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ABSTRACT

Developing effective representations of protein structures is essential for advanc-
ing protein science, particularly for protein generative modeling. Current ap-
proaches often grapple with the complexities of the SE(3) manifold, rely on dis-
crete tokenization, or the need for multiple training objectives, all of which can
hinder the model optimization and generalization. We introduce PROTEINAE, a
novel and streamlined protein diffusion autoencoder designed to overcome these
challenges by directly mapping protein backbone coordinates from E(3) into a
continuous, compact latent space. PROTEINAE employs a non-equivariant Diffu-
sion Transformer with a bottleneck design for efficient compression and is trained
end-to-end with a single flow matching objective, substantially simplifying the
optimization pipeline. We demonstrate that PROTEINAE achieves state-of-the-
art reconstruction quality, outperforming existing autoencoders. The resulting
latent space serves as a powerful foundation for a latent diffusion model that
bypasses the need for explicit equivariance. This enables efficient, high-quality
structure generation that is competitive with leading structure-based approaches
and significantly outperforms prior latent-based methods. Code is available at
https://github.com/OnlyLoveKFC/ProteinAE v1.

1 INTRODUCTION

Proteins serve as the foundation of life. Protein structures, determined by the folding of various
amino acid sequences, dictate their biological functions and behaviors. Understanding and repre-
senting these structures is important for various protein tasks, typically protein generative modeling.
A dominant paradigm for visual generative models involves a two-step process (Esser et al., 2021;
Rombach et al., 2022): initially compressing the pixel input into a compact latent representation
with visual autoencoders (tokenizers), and then performing generative modeling within this latent
space. This paradigm significantly enhances both efficiency and performance of modeling complex
visual distributions. In contrast to the visual domain, which are typically represented at the pixel
level and are high-dimensional, protein structures are represented by continuous atom coordinates
in a lower dimensional space, i.e., 3D Euclidean space (E(3)) and differ greatly in size due to their
diverse amino acid sequence lengths (Jumper et al., 2021; Abramson et al., 2024). These character-
istics require new recipes for creating protein structure autoencoders and necessitate the exploration
of more efficient protein generative modeling methods.

Researchers have made several attempts to encode protein structures with autoencoders. Pioneer-
ing efforts in this area include the ESM3 VQ-VAE tokenizer (Hayes et al., 2025) and the DPLM-2
lookup-free quantization (LFQ) tokenizer (Wang et al., 2024; 2025), which were among the first to
convert continuous 3D coordinates into discrete tokens to jointly model sequences and structures
used in generative masked language models. (Yuan et al., 2025) proposes AminoAseed with further
codebook improvements. While achieving initial success, these autoencoders are not ideal in the
following aspects: (i) operating on the intricate SE(3) manifold (involving translations and frame
rotations) necessitates incorporating equivariance and physical constraints, thus introducing com-
plexity to the latent space and the design of model architecture; (ii) discretizing continuous atom
coordinates to tokens leads to a loss of reconstruction accuracy; (iii) requiring the combination of
complex training objectives (e.g., FAPE loss, distance loss, violation loss, KL loss, etc.), which de-
mands tuning individual weights for each term; (iv) being limited to a fixed input size (sequence
length) and lacking a compact bottleneck latent space for efficient generative modeling. These raise
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the question: Could we design a simpler, more accurate, and effective protein autoencoder in a
continuous, compact latent space?

Quant
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Figure 1: Comparison of ESM3 VQ-VAE and our
PROTEINAE.

In this work, we propose PROTEINAE, a pro-
tein diffusion autoencoder designed for effec-
tive and efficient structure encoding and gener-
ation. Specifically, PROTEINAE operates in a
non-equivariant manner, and conducts autoen-
coding protein backbone atoms (Cα, N,C,O)
directly on E(3), avoiding the discretization.
Inspired by recent works on denoising autoen-
coders (Chen et al., 2025), PROTEINAE em-
ploys a simple diffusion loss for training, which
makes the learned structural representations
maximize the ELBO of the likelihood of the in-
put protein structures, which is similarly vali-
dated by AlphaFold3 (Abramson et al., 2024).
An architecture comparison between the tradi-
tional protein autoencoder ESM3 structure au-
toencoder and PROTEINAE is shown in Fig. 1.
ESM3 structure autoencoder employs a stan-
dard VQ-VAE framework (Esser et al., 2021)
with a modified geometry-based transformer
encoder on SE(3) and focuses more on the
local structural pattern. In contrast, PRO-
TEINAE’s encoder and decoder are designed
with scalable Diffusion Transformers (DiT)
(Peebles & Xie, 2023). The encoder maps the
protein backbone atom coordinates to a latent representation z. We also incorporate a bottleneck
design by downsampling the protein in length and channel dimensions, which is common in vision
for efficiency (Ronneberger et al., 2015). The decoder takes z as a condition and predicts the clean
structure or velocity from noisy structures. At inference time, protein structures are reconstructed
from the noisy coordinates with latent representation z via a diffusion sampler.

Building on this protein autoencoder, we can further perform downstream structural latent analysis,
such as protein latent diffusion modeling (PLDM) and physicochemical prediction. Previous gener-
ative methods are mostly structure-based diffusion models over SE(3) (Yim et al., 2023b;a; Watson
et al., 2023; Bose et al., 2023), but they face challenges with equivariance and physical constraints
such as bond lengths and angles (Yim et al., 2025). Protein multi-modal models like ESM3 use iter-
ative decoding to generate discrete structure tokens, but their generation quality is not as expected.
(Yim et al., 2025) proposes a hierarchical structure latent diffusion model, but the latent diffusion
is conducted on the contact map and still relies on FrameFlow (Yim et al., 2023a) at the second
fine-grain stage. Based on the lightweight PROTEINAE, we develop a scalable PLDM. It employs a
standard DiT architecture, bypassing the need for explicit equivariance or physical constraints, and
eliminates the computationally expensive triangle attention module for better efficiency.

