \leftarrow \mathbf{s}_i + \text{ConditionedTransitionBlock}(\mathbf{s}_i, \mathbf{c}_i)$ 
676 5:   end for
677 6:   return  $\{\mathbf{s}_i\}$ 
678 end function

```

680 **Algorithm 3** Atom Transformer

```

681 1: function ATOMTRANSFORMER( $\{\mathbf{q}_l\}$ ,  $\{\mathbf{c}_l\}$ ,  $\{\mathbf{p}_{lm}\}$ ,  $N_{\text{block}} = 3$ ,  $N_{\text{head}}$ ,  $N_{\text{queries}} = 32$ ,  $N_{\text{keys}} =$ 
682 128,  $\mathcal{S}_{\text{subset centres}} = \{15.5, 47.5, 79.5, \dots\}$ )
683 2:    $\beta_{lm} = \begin{cases} 0 & \text{if } \|l - c\| < N_{\text{queries}}/2 \wedge \|m - c\| < N_{\text{keys}}/2 \\ -10^{10} & \text{else} \end{cases} \forall c \in \mathcal{S}_{\text{subset centres}}$ 
684 3:    $\{\mathbf{q}_l\} \leftarrow \text{DiffusionTransformer}(\{\mathbf{q}_l\}, \{\mathbf{c}_l\}, \{\mathbf{p}_{lm}\}, \{\beta_{lm}\}, N_{\text{block}}, N_{\text{head}})$ 
685 4:   return  $\{\mathbf{q}_l\}$ 
686 5: end function

```

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **Algorithm 4** All-Atom Attention Encoder

703 1: **function** ALLATOMATTNENCODER($\{\mathbf{f}_i^s\}$, $\{\mathbf{x}\}$, $\{\mathbf{s}\}$, $\{\mathbf{c}\}$, $\{\mathbf{p}_{ij}\}$, $c_{\text{atom}} = 64$, $c_{\text{atompair}} = 16$,
 704 $c_{\text{token}} = 256$)

705 2: $\mathbf{c}_l \leftarrow \text{LinearNoBias}(\text{concat}(\mathbf{f}_i^{\text{ref_pos}}, \mathbf{f}_i^{\text{ref_charge}}, \mathbf{f}_i^{\text{ref_mask}}, \mathbf{f}_i^{\text{ref_element}}, \mathbf{f}_i^{\text{ref_atom_name_chars}}))$

706 3: $\mathbf{d}_{lm} \leftarrow \mathbf{f}_l^{\text{ref_pos}} - \mathbf{f}_m^{\text{ref_pos}}$

707 4: $\mathbf{v}_{lm} \leftarrow \mathbf{f}_l^{\text{ref_space_uid}} \circ \mathbf{d}_{lm}$

708 5: $\mathbf{p}_{lm} \leftarrow \text{LinearNoBias}(\mathbf{d}_{lm}) \cdot \mathbf{v}_{lm}$

709 6: $\mathbf{p}_{lm} \leftarrow \text{LinearNoBias}\left(\frac{1}{1+||\mathbf{d}_{lm}||^2}\right) \cdot \mathbf{v}_{lm}$

710 7: $\mathbf{p}_{lm} \leftarrow \text{LinearNoBias}(\mathbf{v}_{lm}) \cdot \mathbf{v}_{lm}$

711 8: $\mathbf{q}_l \leftarrow \mathbf{c}_l$

712 9: $\mathbf{c}_l \leftarrow \text{LinearNoBias}(\text{LayerNorm}(\mathbf{c}_{\text{tok_idx}(l)}))$

713 10: $\mathbf{p}_{lm} \leftarrow \text{LinearNoBias}(\text{LayerNorm}(\mathbf{p}_{\text{tok_idx}(l), \text{tok_idx}(m)}))$

714 11: $\mathbf{q}_l \leftarrow \text{LinearNoBias}(\mathbf{r}_l)$

