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ABSTRACT

Large pre-trained language models have demonstrated impressive capabilities, but
there is still much to learn about how they operate. In this study, we conduct a in-
vestigation of the autoregressive transformer’s ability to perform basic addition
operations. Specifically, by using causal analysis we found that a few different
attention heads in the middle layers control the addition carry, with each head pro-
cessing carries of different lengths. Due to the lack of globality in these attention
heads, the model struggles to handle long-sequence addition tasks. By perform-
ing inference intervention on mistral-7B, partial task performance can be restored,
with the accuracy on 20-digit long-sequence additions from 2% to 38%. Through
fine-tuning, a new mechanism branches out for handling more complex cases, yet
it still faces challenges with length generalization. Our research reveals how the
model performs addition, and further provides insights into the debate on whether
these models are merely statistical.

1 INTRODUCTION

As large pre-trained language models increase in scale, they demonstrate increasingly powerful
performance on an increasing number of tasks (Brown et al., 2020). But their working principle is
still a black box. As the application of large models expands, we have to start to care about safety
and ethical issues (Weidinger et al., 2021). On the one hand, some studies believe that the model is
just a model that relies on statistics (Bender & Koller, 2020; Merrill et al., 2021). On the other hand,
some studies have found that the language model internally encodes other basic world concepts
(Abdou et al., 2021; Patel & Pavlick, 2021).

Addition and subtraction, despite being the simplest arithmetic operations, are still challenging tasks
for current large language models (Nogueira et al., 2021). Understanding how these models perform
such operations internally is highly beneficial for improving their transparency and interpretability.

We focus on the current mainstream pre-trained models and investigate their behavior on integer
addition tasks. It is worth noting that our research can be validated on larger models. For ex-
ample, when giving the following input to ChatGPT 4o: “answer directly without programming:
633331+266667=”, the model is highly likely to respond with 900,000 or another incorrect answer
starting with 9 (the correct answer is 899,998). In this paper, we will investigate why such errors
occur and implement mitigation measures.

We conducted experiments on pre-trained models, including Mistral-7B (Jiang et al., 2023) and
LLaMA-7B (Touvron et al., 2023). While these models demonstrate a baseline accuracy in per-
forming integer addition, they are far from achieving precise results. Through causal analysis, we
identified a subset of attention heads, primarily in the middle layers, that are responsible for en-
coding digit information relevant to bitwise addition. Visualizing the associated attention patterns
showed a high degree of interpretability. Ablation studies further highlighted the critical role of
these heads in determining the output, governing whether the model performs simple modular addi-
tion or full addition with carry. However, as the length of the carry chain increases, the information
encoded in the attention head gradually loses its significance, accompanied by the rapid decline of
interpretability of the attention pattern, resulting in a decrease in the accuracy of the model (See Fig
1).
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Figure 1: Two types of mistake commonly made by LLMs: the model only uses localized informa-
tion for calculations, while the forward addition requires global information to handle carries. When
the model cannot obtain information on whether to carry or not, it leads to incorrect outputs.

Building on our discovery of the model’s underlying mechanisms, we partially restored the model’s
performance through inference intervention. During multiple inference runs, we manually inter-
vened by targeting the attention heads identified through causal analysis. After each token was
generated, we adjusted the attention weights by either re-weighting or ablating the attention focused
on the carry positions on the last token. This intervention resulted in a significant improvement in
accuracy, particularly for longer sequences.

Finally, we perform full-parameter fine-tuning on Gemma2-2B on specialized addition tasks. The
results reveal that while the model refines its original mechanism for simple cases, it implements a
new and more reasonable method for summation judgment to handle more complex cases. However,
it continues to face challenges with length generalization.

2 RELATED WORK

Studying arithmetic on language models has become popular with the continuous improvement of
model capabilities. Zhou et al. (2024) studies how the Transformer processes modular addition
from the perspective of Fourier transforms, that the MLP layer mainly approximates the size of
the results through low-frequency features, while the attention layer performs modular operations
through high-frequency features. Quirke et al. (2023) shows how a one-layer model decomposes
the task into parallel digit-specific computation streams and applies different algorithms to each
digit by analyzing the training loss curve. Another similar work is Stolfo et al. (2023), which uses a
causal mediation analysis framework to reveal the internal information flow in large language models
during arithmetic reasoning tasks. Our research aims to go a step deeper and broader, providing a
general framework to explain any pre-trained transformer-based autoregressive models’ real internal
operation process, the findings in our work could be work on a wide scale.

Lee et al. (2023); Zhou et al. (2022); Liu & Low (2023) focus on improving the performance of
language models in arithmetic tasks. Their core idea is to extend the reasoning steps of the model,
thereby reducing the complexity of serial calculations. This is done by employing training strate-
gies like the ”scratchpad” approach, where intermediate reasoning steps are made explicit, or by
providing the model with hint prompts that guide it through mathematical expressions.