We rigorously evaluate PROTEINAE on the CASP14 and CASP15 benchmarks, demonstrating state-
of-the-art reconstruction quality. We further show that the learned latent space is highly effective
for physicochemical property prediction. Finally, our PLDM is competitive with leading structure-
based generative models and substantially outperforms existing latent-based methods in both sample
quality and efficiency. Our primary contributions are:

• PROTEINAE: A Simple and Effective Protein Diffusion Autoencoder. We introduce
a non-equivariant autoencoder based on Diffusion Transformers that operates directly on
backbone atom coordinates in E(3). It learns a continuous, compact latent representation
using a single flow-matching loss, avoiding the complexities of SE(3) manifold and dis-
crete tokenization.

• High-Fidelity Encoding for Downstream Generative and Predictive Tasks. PRO-
TEINAE achieves state-of-the-art protein structure reconstruction. Its learned latent space
enables accurate physicochemical property prediction and serves as the basis for protein
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Figure 2: Overall architecture of PROTEINAE. (a) The encoder maps a protein structure to a latent
representation z; (b) The flow decoder predicts the velocity field vθt for structure reconstruction
conditioned on z; (c) Downstream tasks like PLDM operating over the learned latent space.

latent diffusion model (PLDM) that significantly outperforms latent-based methods and is
competitive with leading structure-based generative approaches with improved efficiency.

2 PROTEINAE: PROTEIN DIFFUSION AUTOENCODERS

As illustrated in Fig. 2, PROTEINAE employs an encoder-decoder architecture for learning latent
protein structure representations. We explain abbreviations of some components in Fig. 2 in italics.

Feature Preparation Both the encoder and decoder take a protein backbone structure x ∈
RN×4×3 as input (x1 for the encoder, representing the clean structure, and xt for the decoder, rep-
resenting the noisy structure at timestep t; N denotes the protein length). Given the input structure,
initial residue-level features are constructed. The pair representation p (Pair Repr.) and sequence
condition feature c (Seq. Cond.) are generated through the Pair Condition Module (Pair Cond.
Module) and Sequence Condition Module (Seq. Cond. Module), respectively. For the encoder, in-
puts to these modules include xca and sequence index features. For the decoder (inputs shown in
gray below), the diffusion timestep t and self-condition x̂ca

t are added to the Pair Condition Module
inputs, and the latent representation z is added to the output of the Sequence Condition Module.
Reference amino acid features f are used by both modules. The feature preparation process can be
summarized:

p = PairCondModule(xca, f seq idx, t, (x̂ca
t )), (1)

c = SeqCondModule(f)+z. (2)
Note that inputs shown in gray are specific to the decoder. These initial token-level features (p
and c) are used alongside the atom-level input x. A lightweight All-Atom Attention Encoder (All-
Atom Attn. Encoder) processes the atom-level features from x to generate a token-level sequence
representation s (Seq. Repr.). This module also outputs skip connection features (qskip, cskip, pskip)
used later in the decoder pipeline. The output of the All-Atom Attention Encoder is:

s, qskip, cskip, pskip = AllAtomAttnEncoder(x, p, c, f). (3)
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More details regarding the All-Atom Attention mechanism are provided in the next paragraph.

Diffusion Transformers and All-Atom Attention Unlike many previous structure-based diffu-
sion or representation learning models that rely on geometric equivariance, PROTEINAE adopts a
non-equivariant architecture, forming the core of our feature processing, encoder, and decoder. This
choice aligns with recent works such as AlphaFold3 (Abramson et al., 2024) and Proteina (Geffner
et al., 2025), which feature stacks of conditioned and biased multi-head self-attention layers com-
bined with transition blocks and residual connections. Operating on sequence and pair representa-
tions, these layers are optionally enhanced with attention biases derived from geometric relationships
in the input structures. The input tokens are further augmented with additional registers (Darcet
et al., 2023). To effectively handle variable-length protein inputs, we employ Rotary Positional En-
codings (RoPE) (Su et al., 2024) instead of traditional absolute positional encodings. The Diffusion
Transformer (DiT) architecture is utilized in three distinct parts of our model: (i) the All-Atom At-
tention modules during feature preparation and decoding, (ii) the core token-level Attention stacks in
the PROTEINAE Encoder and Decoder, and (iii) the token-level Attention in the subsequent PLDM
stage. We note that pair bias is incorporated in the DiT stacks of the PROTEINAE Encoder and
Decoder, as well as within the All-Atom Attention modules, but it is omitted in the PLDM stage.
A DiT block operating on sequence (s) and condition (c) representations, potentially incorporating
pair bias (p, βij), can be summarized as:

sl = DiT pair bias(sl−1, p, c, βij), (4)

sl = sl +TransitionBlock(sl, c), (5)

where l denotes the l-th layer in a stack of L blocks. βij here represents the attention mask. A
comprehensive algorithm is provided in the Appendix A.1.

To explicitly model and generate atom-level details for the backbone structure, we incorporate All-
Atom Attention Encoder and Decoder modules, inspired by AlphaFold3 but implemented with fewer
parameters. These modules utilize sequence-local atom attention, allowing interactions among all
backbone atoms within a defined sequence neighborhood. This approach offers richer local inter-
action modeling compared to methods relying solely on KNN graphs, such as those adopted in the
ESM3 VQ-VAE pipeline (see Fig. 1). The All-Atom Attention Encoder, described previously as part
of feature preparation, aggregates atom-level features from the input structure into token-level rep-
resentations. For consistency within the All-Atom Attention mechanisms, we fix reference features
f (including positions, charge, mask, elements, and atom name characters) based on the standard
Glycine (GLY) residue from the Chemical Components Dictionary (CCD). The All-Atom Attention
Decoder operates after the DiT stack in the decoder pipeline. It takes the final sequence representa-
tion sL from the DiT stack and broadcasts token-level features back to atom-level. After computing
atom attention, it projects these features to predict the noise velocity vθt ∈ RN×4×3 in coordinate
space. The output prediction of the All-Atom Attention Decoder is summarized as:

vθt = AllAtomAttnDecoder(sL, qskip, cskip, pskip, βij). (6)

Note that while the DiT stack and All-Atom Attention modules are distinct components operating
in sequence, their underlying attention mechanisms share principles of conditioned and biased self-
attention.

