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ABSTRACT

Polysemanticity is pervasive in language models and remains a major challenge
for interpretation and model behavioral control. Leveraging sparse autoencoders
(SAEs), we map the polysemantic topology of two small models (Pythia-70M
and GPT-2-Small) to identify SAE feature pairs that are semantically unrelated
yet exhibit interference within models. We intervene at four loci (prompt, token,
feature, neuron) and measure induced shifts in the next-token prediction distribu-
tion, uncovering polysemantic structures that expose a systematic vulnerability in
these models. Critically, interventions distilled from counterintuitive interference
patterns shared by two small models transfer reliably to larger instruction-tuned
models (Llama-3.1-8B/70B-Instruct and Gemma-2-9B-Instruct),
yielding predictable behavioral shifts without access to model internals. These
findings challenge the view that polysemanticity is purely stochastic, demonstrating
instead that interference structures generalize across scale and family. Such general-
ization suggests a convergent, higher-order organization of internal representations,
which is only weakly aligned with intuition and structured by latent regularities,
offering new possibilities for both black-box control and theoretical insight into
human and artificial cognition. Code and data are available here.

1 INTRODUCTION

Polysemanticity refers to the phenomenon in which individual neurons or groups of neurons in
neural networks often encode a greater number of distinct features or concepts than the number
of neurons involved. This property becomes increasingly prevalent as models scale and has been
shown to enhance learning performance (Wang et al., 2024; Marshall & Kirchner, 2024; Oikarinen
& Weng, 2024b). Anthropic’s work on superposition builds on prior insights, showing that large
transformer models encode more features than neurons by using linear combinations of activations.
This mechanism sacrifices monosemanticity but significantly improves model capability (Elhage
et al., 2022). Mathematical analyses reveal that polysemantic neurons enable networks to represent
exponentially more features compared to monosemantic approaches (Elhage et al., 2022).

Nevertheless, this representational efficiency comes with trade-offs. Most significantly, it complicates
model interpretability, as entangled representations obscure how human-understandable concepts
are encoded within the model’s internal structure. One mechanistic approach to address this chal-
lenge is the use of sparse autoencoders (SAEs), which aim to disentangle superimposed features by
learning sparse, higher-dimensional representations of model activations. SAEs enable the extraction
of interpretable, monosemantic features, where each SAE neuron ideally corresponds to a single
concept (Bricken et al., 2023; Templeton et al., 2024)1. Recent work has shown that SAE-derived
features exhibit a degree of universality across different LLMs (Lan et al., 2024), suggesting the
existence of fundamental patterns in how neural networks encode meaning. This consistency hints at
the emergence of shared semantic topologies that persist across architectures and training regimes,
raising profound questions about whether these patterns are merely computational artifacts or re-
flections of latent semantic regularities (Huh et al., 2024). Except for SAEs, a broader range of
interpretability techniques is emerging simultaneously (Chang et al., 2025; Dunefsky et al., 2024).

The second trade-off, which is largely overlooked in current literature, involves systematic vulnera-
bility stemming from polysemantic structures in language models. In Anthropic’s toy experiments,

1Nevertheless, several studies have also documented limitations of SAEs (see Appendix O).
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they note that stronger superposition can make models more vulnerable to adversarial attacks (Elhage
et al., 2022). Beyond this, to our knowledge, there is very little existing empirical research that
directly addresses the safety implications of polysemanticity in language models. In contrast, the
vision model domain has a well-established body of work on various forms of adversarial model
control that exploit polysemantic representations (Goh et al., 2021; Oikarinen & Weng, 2024a;
Geirhos et al., 2023; Dreyer et al., 2024; Huang et al., 2022). Bereska and Gavves, in their review of
mechanistic interpretability for AI safety, highlight polysemanticity as a key challenge in building
safer LLMs (Bereska & Gavves, 2024). To bridge this gap, we focus on polysemantic structures
in real-world LLMs, particularly those that persist across models, and explore hard-to-detect and
targeted interventions to better understand their associated risks.
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Figure 1: Conceptual illustration. Two vulnerable polysemantic structures are described: (1)
features are distinct in M (e.g., E and G) can still interfere in A and (2) features are often unevenly
distributed across neurons (i.e., neuron A encodes more features than B and C).