Broader interpretability research has recently focused on mechanistic interpretability (Geiger et al.,
2021; Conmy et al., 2023; Wang et al., 2022). Mechanical interpretation methods, which treat the
model as a computational graph composed of attention and MLP components, seek to locate the sub-
graph responsible for the actual task computation within the entire computational graph. Hanna et al.
(2024) explores the mechanistic interpretability of how GPT-2 performs mathematical comparison
(greater-than) tasks through internal circuits without explicit training.
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3 METHOD

3.1 BACKGROUND

Consider two n-digit integers X = (x1, x2, . . . , xn) , Y = (y1, y2, . . . , yn) and their addition result
Z = (z1, z2, . . . , zn). The numbers are tokenized digit by digit into the sequence numbers of the
vocabulary, mapping to the embedding di, and the hidden state of ith token in the first layer is h0

i =
RoPE(di, posi, dk), where posi denotes the token’s index i in the sequence, RoPE represents
the rotary positional embedding operation following the definition in (Su et al., 2024) (applied in
Mistral, Llama2 and Gemma2). In all our experiments, the models used the tokenizer that breaks
numbers into individual digits.

Equations 1, 2, 3, and 4 outline how the transformer processes hidden states1. The matrices WQ,
WK , and WV are learned linear transformations that generate the query, key, and value vectors from
the input hidden states, while WO acts as the output projection matrix. H denotes the number of
attention heads, dk represents the hidden dimensions, and l indicates the layer index.

The σ is a non-linear function. γ is a normalization function. Wup and Wdown are learned weight
matrices in the feed-forward network, where Wup expands the dimensionality of the input, and
Wdown reduces it back to the original dimension.
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(h,l)
i =

∑
j≤i

α
(h,l)
ij v

(h,l)
j . (2)

a
(l)
i = Concat

(
ã
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Different from the way humans calculate, the autoregressive model needs to output the answer from
front to back, which is more challenging. Consider the process needed for the model output to be
the correct zi, there are three cases. Case 1: When xi+1 + yi+1 < 9, zi = (xi + yi) mod 10. Case
2: When xi+1 + yi+1 > 9, then zi = (xi + yi) mod 10 + 1. Case 3: When xi+1 + yi+1 = 9, we
need to check if there is a carry from subsequent digits. If xi+2 + yi+2 > 9, then zi = (xi + yi)
mod 10 + 1; if xi+2 + yi+2 < 9, then zi = (xi + yi) mod 10; if xi+2 + yi+2 = 9, continue
checking further.

For simplicity, we refer to an equation with a carry chain of length d as CCd (Carry Chain). For
example, 44 + 28 is CC1, 356 + 247 is CC2, and 35556 + 24447 is CC4. On the other hand,
an equation that only has the chain format without actual carry is called OCd (Only Chain). For
example, 345 + 252 is OC2, and 46612 + 33385 is OC4.

We analyze the behavior of Mistral-7B on OCd and CCd tasks (Figure 2), where d ranges from
1 to 15. Each d corresponds to 200 samples (100 OC and 100 CC). For OC inputs X + Y and
CC inputs X ′ + Y ′, we compute the average probability distributions p(z1|X,Y ), p(z1 + 1|X,Y ),
p(z′1|X ′, Y ′), and p(z′1− 1|X ′, Y ′). To simulate realistic scenarios, a randomly generated sequence
of length d is appended to each input pair, resulting in a total length of 2d.

The results show that, in addition to the overall probability exhibiting a decreasing trend as the
sequence length increases, once d > 1, the average probability of errors p(z′1− 1|X ′, Y ′) on the CC
task exceeds that of correct probabilities p(z′1|X ′, Y ′). Furthermore, when d > 8, the lines nearly
overlap, indicating that the model can hardly distinguish CC tasks from OC tasks.

1For simplicity, we omit details of positional encoding in each layer, the implementation of the mixture of
experts in Mistral, and the grouped query attention mechanism.
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Figure 2: The average probability output of Mistral-7B on OC and CC tasks, with each value of
length corresponding to 200 samples.

Figure 3: An interpretation of the causal analysis is presented in this example, where y′d+1+xd+1 >
9, causing the output shift from 5 to 6.