Autoencoder Bottleneck To obtain a compact latent representation z and improve the efficiency
of subsequent generative modeling, we introduce two types of bottleneck compression within the
encoder pipeline (Fig. 2a): a length bottleneck and a dimension bottleneck. Following the stack of
DiT layers, we obtain the sequence representation sL. For the length bottleneck, we apply one or
more 1D convolution layers with a kernel size of 3 and a stride of 2. This downsamples the protein
length from N to Ndown = N/r, where r is the total downsampling ratio. Subsequently, for the
dimension bottleneck, a linear layer projects the sequence representation from its token dimension
D to a reduced bottleneck dimension d. This compression process can be summarized as:

z = LinearNoBias︸ ︷︷ ︸
Dimension downsample

Conv1d(stride = 2, kernel = 3) .(transpose(sL))︸ ︷︷ ︸
Length downsample

 . (7)
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Here, transpose(·) denotes the batch transpose, transforming a tensor of shape (B,N,D) to
(B,D,N) for convolution. The resulting latent representation z has shape (B,Ndown, d).

In the decoder pipeline, the latent representation z needs to be upsampled and expanded to match
the target protein length Ntarget and channel size of conditioning features before being added (Eq. 2).
This upsampling process involves expanding the dimension of z and then interpolating its length:

zupsampled = transpose

Interpolate(transpose(LinearNoBias︸ ︷︷ ︸
Dimension upsample

(z)), N target)

 . (8)

Replace KL regularization with LayerNorm Unlike traditional VAEs that employ a KL regu-
larization loss on the latent feature z, we apply LayerNorm without learnable scales following DiTo
(Chen et al., 2025). This operation is applied to the output of the bottleneck (Eq. 7) and yields
the final latent representation z used for both the PROTEINAE decoder and PLDM training. This
approach eliminates the need for KL loss weight tuning and empirically demonstrates better recon-
struction performance. Furthermore, by normalizing the latent space in this manner, we can directly
train the PLDM on z without requiring additional normalization within the diffusion process (Rom-
bach et al., 2022). In conclusion, this design choice simplifies the overall training procedure for both
PROTEINAE and PLDM.

Autoencoder Pipelines Having introduced the core architectural components, we now detail their
arrangement within the PROTEINAE encoder and decoder pipelines (Fig. 2).

Encoder (Fig. 2a) takes a native protein structure (x1) as input. As described in ”Feature prepara-
tion”, this structure is used to derive initial sequence (s), pair (p), and condition (c) features. These
features are processed through a stack of DiT blocks incorporating pair bias. The resulting repre-
sentation then undergoes a bottleneck stage, which compresses both the length and dimension of the
feature maps (as detailed in Autoencoder Bottleneck). Finally, the compressed latent representation
z is normalized via LayerNorm before being passed to the decoder or used for downstream tasks.

Decoder (Fig. 2b) operates within the flow matching framework, taking a noisy protein structure
(xt) at timestep t as input. Similar to the encoder, xt is used for feature preparation to obtain
initial s, p, c features. A key distinction is that the latent representation z (from the encoder during
training, or sampled during inference) is upsampled and incorporated as conditioning information
into the sequence condition feature c. These conditioned features (s, p, and the modified c) are then
processed by a stack of DiT blocks with pair bias, mirroring the encoder’s architecture. The output
from the DiT stack is fed into an All-Atom Attention Decoder, which predicts the velocity vector vθt
required for structure reconstruction via ODE integration (Appendix A.2).

Reconstruction Loss PROTEINAE is trained using a simple flow-matching loss, with no other
auxiliary losses. The objective is to train the model to predict the velocity vector field vθt at noisy
structure xt and timestep t, conditioned on the latent representation z. The target velocity field in
flow matching is defined as v(t) = x1 − x0. The input structures x1, xt, the noise x0, and the
predicted velocity vθt are all represented as tensors in R4N×3. The PROTEINAE’s training objective
is:

min
θ

Ex1∼pds(x),x0∼N (0,I),t∼p(t)

[
1

4N

∥∥vθt (xt, t, z)− (x1 − x0)
∥∥2
2

]
, (9)

where pds(x) is the data distribution, p(t) is the timestep sampling distribution, and vθt (xt, t, z) is
the velocity predicted by the decoder network. Following common practice in structure-based flow
matching models, we use the t-sampling distribution p(t) = 0.02U(0, 1) + 0.98B(1.9, 1.0).

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Dataset and Model Configuration We use the AFDB-FS (Jumper et al., 2021; Lin et al., 2024)
dataset for training PROTEINAE and PLDM. This is a large-scale dataset of single-chain protein
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structures derived from the AlphaFold Protein Structure Database (AFDB) through sequential fil-
tering and clustering steps utilizing sequence-based MMseqs2 (Steinegger & Söding, 2017) and
structure-based Foldseek (Van Kempen et al., 2024). It contains 588,318 structures with lengths
ranging from 32 to 256 residues. For PROTEINAE training, we apply random global rotation to the
protein structures as data augmentation. For structure reconstruction evaluation, we use the bench-
mark sets from CASP 14 and CASP 15. We use ATLAS Vander Meersche et al. (2024), a protein
molecular dynamics (MD) dataset for downstream flexibility prediction. For our reconstruction and
downstream results, we primarily use a default PROTEINAE configuration. The encoder and decoder
DiT stacks have L = 5 layers and a token dimension D = 256. The bottleneck is configured with
a length downsampling ratio r = 1 (i.e., no length downsampling) and compresses the dimension
from D = 256 to a latent dimension d = 8. The PLDM is also based on a DiT architecture with
200M parameters, featuring L = 15 and D = 768. Different configurations and their impact on
performance are explored in the ablation studies. The overall details can be found in Appendix A.4.