Before explaining the details, it is necessary to distinguish three nested representational domains:

Human Symbolic Manifold (M): The latent first-order symbolic domain that encodes human-
intuitive semantics independent of contextual usage.

Model Activation Space (Aℓ): The d-dimensional vector space spanned by the neurons in layer ℓ of
the language model; it partially reflects M.

Sparse Feature Basis (Fℓ): The k-dimensional, typically overcomplete basis (k ≫ d) extracted
from Aℓ by a SAE.

As illustrated in Figure 1, orthogonality in the activation space Aℓ does not persist after projection
into the symbolic manifold M. Consequently, two features from Fℓ that appear unrelated in M (i.e.,
anchoring semantically to distinct meanings under interpretation) can still interfere substantially in Aℓ.
This interference is also often unevenly distributed across neurons. Building on these two structural
characteristics, we design feature, token, prompt, and neuron levels of intervention to investigate:
(1) how models’ expression on a target feature is affected if semantically unrelated but interfering
features are manipulated, (2) whether model vulnerability correlates with neuron polysemanticity,
defined as the number of distinct features a neuron encodes, and (3) to what extent these polysemantic
interference patterns transfer across models. In this work, model vulnerability to interventions is
measured by the shift in the next-token prediction distribution following the intervention.

Our findings are four-fold. First, we present experimental evidence that interventions lever-
aging polysemantic structures of LLMs can effectively manipulate model outputs. Specifi-
cally, by targeting features and tokens — via steering vector techniques — and prompts —
via prompt injection — that are not semantically aligned with the intended target but interfere
with it, we can reliably induce the model to express the desired semantics. Second, we iden-
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tify the existence of cross-model persistent polysemantic structures. By collecting shared in-
terference features from both Pythia-70M and GPT-2-Small and applying them to steer
Llama-3.1-8B/70B-Instruct and Gemma-2-9B-Instruct, we still observe substantial
intervention effectiveness, revealing a consistent architecture of meaning that transcends specific im-
plementations. Third, we explore those counterintuitive yet stable interference patterns that replicate
across models. Post-hoc annotation of higher-order semantic relations accounts for a minority of
cases, indicating that models learn robust regularities largely opaque to interpretation. Fourth, we an-
alyze intervention at the neuron level and find that highly polysemantic neurons are more vulnerable:
modifying their activation leads to greater semantic shifts in model output. For “super-neurons” (i.e.,
activated by over 500 features), amplification strongly alters model behavior, while deactivation has a
notably reduced effect, suggesting they may serve as critical junctions in the semantic architecture.

2 PRELIMINARIES AND METHODS

2.1 SPARSE FEATURE EXTRACTION WITH SAES

Our initial exploration of polysemantic structures draws on the pre-trained SAEs provided by Neuron-
pedia2. We focus on GPT-2-Small and Pythia-70M, the two models for which Neuronpedia
supplies SAEs for all important sub-modules in every layer. The dimensionality of all the provided
SAEs is 32, 768, under which explicit features are extracted. For clarity, in subsequent sections,
the direction of an SAE feature is defined as its projection into Aℓ. The interference scale between
two SAE features is quantified by the cosine similarity of their projected directions in Aℓ; their
surface-level semantic resemblance is measured by the cosine similarity of their projections into M.

2.2 DISTINCT FEATURE IDENTIFICATION WITH AGGLOMERATIVE CLUSTERING

SAEs disentangle polysemantic neurons into monosemantic sparse features. These features, however,
are not always decomposed at a consistent semantic level (Bricken et al., 2023; Foote, 2024). For
example, a neuron associated with dog-related concepts might be divided into features representing
different dog breeds, while another neuron encoding both cat and car concepts might be split into
features representing cat and car. In such cases, the resulting monosemantic features differ in
granularity. To mitigate this inconsistency, we employ agglomerative clustering to align feature
representations to a consistent semantic level, facilitating both (1) the quantification of neuron
polysemanticity and (2) the isolation of feature groups exhibiting low similarity in their surface
meanings for subsequent analysis.