715 12: $\mathbf{p}_{lm} \leftarrow \text{LinearNoBias}(\text{relu}(\mathbf{c}_l)) + \text{LinearNoBias}(\text{relu}(\mathbf{c}_m))$

716 13: $\mathbf{p}_{lm} \leftarrow \text{LinearNoBias}(\text{relu}(\text{LinearNoBias}(\text{relu}(\text{LinearNoBias}(\text{relu}(\mathbf{p}_{lm})))))))$

717 14: $\{\mathbf{q}_l\} \leftarrow \text{AtomTransformer}(\{\mathbf{q}_l\}, \{\mathbf{c}_l\}, \{\mathbf{p}_{lm}\}, N_{\text{block}} = 3, N_{\text{head}} = 4)$

718 15: $\mathbf{s}_l \leftarrow \text{mean}_{i \in \{1 \dots N_{\text{atoms}}\}, i \rightarrow \text{tok_idx}(l)}(\text{relu}(\text{LinearNoBias}(\mathbf{q}_i)))$

719 16: $\mathbf{q}_l^{\text{skip}}, \mathbf{c}_l^{\text{skip}}, \mathbf{p}_{lm}^{\text{skip}} \leftarrow \mathbf{q}_l, \mathbf{c}_l, \mathbf{p}_{lm}$

720 17: **return** $\{\mathbf{s}_l\}, \{\mathbf{q}_l^{\text{skip}}\}, \{\mathbf{c}_l^{\text{skip}}\}, \{\mathbf{p}_{lm}^{\text{skip}}\}$

721 18: **end function**

724 **Algorithm 5** All-Atom Attention Decoder

725 1: **function** ALLATOMATTNDECODER($\{\mathbf{s}_i\}$, $\{\mathbf{q}_l^{\text{skip}}\}$, $\{\mathbf{c}_l^{\text{skip}}\}$, $\{\mathbf{p}_{lm}^{\text{skip}}\}$)

726 2: $\mathbf{q}_l \leftarrow \text{LinearNoBias}(\mathbf{s}_{\text{tok_idx}(l)}) + \mathbf{q}_l^{\text{skip}}$

727 3: $\{\mathbf{q}_l\} \leftarrow \text{AtomTransformer}(\{\mathbf{q}_l\}, \{\mathbf{c}_l^{\text{skip}}\}, \{\mathbf{p}_{lm}^{\text{skip}}\}, N_{\text{block}} = 3, N_{\text{head}} = 4)$

728 4: $v \leftarrow \text{LinearNoBias}(\text{LayerNorm}(\mathbf{q}_l))$

729 5: **return** $\{v\}$

730 6: **end function**

732

733 **A.2 PROTEINAE FLOW DECODING**

734 PROTEINAE decodes reconstructed protein structures by simulating the learned ODE velocity field,
 735 conditioned on the latent representation z :

736

$$\frac{dx_t}{dt} = v_t^\theta(x_t, t, z) \quad (10)$$

737

738 Starting from a noise sample x_T , the ODE is integrated from $t = 1$ to $t = 0$ to obtain the denoised
 739 structure x_0 . In practice, we integrate the ODE using a numerical solver (e.g., Euler method) with
 740 a small number of discretization steps to reduce computational cost. The latent representation z
 741 acts as a powerful condition during decoding, guiding the structure generation process. It serves
 742 a role analogous to sequence features (like MSAs) in models such as AlphaFold3, enabling more
 743 deterministic structure generation conditioned on the learned latent.