3.2 CAUSAL ANALYSIS

Causal analysis (Vig et al., 2020; Pearl, 2022; Meng et al., 2022) is a technique based on activation
replacement, helping to reveal the causal roles of internal model components and understand how
they contribute to outcomes. We first create a set of two similar but different inputs, OCd input
X + Y and CCd input X ′ + Y ′. Naturally, z1 = x1 + y1, z′1 = x′

1 + y′1 + 1. And set restriction:
xi = x′

i, yi = y′i(i < d + 1); y′d+1 + xd+1 > 9 or x′
d+1 + yd+1 > 9 (randomly chosen). Figure 3

explains how causal analysis can impact model output. Two OC inputs can produce the same results
as long as the constraints are maintained (see Appendix A).

We conduct three rounds of model inference. The symbols below refer to equations 1, 2, 3, 4.

• In the first run: (X + Y ) as the input to obtain the final probability output p(z1|X,Y )
and p(z′1|X,Y ) and collect the activation o′ at y′d+1 token position if y′d+1 + xd+1 > 9, or

x′
d+1 token position if x′

d+1 + yd+1 > 9, o ∈ {m(1)
d+1, . . . ,m

(L)
d+1, v

(1)
d+1, . . . , v

(L)
d+1}.

• In the second run: (X ′ + Y ′) as the input and collect the activation o′ at y′d+1 to-
ken position if y′d+1 + xd+1 > 9, or x′

d+1 token position if x′
d+1 + yd+1 > 9, o′ ∈

{m′
d+1

(1), . . . ,m′
d+1

(L), v′d+1
(1), . . . , v′d+1

(L)}.

• In the third run: (X + Y ) as the input and replace the activation o with o′ to obtain the
probability output p∗(z′1|X,Y ).

When intervening in reasoning, we sequentially use o′ to override the original activation o to change
the model’s probability output. Intuitively, this should lead to an increase in the model’s output
probability for z′. The total effect is defined as 5. We used 100 sets of number pairs as input for
Mistral-7B and calculated their average TE. For activation replacement of the attention layer, v is
chosen instead of ã or a because non-trivial result first and only occurs on v. Causal analysis of
other components (ã and a) refer to Appendix A.

Total Effect (TE) = p∗(z′1|X,Y )− p(z′1|X,Y ) (5)
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(a) d = 1 (b) d = 2

(c) d = 3 (d) d = 4

Figure 4: The attention heads located through causal analysis show that for mistral-7B under differ-
ent values of d. Mistral-7B has 32 attention heads per layer, for a total of 32 layers.

Through our experimental analysis, we have the following findings (See Fig 4): the most significant
impact occurs in the middle to later layers, specifically between layers 15 and 20. When d = 1, a
few attention heads exhibit a strong influence on the output, leading to up to a 50% difference in
probability. However, as d increases, the maximum probability difference declines rapidly, with only
2% difference at d = 2. Some attention heads, such as (Head 15, Layer 20), show a broader but much
weaker range of influence. We use TSNE (Van der Maaten & Hinton, 2008)) to visualize internal
shift within the model, where the hidden states for the OC1 and CC1 became distinctly separated
after the attention layers, as shown in Appendix B. MLP impacts the results by mostly contributing
to the located attention heads. (Causal analysis of MLP, other models, and effect breakdown, please
refer to Appendix A).

3.3 ATTENTION IMPLEMENTS INCOMPLETE CARRY

The equation 2 illustrates how the replaced v vector affects the output through the attention pattern.
To recall that the v vector position we replaced in section 2 is y′d+1 (or x′

d+1 depending on the
sample), so i = y′d+1, and the replaced v affects the output through the attention weight αn,y′

d+1
,

where n the last sequence position.

Among the attention heads observed in the causal analysis, we visualize the top two attention heads
that cause the largest TE for each value of d (See Fig 5).

It is observed that when the “=” token appears, the model focuses on xi+1 and yi+1 in order to
calculate zi, just like a double pointer. As the length of the output sequence increases, it continues
to move towards, forming a double staircase pattern. However, when d > 1, the attention head re-
sponsible for moving the digit information loses most of this staircase pattern. Instead, the attention
weights are unevenly distributed on each digit. The formation of the attention pattern is independent
of whether the input itself contains carry.
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Figure 5: The result of superimposing the attention heads on Mistral-7B, 34316+24352=58669 is
used as a demonstration example. For simplicity, the attention pattern displayed omits the prompt
and only retains the question. For d from 1 to 4, the selected top 2 attention heads (Head, Layer) are
(25, 17) and (30, 20); (15, 20) and (3, 17); (15, 20) and (16, 19); (15, 20) and (1, 17)

Our research focuses on two objectives: first, to assess the influence of the targeted attention heads
on the corresponding CC task, the second is to investigate whether the model’s significant perfor-
mance decline on CC tasks with d > 1 is solely due to insufficient attention weights allocation. To
address the first objective, we perform ablation on the top two attention heads for the corresponding
CC task, by setting αn,y′

d+1
= 0, αn,x′

d+1
= 0 to eliminate the influence of the v vector. Addition-

ally, we randomly select attention heads in the same layer and same token position as the ablation
heads for comparison. For the second question, we dynamically perform re-weighting (6) according
to the input.