To identify distinct, higher-level features, we compute the semantic similarity between pairs of
SAE features using their auto-interpretation glosses generated by GPT-4o-mini (Caden Juang
et al., 2024)3 together with embeddings of the feature glosses from text-embedding-3-large.
Prior work offers different heuristics for identifying semantically distinct SAE features. Foote et al.
propose a cutoff of 0.5 for distinguishing semantically distinct feature clusters (Foote, 2024), while
another work on analyzing text-embedding-3-large shows that unrelated concepts typically
fall within the 0.05-0.30 cosine similarity range (Zuchen et al., 2025). Drawing on these insights, we
conduct agglomerative clustering in each SAE layer using four increasingly strict similarity cutoffs
(i.e., 0.40, 0.30, 0.20, and 0.15) to assess whether our results are robust across varying thresholds of
semantic distinctness, while retaining sufficient feature density for experimentation. Figure 2 shows
an example of the clustering results for the 5th MLP layer of Pythia-70M under the similarity
cutoff of 0.4. Detailed descriptive statistics on (1) the distribution of cosine similarities among SAE
features, (2) the distribution of their interference values, and (3) the correlation between interference
scale and semantic similarity are provided in Appendix F.

2https://www.neuronpedia.org/
3Because different models can yield divergent auto-interpretations of the same feature, we conduct a cross-

validation with DeepSeek-V3 on a single SAE layer of Pythia-70M, which reveals both strong concordance
between the interpretations produced by GPT-4o-mini and DeepSeek-V3. Replicating experiments with
DeepSeek-V3 feature glosses further confirm the consistency of our principal findings. See Appendix J.
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Cluster A

CODING

(30790) programming instructions and code-related 
queries
(9395) computer programming syntax and commands
(21955) keywords related to programming constructs…

LAW

Cluster B

(22710) contents related to legal actions and proceedings
(31998) terms related to legal jurisdictions…
(905) topics related to lawsuits and legal actions

BIOCHEMISTRY

HEALTH

LICENSE

Cluster C

(9280) terms related to medical symptoms and conditions…
(23104) medical conditions related to diagnostics and testing
(18087) terminology and concepts related to surgical and 
health management procedures

Cluster D

(8179) mentions of "License" in various contexts
(32158) components related to software licensing and copyright
(31425) references to software licenses and legal terms…

Cluster E

(25566) references to biological assays and testing methodology
(7809) scientific terms related to medical and biological processes…
(32492) terms related to biochemical parameters and substances 
involved in metabolic processes

Figure 2: Agglomerative clustering of SAE features trained on Pythia-70M’s 5th MLP layer
under the cosine similarity threshold of 0.4. Only the five largest feature clusters are labeled.

2.3 EVALUATION CRITERIA

The effect of a polysemantic intervention is quantified as the change in alignment between the
model’s next-token prediction distribution and a target SAE feature f ∈ Fℓ on a context sentence.
Details about sentence generation are elaborated in Appendix E. Specifically, we assess the similarity
between the model’s output and a feature-associated token set Tf ⊂ V , which consists of tokens with
activation values above a threshold (here we use 0.8 · highest activation value).

Let O, Õ ∈ ∆|V | be the model’s output distributions before and after intervention, and let E ∈ R|V |×d

denote the token embedding matrix. Our main metric is weighted cosine similarity:

c(P, Tf ) =
∑
t∈V

P (t) ·max
t̄∈Tf

cos(Et, Et̄), (1)

where each token t ∈ V contributes its predicted probability weighted by the highest cosine similarity
between its embedding and those in Tf . This captures how semantically aligned the model’s output
distribution is with the target feature direction. Then, the intervention effect is:

∆c =
c(Õ, Tf )− c(O, Tf )

c(O, Tf )
. (2)

As an alternative, we also report weighted overlap, which directly sums the output probability mass
over Tf . Formal definition and results are provided in Appendix G.

2.4 OVERVIEW OF INTERVENTION METHODS

Our investigation of polysemantic interventions begins with Pythia-70M and GPT-2-Small,
using three complementary approaches: feature-direction steering, token-gradient steering, and
prompt injection. We randomly select target features to be intervened4. For each selected target

4We randomly sample 480 target features from GPT-2-Small and 180 from Pythia-70M (See Appendix
H for details).