744

745

746

747

748

749

750

751

752

753

754

755

756 A.3 PROTEIN LATENT DIFFUSION MODELING (PLDM)
757

758 Protein Latent Diffusion Modeling (PLDM) is our framework for generating novel latent representations.
759 We employ flow matching as the generative approach in the latent space, which learns a
760 continuous transformation to map samples from a simple distribution (e.g., Gaussian) to the target
761 latent distribution. Unlike structure-based generative models that operate on the $SE(3)$ manifold of
762 protein structures, our PLDM operates purely on the compact latent representation z learned by the
763 PROTEINAE, as illustrated in Fig. 2c.

764 **PLDM Training Objective** PLDM is trained using a flow-matching loss applied to the latent
765 representation $z \in \mathbb{R}^{N_{\text{down}} \times d}$. The model v^ϕ is trained to predict the velocity field in the latent
766 space. Given a clean structure x_1 from the data distribution $p_{\text{ds}}(x)$, its latent representation is $\mathcal{E}(x_1)$.
767 We define a linear path in the latent space between a noise sample $z_0 \sim \mathcal{N}(0, I)$ and $\mathcal{E}(x_1)$: $z_t =$
768 $(1-t)z_0 + t\mathcal{E}(x_1)$. The target velocity for this path is $\frac{dz_t}{dt} = \mathcal{E}(x_1) - z_0$. The PLDM is parameterized
769 by ϕ , and its training objective is:
770

$$\min_{\phi} \mathbb{E}_{x_1 \sim p_{\text{ds}}(x), z_0 \sim \mathcal{N}(0, I), t \sim p(t)} \left[\frac{1}{N_{\text{down}}} \|v^\phi(z_t, t) - (\mathcal{E}(x_1) - z_0)\|_2^2 \right], \quad (11)$$

771 where $v^\phi(z_t, t)$ is the velocity predicted by the PLDM network given the noisy latent sample z_t and
772 timestep t . The expectation is taken over data samples x_1 , noise samples z_0 , and timesteps t sampled
773 from same $p(t)$.
774

775 **PLDM Sampling** Following observations from Proteina (Geffner et al., 2025) regarding the limitations
776 of directly sampling the full learned distribution, we perform sampling from the latent space
777 using an SDE-based schedule. The SDE for generating latent samples \hat{z} is defined as:
778

$$dz_t = v^\phi(z_t, t) \cdot dt + g(t)s^\phi(z_t, t)dt + \sqrt{2g(t)\gamma} d\mathcal{W}_t, \quad (12)$$

779 where $v^\phi(z_t, t)$ is the velocity predicted by the trained PLDM model, $g(t)$ is the diffusion coefficient,
780 $s^\phi(z_t, t)$ is the score function derived from the predicted velocity (specifically, $s^\phi(z_t, t) \approx$
781 $\nabla_{z_t} \log p_t(z_t)$), γ is a noise scale parameter, and $d\mathcal{W}_t$ is a standard Wiener process. Starting from a
782 sample from the Gaussian distribution $z_T \sim \mathcal{N}(0, I)$, we integrate this SDE numerically from $t = 1$
783 to $t = 0$ to obtain the generated latent \hat{z} . Finally, this generated latent \hat{z} is decoded into a protein
784 structure \hat{x} using the trained PROTEINAE flow decoder: $\hat{x} = \mathcal{D}(\hat{z})$ (Eq. 10).
785

