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ABSTRACT

The field of natural language processing (NLP) historically evaluated language
models using benchmarks with automated metrics. However, the recent advent of
highly capable chat language models (LMs) has caused a tectonic shift from NLP
benchmarks to human evaluations. The relationship between these two evaluation
processes is unclear and underexplored for chat LMs. Broadly, to what extent are
human evaluations and NLP benchmarks correlated with one another? How well
can computationally inexpensive and automated benchmarks predict expensive and
time-intensive human evaluations? Which benchmarks provide predictive signals
for human preference for LMs? What role, if any, should benchmarks play in the
era of chat LMs? To answer these questions, we conducted a large-scale study
of the relationships between human evaluations and benchmarks. We show that
benchmarks are broadly highly correlated with human evaluations, and we identify
which benchmarks exhibit strong correlations with human evaluations and which
do not. Having established that reliable correlations exist, we fit models to predict
a language model’s human evaluation scores from its academic evaluation scores
and provide evidence that such predictive models can generalize across LM scales.

1 INTRODUCTION

For decades, the field of natural language processing (NLP) has relied on academic benchmarks
and automated metrics (e.g., Accuracy, Brier Score (Brier, |1950), BLEU Papineni et al.[(2002)) to
evaluate the performance of language models (LMs). These NLP benchmarks provide a standardized
and efficient way to measure model capabilities such as machine translation, text summarization, and
question answering (Wang et al.| 2018}, [2019 [Srivastava et al.| [2022} |Gao et al}[2023; Wang et al.|
2023a). However, the recent emergence of highly capable chat LMs such as GPT (Ouyang et al.,
2022; |Achiam et al.,|2023), Llama (Touvron et al.,|2023azbj |Dubey et al.,|2024), Gemini (Team et al.,
2023} Reid et al.| [2024)) and Claude (Anthropic,2023) has prompted a re-evaluation of how we assess
LMs, with a growing emphasis on assessing LMs based on their ability to interact with and assist
human users in real-world scenarios (Zheng et al., 2023} [Reuel et al., 2024)).

This shift towards human evaluations raises important questions about the relationship between NLP
benchmarks and human evaluations of chat LMs. Additionally, human evaluations are not without
challenges; they can be expensive, time-intensive and noisy, in contrast with computationally cheaper,
faster and precise benchmarks. In this paper, we aim to explore the relationship between human
evaluations and NLP benchmarks in pursuit of understanding what role, if any, benchmarks should
play in the era of chat LMs. As shown in Fig. [T} we seek to answer two key research questions:

1. To what extent are human evaluations and NLP benchmarks correlated with one another?

2. How well can NLP benchmarks predict human evaluations?

To answer these questions, we conducted a large-scale study comparing human evaluations and
NLP benchmarks using four Llama 2 Chat language models (LMs) (Touvron et al., 2023b). For
human evaluations, we constructed a large-scale dataset of single-turn and multi-turn prompts from a
diverse taxonomy (Fig. [2) and collect high quality pairwise preference data of the four Chat Llama 2
models against GPT 3.5 (Ouyang et al., 2022) from paid human annotators. For NLP benchmarks,
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Figure 1: Correlating and Predicting Human Evaluations of Language Models from Natural
Language Processing (NLP) Benchmarks. We evaluate chat language models on conversational
tasks with human pairwise evaluations and on standard NLP benchmarks with automated metrics,
then study whether scores on computationally inexpensive and fast NLP benchmarks are correlated
with and predictive of expensive and time-intensive human evaluations?

we evaluate the same four Chat Llama 2 models on standard NLP benchmarks under established
evaluation processes (metrics, prompting, 0-shot/few-shot, etc.). We analyze pairwise correlations
between NLP benchmark and human evaluations to identify which NLP benchmarks correlate highly
with human evaluations and which do not. We also aim to identify which human evaluations, if any,
are uncorrelated with any NLP benchmarks. We then pivot to predicting human evaluations from
NLP benchmarks using overparameterized linear regressions and leave-one-out cross-validation. We
investigate the extent to which NLP benchmarks can predict human evaluations.

2 RELATED WORK

The evaluation of language models has a rich and constantly evolving history. Human evaluations
have long been considered the gold standard (Gatt & Krahmer, 2018} [Van Der Lee et al.| [2019;
Celikyilmaz et al., 2020; Roller et al.| |2020; |van der Lee et al.l [2021)), despite serious objections
raised regarding the collection, analysis, and interpretation of human evaluation scores (Novikova
et al.} 2018 |[Howcroft et al., |2020; Bowman & Dahl, 2021} |Karpinska et al., 2021} |Clark et al., 2021}
Smith et al., [2022} |Gehrmann et al.||2023} [Finch et al.,2023)). Many classic NLP benchmark metrics,
such as BLEU (Papineni et al., 2002)), NIST (Doddington, |2002)), ROUGE (Lin}{2004), and METEOR
(Banerjee & Lavie, [2005), were introduced on the premise that they correlate with human judgments.
However, subsequent studies revealed that the relationship between automated metrics and human
evaluations is often complex and not straightforward (Liu et al.,|2016; |[Novikova et al., 2017; Reiter,
2018; |Karpinska et al., 2021). Another prominent class of evaluation methods are based on machine
learning models, e.g., word mover distance (Kusner et al.,2015) and BERT-Score (Zhang et al.,[2019)
that have since evolved into using chat LMs themselves as evaluators (Wang et al., 2023bj [Zheng
et al.}2024; Chiang & yi Lee, [2023} |Chan et al., 2023} |Bavaresco et al.,|2024; [Fu et al.,2024), albeit
with limitations, e.g., (Dorner et al.,[2024; |Szymanski et al., [2024; |[Thakur et al., 2024).