4
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feature, we sample interference features from feature clusters derived from Section 2.2—excluding
the target’s own cluster—to ensure sufficient meaning dissimilarity with the target. Interference
features are drawn from five interference intervals: [0.0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], and
[0.4, 1.0]. In the first two experiments, we construct steering vectors for interference features using
two methods: (1) projecting feature directions from the sparse basis Fℓ into the model’s activation
space Aℓ, and (2) computing token-gradient directions from the partial derivatives of the layer’s
activations with respect to each feature’s top-activating tokens. For each intervention, we roughly
optimize the scaling of the steering vector over the range [−20, 20], balancing intervention strength
with the need to preserve coherent model outputs (i.e., avoiding substantial disruption to the overall
output distribution). Details about the tuning strategy are elaborated in the Appendix I.2.

In the prompt injection setting, we prepend sampled top-activating tokens from interference features
to the input and, rather than using weighted cosine similarity, measure the frequency with which
the tokens of target type appear among the model’s top predictions, conditioned on varying levels
of feature interference. To evaluate cross-model transferability, we apply the two scalable inter-
vention methods (i.e., token-gradient steering and prompt-injection) to black-box, larger models
Llama-3.1-8B/70B-Instruct and Gemma-2-9B-Instruct. For these interventions, we
use as targets the interference features shared between Pythia-70M and GPT-2-Small. One
might question the practical significance of our next-token control test. While the primary aim of this
study is mechanistic, we also include a small-scale evaluation of gradient-based intervention on the
HellaSwag dataset to assess its ability to steer model behavior in specific target-related cases without
compromising general performance. Details are explained in Appendix L.

Finally, we analyze the impact of neuron polysemanticity on model outputs in Pythia-70M
and GPT-2-Small. For each neuron, we identify strongly connected features by thresholding
connection weights at 0.2, and define its degree of polysemanticity as the number of such features.
We then suppress or amplify the activations of neurons with varying polysemanticity levels and
evaluate how the model’s output distribution shifts toward the semantics of associated feature clusters.

3 EXPERIMENTS

3.1 EXPLOITING SAE FEATURE DIRECTIONS FOR INTERVENTION
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Figure 3: Effects of intervention based on the interference SAE feature direction. (A–B)
Relative change in weighted cosine similarity toward the target (∆c). Bars show the mean relative
change compared to baseline across interference levels, with lighter shades indicating stricter feature-
meaning relevancy cutoff thresholds. The x-axis denotes the interference scale between the target and
intervention feature: Original corresponds to intervening with the target feature itself, and Random
serves as a random feature intervention baseline. Error bars denote 95% confidence intervals. (C)
Regression estimates of the effect of feature-pair interference value on intervention success. Two
regression specifications are shown: Model A regresses weighted cosine similarity after intervention
(c(Õ, Tf )) on interference value, with feature-meaning similarity, baseline weighted cosine similarity
(c(O, Tf )), and layer-type controls; Model B regresses the change score (∆c) on interference value,
with feature-meaning similarity and layer-type controls. Error bars denote 90%, 95%, and 99%
confidence intervals. Results with the alternative metric are shown in Figure 9.
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Our hypothesis posits that if two feature directions interfere in Aℓ, despite being nearly orthogonal in
M, then enhancing one will inevitably influence the other to some degree. If true, this would imply
the potential to covertly manipulate the output probability of a target feature by steering with not
obviously related features. To evaluate this, we pair each target feature with interference features
sampled at varying levels of semantic dissimilarity. We vary feature irrelevance thresholds (from 0.4
to 0.15; Appendix H) to confirm that the observed pattern holds across threshold choices. Additionally,
we perform controlled regressions—accounting for feature-pair cosine similarity—under two linear
model specifications to confirm that interference effects persist independently of semantic similarity.
Figure 3 reports the results, and Table 3 in Appendix H shows particular examples.

All analyses consistently show that steering with features that are semantically dissimilar yet in-
terfering can alter the output probabilities of a target feature’s top-activating tokens, with stronger
effects observed at higher interference levels. We also find that SAE-based interventions are generally
much less effective on GPT-2-Small than on Pythia-70M, likely due to the greater depth of the
former, which may attenuate the influence of mid-layer activation shifts (Fort, 2023).