3.2 STRUCTURE RECONSTRUCTION

Table 1: Different protein autoencoders’ structure reconstruction quality measured by RMSD (↓).
Lower is better. Bold indicates the best performance. *Note that ProToken and DPLM-2 can only
process proteins under 2,048 residues.

CASP14 CASP15
Methods T T-dom oligo TS-domains oligo

CHEAP (Lu et al., 2024) 11.15±9.88 8.99±9.18 9.93±10.55 10.22±11.23 9.22±12.57
ESM3 VQ-VAE (Hayes et al., 2025) 1.02±1.82 0.66±0.42 3.08±7.39 1.23±1.26 1.94±2.43
ProToken* (Lin et al., 2023a) 0.99±0.69 0.96±0.58 1.15±1.12 1.15±1.00 1.18±0.89
DPLM-2* (Wang et al., 2024) 1.99±2.03 1.87±1.78 2.70±5.05 3.31±5.69 3.50±6.23

Cα

RMSD

PROTEINAE 0.23±0.15 0.22±0.11 0.31±0.22 0.28±0.20 0.37±0.50

A comprehensive benchmark analysis in Table 1 reveals that our proposed model exhibits clear
and consistent superiority in the task of protein structure reconstruction. We give a comprehen-
sive reviews of these baselines in Appendix B. PROTEINAE systematically outperforms all baseline
methods, including prominent vector-quantized autoencoders, across the full suite of challenging
targets from the CASP14 and CASP15 assessments. This robust outperformance holds true irre-
spective of the protein’s structural class or complexity. The performance margin of PROTEINAE is
particularly pronounced when reconstructing targets of high structural complexity. For challeng-
ing oligomeric assemblies, where many baseline models show a marked degradation in quality, our
approach consistently maintains a high degree of fidelity. This capability underscores the robust-
ness of our framework in capturing the intricate spatial arrangements and fine-grained geometric
details that are often lost by competing methods. Collectively, these results strongly suggest that the
diffusion autoencoder framework is more effective at modeling the manifold of protein structures
than discrete, vector-quantized approaches. By circumventing the information bottlenecks inherent
to tokenization, our model learns a richer and more expressive latent representation. This leads
to significantly more accurate and reliable reconstructions, establishing a new state of the art in
high-fidelity protein structure encoding. It is noting that CHEAP consistently records the poorest
performance; this is an anticipated outcome, as it relies on encoding features from ESM2, thereby
inheriting its limitations and being fundamentally capped by ESMFold’s prediction accuracy.

3.3 DOWNSTREAM STRUCTURAL LATENT ANALYSIS

Unconditional Backbone Generation We assess the performance of PROTEINAE-PLDM on
unconditional protein backbone generation against state-of-the-art Structure Diffusion Models
(SDMs), Multi-Modal Language Models (MLLMs), and other Latent Diffusion Models (LDMs),
with results presented in Table 2. The details of PROTEINAE-PLDM methods are illustrated in
Appendix A.3, including the flow training objectives and sampling within the PROTEINAE’s latent
space. The evaluation demonstrates that PROTEINAE-PLDM achieves state-of-the-art performance
among latent-space generative models. Our approach outperforms those MLLM and LDM base-
lines, achieving high designability and diversity, where these prior latent-space methods have tra-
ditionally struggled. Furthermore, PROTEINAE-PLDM’s performance extends beyond dominating
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its own category to rival that of classical SDMs, effectively closing the significant performance gap
that has long separated latent- and structure-based diffusion models. PROTEINAE-PLDM can also
provide a controllable trade-off with sampling temperature γ, where a higher temperature setting
modestly decreases designability in exchange for a notable increase in structural diversity. Visual
case studies (Figure 3D, purple indicates helix and yellow indicates sheet) further reveal that sam-
ples with high designability converge to common folds, while those with lower designability often
represent novel yet physically plausible conformations. We also observe that the model’s tendency
to generate varied loop regions, reminiscent of AFDB structures (according to Huguet et al. (2024);
Geffner et al. (2025), AFDB’s overall designability is 33%, far from 100% designable), may con-
tribute to these novel topologies and explain the small remaining designability gap to SDMs focused
on canonical folds.

Table 2: Unconditional protein backbone generation performance among SDM, MLLM and LDM
approaches. Baseline results are adopted from Yim et al. (2025). Metric details are illustrated in
Appendix C.

Type Methods Des (↑) Div (↑) DPT (↓) Nov (↓)

SDM

RFdiffusion (Watson et al., 2023) 96% 247 0.43 0.71
ProteinSGM (Lee et al., 2023) 49% 122 0.37 0.51
FrameFlow PDB (Yim et al., 2023a) 91% 278 0.48 0.65
FrameFlow AFDB 23% 54 0.42 0.70

MLLM ESM3 (Hayes et al., 2025) 61% 127 0.37 0.84
DPLM-2 650M (Wang et al., 2024) 63% 130 0.37 0.72

semi-LDM LSD (Yim et al., 2025) 69% 203 0.46 0.74

LDM
LatentDiff (Fu et al., 2024) 17% 34 0.51 0.73
PROTEINAE-PLDM γ = 0.35 93% 204 0.36 0.70
PROTEINAE-PLDM γ = 0.5 86% 228 0.35 0.66

Generation Efficiency We evaluate the generation efficiency of PROTEINAE-PLDM against
prominent structure diffusion models, RFDiffusion (Watson et al., 2023) and multi-modal protein
language model DPLM-2 650M Wang et al. (2024). The comparison is based on the average sam-
pling time and GPU memory required to generate backbones of 200 residues with a batch size of 5 on
a single 80G A100 GPU. As illustrated in Fig. 3C, PROTEINAE-PLDM demonstrates substantially
higher efficiency than both baselines. It achieves the lowest sampling time (∼1.6 seconds) while
consuming the least GPU memory (∼0.3 GB). RFDiffusion is the most computationally demand-
ing, requiring ∼15 seconds and ∼5 GB of memory. DPLM-2 exhibits intermediate performance,
with a sampling time of ∼3 seconds and memory usage of ∼1 GB. The remarkable efficiency of
PROTEINAE-PLDM is primarily attributed to its dimension bottleneck design and the elimination of
triangular attention. This allows the PLDM to operate entirely within a compact, low-dimensional
latent space, bypassing the complex geometric or physical constraints inherent to direct structure
generation and thereby drastically reducing the computational burden.