The earliest investigations into the general relationship between NLP benchmark scores and human
evaluations date back to Bangalore et al.| (2000), Belz & Reiter| (2006)), and Liu et al.|(2016). In the
context of natural language generation, Clinciu et al.[(2021) found that embedding-based automated
metrics (e.g., BERT-Score (Zhang et al.,|2019) and BLEURT |Sellam et al.|(2020))) correlate more
strongly with human judgments compared to word-overlap metrics (e.g., ROUGE (Lin, 2004) and
BLEU (Papineni et al [2002)). In the domain of natural language inference, |Schuff et al.| (2021)
found that automated metrics do not appear to correlate with human judgment scores. However,
the majority of these works predate the current era of chat LMs, which exhibit significantly more
advanced capabilities compared to their predecessors. This new era motivates our work to investigate
the relationship between NLP benchmarks and human evaluations when evaluating chat LMs.
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Figure 2: Human Evaluations: Taxonomy of Single-Turn and Multi-Turn Conversations. Single-
turn and multi-turn prompts were created in a hierarchical taxonomy of 9 areas (blue), categories
(green) and subcategories (yellow). Chat Llama 2 generations were then rated against ChatGPT
generations by paid human annotators on a 7 point Likert scale (Likert, |1932).
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3  METHODS: MODELS, HUMAN EVALUATIONS AND NLP BENCHMARKS
We briefly outline our methodology here; for additional information, please see Appendix [A]

Models Our paper leverages the Llama 2 model family, consisting of four Chat LMs with 7, 13, 34,
and 70 billion parameters pre-trained on 2 trillion tokens and finetuned using supervised finetuning
(Sanh et al.} 2021} |Chung et al.| |2022; Longpre et al.,|2023)) and reinforcement learning from human
feedback (Christiano et al., 2017; Ziegler et al., | 2019; |Stiennon et al., 2020). We chose the Llama 2
models because at the time we collected our data, the Llama 2 family contained leading open-access
chat-finetuned models spanning multiple scales with minimal variations in architecture, ensuring
consistency in our analyses and a robust foundation for our investigations.

Human Evaluations: Single Turn & Multi-Turn In this work, our aim was specifically to
identify which NLP benchmark scores are predictive of human preferences on open-ended prompts
representative of real-world chat model usage. We chose this approach to maximize the ecological
validity and generalizability of the findings to real-world use cases. For a concrete example, we
may want our chat language models (LMs) to excel at providing bespoke career advice; which NLP
benchmarks provide useful signals for whether models are improving at such tasks?

To answer such questions, we created a taxonomy of single-turn and multi-turn interactions (Fig. [2)
between chat LMs and humans. For single-turn interactions, we generated a diverse set of prompts
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spanning common areas of interest: Factual Questions, Procedural Questions, Language Assistance,
Writing & Content Creation, Dialogue, Code, Reasoning, Recommendations / Brainstorming and
Safety, with nested categories and subcategories. For multi-turn prompts, non-annotator humans were
asked to have conversations (3 to 15 turns long) with all models on similar topics of interest: Factual
Questions, Procedural Questions, Language Assistance, Writing & Content Creation, Summarization
& Editing, General Dialogue, Reasoning and Recommendations / Brainstorming. This taxonomy was
chosen to broadly cover common use-cases of Chat LMs. Example prompts include: “What is the
tallest mountain in the world?” (Factual Question); “How do I make minestrone soup?” (Procedural
Question); “Please make this sentence more friendly: I need you to stop parking in my space”
(Language Assistance); “Write me a poem about getting to the weekend after a long day at work”
(Writing & Content Creation). See Appendix [A.2|for more information.

We then paid human annotators to evaluate each of the four Chat Llama 2 models against ChatGPT
3.5 (Ouyang et al.| |2022)) (gpt-3.5-0301) on a dataset of single-turn and multi-turn prompts (Fig
[2). We chose gpt-3.5-0301 because, at the time this data was collected, gpt-3.5-0301 was a good
balance of three desirable properties for our study: performant, cheap, and stable. For each pair of
conversations (one conversation with Chat Llama responses and the other with ChatGPT responses),
at least three unique human annotators independently indicated which conversation was preferred
using a Likert scale (Likert, [1932) from 1 to 7, where 1 denotes the Chat Llama model was strongly
preferred and 7 denotes gpt-3.5-0301 was strongly preferred. Across the 11291 single-turn samples
and 2081 multi-turn samples, we had at least 3 unique human annotators per pairwise comparison,
with 2104 unique human annotators overall. For our analyses, we averaged the annotators’ scores for
each pairwise comparison to give us an average human evaluation score per datum.