αn,x′
d+1

, αn,y′
d+1

= αn,x′
d+1

+ λ, αn,y′
d+1

+ λ (6)

Table 1: Ablation study (with λ = 0.6) on Mistral-7B, Llama2-7B, and Gemma-7B models. Numbers
in parentheses are the baseline for the OC task.

Model Method Task

CC1 CC4 CC6 CC10

Mistral-7B

Baseline 99.21(98.32) 29.99(80.24) 20.31(67.18) 17.93(23.26)
Zero ablation 34.80 24.51 19.21 17.09

Random ablation 96.99 29.46 21.32 17.45
Re-weighting 98.12 41.83 23.87 19.20

Llama2-7B

Baseline 91.17(98.09) 48.21(44.23) 17.33(12.41) 0.67(0.21)
Zero ablation 17.51 42.14 17.23 0.67

Random ablation 88.92 49.21 17.30 0.68
Re-weighting 89.32 58.43 22.78 4.63

Gemma-7B

Baseline 99.33(99.21) 80.60(37.26) 49.98(31.65) 25.17(26.88)
Zero ablation 1.47 49.72 28.69 20.64

Random ablation 96.84 78.53 48.57 25.07
Re-weighting 95.10 92.73 58.48 31.46
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Figure 6: Zero ablation causes the output of the model to revert back to modular addition, and the
same applies to subtraction.

For the CC1 task with high accuracy, there is a strong correlation between attention and model
output (see Table 1). Ablating the top two attention heads has an immediate and dramatic effect.
Notably, after ablating on Gemma, the accuracy of the CC1 task drops to just 1.47%. The ablation
removes the carry and reverts the output of the first digit to z′1 − 1 (See Fig 6). As d increases, the
impact of ablating attention heads diminishes, and accuracy declines accordingly.

When re-weighting weights to match CC1 level, we observed varying degrees of improvement
across different CCd tasks. However, this improvement was still limited and did not restore accuracy
to the CC1 level. Additionally, as d increases, the effect of re-weighting continues to diminish.
This suggests that the model’s difficulty in handling carries is not solely due to insufficient attention
weight allocation, but rather a deeper issue in the model’s mechanism for processing such operations.

Interestingly, the three models exhibit distinct patterns in handling tasks, and when uncertain about
the presence of a carry, they tend to default to one of these patterns. Mistral-7B achieves higher
accuracy on OC tasks compared to CC tasks, while Gemma shows the opposite, with better per-
formance on CC tasks than OC tasks. Llama2 falls between these two models. The relatively
low accuracy of Llama2 can be attributed to its inherently lower performance in modular addition
compared to the other two models (see Appendix C)..

To summarize the experimental findings in this section, pre-trained autoregressive models rely on the
staircase attention patterns to transmit carry-encoded value tokens to the final token for prediction.
When this information transmission is disrupted, the model defaults to modular addition. As the
carry length increases, the model loses its ability to transmit this information, leading to disordered
attention patterns and a loss of carry-related information in the value vectors.

4 INFERENCE INTERVENTION

Based on the findings in section 3, we performed a full intervention enhancement experiment on
the model’s addition task. Many of the model’s errors stemmed from incorrect handling of car-
ries—either missing a carry or introducing an unnecessary one. In contrast, errors related to mod-
ular addition were relatively minor (See Appendix B). The primary goal of this experiment was
to explore the potential for improving the model’s performance without additional training, by at-
tempting to restore its internal mechanisms, rather than transforming the model into a fully accurate
calculator.

4.1 EXPERIMENTS

Our experiment follows the following steps: when the model processes X + Y , it dynamically
intervenes in internal activation. When the model generates zi, we determine whether there is a
carry from the following sequence. We melt the model’s attention weights for xi+1 and yi+1 if there
is no carry and let the model do modular addition (xi+1 + yi+1) mod 10. If there is a carry from
a carry chain of length m, the attention weight an,i+m is re-weighted. Here, the attention heads
are selected from the top 2 attention heads that cause the maximum TE when d = m. For a more
detailed algorithm explanation please refer to Appendix C.

In the experiment, the number pairs corresponding to each length n were randomly sampled from
10n−1 to 10n, and each length contained 9000 questions. The model used greedy sampling. Due to
the need for n times of inference interferences for numbers with a length of n, this computationally
intensive experiment ends at a length of 20.
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Similar to our experiment, activation intervention is a technology that adjusts the activation of some
components in the reasoning process to modify the behavior of the model. This also stems from the
work on the interpretability of deep neural network mechanisms (Adi et al. (2016); Finlayson et al.
(2021); Vig et al. (2020)), but our experiments generally only involve modifications to dozens of
scalars.