3.2 STEERING WITH GRADIENT VECTOR FOR TOKEN INTERVENTION

In this section, we treat the top-activating tokens of semantically unrelated yet interfering SAE
features as intervention signals (Ferrando et al., 2024). For each interfering feature, we pass its
top-activating text through the model and, at the feature’s corresponding layer, compute the gradient
of that token with respect to all neurons in that layer. This gradient serves as the steering vector.
As shown in Figure 4, using token-gradient steering on both models yields roughly ∼ 10× larger
effects than steering along SAE feature directions. Interestingly, token-gradient steering also flattens
the relationship between interference scale and intervention effectiveness, and steering the original
feature’s gradient direction is less effective than steering the interfering ones. This may stem from
the fact that token gradients are not tied to SAE-defined interference levels and SAE features can
exhibit a degree of arbitrariness (Paulo & Belrose, 2025; Heap et al., 2025).
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Figure 4: Effects of interventions along the gradient direction of interference SAE feature’s
top-activating tokens. Subpanels follow the same conventions as Figure 3, but intervention vectors
are computed from token gradients rather than SAE decoder weights. For (A–B), error bars indicate
95% confidence intervals; for (C), error bars denote 90%, 95%, and 99% confidence intervals. Results
with the alternative metric are shown in Figure 10.

3.3 PROMPT INJECTION FOR INFERENCE TIME INTERVENTION

In addition to the two intervention methods described above, which directly modify the model’s
internal activations, we also investigate whether models are vulnerable to polysemantic interference
during inference time. In this case, hidden state manipulation is achieved indirectly by modifying the
input prompt. The core idea is that, for a given target feature, we identify highly interfering features,
select the tokens with the highest activation values for those features, and inject these tokens into the
prompt. This is intended to activate the corresponding features, allowing their influence to propagate
and affect the activation of the target feature. The number of ways to inject n tokens into a prompt
grows super-exponentially with n, making optimization costly. Here, we apply a straightforward
method by prepending randomly selected tokens from each interference value range to the prompt.
To assess the generality of our findings, we intervene on the model’s production of tokens associated
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with selected target features, illustrating with three cases: location names, digital numbers, and
science-related terms 5. For each target set, we identify the corresponding SAE features and extract
the top-activating tokens from features with either high or low interference. In addition to these, we
include two baseline sets for comparison: a random token set and the original target token set. For
each prompt, we sample injection tokens 100 times and compute the success rate as the proportion of
runs where target-type tokens are elevated into the top-30 predictions. Table 3 presents representative
examples and Table 1 shows macro statistics. As shown, in most cases, high-interference tokens are
more effective at elevating target-related tokens into the top 30 predictions than low-interference or
random tokens, although they are still much less effective than directly prepending the target’s tokens.

Table 1: Comparing intervention effect of prompt injection

Target Model Original High-interference Low-interference Random

Locations Pythia-70M 65.08%*** 36.93%** 32.53% 35.06%
GPT-2-Small 44.68%*** 18.42%*** 19.08%*** 16.42%

Llama-3.1-8B-Instruct 33.84%*** 20.78%*** 19.63%* 18.24%
Gemma-2-9B-Instruct 10.16% 12.71%*** 11.36% 10.66%

Llama-3.1-70B-Instruct 37.23%*** 28.21%*** 23.09%** 24.48%

Number Pythia-70M 65.32%*** 35.15% 36.71%*** 34.30%
GPT-2-Small 55.87%*** 30.33% 31.23% 34.71%

Llama-3.1-8B-Instruct 55.97%*** 31.87%* 32.90%*** 30.57%
Gemma-2-9B-Instruct 48.42%*** 29.93%*** 30.64%*** 27.16%

Llama-3.1-70B-Instruct 25.57%*** 8.85%*** 6.67% 7.09%

Science Pythia-70M 61.66%*** 23.13% 22.78% 28.58%
GPT-2-Small 75.70%*** 25.93%*** 26.07%*** 21.71%

Llama-3.1-8B-Instruct 49.67%*** 20.08%*** 18.95% 17.94%
Gemma-2-9B-Instruct 46.84%*** 20.40% 19.25% 20.15%

Llama-3.1-70B-Instruct 67.26%*** 48.22%*** 43.57% 42.24%

Note: Cell values show the success rate of elevating target-type tokens into the top-30 predictions.
Gray-shaded rows indicate black-box interventions. Testing uses a shared token set from the two small

models. ***, **, and * denote t-test significance at p < 0.001, p < 0.01, and p < 0.05, respectively, vs.
random baseline. High- and low-interference tokens lie in [0.5, 1.0] and [0.2, 0.5] for Pythia-70M, while
[0.3, 1.0] and [0.2, 0.3] in GPT-2-Small. Details in Appendix K.2.