Natural Language Processing (NLP) Benchmarks We evaluated the four Chat Llama 2 models
on large-scale and commonly-used NLP benchmarks: AGI Eval (Zhong et al.,2023)), AI2 Reasoning
Challenge (ARC; both Easy and Hard) (Clark et al., 2018), BIG Bench Hard (Srivastava et al.,2022;
Suzgun et al., 2022)) BoolQ (Clark et al., 2019), CommonSenseQA (Talmor et al., 2019), COPA
(Roemmele et al., [201 1)), DROP (Dua et al., 2019), GSMS8K (Cobbe et al.,2021)), HellaSwag (Zellers
et al.,[2019), HumanEval (Chen et al.,2021), InverseScaling (McKenzie et al., [2022a3b; |2023)), MBPP
(Austin et al.| [2021), MMLU (Hendrycks et al.,[2020), Natural Questions (Kwiatkowski et al.| [2019)),
OpenbookQA (Mihaylov et al., 2018]), PIQA (Bisk et al.| |2020), QuAC (Choi et al.,[2018)), RACE
(Lai et al., 2017), SIQA (Sap et al.,[2019), SQUAD (Rajpurkar et al., 2016}, TLDR (Volske et al.,
2017)), TriviaQA (Joshi et al.| 2017, WinoGrande (Sakaguchi et al.,|2021)) and XSum (Narayan et al.|
2018)). Some of these benchmarks (e.g., MMLU) contain subsets (e.g., Jurisprudence) that we do not
aggregate over. These tasks cover commonsense reasoning, world knowledge, reading comprehension,
coding and more. We used standard evaluation processes for all academic benchmarks including
prompt formatting, metrics, O-shot/few-shot, etc. This structured approach facilitates an exhaustive
examination of model performances across varied metrics. For more information, see Appendix

Scores for Subsequent Analyses For each dataset and evaluation process (either human or NLP),
we average each model’s scores across all samples, yielding two matrices of scores:

XNLP c R160X4 XHuman c R55X4

Here, 4 is the number of models, 160 is the number of NLP benchmarks per model and 55 is the
number of human evaluation area-category-subcategory scores per model. We subsequently study the
correlations between Xnrp and Xyyman, then test how well Xyip can predict Xyyman-

4 CORRELATING HUMAN EVALUATIONS WITH NLP BENCHMARKS

We began by computing correlations between human evaluations and NLP benchmarks, computing
three standard correlations over the 4 average scores per model — Pearson (Galton, |1877), Spearman
(Spearman, [1904) and Kendall (Kendall, [1938)) — giving us three correlation matrices of shape
160 x 55 between every pair of NLP benchmark and human evaluation area-category-subcategory
(Fig. [3). Pearson correlation measures the linear relationship between two continuous variables,
whereas Spearman and Kendall correlations assess the monotonic relationship between two variables;
Spearman correlation is based on the rank order of the data points, whereas Kendall correlation is
determined by the number of concordant and discordant pairs. By using different correlation metrics,
we aim to robustly characterize the relationships between human and NLP benchmarks.
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Macroscopically, at the most coarse grouping of human evaluations in our taxonomy (i.e., areas)
(Fig.2)), we found that average NLP benchmark scores are highly correlated with average human
scores for all human evaluation areas under all three correlation metrics (Fig. [ top). Due to the small
number of models (N = 4), Spearman and Kendall correlations suffer discretization effects (Fig.
[[T), inducing an illusion of undulations. These strong correlations suggest that, at a high level, NLP
benchmarks are reasonable proxies for human judgments of LM quality.

Mesoscopically, at the level of human evaluation areas and categories, we find that NLP benchmarks
remain highly correlated with human evaluations, with two notable types of exceptions (Fig. [).
First, Adversarial Dishonesty, Adversarial Harmfulness, and Safety are anti-correlated with most
NLP benchmarks, potentially indicating that these adversarial and safety-focused categories are more
easily transgressed by more capable LMs; an alternatively hypothesis could be that safety benchmarks
simply are not especially good, as demonstrated by [Ren et al.| (2024). Second, Language Assistance
and Open Question Answering are uncorrelated with most NLP benchmarks, suggesting that these
categories may require new NLP benchmarks. Open Question Answering was surprising given that
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some of our NLP benchmarks are open question answering datasets, e.g., OpenBookQA
2018). We found the three correlations metrics visually agreed with one another and were
themselves tightly coupled (App. Fig. [TT)), and so we present only one (Pearson) moving forward,
with equivalent plots of the other two (Spearman, Kendall) deferred to the appendix.

4.1 WHICH HUMAN EVALUATIONS HAVE FEW-TO-NO CORRELATED NLP BENCHMARKS?
To the best of our ability to discern, none. Every human evaluation seemed to have at least some NLP

benchmarks that were either correlated or anticorrelated with it. This result is promising because it
suggests human evaluations might be predictable from NLP benchmarks (Sec. [3).

4.2 WHICH NLP BENCHMARKS EXHIBIT HIGH CORRELATIONS WITH HUMAN EVALUATIONS?

To answer this question, we ordered NLP benchmarks based on their average correlation score with
all of the human evaluation areas, categories and subcategories. We found many NLP benchmarks
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Figure 5: NLP Benchmarks Ranked by Average Pearson Correlation over All Human Evalua-
tions. Certain benchmarks have higher correlations with human evaluations, including a subset of
MMLU, a subset of BIG Bench Hard, HellaSwag, ARC, RACE, PIQA, NaturalQuestions, QuAC,
and CommonSenseQA. Other benchmarks were weakly or uncorrelated with human evaluations:
ETHOS, Kth Sentence, Inverse Scaling (with the exception of Resisting Correction Classification),
OpenBookQA, COPA, SciBench (with the exception of Fundamentals of Physics) and SIQA.

have high average correlation with human evaluations (Fig. [B); the highest average correlation NLP
benchmarks include a subset of MMLU (Nutrition, Human Aging, Sociology, Public Relations, Moral
Scenarios, College Computer Science), a subset of BIG Bench Hard (Word Sorting, Reasoning About
Colored Objects, Logical Deduction), HellaSwag, ARC, RACE, PIQA, NaturalQuestions, QuAC,
CommonSenseQA, DROP and TriviaQA. Other benchmarks were less correlated or uncorrelated
with human evaluations: ETHOS, Kth Sentence, Inverse Scaling (with the exception of Resisting
Correction Classification), OpenBookQA, COPA, SciBench (with the exception of Fundamentals
of Physics) and SIQA. Upon investigating more closely, some of the most highly correlated NLP
benchmarks make sense. For instance, Inverse Scaling’s Resisting Correction Classification ranked
second highest for being correlated with human evaluations, and the task measures a highly desirable
capability for human users: the LM’s ability to follow user instructions that run counter to the LM’s
natural inclinations.