Algorithm 1 Model Inference with Ablation and Re-weighting

1: Input: X + Y . L: The last position in the sequence. m: Length of the carry chain. Am: Top 2
attention heads located in causal analysis when d = m.

2: Output: Z
3: for i← 0 to n− 1 do
4: if xi+1 + yi+1 < 9 then
5: Perform inference: zi ← Model(X,Y ) with ablation (aL,xi+1 , aL,yi+1) on Head A1

6: Output: zi
7: else
8: if Carry exist: then
9: Perform inference: zi ← Model(X,Y ) with re-weighting (aL,xi+m

, aL,yi+m
) on Head

Am

10: Output: zi
11: else
12: Perform inference: zi ← Model(X,Y ) with ablation (aL,xi+1

, aL,yi+1
) on Head A1

13: Output: zi
14: end if
15: end if
16: X + Y ← X + Y + zi
17: end for

4.2 RESULTS

The result (See Fig 7) shows improvement in most cases, with longer sequences experiencing more
significant improvements. The lack of improvement for sequences shorter than length 5 is that the
proportion of these randomly sampled short sequences that contain CC2 or above is relatively low.
Specifically, for sequences of length 3, only about 17% of the questions contain CCd where d ̸= 1,
this proportion increases to 26% at length 5, 56% at length 10, and 86% at length 20. Table 1 shows
that the improvement brought by re-weighting is mainly in more difficult cases, but harms the case
of CC1, where the model already performs sufficiently well.

Additionally, this improvement has an upper limit, as accuracy remains close to zero for sequences
of length 60 (shown in Appendix C). This is partly due to the limitations of attention discussed in
Section 3, where simply adjusting weights cannot fully compensate for performance decline caused
by the information loss. Another critical factor is that while intervention improves the model’s
handling of carries, it does not enhance the model’s accuracy in performing basic modular addition.
Additionally, many errors arise from number misalignment, where the model incorrectly adds xi

with yj where i ̸= j (See Appendix B). Many studies (McLeish et al., 2024; Shen et al., 2023) have
that positional encoding is a primary cause of this issue.

5 FINE-TUNING

Furthermore, we extend our investigation to the model’s internal processing after fine-tuning on
more complex tasks, conducting full-parameter fine-tuning experiments on the Gemma2-2B model.

The dataset includes questions of CCd, OCd, and randomly generated number pairs. To ensure
that modular addition does not affect the results, 40% of the dataset consists of randomly sampled
numbers with a length upper limit of 80, 30% consists of CCd tasks, and 30% consists of OCd tasks,
where d represents the maximum training length of the carry chain. The fine-tuned model results
are shown in Figure 8. The detailed training parameters are provided in Appendix E.
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Figure 7: Comparison of accuracy between the baseline and inference intervention augmentation on
Mistral-7B.

(a) Performance on CC tasks (b) Performance on OC tasks

(c) Accuracy on CC tasks and maximum
TE on the model trained on a maximum
training length of 10.

Figure 8: (a), (b): Performance of Gemma2-2B on CCd and OCd tasks after fine-tuning, legend
represents the max training length d. (c): The accuracy of CCd task on model training on training
length d = 10, along with the corresponding maximum TE tracked tracked throughout.

5.1 GENERALIZATION

Related studies (Sabbaghi et al., 2024; McLeish et al., 2024; Kazemnejad et al., 2024) have high-
lighted the critical role of positional encoding in enabling length generalization for arithmetic tasks.
Since arithmetic relies fundamentally on the alignment of digits, positional encoding that effectively
captures this structural information greatly enhances generalization (Sabbaghi et al., 2024; McLeish
et al., 2024). However, handling long carry chains remains a significant challenge for models (Sab-
baghi et al., 2024), as it requires not only precise digit alignment but also conditional reasoning
based on the sum of individual digits. While Gemma2-2B employs RoPE, study (Kazemnejad et al.,
2024) indicates that it still faces limitations in achieving length generalization.