786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A.4 TRAINING DETAILS
811812
813 Table 4: Training and model hyperparameters for PROTEINAE, PLDM, and Flexibility Prediction.
814

Parameter	PROTEINAE	PLDM	Flexibility Prediction
<i>Training Details</i>			
GPUs	4 × 80G A100	8 × 80G A100	1 × 80G A100
Batch size per GPU	8	64	8
Global batch size	32	512	8
Training duration	10 epochs	200,000 steps	300 epochs
Optimizer	Adam	Adam	Adam
Learning rate	1×10^{-4}	1×10^{-4}	1×10^{-4}
Loss function	Flow-matching		
<i>Model Architecture</i>			
Token dimension	256	768	–
Layers	5	15	–
Attention heads	8	12	–
Condition dimension	256	512	–
Timestep embedding size	256	–	–
Sequence index embedding	128	–	–
Downsampling factor (r)	1	–	–
Dimension bottleneck	8	–	–
<i>All-Atom Attention Module (PROTEINAE only)</i>			
Atom dimension	64	–	–
Atom pair dimension	6	–	–
Attention mask (query/key)	32 / 128	–	–
<i>Flexibility Prediction Model</i>			
Architecture	MLP		
Dimension	512		
Activation function	Relu		

840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 **B BACKGROUND**
865

866 **Diffusion models** The foundational diffusion model concepts introduced by (Sohl-Dickstein et al.,
867 2015) and significantly advanced with denoising diffusion probabilistic models (DDPMs) (Ho et al.,
868 2020)—which iteratively add noise to data and then learn to reverse the process. More recently, flow
869 matching has emerged as a powerful and efficient alternative (Lipman et al., 2022; Liu et al., 2022;
870 Albergo et al., 2023). These flow-based methods directly learn a vector field, often an Ordinary
871 Differential Equation (ODE), to transform a simple noise distribution into a complex data distri-
872 bution, frequently enabling simulation-free training and faster sampling. Both diffusion and flow
873 matching paradigms can be further extends to general manifolds (Chen & Lipman, 2023) as well
874 as discrete data (Cheng et al., 2024; Austin et al., 2021). They have found extensive applications
875 in de novo protein design, with models like RFDiffusion, FrameDiff (initially diffusion-based) and
876 their successor RFdiffusion2, FrameFlow (which incorporates flow matching for training). Some
877 work (Campbell et al., 2024; Li et al., 2024) has also attempted the co-design of sequences and
878 structures. More recently, Proteina (Geffner et al., 2025) attempted to model coordinates directly
879 using a non-equivariant architecture on $E(3)$, but they only work with C_α .
880

881 **Protein Autoencoders** Autoencoders play a significant role in learning compact and meaningful
882 representations for both protein sequences and structures, which are vital for efficient generative
883 modeling and other downstream tasks. While protein sequence autoencoders are widely used, often
884 leveraging features like MSAs or ESM embeddings (Dettefson et al., 2022; Lu et al., 2024; 2025;
885 Chen et al., 2024), the development of autoencoders for protein *structures* is a more recent area
886 of research. A notable example that bridges these areas is CHEAP (Lu et al., 2024). This model
887 operates on protein language model features from ESM2, which are then used to predict structure
888 via ESMFold’s structure module. While this method can yield valuable structural information, its
889 encoding capability is inherently dependent on, and thus limited by, ESMFold’s prediction accuracy.
890

891 In parallel, pioneering efforts have focused on autoencoding the protein structure directly. These
892 models tackle the challenge of converting continuous 3D atomic coordinates into discrete tokens.
893 Key examples include the ProToken Lin et al. (2023a), ESM3 VQ-VAE tokenizer (Hayes et al.,
894 2025) and the DPLM-2 lookup-free quantization (LFQ) tokenizer (Wang et al., 2024; 2025). By en-
895 abling this conversion, they allow for the joint modeling of protein sequences and structures within
896 large generative frameworks. Subsequent work, such as AminoAseed (Yuan et al., 2025), has further
897 explored improvements in the codebook design for these discrete structure representations. How-
898 ever, a common challenge for these tokenization-based autoencoders is the inherent information loss
899 that occurs during the discretization process. This makes it difficult to fully capture the complexity
900 and subtle geometric details present in the continuous 3D space of a protein structure.
901

900 Table 5: Comparison of different protein autoencoder architectures, highlighting their input modal-
901 ities, representation types, and operational scopes.

902 Methods	903 Input Modality	904 Representation Type	905 Operational Scope	906 Compression Strategy
903 ProteinAE	904 Atom coordinates (Structure)	905 Continuous	906 All proteins	907 ✓ 908 Direct structural compression
909 CHEAP	910 ESM2 features (Sequence)	911 Continuous	912 Proteins ESMFold predicts well	913 ✓ 914 Sequence feature compression
915 ProToken, ESM3 VQ-VAE & DPLM-2 LFQ	916 Backbone Frame (Structure)	917 Discrete	918 All proteins (with 2,048 length constraints 919 for ProToken and DPLM-2 LFQ)	920 ✗

918 B.1 BACKBONE-LEVEL RECONSTRUCTION QUALITY
919
920921 Table 6: Different protein autoencoders’ structure reconstruction quality measured by RMSD (↓).
922 Lower is better. **Bold** indicates the best performance. *Proteins missing backbone atoms are ignored.*
923 *Note that ProToken and DPLM-2 can only process proteins under 2,048 residues.