4.3  WHAT COMMUNITIES EXIST BETWEEN HUMAN EVALUATIONS AND NLP BENCHMARKS?

To detect what communities exist between human evaluations and NLP benchmarks, we computed the
singular value decomposition of the pairwise Pearson correlation matrix between human evaluations
and NLP benchmarks (Fig. [6]top). The maximum rank the correlation matrix can have is 4 because
the correlations are computed over the 4 Chat Llama 2 models, but we found that the correlation
matrix has only 3 non-zero singular values (App. Fig. [I2). Decomposing the correlation matrix
into its 3 rank-one components aluwip + ougv; + 0'3’11431); revealed three levels of increasing
fine-grained structure in the correlations (App. Fig.[I3). We then visualized the human evaluations
and NLP benchmarks in the (dimension-scaled) plane defined by the first two rank-one components
of the Pearson correlation matrix (Fig. [6] bottom).

The bulk of human evaluations and NLP benchmarks live in one community; however, there are also
several smaller interesting communities. Starting on the left of Fig. [fand moving clockwise, at the
top left is a loose community of Dialogue.Code, Dialogue.Language Assistant, several Kth Sentence
tasks, Openbook Question Answering (OBQA), AGL.LSAT, AGI.Lawyer Qualification Test, which
generally measure model capabilities at identifying and using key information within the context.
On the top right, Inverse Scaling. NEQA Classification is alone; this benchmark measures whether
models are tripped up by negated questions, which most humans try not to do and likely explains why
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Figure 6: Structure of Pairwise Pearson Correlations Between Human Evaluations and NLP
Benchmarks. Top: Each row is a human evaluation area and category, and each column is an NLP
benchmark and task; values are Pearson correlations ranging from anticorrelated (-1) to correlated
(+1). The correlation matrix has 3 non-zero singular values (App. Fig. [I2). Bottom: Human
evaluations and NLP benchmarks are plotted projected along the (dimension-scaled) first two singular
modes of the Pearson correlation matrix. The bulk of evaluations live in one community (left), with
smaller communities (top, bottom, right); for an in-depth interpretation, see Sec. @

this benchmark is isolated. On the right and lower right side, Dialog.Safety is next to ETHOS, a hate
speech detection benchmark, and AGI.Gaokao Chemistry, a chemistry benchmark. This community
is also close to another community in the lower right comprised of Dialogue.Adversarial Harmfulness,
Dialogue.Adversarial Dishonesty, Inverse Scaling.Into the Unknown, TLDR. In the lower left,
Dialogue.Open QA and Dialogue.Writing are near BIG Bench Hard’s Dyck Languages, Geometric
Shapes and Tracking Shuffled Objects and multiple science and factual knowledge benchmarks like
MMLU’s Electrical Engineering, Management,, SciBench’s Quantum Chemistry (quan and chemmc).
BIG Bench Hard’s Formal Fallacies) and Kth Sentence (1024) lie in the center, disconnected from
most other evaluations.
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Figure 7: Leave-one-out cross validation of overparameterized linear regressions typically
accurately predict human evaluation scores from NLP benchmark scores. Each subfigure shows
predicted human evaluation scores against actual human evaluation scores on each of the four left-out
Chat Llama 2 models colored by the particular area, category and subcategory of human evaluation.

5 PREDICTING HUMAN EVALUATIONS FROM NLP BENCHMARKS

Having established the existence of correlations between human evaluations and NLP benchmarks,
we next investigated the feasibility of predicting human evaluations from NLP benchmarks. Our goal
is to build predictive models that accurately predict a language model’s average human evaluation
scores per evaluation areas and categories using the model’s average scores on NLP benchmarks
and tasks. However, we faced a significant challenge due to the overparameterized nature of our
data: for each target human evaluation area or category, there are approximately 150 covariates (NLP
benchmarks and tasks) but only 4 samples (Chat Llama 2 models).

5.1 OVERPARAMETERIZED LINEAR REGRESSIONS

To predict human evaluations from NLP benchmarks, we used overparameterized linear regression.
In general, overparameterized linear regression is known to be capable of generalizing (citations
deferred to App. Sec.[A.3)), although whether linear models would generalize in this setting was an
empirical question. Before fitting the models, we normalized all human evaluation scores to lie in
[0, 1] rather than [—7, —1] (recalling that higher scores indicate the human evaluator prefers the Chat
Llama 2 model compared to GPT-3.5). For each human evaluation area and category, we fit a linear
model to predict a language model’s average human evaluation score from its average scores on all
NLP benchmarks and tasks. To assess the predictive accuracy of these overparameterized models, we
employ leave-one-out cross validation: we fit four separate linear models, each time holding out one
of the four chat LMs as a test sample and training on the remaining three. This approach allows us to
estimate the models’ performance on unseen data, albeit with limitations due to the small sample size.