Figure 8 shows the fine-tuning performance of Gemma2-2B. The model seems difficult to achieve
noticeable generalization. The accuracy drops sharply after surpassing the maximum training length.
We attempt to explain this phenomenon from the perspective of attention head formation by mea-
suring the maximum TE that the attention heads can cause. The results (8c) indicate that beyond
the training length, model performance declines in tandem with maximum TE, suggesting a lack
of attention heads capable of effectively transferring carry digit information. The detailed causal
analysis heat maps are visualized in Appendix D.
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5.2 EMERGENCE OF NEW PATTERN

We perform a causal analysis on the fine-tuned model with a maximum training length d = 10.
Pre-trained models handle cases like OC1 and CC1 by allocating attention to the digit immediately
following the current calculation digit. After fine-tuning, the model retains and refines the original
mechanism (see Appendix D) while also developing a new strategy (see Figure 9) to address more
complex cases (d > 2). The original mechanism continues to handle simple cases(d ≤ 2) in parallel
with the new strategy. Notably, the model introduces a specialized attention pattern, referred to as the
Target Head, which focuses directly on the actual carry digit (a centralized attention weight on digit
“7” in Figure 9). Simultaneously, another attention mechanism, named the Detection Head, emerges.
This head becomes active even before the “=” token appears, transmitting the corresponding xi

information to the current token yi token when it appears.

A guess is that the detection head obtains the information of xi and yi to determine whether xi + yi
is greater than 9. The carry chain length-related information is then passed to the Target Head,
enabling it to focus on the actual carry token and execute the carry operation. To validate this,
we performed zero ablation on the Detection Head and observed a disruption in the Target Head’s
attention patterns, resulting in a significant accuracy decrease for complex cases, while simpler
cases remained unaffected (see ablation studies in Appendix D). Intuitively, the differentiation of
attention functions is more reasonable, since it involves the concept of sum judgment, but it is still
unclear why the model does not continue to use the original mechanism and how the information is
delivered. Addressing this question will require further studies.

Figure 9: Causal Analysis on fine-tuned Gemma2-2B. “233331+366671=600002” is used as the
demonstration example. Left: The Detection Head Pattern. Middle Left: Causal analysis on all
layers and heads. Middle Right: Target head patterns. Right: Target head patterns with detection
head melted.

6 CONCLUSIONS

In this study, we investigated how pre-trained autoregressive language models perform addition
operations.

We found that the model relies on localized attention distribution for handling carry operations,
which makes it challenging for the model to process inputs with long sequences. We attempted to
restore the model’s task performance by intervening in attention during inference without additional
training. While some task performance was recovered, the model’s inherent limitations remained.
Finally, fine-tuning on specialized addition tasks revealed that the model develops a new and more
efficient mechanism to handle complex cases, while retaining the original mechanism for simpler
situations, yet it continues to struggle with length generalization. This loss of generalization ability
is related to the loss of ability to form functional attention heads.

Our findings offer valuable insights into how language models process arithmetic tasks and serve as
a reference point for evaluating whether current language models rely solely on statistical patterns
rather than deeper reasoning mechanisms.

10
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A APPENDIX - ADDITIONAL INFORMATION FOR CASUAL TRACING

This section discusses causal analysis for other models and some interactions we observed between
attention and MLP.

The attention head located in Llama2-7B is further forward than Mistral (See Fig 10), and significant
TE occurs earliest in the 13th layer. Similarly, as d increases, the maximum TE rapidly decreases.

(a) d = 1 (b) d = 2

(c) d = 3 (d) d = 4

Figure 10: The attention heads located through causal analysis show that for Llama2-7B under
different values of d. Llama2-7B has 32 attention heads per layer, for a total of 32 layers.

Figure 11 shows the causal analysis results based on two OCd inputs. The targeted heads are similar
to the heads in Figure 4.

When performing activation intervention on a certain component, its total effect can be divided
into two parts (Vig et al., 2020): one is that the component directly affects the output probability
by writing the residual stream value to cause direct effects (DE), and the other is that the residual
stream passes the influence to downstream components to cause indirect effects (IE) (See Figure
13).

We found that the TE caused by MLP mainly comes from the indirect effect on downstream at-
tention components, especially on the Top 2 attention heads. We set up an additional experimental
process to distinguish the degree of influence between the two. Specifically, when we perform acti-
vation intervention on m′

1
l we fix the top 2 attention heads components as their original activation

aTop2
i .

The results (See Fig 14) show that the impact of MLP on the results was concentrated in the early
stage of the model, and most of it was earlier than the influence range of the attention heads. After

13
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(a) d = 1 (b) d = 2

(c) d = 3 (d) d = 4

Figure 11: The attention heads located through causal analysis based on two OC inputs in Mistral-
7B

restoring the top 2 attention heads, the impact of MLP decreased to an insignificant level. This
may represent that the role of MLP in the early stage is to provide the basic work of information
processing for attention layers.

In addition to the activation replacement of v, we also conducted experiments on ã and a. (no con-
cept of attention head in a.) The results (See Figure 15b, 15a, 16b, 16a) show that these components
are difficult to significantly impact the output probability (even if d = 1).