Table 3: Physicochemical Property Prediction (Spearman’s ρ%) on ATLAS. Baseline results are
adopted from StructTokenBench (Yuan et al., 2025).

Task Split Model
FoldSeek ProTokens ESM3 Vanilla VQ AminoAseed PROTEINAE

FlexRMSF Fold 15.35 13.81 44.53 44.22 44.63 45.36
SupFam 11.99 7.62 39.68 39.08 40.99 44.71

FlexBFactor Fold 4.17 6.67 23.60 22.32 21.30 30.87
SupFam 6.97 5.47 25.80 23.73 21.76 26.54

Effectiveness Analysis To evaluate the downstream effectiveness of the latent space learned by
PROTEINAE, we benchmarked its performance on physicochemical property prediction. Following
the setup from StructTokenBench (Yuan et al., 2025), we predicted residue-level structural flexibility
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(RMSF and B-factor) on the ATLAS dataset. The training details are illustrated in Appendix A.4.
As shown in Table 3, PROTEINAE achieves the highest scores across all evaluated tasks and splits,
demonstrating a clear advantage over the baseline models. In the task of predicting FlexRMSF,
PROTEINAE attains the highest Spearman’s ρ correlation on both fold (close level) and superfam-
ily (more remote) splits, improving upon ESM3 by over 10%. A similar trend is observed in the
FlexBFactor prediction, where PROTEINAE again leads in performance across both splits. This
indicates that the continuous representations learned by PROTEINAE have effectively captured the
generalizable principles governing protein geometry and dynamics.
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Figure 3: Summary of PROTEINAE reconstruction, generation, and model architecture anal-
ysis. (A) Visual comparison of protein structure reconstruction quality between PROTEINAE and
ESM3 VQ-VAE. (B) Ablation studies on key architectural components: the impact of dimension
and length bottlenecks, evaluation of model scalability with increased parameters, and analysis of
using DiT registers for latent compression. (C) Generation efficiency comparison of PROTEINAE-
PLDM, RFDiffusion, and DPLM-2, including average sampling time and GPU memory usage. (D)
Visual examples of protein backbone structures generated unconditionally by PROTEINAE-PLDM.

3.4 ABLATION STUDY

In this section, we explore the influences of different designs of PROTEINAE. Specifically, we con-
duct experiments to investigate the impact of the protein length and dimension bottlenecks, evaluate
the model scalability, and analyze the effectiveness of using registers as an alternative strategy for
latent representation. All the results are conducted on CASP15 TS-domains.

Protein Length & Dimension Bottleneck We depict the reconstruction quality of protein length
and dimension bottleneck in Fig. 3B. We choose 3 downsampling ratios r = 1, 2, 4, where r = 1
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signifies no length downsampling. We also investigate 3 bottleneck dimensions d = 8, 32, 256,
where d = 256 corresponds to no dimension reduction relative to the full feature dimension. As
shown in Fig. 3B, both length and dimension compression impact reconstruction accuracy. Increas-
ing the dimension bottleneck (decreasing d) generally leads to a moderate increase in RMSD, as
less information is preserved in the latent space. However, increasing the length downsampling ra-
tio (increasing r) results in a significantly larger degradation in reconstruction quality, with RMSD
increasing substantially as r goes from 1 to 4. This indicates that preserving the sequential length
dimension is more critical for accurate protein backbone reconstruction than maintaining a large
feature dimension.

Scalability We study the scalability of PROTEINAE on two variants: PROTEINAE-Base (∼20M
parameters) and PROTEINAE-Large (∼100M parameters). The results, showing reconstruction
quality (RMSD) for these variants under different bottleneck configurations (r = 1, d = 32 and
r = 2, d = 32), are presented in the ”Scalability” plot in Fig. 3B. As the model size increases from
Base to Large, we observe a slight improvement in reconstruction quality (decrease in RMSD) for
the configuration with length downsampling (r = 2, d = 32). For the configuration without length
downsampling (r = 1, d = 32), the RMSD remains low and stable across both model sizes. This
indicates that PROTEINAE exhibits positive scalability, where increasing model capacity leads to
comparable or slightly improved performance, particularly noticeable when the task is more chal-
lenging due to bottlenecking (e.g., with r = 2). The plot also reinforces that maintaining the original
protein length (r = 1) is beneficial for reconstruction accuracy regardless of the model size.

Conditional Decoding using Registers Beyond the bottleneck compression strategy for obtaining
the latent representation z, we also explore using the learnable register tokens to compress the struc-
tures to fixed collection. The registers are concatenated to the input sequence representation and
participate in attention computations (as mentioned in Section 2). Recent works, such as FlexTok
(Bachmann et al., 2025), have demonstrated that these tokens can effectively serve as compact latent
representations for images. Inspired by this, we investigate a variant, termed PROTEINAE-Register,
where the registers from the encoder (zreg) are directly used as the registers in the decoder, enabling
conditional generation based on these tokens instead of the bottlenecked latent z. We evaluate the
reconstruction quality of PROTEINAE-Register, with results depicted in Fig. 3B. The plot shows that
PROTEINAE-Register achieves good reconstruction quality for protein lengths up to 256 residues,
which corresponds to the maximum length in our training dataset. However, performance degrades
dramatically for structures exceeding this training length limit. Fig. 3B also visualizes an example
of this failure mode, showing the reconstruction breaking down abruptly around residue 231 for a
longer protein. These results highlight a limitation of directly applying a register-based compression
strategy to variable-length protein sequences. The success of registers as latent representations in
vision tasks may be partly attributable to the fixed size of image tokens after patchification, a char-
acteristic not present in native protein sequences of arbitrary length. This suggests that for protein
structures, alternative compression mechanisms like length and dimension bottlenecks are more ro-
bust to variable input sizes, particularly for handling lengths beyond the training distribution. We
will also explore a better way to encode protein structures into fixed-length vectors in the future.