Across the various human evaluation areas and categories, we found that the linear models’ predicted
average human evaluation scores generally align well with the actual average human evaluation
scores, as evidenced by most points falling close to the identity line in the predicted score vs. actual
score plane (Fig. [7). This suggests that, despite the overparameterization, the linear models can
capture meaningful relationships between NLP benchmarks and human evaluations. However, we
caution against over-interpreting these results, as the small sample size and the assumption of linearity
may limit the generalizability of these findings to other language models or evaluation settings.

To gain insight into which NLP benchmarks are most informative for predicting human evaluation
scores, we examine the learned weights of the linear models (Fig. [I8). NLP benchmarks with
consistently high absolute weights across different human evaluation areas and categories are likely to
be more predictive of human judgments. However, due to the overparameterized nature of the models,
we refrain from drawing strong conclusions about the relative importance of individual benchmarks
and instead focus on the overall predictive performance. These results suggest that scaling up the
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number of chat LMs and human evaluation data could unlock highly predictive models of slow, noisy
and expensive but valuable human evaluations using fast, precise and cheaper NLP benchmarks.

6 DISCUSSION

In this paper, we explored the relationship between human evaluations and NLP benchmarks of
chat-finetuned language models (chat LMs). Our work is motivated by the recent shift towards human
evaluations as the primary means of assessing chat LM performance, and the need to understand the
role that NLP benchmarks can play in this new era.

Through a large-scale study of the Chat Llama 2 model family on a diverse set of human and
NLP evaluations, we demonstrated that NLP benchmarks are generally well-correlated with human
judgments of chat LM quality. However, our analysis also reveals some notable exceptions to this
overall trend. In particular, we find that adversarial and safety-focused evaluations, as well as language
assistance and open question answering tasks, exhibit weaker or negative correlations respectively
with NLP benchmarks. We also explored predicting human evaluation scores from NLP evaluation
scores using overparameterized linear regression models. Our results suggest that NLP benchmarks
can indeed be used to predict aggregate human preferences, although we caution that the limited
sample size and the assumptions of our models may limit the generalizability of these findings. Our
results suggest that NLP benchmarks can serve as fast and cheap proxies of slower and expensive
human evaluations in assessing chat LMs.

Additionally, our work highlights the need for further research into NLP evaluations that can effec-
tively capture important aspects of LM behavior, such as safety, robustness to adversarial inputs, and
performance on complex, open-ended tasks. It is possible that new NLP benchmarks can provide
signals on these topics, e.g., (Wang et al., [2023a)). Of particular interest is developing human-
interpretable and scaling-predictable evaluation processes, e.g., (Schaeffer et al.,[2024a; Ruan et al.|
2024} Schaeffer et al., 2024c)). Developing and refining such evaluation methods (Madaan et al.}
2024), as well as detecting whether evaluations scores faithfully capture models’ true performance
(Oren et al., 2023} [Schaeffer, |2023; Roberts et al.,[2023}; Jiang et al.,[2024; |Zhang et al., 2024} |Duan
et al., [2024)) will be crucial for ensuring that LMs are safe, reliable, and beneficial as they become
increasingly integrated into real-world use cases.

In conclusion, our study provides insights into the relationship between human evaluations and NLP
benchmarks of chat language models. By leveraging the complementary strengths of both human and
NLP benchmarks, we can build a more complete understanding of LM capabilities and behaviors,
ultimately enabling the development of models more capable, trustworthy, and beneficial to society.
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A EXPERIMENTAL METHODOLOGY: DATA AND ANALYSES

A.1 DATA: NATURAL LANGUAGE PROCESSING (NLP) BENCHMARK SCORES

We chose which NLP benchmarks to include based largely on which frontier Al models were reporting
performance scores on. Llama 1 (Touvron et al.,|2023a) and Llama 2 (Touvron et al., 2023b) were
our primary guides, as were Gemini 1 and Gemini 1.5 (Team et al.; 2023} Reid et al.| 2024), Claude
3 (Anthropicl 2023), and Mistral (Jiang et al.l 2023). We evaluated the 4 Llama 2 Chat models
following the same evaluation processes reported in the Llama 2 paper (Touvron et al.,[2023b). This
included matching the prompt formatting, automated metric scoring and (when appropriate) few-shot
prompting and chain-of-thought prompting. After evaluating the four Chat Llama 2 models on these
NLP benchmarks and evaluation processes, we obtained 160 scores per model for our analyses.

Table 1: Natural Language Processing Datasets and Evaluation Processes. In this work, we used
the above well-established NLP datasets and evaluation processes. “cot” means Chain-of-Thought
prompting (Cobbe et al., 2021} |Wei et al.| 2022). “Gen” refers generations per evaluation. For more
information, please see Section [3|and Appendix