B APPENDIX - VISUALIZATION

We provide some visualizations in this section, mainly including the process of handling modular
additions and additions with carry inside the model.

In Figure 17, it is observed that in layer 12, similar labels (also of similar colors) are mixed together.
At layer 13, the clustering pattern immediately undergoes a sudden change, and the model distin-
guishes between carry and non-carry equations, which are much closer to the output of the final
layer. Layer 13 is also the earliest layer to be located through causal analysis (See Fig 10a).

Similarly, a similar process also occurs in the mistral-7B model (See Fig 18). After passing through
the 17th layers, the model quickly distinguishes between CC and OC tasks, the causal analysis
location of the 17th layer refers to 4a.

For modular addition, the visualization results show that the model is implemented in a progressive
manner, rather than dealing with abrupt changes like handling carry.
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(a) d = 1 (b) d = 2

(c) d = 3 (d) d = 4

Figure 12: The attention heads located through causal analysis show that for Gemma-7B under
different values of d. Gemma-7B has 16 attention heads per layer, for a total of 26 layers.

Figure 13: Total Effect, Direct Effect and Indirect Effect

C APPENDIX - DETAILS IN INFERENCE INTERVENTION

In this section, we give more details about the inference intervention.

We first classify the incorrect answer obtained by the model into four situations. When the model
treats the CC question as the OC question, it is called a missing carry; When treating the OC
question as a CC question, it is called extra carry; alignment errors caused by incorrect numerical
alignment; basic modular addition errors.

The model runs on a dataset of randomly generated numbers of a specified length. By classifying
each error, it can be found that the most common error made by the model in low sequence lengths
is missing carry (See Fig 19). As the length increases, errors caused by alignment account for the
vast majority, rather than basic modular additions. Our inference intervention is only optimized for
missing carry and extra carry situations.

We give a more detailed explanation of the algorithm for inference intervention (See Algorithm2).
The algorithm explains more concretely about the carry detection progress.
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Algorithm 2 Model Inference with Ablation and Reweighting

1: Input: X + Y . L: The last position in the sequence. m: Length of the carry chain. Am: Top 2
attention heads when d = m in causal analysis.

2: Output: Z
3: for i← 0 to n− 1 do
4: Initialize: m← i
5: if xi+1 + yi+1 < 9 then
6: Set ablation: aL,xi+1

, aL,yi+1
← 0

7: Perform model inference: zi ← ModelInference(X,Y, ablation(aL,xi+1 , aL,yi+1))
8: Output: zi
9: else if xi+1 + yi+1 > 9 then

10: Re-weighting: aL,xi+1 , aL,yi+1 ← Am

11: Perform model inference: zi ← ModelInference(X,Y, reweighting(aL,xi+1
, aL,yi+1

))
12: Output: zi
13: else
14: while xi+1 + yi+1 == 9 do
15: m← m+ 1
16: if xm + ym < 9 then
17: Set ablation: aL,xm

, aL,ym
← 0

18: Perform model inference: zi ← ModelInference(X,Y, ablation(aL,xm , aL,ym))
19: Output: zi
20: else if xm + ym > 9 then
21: Re-weighting: aL,xm , aL,ym ← Am

22: Perform model inference: zi ← ModelInference(X,Y, reweighting(aL,xm , aL,ym))
23: Output: zi
24: end if
25: end while
26: Set ablation: aL,xi+1

, aL,yi+1
← 0

27: Perform model inference: zi ← ModelInference(X,Y, ablation(aL,xm
, aL,ym

))
28: Output: zi
29: end if
30: X + Y ← X + Y + zi
31: end for
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(a) Mistral-7B (b) Llama2-7B

Figure 14: The TE caused by MLP activation replacement and the effect caused by restoring the top
2 attention heads, the results are averaged among 100 samples.

(a)

(b)

Figure 15: Casual analysis of other components in Llama2-7B. (a) Replacing ã. (b) Replacing a.

The improved accuracy data beyond length of 20 is listed in table 2.

D APPENDIX - DETAILS IN FINE-TUNING

We first perform a causal analysis on the fine-tuned model (trained on a maximum length of 10)
under different d values (See Figure 20). where the location of attention heads of d=1 case is
different from others, representing a differentiation of functional attention heads.

In section 5.2, we discussed the emergence of a new pattern, the original mechanism remains and is
refined. Figure 21 shows the top-2 attention heads overlay pattern located in casual analysis.
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(a)

(b)

Figure 16: Casual analysis of other components in Mistral-7B. (a) Replacing ã. (b) Replacing a.

(a) Layer 0 (b) Layer 12

(c) Layer 13 (d) Layer 31

Figure 17: TSNE visualization of the last token hidden state on Llama2-7B, each color represents
the label z1.