4 CONCLUSION AND LIMITATIONS

We introduced PROTEINAE, a novel protein diffusion autoencoder that maps protein backbone
structures into a continuous, compact latent space using a non-equivariant Diffusion Transformer ar-
chitecture and a simple flow matching objective. It avoids the operations on intricate SE(3) and dis-
crete representations inherent in existing methods. Building on this learned latent space, we further
developed PLDM for structure generation. Our experiments demonstrate that PROTEINAE achieves
high reconstruction quality and enables efficient protein structure generation. Despite its capabili-
ties, PROTEINAE still has several limitations that warrant future investigation. For instance, PRO-
TEINAE is currently limited to modeling protein monomers and cannot model other biomolecules
such as ligands, DNA, or RNA. Besides, the generative performance of PLDM is not yet signif-
icantly outperforming state-of-the-art structure-based generative models. Finally, PLDM exhibits
challenges related to sequence length handling, which can lead to structural collapse or unrealistic
geometries for certain residues in the generated outputs. We plan to address these limitations and
explore extensions to PROTEINAE in future work.
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5 REPRODUCIBILITY STATEMENT

We demonstrate the dataset and model configuration in Sec. 3.1, the model architecture details in
Sec. 2 and Appendix A.1, the training details of different tasks in Appendix A.4.

6 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the course of writing this paper, a large language model (LLM) was used as a tool to refine
the language and grammar of the background section. We meticulously reviewed and revised all
content to take full responsibility for the final text. Additionally, we consulted an LLM for the
implementation of certain metrics. The underlying code for these metrics was carefully examined
and validated to ensure its correctness and appropriateness for our study.
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Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein sequence searching for
the analysis of massive data sets. Nature biotechnology, 35(11):1026–1028, 2017.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Michel Van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee,
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A ARCHITECTURE DETAILS

A.1 DIFFUSION TRANSFORMERS AND ALL-ATOM ATTENTION

The yellow background indicates the differences between PROTEINAE and AlphaFold3.

Algorithm 1 Attention with pair bias and mask
1: function ATTENTIONPAIRBIAS({si}, {ci}, {pij}, {βij}, Nhead)
2: ai ← AdaLN(si, ci)
3: qh

i = Linear(si)
4: kh

i ,v
h
i = LinearNoBias(si)

5: kh
i ,v

h
i = LayNorm(kh

i ),LayNorm(vh
i )

6: kh
i ,v

h
i = RoPE(kh

i , vh
i )

7: bh
ij ← Linear(pij) + βij

8: gh
i ← sigmoid(Linear(ai))

▷ Attention
9: Ah

ij ← softmaxj
(

1√
c
(qh

i )
Tkh

j + bh
ij

)
10: si ← LinearNoBias

(
concath

(
gh
i ◦

∑
j A

h
ijv

h
j

))
11: return {si}
12: end function

Algorithm 2 Diffusion Transformer
1: function DIFFUSIONTRANSFORMER({si}, {ci}, {pij}, {βij}, Nblock, Nhead)
2: for all n ∈ {1, . . . , Nblock} do
3: {si} = AttentionPairBias({si}, {ci}, {pij}, {βij}, Nhead)
4: ai ← si +ConditionedTransitionBlock(si, ci)
5: end for
6: return {si}
7: end function

Algorithm 3 Atom Transformer
1: function ATOMTRANSFORMER({ql}, {cl}, {plm}, Nblock = 3, Nhead, Nqueries = 32, Nkeys =

128, Ssubset centres = {15.5, 47.5, 79.5, . . . })

2: βlm =

{
0 if ||l − c|| < Nqueries/2 ∧ ||m− c|| < Nkeys/2 ∀c ∈ Ssubset centres

−1010 else
3: {ql} ← DiffusionTransformer({ql}, {cl}, {plm}, {βlm}, Nblock, Nhead)
4: return {ql}
5: end function
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Algorithm 4 All-Atom Attention Encoder
1: function ALLATOMATTNENCODER({fsi }, {x}, {s}, {c}, {pij}, catom = 64, catompair = 16,

ctoken = 256 )
2: ci ← LinearNoBias(concat(f ref pos

i , f ref charge
i , f ref mask

i , f ref element
i , f ref atom name chars

i ))

3: dlm ← f ref pos
l − f ref pos

m

4: vlm ← f ref space uid
lm ◦ dlm

5: plm += LinearNoBias(dlm) · vlm

6: plm += LinearNoBias
(

1
1+||dlm||2

)
· vlm

7: plm += LinearNoBias(vlm) · vlm

8: ql ← cl
9: cl += LinearNoBias(LayerNorm(ctok idx(l)))

10: plm += LinearNoBias(LayerNorm(ptok idx(l),tok idx(m)))
11: ql += LinearNoBias(rl)
12: plm += LinearNoBias(relu(cl)) + LinearNoBias(relu(cm))
13: plm += LinearNoBias(relu(LinearNoBias(relu(LinearNoBias(relu(plm))))))
14: {ql} ← AtomTransformer({ql}, {cl}, {plm}, Nblock = 3, Nhead = 4)
15: sl ← meani∈{1...Natoms},i→tok idx(l)(relu(LinearNoBias(qi)))

16: qskip
l , cskip

l ,pskip
lm ← ql, cl,plm

17: return {sl}, {qskip
l }, {c

skip
l }, {p

skip
lm }

18: end function

Algorithm 5 All-Atom Attention Decoder

1: function ALLATOMATTNDECODER({si}, {qskip
l }, {c

skip
l }, {p

skip
lm })

2: ql ← LinearNoBias(stok idx(l)) + qskip
l

3: {ql} ← AtomTransformer({ql}, {cskip
l }, {p

skip
lm }, Nblock = 3, Nhead = 4)