Benchmark Subset Metric Shots | Additional
AGI aqua_rat Acc Char 5 -
AGI gaokao_biology Acc Char 5 -
AGI gaokao_chemistry Acc Char 5 -
AGI gaokao_chinese Acc Char 5 -
AGI gaokao_english Acc Char 5 -
AGI gaokao_geography Acc Char 5 -
AGI gaokao_history Acc Char 5 -
AGI gaokao_mathcloze Exact Match 5 -
AGI gaokao_mathqa Acc Char 5 -
AGI gaokao_physics Acc Char 5 -
AGI jec_qa_ca Acc Char 5 -
AGI jec_qa_kd Acc Char 5 -
AGI logiqa_en Acc Char 3 -
AGI logiga_zh Acc Char 3 -
AGI Isat_ar Acc Char 3 -
AGI Isat_Ir Acc Char 3 -
AGI Isat_rc Acc Char 3 -
AGI sat_math Acc Char 5 -
ARC Challenge Acc Char 0 -
ARC Easy Acc Char 0 -
BBH boolean_expressions Exact Match 0 -
BBH causal_judgement Exact Match 0 -
BBH date_understanding Exact Match 0 -
BBH disambiguation_qa Exact Match 0 -
BBH dyck_languages Exact Match 0 -
BBH formal fallacies Exact Match 0 -
BBH geometric_shapes Exact Match 0 -
BBH hyperbaton Exact Match 0 -
BBH logical _deduction_3_objects Exact Match 0 -
BBH logical _deduction_5_objects Exact Match 0 -
BBH logical _deduction_7_objects Exact Match 0 -
BBH movie_recommendation Exact Match 0 -
BBH multistep_arithmetic_two Exact Match 0 -
BBH navigate Exact Match 0 -
BBH object_counting Exact Match 0 -
BBH penguins_in_a_table Exact Match 0 -
BBH reasoning_about_colored_objects Exact Match 0 -
BBH ruin_names Exact Match 0 -
BBH salient_translation_error_detection Exact Match 0 -
BBH snarks Exact Match 0 -
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Table 1 — continued from previous page

Benchmark Subset Metric Shots | Additional
BBH sports_understanding Exact Match 0 -
BBH temporal_sequences Exact Match 0 -
BBH tracking_shuffled_objects_3 Exact Match 0 -
BBH tracking_shuffled_objects_5 Exact Match 0 -
BBH tracking_shuffled_objects_7 Exact Match 0 -
BBH web_of _lies Exact Match 0 -
BBH word_sorting Exact Match 0 -

BoolQ - Acc Token 0 -
CommonSenseQA - Acc Char 7 -
COPA - Acc Char ? -
DROP - Exact Match 0 -
DROP - F1 0 -
ETHOS - Acc Char 0 -
GSMSK - Exact Match 0 100 Gen
GSMS8K - F1 0 100 Gen
GSMSK - Exct Mtch maj1 @100 0 100 Gen
GSMS8K - F1 majl1 @100 0 100 Gen

HellaSwag - Acc Char ? -

Human Eval - pass@1 0 1 Gen

Human Eval - pass@1 0 200 Gen

Human Eval - pass@100 0 200 Gen

Inverse Scaling hindsight_neglect Exact Match 0 -
Inverse Scaling into_the_unknown Exact Match 0 -
Inverse Scaling memo._trap Exact Match 0 -
Inverse Scaling modus_tollens Exact Match 0 -
Inverse Scaling neqa Exact Match 0 -
Inverse Scaling pattern_matching_suppression Exact Match 0 -
Inverse Scaling redefine Exact Match 0 -
Inverse Scaling repetitive_algebra Exact Match 0 -
Inverse Scaling resisting_correction Exact Match 0 -
Inverse Scaling sig_figs Exact Match 0 -
Kth Sentence 128 ROUGE-2 0 -
Kth Sentence 256 ROUGE-2 0 -
Kth Sentence 512 ROUGE-2 0 -
Kth Sentence 1024 ROUGE-2 0 -
Kth Sentence 1536 ROUGE-2 0 -
Kth Sentence 2048 ROUGE-2 0 -
Kth Sentence 4096 ROUGE-2 0 -
Kth Sentence 8192 ROUGE-2 0 -
MBPP - pass@1 3 80 Gen
MBPP - pass@80 3 80 Gen
MMLU abstract_algebra Acc Char 5 -
MMLU anatomy Acc Char 5 -
MMLU astronomy Acc Char 5 -
MMLU business_ethics Acc Char 5 -
MMLU clinical knowledge Acc Char 5 -
MMLU college_biology Acc Char 5 -
MMLU college_chemistry Acc Char 5 -
MMLU college_computer_science Acc Char 5 -
MMLU college_mathematics Acc Char 5 -
MMLU college_medicine Acc Char 5 -
MMLU college_physics Acc Char 5 -
MMLU computer_security Acc Char 5 -
MMLU conceptual_physics Acc Char 5 -
MMLU econometrics Acc Char 5 -
MMLU electrical _engineering Acc Char 5 -
MMLU elementary_mathematics Acc Char 5 -
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Table 1 — continued from previous page