In terms of the new mechanism of detection heads and target heads, to quantify their importance,
we perform an ablation study on them (See table 3).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Layer 0 (b) Layer 16

(c) Layer 17 (d) Layer 31

Figure 18: TSNE visualization of the last token hidden state on Mistral-7B, each color represents
the label z1.

(a) Length 5 (b) Length 10

(c) Length 15 (d) Length 20

Figure 19: Four types of error that Mistral-7B makes on different lengths.
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Table 2: Further accuracy information about inference intervention on Mistral-7B, Llama-7B, and
Gemma-7B.

Model Method Length

10 20 30 40 50 60

Mistral-7B Baseline (%) 48.21 2.98 0.05 0.00 0.00 0.00
Inference Intervention (%) 72.45 38.21 14.12 4.63 1.12 0.22

Llama-7B Baseline (%) 0.04 0.00 0.00 0.00 0.00 0.00
Inference Intervention (%) 3.73 3.51 0.06 0.00 0.00 0.00

Gemma-7B Baseline (%) 7.73 0.08 0.01 0.00 0.00 0.00
Inference Intervention (%) 15.45 4.32 1.14 0.42 0.11 0.00

The results show that the model has indeed developed two processing mechanisms. Ablation of
the detection head and target head has no effect on CC1 but has a huge impact on more complex
situations.

Table 3: Ablation study on the fine-tuned Gemma2-2B model (trained on a maximum length of 10).

Method CC1 CC4 CC6 CC10

Baseline 100 99.67 99.62 91.72
Detection Head Ablation 100 55.42 58.37 54.32
Target Head Ablation 100 51.58 53.76 54.21
Combined Ablation 100 44.11 49.09 48.12
Random Ablation 99.68 99.12 99.72 90.47

E APPENDIX - IMPLEMENTATION DETAILS

The prompts in table 4 are applied in the fine-tuning experiment (randomly sampled), in the experi-
ments related to model inference (Section 3, Section 4), the prompt is fixed to the first prompt shown
in the table. The complete format is a prompt plus the question ‘X + Y =’ format as input. The
temperature is set as 1 and use greedy sampling. The reason for choosing accuracy instead of digit
match as the evaluation metric is due to the accumulation of errors during model inference.

The detailed fine-tuning parameters are listed in table 5. The batch size (varies from 4 to 64) and
taken epoch (usually 6-9) varies depending on the specific CCd and OCd tasks. The entire training
process is done with one Nvidia A800 GPU, all experiments in the paper could be done within 15
hours.

The dataset includes questions of CCd, OCd, and randomly generated number pairs. To ensure
that modular addition does not affect the results, 40% of the dataset consists of randomly sampled
numbers with a length upper limit of 80 (sampled between 10 and 1079), 30% consists of CCd tasks,
and 30% consists of OCd tasks. The dataset includes 106 samples for each length d, which means
4 ∗ 105 randomly sampled numbers pairs, 3 ∗ 105 CCd samples, and 3 ∗ 105 OCd samples. For the
CCd and OCd tasks, we add a number padding of length d in the front and behind. For example, a
CC2 input “234+468=702” could be “22344+34682=57026” in the dataset. The fine-tuning training
process has musked the prompt, ‘X + Y =” sequence, and only predicts for Z.
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(a) d = 1 (b) d = 3

(c) d = 5 (d) d = 12

Figure 20: The attention heads located through causal analysis show that for fine-tuned Gemma2-2B
under different values of d, d = 12 analysis is based on OOD input.
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(a) d=1 (b) d=2

Figure 21: The result of superimposing the attention heads on fine-tuned Gemma2-2B,
23333+36667=60000 is used as a demonstration example. For simplicity, the attention pattern dis-
played omits the prompt and only retains the question. For d from 1 to 2, the selected top 2 attention
heads (Head, Layer) are (16, 6) and (19, 0); (16, 6) and (19, 9).

Table 4: Examples of Prompts

Prompt Examples

Do math calculations:

Calculate:

Compute the following sum:

Solve the addition:

Calculate the result of:

Solve the following problem:

Perform the calculation:

Determine the result of:

Find the value of:

Complete the calculation:

What is the solution to:

Solve this equation:

Compute the answer for:

What is the sum of:

Figure out the result of:

Determine the answer to:

Find the solution to:

Perform the operation:
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Table 5: Key Training Arguments Configuration, d represents the CCd and OCd task.

Parameter Value

num train epochs 15

number of training tokens about (6d+ 1) ∗ 106

learning rate 5e-5

bf16 True

weight decay 0.0

adam beta1 0.9

adam beta2 0.999

adam epsilon 1e-08

gradient accumulation steps 1

seed 42

lr scheduler type linear

optim adamw torch
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