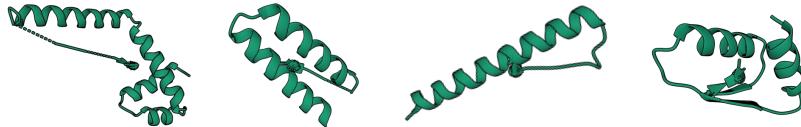
924	925	Methods	CASP14			CASP15		
			926	T	T-dom	oligo	TS-domains	oligo
927	928	Backbone RMSD	CHEAP	11.16±10.09	4.71±5.21	11.10±11.95	10.98±12.44	8.24±14.12
			ESM3 VQ-VAE	1.28±2.32	0.66±0.42	3.11±7.41	1.25±1.28	2.47±2.27
			ProToken*	1.14±0.66	1.09±0.16	1.55±1.46	1.29±0.67	1.33±0.70
			DPLM-2*	1.94±1.99	1.47±0.42	3.81±7.20	4.58±6.62	3.83±6.90
			PROTEINAE	0.51±1.56	0.23±0.11	0.31±0.27	0.31±0.21	0.43±0.51

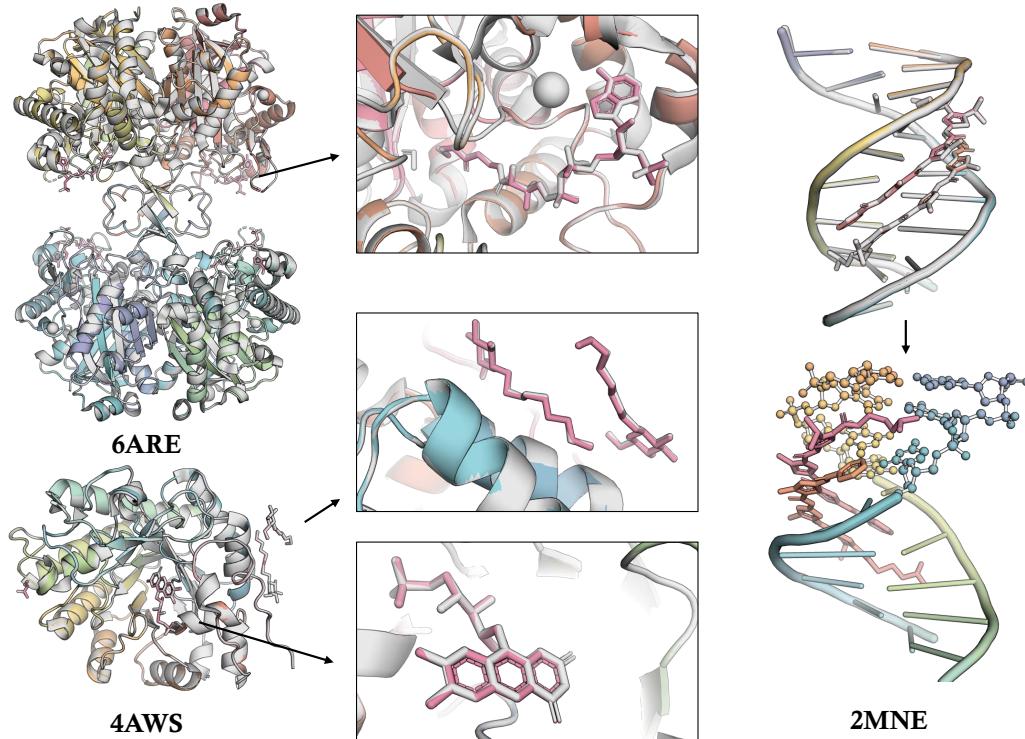
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 C METRIC DETAILS AND ADDITIONAL EXPERIMENTS
973974 We complete the details of protein unconditional generation in Sec. 3.
975976 **Designability** Protein designability is assessed based on whether a protein backbone structure can
977 be generated from a specific amino acid sequence that folds into that structure. Following the method
978 of FrameDiff (Yim et al., 2023a), eight sequences are generated per backbone using ProteinMPNN
979 (Dauparas et al., 2022) with a sampling temperature of 0.1. Structures are predicted using ESMFold
980 (Lin et al., 2023b). The Root Mean Square Deviation (RMSD) between the predicted and original
981 structures is calculated. A sample is deemed designable if its lowest RMSD, termed self-consistency
982 RMSD (scRMSD), is $\leq 2\text{\AA}$. The overall designability score is the fraction of designable samples.
983984 **Designable Pairwise TM-score (DPT)** This is the first of two methods for evaluating diversity,
985 based on the methodology by (Bose et al., 2023). It involves calculating pairwise TM-scores (Zhang
986 & Skolnick, 2004) among all designable samples for each specified protein length, and then ag-
987 gregating the averages across different lengths. TM-scores range from 0 to 1, where higher scores
988 indicate greater structural similarity. Therefore, lower TM-scores are preferred for this metric as
989 they suggest greater diversity.
990991 **Diversity (Cluster)** The second diversity measure follows the approach by FrameDiff (Yim et al.,
992 2023b). Designable backbones are clustered using Foldseek (Van Kempen et al., 2024) based on a
993 TM-score threshold of 0.5. Diversity is calculated as the ratio of the total number of clusters to the
994 number of designable samples:
995

996
$$\text{Diversity (Cluster)} = \frac{\text{Number of designable clusters}}{\text{Number of designable samples}} \quad (13)$$