Benchmark Subset Metric Shots | Additional
MMLU formal _logic Acc Char 5 -
MMLU global facts Acc Char 5 -
MMLU high_school_biology Acc Char 5 -
MMLU high_school_chemistry Acc Char 5 -
MMLU high_school_computer_science Acc Char 5 -
MMLU high_school_european_history Acc Char 5 -
MMLU high_school_geography Acc Char 5 -
MMLU high_school_government_and_politics Acc Char 5 -
MMLU high_school_macroeconomics Acc Char 5 -
MMLU high_school_mathematics Acc Char 5 -
MMLU high_school_microeconomics Acc Char 5 -
MMLU high_school_physics Acc Char 5 -
MMLU high_school_psychology Acc Char 5 -
MMLU high_school_statistics Acc Char 5 -
MMLU high_school_us_history Acc Char 5 -
MMLU high_school_world_history Acc Char 5 -
MMLU human_aging Acc Char 5 -
MMLU human_sexuality Acc Char 5 -
MMLU international _law Acc Char 5 -
MMLU jurisprudence Acc Char 5 -
MMLU logical _fallacies Acc Char 5 -
MMLU machine_learning Acc Char 5 -
MMLU management Acc Char 5 -
MMLU marketing Acc Char 5 -
MMLU medical Genetics Acc Char 5 -
MMLU miscellaneous Acc Char 5 -
MMLU moral_disputes Acc Char 5 -
MMLU moral_scenarios Acc Char 5 -
MMLU nutrition Acc Char 5 -
MMLU philosophy Acc Char 5 -
MMLU prehistory Acc Char 5 -
MMLU professional _accounting Acc Char 5 -
MMLU professional _law Acc Char 5 -
MMLU professional_medicine Acc Char 5 -
MMLU professional_psychology Acc Char 5 -
MMLU public_relations Acc Char 5 -
MMLU security_studies Acc Char 5 -
MMLU sociology Acc Char 5 -
MMLU us_foreign_policy Acc Char 5 -
MMLU virology Acc Char 5 -
MMLU world_religions Acc Char 5 -

NaturalQuestions - Exact Match 0 -
OpenBookQA - Acc Completion 0 -
PIQA - Acc Char 0 -
QuAC - F1 0 -
RACE High School Acc Char 0 -
RACE Middle School Acc Char 0 -
SIQA - Acc Char 0 -
SQuAD - Exact Match 0 -
SciBench atkins Fuzzy Match 0 -
SciBench calculus Fuzzy Match 0 -
SciBench chemmc Fuzzy Match 0 -
SciBench class Fuzzy Match 0 -
SciBench diff Fuzzy Match 0 -
SciBench fund Fuzzy Match 0 -
SciBench matter Fuzzy Match 0 -
SciBench quan Fuzzy Match 0 -
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Table 1 — continued from previous page

Benchmark Subset Metric Shots | Additional
SciBench stat Fuzzy Match 0 -
SciBench thermo Fuzzy Match 0 -

TLDR - ROUGE-2 0 -
TLDR - ROUGE-L 0 -
TriviaQA - Exact Match 0 -
WinoGrande - Acc Char 0 -
Xsum - ROUGE-2 1 -

A.2 DATA: HUMAN EVALUATION SCORES

Human data annotators were hired to evaluate outputs of chat language models (LMs) in single-turn
and multi-turn conversations using a Likert scale (Likert, [1932) from 1 to 7. The conversations
were constructed within our taxonomy of areas-categories-subcategories (Sec. [3} Fig. [2). Each
conversation was evaluated by at least three unique humans for a combined total of 2104 unique
human annotators. Our human annotators scored 11291 single-turn conversations and 2081 multi-turn

conversations.
Table 2: Human Evaluation Areas, Categories, and Subcategories.
Area Category Subcategory
Dialogue Adpversarial Dishonesty Adpversarial Dishonesty
Dialogue Adversarial Harmfulness Adversarial Harmfulness
Dialogue Advice Casual advice & recommendations
Dialogue Advice Personal & interpersonal relationships
Dialogue Brainstorming Brainstorming
Dialogue Classification Classification
Dialogue Closed QA Closed QA
Dialogue Code Code
Dialogue Conversational / Entertainment Conversational / Entertainment
Dialogue Conversational/Entertainment Conversational/Entertainment
Dialogue Dialogue Dialogue
Dialogue Extraction Extraction
Dialogue Factual Questions Factual Questions
Dialogue Identity / Personas Famous historical personalities
Dialogue Identity / Personas Fictional characters
Dialogue Identity / Personas No character (it’s just an Al)
Dialogue Identity / Personas Public figures
Dialogue Identity / Personas Synthetic (made up) characters
Dialogue Language Assistance Language Assistance
Dialogue Math Math
Dialogue Mathematical Reasoning Mathematical Reasoning
Dialogue Open QA Open QA
Dialogue Procedural Questions Procedural Questions
Dialogue Reasoning (math / problem-solving) | Reasoning (math / problem-solving)
Dialogue Recommendations / Brainstorming Recommendations / Brainstorming
Dialogue Rewriting Rewriting
Dialogue Safety Safety
Dialogue Summarization Summarization
Dialogue Writing Writing
Dialogue Writing & Content Creation Writing & Content Creation

Factual Questions
Factual Questions
Factual Questions
Factual Questions
Factual Questions
Language assistance

Cultural & social topics
Cultural & social topics
Cultural & social topics
Cultural & social topics
Cultural & social topics
Grammar, spelling, & vocabulary
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History & traditions

Popular culture & media
Religion & spirituality

Social issues & current events
English slang
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Table 2 — continued from previous page

Area

Category

Subcategory

Language assistance
Language assistance
Language assistance
Language assistance
Recommendations
Recommendations
Recommendations
Recommendations
Recommendations
Recommendations
Recommendations
Recommendations
Writing & content creation
Writing & content creation
Writing & content creation
Writing & content creation
Writing & content creation
Writing & content creation
Writing & content creation
Writing & content creation

Grammar, spelling, & vocabulary
Grammar, spelling, & vocabulary
Grammar, spelling, & vocabulary
Grammar, spelling, & vocabulary
Entertainment suggestions
Entertainment suggestions
Entertainment suggestions
Entertainment suggestions

Personal & professional development
Personal & professional development
Personal & professional development
Personal & professional development
Creative writing