4: v ← LinearNoBias(LayerNorm(ql))
5: return {v}
6: end function

A.2 PROTEINAE FLOW DECODING

PROTEINAE decodes reconstructed protein structures by simulating the learned ODE velocity field,
conditioned on the latent representation z:

dxt

dt
= vθt (xt, t, z) (10)

Starting from a noise sample xT , the ODE is integrated from t = 1 to t = 0 to obtain the denoised
structure x0. In practice, we integrate the ODE using a numerical solver (e.g., Euler method) with
a small number of discretization steps to reduce computational cost. The latent representation z
acts as a powerful condition during decoding, guiding the structure generation process. It serves
a role analogous to sequence features (like MSAs) in models such as AlphaFold3, enabling more
deterministic structure generation conditioned on the learned latent.
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A.3 PROTEIN LATENT DIFFUSION MODELING (PLDM)

Protein Latent Diffusion Modeling (PLDM) is our framework for generating novel latent represen-
tations. We employ flow matching as the generative approach in the latent space, which learns a
continuous transformation to map samples from a simple distribution (e.g., Gaussian) to the target
latent distribution. Unlike structure-based generative models that operate on the SE(3) manifold of
protein structures, our PLDM operates purely on the compact latent representation z learned by the
PROTEINAE, as illustrated in Fig. 2c.

PLDM Training Objective PLDM is trained using a flow-matching loss applied to the latent
representation z ∈ RNdown×d. The model vϕ is trained to predict the velocity field in the latent
space. Given a clean structure x1 from the data distribution pds(x), its latent representation is E(x1).
We define a linear path in the latent space between a noise sample z0 ∼ N (0, I) and E(x1): zt =
(1−t)z0+tE(x1). The target velocity for this path is dzt

dt = E(x1)−z0. The PLDM is parameterized
by ϕ, and its training objective is:

min
ϕ

Ex1∼pds(x),z0∼N (0,I),t∼p(t)

[
1

Ndown

∥∥vϕ(zt, t)− (E(x1)− z0)
∥∥2
2

]
, (11)

where vϕ(zt, t) is the velocity predicted by the PLDM network given the noisy latent sample zt and
timestep t. The expectation is taken over data samples x1, noise samples z0, and timesteps t sampled
from same p(t).

PLDM Sampling Following observations from Proteina (Geffner et al., 2025) regarding the limi-
tations of directly sampling the full learned distribution, we perform sampling from the latent space
using an SDE-based schedule. The SDE for generating latent samples ẑ is defined as:

dzt = vϕ(zt, t) · dt+ g(t)sϕ(zt, t)dt+
√
2g(t)γ dWt, (12)

where vϕ(zt, t) is the velocity predicted by the trained PLDM model, g(t) is the diffusion coeffi-
cient, sϕ(zt, t) is the score function derived from the predicted velocity (specifically, sϕ(zt, t) ≈
∇zt log pt(zt)), γ is a noise scale parameter, and dWt is a standard Wiener process. Starting from a
sample from the Gaussian distribution zT ∼ N (0, I), we integrate this SDE numerically from t = 1
to t = 0 to obtain the generated latent ẑ. Finally, this generated latent ẑ is decoded into a protein
structure x̂ using the trained PROTEINAE flow decoder: x̂ = D(ẑ) (Eq. 10).
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A.4 TRAINING DETAILS

Table 4: Training and model hyperparameters for PROTEINAE, PLDM, and Flexibility Prediction.
Parameter PROTEINAE PLDM Flexibility Prediction
Training Details

GPUs 4 × 80G A100 8 × 80G A100 1 × 80G A100
Batch size per GPU 8 64 8
Global batch size 32 512 8
Training duration 10 epochs 200,000 steps 300 epochs
Optimizer Adam Adam Adam
Learning rate 1× 10−4 1× 10−4 1× 10−4

Loss function Flow-matching MSE

Model Architecture
Token dimension 256 768 –
Layers 5 15 –
Attention heads 8 12 –
Condition dimension 256 512 –
Timestep embedding size 256 – –
Sequence index embedding 128 – –
Downsampling factor (r) 1 – –
Dimension bottleneck 8 – –

All-Atom Attention Module (PROTEINAE only)
Atom dimension 64 – –
Atom pair dimension 6 – –
Attention mask (query/key) 32 / 128 – –

Flexibility Prediction Model
Architecture MLP
Dimension 512
Activation function Relu
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B BACKGROUND

Diffusion models The foundational diffusion model concepts introduced by (Sohl-Dickstein et al.,
2015) and significantly advanced with denoising diffusion probabilistic models (DDPMs) (Ho et al.,
2020)—which iteratively add noise to data and then learn to reverse the process. More recently, flow
matching has emerged as a powerful and efficient alternative (Lipman et al., 2022; Liu et al., 2022;
Albergo et al., 2023). These flow-based methods directly learn a vector field, often an Ordinary
Differential Equation (ODE), to transform a simple noise distribution into a complex data distri-
bution, frequently enabling simulation-free training and faster sampling. Both diffusion and flow
matching paradigms can be further extends to general manifolds (Chen & Lipman, 2023) as well
as discrete data (Cheng et al., 2024; Austin et al., 2021). They have found extensive applications
in de novo protein design, with models like RFDiffusion, FrameDiff (initially diffusion-based) and
their successor RFdiffusion2, FrameFlow (which incorporates flow matching for training). Some
work (Campbell et al., 2024; Li et al., 2024) has also attempted the co-design of sequences and
structures. More recently, Proteina (Geffner et al., 2025) attempted to model coordinates directly
using a non-equivariant architecture on E(3), but they only work with Cα.

Protein Autoencoders Autoencoders play a significant role in learning compact and meaningful
representations for both protein sequences and structures, which are vital for efficient generative
modeling and other downstream tasks. While protein sequence autoencoders are widely used, often
leveraging features like MSAs or ESM embeddings (Detlefsen et al., 2022; Lu et al., 2024; 2025;
Chen et al., 2024), the development of autoencoders for protein structures is a more recent area
of research. A notable example that bridges these areas is CHEAP (Lu et al., 2024). This model
operates on protein language model features from ESM2, which are then used to predict structure
via ESMFold’s structure module. While this method can yield valuable structural information, its
encoding capability is inherently dependent on, and thus limited by, ESMFold’s prediction accuracy.