3.4 GENERALIZATION OF POLYSEMANTIC INTERVENTION VULNERABILITY

Because token-gradient and prompt-based interventions do not rely on SAEs, they can be applied
to models without internal access. We therefore target Llama-3.1-8B/70B-Instruct and
Gemma-2-9B-Instruct, selecting three target types from the prompt-injection experiment. We
still focus on the top-activating tokens of features that interfere with those targets, while retaining
tokens extracted from Pythia-70M and GPT-2-Small. Details are illustrated in Appendix K.2

On Llama-3.1-8B-Instruct and Gemma-2-9B-Instruct, we apply gradient-based in-
tervention by extracting steering vectors through random sampling of only one high-interference
features’ top five activation texts, and could notably boost the presence of relevant tokens in the
top-10 prediction list with over 95% success rate. Prompt injection interventions are tested on
Llama-3.1-8/70B-Instruct and Gemma-2-9B-Instruct. As shown in Table 1, high-
interference tokens derived from the two small models can steer larger models more effectively than
random baselines. In hindsight, these results suggest that shared polysemantic structures observed in
small models also extend to larger models, indicating generalized vulnerabilities that persist across
architectures and training regimes.

3.5 ANALYZING SHARED BUT COUNTERINTUITIVE POLYSEMANTIC STRUCTURE

We observe that many similar feature pairs in GPT-2-Small and Pythia-70M that lie far apart
in the first-order symbolic manifold, M (by surface/gloss semantics), nevertheless lie close in both

5More intervention cases are listed in Table 5.
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models’ activation space F . To understand this transferability, we consider mechanisms that couple
features via higher-order semantic structure, including semantic-priming-type associations (e.g.,
thematic/scripts, causal, frame roles) and morphological relatedness, even when overt meanings
appear unrelated (Mandera et al., 2017; Bojanowski et al., 2017).

To probe these links, we conduct large-scale annotation with DeepSeek-V3 and GPT-5-mini.
Models are prompted to identify higher-order semantic relations for shared interfering feature pairs
that satisfy three criteria: interference > 0.4, semantic similarity in M < 0.2, and cross-model
feature-pair semantic similarity > 0.5. In total, 459,229 pairs are annotated (prompts, rubric, and
head-to-head annotator comparison in Appendix M). Only 27.7% of pairs are judged by at least one
model to exhibit a plausible higher-order association, and most such links remain counterintuitive
upon post-hoc inspection. Because the association-check task can be challenging for LLMs, we
also run a conservative paired-choice evaluation. We sample 3,800 high-interference, low-similarity
pairs. For each, we randomly draw a comparison pair strictly matched on semantic similarity but
with substantially lower interference, then ask GPT-5-mini to select which pair is more related
(details in Appendix M). The high-interference pair is chosen 64.3% of the time (Wilson 95% CI
[0.628, 0.658]); a one-sided exact binomial test against 0.5 is significant (p < 0.001), corresponding
to a log-odds of 0.589 in favor of the high-interference pair, indicating a statistically meaningful
yet modest effect. Taken together, these results both validate our filtering strategy for isolating
unrelated pairs in the intervention analyses and point to a striking regularity: LLMs instantiate stable,
cross-model polysemantic organization that is often opaque to semantic intuition.

In Appendix M, Table 7 reports examples where models detect latent associations between feature
pairs and where they do not. One notable case is the last, asterisked example in Table 7: both
annotators label it as negative. In our follow-up analysis, however, we hypothesize a biographical–
affective link: mentions of “Beethoven” may co-occur with expressions of frustration/suffering, given
his late-life deafness and celebrated late-period compositions. These examples suggest that LLM
polysemanticity may approximate latent knowledge structures and offer testable hypotheses. In
summary, it is possible that human studies could reveal comparable human recognition of the same
“weak signals” picked up across models, even if they cannot recall or justify them. A full adjudication
of this possibility lies beyond our present scope and we leave for future work.