Creative writing

Creative writing

Creative writing

Creative writing

Summarization & editing
Summarization & editing
Summarization & editing

Grammar & syntax

Language conventions & style

Spelling & orthography

Vocabulary & word choice

Books, authors, & genres

Games, apps, & digital content

Movies, TV shows, & streaming content
Music, songs, & artists

Health, wellness, & self-improvement tips
Job search & career advice

Networking & mentorship opportunities
Skill-building resources & courses
Articles & reviews

Fictional stories & narrative
In-the-style-of writing

Poetry & songwriting

Social media posts

Content restructuring & organization
Proofreading

Style & tone adjustments

A.3 ANALYSES: CORRELATIONS

A.4 ANALYSES: COMMUNITY DETECTION

A.5 ANALYSES: LINEAR REGRESSION

Due to space limitations in the main text, we defer citations regarding generalization of overparame-
terized models to here. For a nonexhaustive list, please see |Vallet (1989); Krogh & Hertz (1991);
Geman et al.[(1992); Krogh & Hertz|(1992); |Opper| (1995); Duin| (2000); Spigler et al.|(2018); |Belkin
et al.|(2019); Bartlett et al.| (2020); Belkin et al.|(2020); Nakkiran et al.| (2021)); Poggio et al.|(2019);
Advani et al.| (2020); [Liang & Rakhlin|(2020); Adlam & Pennington|(2020); Rocks & Mehta| (2022b;
20215 2022al)); IMe1 & Montanari (2022); Hastie et al.|(2022); Bach! (2023)); |Schaeftfer et al.| (2023atb));
Curth et al.| (2024); Schaeffer et al.| (2024b).
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B STATISTICS OF HUMAN EVALUATIONS

As exploratory data analysis, we calculated and examined basic statistics of the human evaluations.
Fig. [8| showcases how many turns (i.e., back and forth messages) are in each sample evaluated by
human annotators (left) and how many human annotators evaluated each sample (right). Fig. [0]shows
the empirical cumulative distributions functions of the average of human annotators’ scores per datum
(left) and the standard deviation of human annotators’ scores per datum (right). Fig. @Visualizes the
joint distribution of means and standard deviations of human annotators’ scores per datum as both a
scatterplot (left) and a kernel density estimate (right).
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Figure 8: Statistics of Human-Evaluated Data. Left: Number of turns per datum. Right: Number
of human annotators per human-evaluated datum.
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Figure 9: Empirical Cumulative Distribution Functions of Human Annotators’ Scores. Left:
Average of human annotators’ score per annotated sample. Right: Human annotators’ standard
deviation per annotated sample.
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Figure 10: Joint Distribution of Human Annotators’ Average Scores per Datum vs Standard
Deviation per Datum. Left: Scatterplot. Right: Kernel Density Estimate.
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C CORRELATION METRICS ARE THEMSELVES HIGHLY CORRELATED
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Figure 11: Correlation of Academic-Human Evaluation Correlations Under Different Cor-
relation Metrics. For each pair of human evaluation (area and category) and NLP benchmark
(benchmark and subset), we computed the correlation between scores under one of 3 correlation
metrics: Pearson, Spearman and Kendall. We then looked at how correlated the correlation scores
under the 3 correlation metrics are. In general, all 3 are correlation metrics yield correlated scores.
This demonstrates that the choice of correlation metric is relatively less important.
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D CORRELATION MATRICES BETWEEN HUMAN EVALUATIONS AND NLP
BENCHMARKS AND THEIR SINGULAR VALUE DECOMPOSITIONS

Spectra of Sorted Correlation Matrices
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Figure 12: Spectra of Human Evaluation-NLP Benchmark Correlation Matrices. Because the
correlation matrices are computed over four Chat Llama 2 models, the maximum matrix rank is 4.
Howeer, both Pearson and Spearman correlation matrices have only 3 non-zero singular values.
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Figure 13: Pearson Correlation Matrix between Human Evaluations and NLP Benchmarks.
The Pearson correlation matrix has 3 non-zero singular values, with corresponding modes shown in
the last 3 rows.

The first component of the Pearson correlation matrix divides the human evaluations and NLP
benchmarks into 3 groups (Fig. [6B): one group that is broadly uncorrelated, and two unequally-sized
groups that are self-correlated and mutually anti-correlated. The uncorrelated group consists of human
evaluations Dialogue:Code and Dialogue:Language Assistance, as well as NLP benchmarks Kth-
sentence, TLDR, SciBench’s Atkins and Differential Equations, MMLU’s College Math and BBH’s
Formal Fallacies. The smaller self-correlated group consists of Dialogue:Adversarial Dishonesty
and Safety:Harmlessness as well as ETHOS (a hate speech detection benchmark), Inverse Scaling
NEQA (a negation question-answering benchmark) and AGI Gaokao Chemistry, whereas the larger
self-correlated group consists of almost all other human evaluations and NLP benchmarks. This is
more clearly visually displayed in the Spearman correlation matrix (App. Fig. [T4).
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Human-Academlc Evaluatlons Kendall Correlatlons
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Figure 15: Kendall Correlation Matrix between Human Evaluations and NLP Benchmarks.
The Kendall correlation matrix has four non-zero singular values, with corresponding modes shown
in the last four rows.
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E EMPIRICAL SCALING BEHAVIOR OF HUMAN EVALUATIONS AND NLP
BENCHMARKS

Figure 16: Empirical Scaling Behavior of Human Evaluations with Increasing Compute.
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Figure 17: Empirical Scaling Behavior of NLP Benchmarks with Increasing Compute.
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