In parallel, pioneering efforts have focused on autoencoding the protein structure directly. These
models tackle the challenge of converting continuous 3D atomic coordinates into discrete tokens.
Key examples include the ProToken Lin et al. (2023a), ESM3 VQ-VAE tokenizer (Hayes et al.,
2025) and the DPLM-2 lookup-free quantization (LFQ) tokenizer (Wang et al., 2024; 2025). By en-
abling this conversion, they allow for the joint modeling of protein sequences and structures within
large generative frameworks. Subsequent work, such as AminoAseed (Yuan et al., 2025), has further
explored improvements in the codebook design for these discrete structure representations. How-
ever, a common challenge for these tokenization-based autoencoders is the inherent information loss
that occurs during the discretization process. This makes it difficult to fully capture the complexity
and subtle geometric details present in the continuous 3D space of a protein structure.

Table 5: Comparison of different protein autoencoder architectures, highlighting their input modal-
ities, representation types, and operational scopes.
Methods Input Modality Representation Type Operational Scope Compression Strategy

ProteinAE Atom coordinates
(Structure) Continuous All proteins ✓

Direct structural compression

CHEAP ESM2 features
(Sequence) Continuous Proteins ESMFold predicts well ✓

Sequence feature compression

ProToken, ESM3 VQ-VAE
& DPLM-2 LFQ

Backbone Frame
(Structure) Discrete

All proteins
(with 2,048 length constraints

for ProToken and DPLM-2 LFQ)
✗
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B.1 BACKBONE-LEVEL RECONSTRUCTION QUALITY

Table 6: Different protein autoencoders’ structure reconstruction quality measured by RMSD (↓).
Lower is better. Bold indicates the best performance. Proteins missing backbone atoms are ignored.
*Note that ProToken and DPLM-2 can only process proteins under 2,048 residues.

CASP14 CASP15
Methods T T-dom oligo TS-domains oligo

CHEAP 11.16±10.09 4.71±5.21 11.10±11.95 10.98±12.44 8.24±14.12
ESM3 VQ-VAE 1.28±2.32 0.66±0.42 3.11±7.41 1.25±1.28 2.47±2.27
ProToken* 1.14±0.66 1.09±0.16 1.55±1.46 1.29±0.67 1.33±0.70
DPLM-2* 1.94±1.99 1.47±0.42 3.81±7.20 4.58±6.62 3.83±6.90

Backbone
RMSD

PROTEINAE 0.51±1.56 0.23±0.11 0.31±0.27 0.31±0.21 0.43±0.51
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C METRIC DETAILS AND ADDITIONAL EXPERIMENTS

We complete the details of protein unconditional generation in Sec. 3.

Designability Protein designability is assessed based on whether a protein backbone structure can
be generated from a specific amino acid sequence that folds into that structure. Following the method
of FrameDiff (Yim et al., 2023a), eight sequences are generated per backbone using ProteinMPNN
(Dauparas et al., 2022) with a sampling temperature of 0.1. Structures are predicted using ESMFold
(Lin et al., 2023b). The Root Mean Square Deviation (RMSD) between the predicted and original
structures is calculated. A sample is deemed designable if its lowest RMSD, termed self-consistency
RMSD (scRMSD), is ≤ 2Å. The overall designability score is the fraction of designable samples.

Designable Pairwise TM-score (DPT) This is the first of two methods for evaluating diversity,
based on the methodology by (Bose et al., 2023). It involves calculating pairwise TM-scores (Zhang
& Skolnick, 2004) among all designable samples for each specified protein length, and then ag-
gregating the averages across different lengths. TM-scores range from 0 to 1, where higher scores
indicate greater structural similarity. Therefore, lower TM-scores are preferred for this metric as
they suggest greater diversity.

Diversity (Cluster) The second diversity measure follows the approach by FrameDiff (Yim et al.,
2023b). Designable backbones are clustered using Foldseek (Van Kempen et al., 2024) based on a
TM-score threshold of 0.5. Diversity is calculated as the ratio of the total number of clusters to the
number of designable samples:

Diversity (Cluster) =
Number of designable clusters
Number of designable samples

(13)

In this case, higher scores are preferable, indicating that the designable samples form a larger number
of distinct clusters, thus representing greater diversity.

Novelty Novelty quantifies how distinct a model’s generated structures are compared to structures
present in predefined reference databases (AFDB and PDB in our work). For each designable struc-
ture generated by the model, its TM-score is computed against every structure in the reference set,
and the maximum TM-score is recorded. The novelty score is the average of these maximum TM-
scores over all designable samples. Lower scores are considered better, as they suggest the generated
structures are less similar to known structures in the reference sets, implying higher novelty.

Evaluation Details For protein unconditional generation, we sample 10 proteins of each length
between 60-128, resulting in 690 samples in total. It is noting that the designability is not a accurate
indicator of how well a generative model matches the training distribution since the training dataset
is far from 100% designable (Huguet et al., 2024).
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D IMPACT OF LENGTH BOTTLENECK ON GENERATION

We further investigate the impact of imposing a length bottleneck to PROTEINAE on the PLDM
generation process.

Figure 4: Illustration of structural collapse observed during protein generation by PLDM under
length bottleneck conditions.

As depicted in Fig. 4, we observe that specific regions of the generated protein structures collapse
towards the center, indicating a failure to maintain realistic local or global geometry under these
conditions. We hypothesize that this phenomenon is attributed to the use of nearst interpolation dur-
ing the upsampling process within PROTEINAE or the padding value in the downsampling training.
We plan to investigate this issue in detail in future work.
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E PROTEINAE V2 PREVIEW

2MNE4AWS

6ARE

Figure 5: PROTEINAE v2 achieves high-fidelity all-atom reconstruction of multi-modal com-
plexes. The reconstructed structures are depicted in color, while the ground truth complexes are
shown in grey for comparison.
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