997 In this case, higher scores are preferable, indicating that the designable samples form a larger number
998 of distinct clusters, thus representing greater diversity.
9991000 **Novelty** Novelty quantifies how distinct a model’s generated structures are compared to structures
1001 present in predefined reference databases (AFDB and PDB in our work). For each designable struc-
1002 ture generated by the model, its TM-score is computed against every structure in the reference set,
1003 and the maximum TM-score is recorded. The novelty score is the average of these maximum TM-
1004 scores over all designable samples. Lower scores are considered better, as they suggest the generated
1005 structures are less similar to known structures in the reference sets, implying higher novelty.
10061007 **Evaluation Details** For protein unconditional generation, we sample 10 proteins of each length
1008 between 60-128, resulting in 690 samples in total. It is noting that the designability is not a accurate
1009 indicator of how well a generative model matches the training distribution since the training dataset
1010 is far from 100% designable (Huguet et al., 2024).
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 **D IMPACT OF LENGTH BOTTLENECK ON GENERATION**
10271028 We further investigate the impact of imposing a length bottleneck to PROTEINAE on the PLDM
1029 generation process.
10301038 Figure 4: Illustration of structural collapse observed during protein generation by PLDM under
1039 length bottleneck conditions.
10401041 As depicted in Fig. 4, we observe that specific regions of the generated protein structures collapse
1042 towards the center, indicating a failure to maintain realistic local or global geometry under these
1043 conditions. We hypothesize that this phenomenon is attributed to the use of nearest interpolation during
1044 the upsampling process within PROTEINAE or the padding value in the downsampling training.
1045 We plan to investigate this issue in detail in future work.
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080 E PROTEINAE v2 PREVIEW
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105

1106
1107
1108 **Figure 5: PROTEINAE v2 achieves high-fidelity all-atom reconstruction of multi-modal com-**
1109 **plexes.** The reconstructed structures are depicted in color, while the ground truth complexes are
1110 shown in grey for comparison.

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133