3.6 MANIPULATING ACTIVATIONS FOR NEURON INTERVENTION

To complete our discussion, we explore models’ vulnerability to interventions on individual neurons.
Specifically, we investigate how the degree of polysemanticity in neurons affects the output. For
aggregated features obtained through agglomerative clustering under the cosine similarity threshold of
0.4, we quantify each neuron’s connected number of features. Here, we only involve neuron-feature
pairs with a connection strength greater than 0.2. Among all neurons, those connected to only one
or two aggregated features account for more than 33% in strongly connected neurons, as shown in
Figure 15. In addition to neurons connected to multiple or dozens of aggregate features, there are also
some “super-neurons” with connections exceeding 500. We examine the impact of manipulating these
neurons on the model’s output. Experimental results indicate that neurons with higher degrees of
polysemanticity are more vulnerable, which means they tend to affect model outputs more effectively.
For certain “super-neurons,” however, the impact on the model is notably asymmetric: masking them
results in less influence than neurons with lower polysemanticity, while amplifying their activations
often leads to exponentially greater effects on model behavior.

4 DISCUSSION

This work makes two contributions. First, we systematically investigate the vulnerability of LLMs to
structured interventions grounded in their polysemantic representations. Specifically, we examine
three types of intervention: (1) feature direction-based, (2) token gradient-based, and (3) prompt-
based. Feature direction interventions rely on SAEs. While less effective than gradient-based
approaches, they form the basis for deriving token gradient vectors. Token gradient-based inter-
ventions are most effective and can be constructed directly from activation texts, without requiring
SAE pre-training—although they assume access to internal activations. Prompt-based interventions
require minimal access and, despite their surface-level nature, still yield meaningful behavioral
shifts. Additionally, we explore neuron-level interventions, motivated by the uneven distribution of
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A B C D

Figure 5: Effects of activating and deactivating neurons by polysemantic level. The x-axis
indicates neuron categories grouped by the number of connected features (after clustering). The y-
axis reports the change in weighted cosine similarity. Each box plot centers on the median (50%) and
progressively splits the remaining data in half at each level. A and B correspond to GPT-2-Small;
C and D correspond to Pythia-70M. A and C show the effect of masking neuron activations, while
B and D show the effect of amplifying them.

features across neurons. We find that the behavioral impact of masking and amplification correlates
with neuron polysemanticity. We also identify a class of “super-neurons,” those encoding over 500
features, for which amplification significantly alters model behavior, while deactivation results in a
markedly reduced effect.

The second contribution lies in our finding that polysemantic, structural vulnerabilities iden-
tified in two small models transfer to larger, instruction-tuned black-box models (e.g.,
Llama-3.1-8B/70B-Instruct, Gemma-2-9B-Instruct) via token-gradient- and prompt-
level manipulations, producing predictable behavioral shifts. This suggests that certain polysemantic
structures are preserved across architectures and training regimes, exposing a shared representational
basis. This directly challenges prevailing theories that treat polysemanticity as an incidental artifact of
training (Marshall & Kirchner, 2024; Lecomte et al., 2023). Our exploratory analyses further suggest
that these transferable polysemantic structures are not reducible to higher-order relations readily intel-
ligible to humans; we therefore treat these counterintuitive regularities as testable hypotheses about
latent knowledge structure. These results sharpen a central question about LLM polysemanticity: are
they unintended byproducts or stable, higher-order patterns that await rigorous examination? Our
results point towards the latter. Finally, our findings strengthen recent evidence of representational
consistency and topological stability across models (Huh et al., 2024; Wolfram & Schein, 2025;
Lee et al., 2025), even as the origins and functional implications of this consistency remain open
challenges. Our work is the first to systematically evaluate polysemantic structural vulnerabilities
in real-world LLMs, but it has several limitations, including intervention depth and transferability
robustness tests. We discuss these limitations and ethical considerations in Appendix O.

5 CONCLUSION

We systematically probe the vulnerability of LLMs to structured interventions grounded in the
polysemantic representations of two small models using SAEs. We show that model behavior can
be steered toward specific feature directions by manipulating semantically unrelated yet interfering
features via three intervention methods. Interventions distilled from polysemantic structures shared
across the small models transfer to larger, black-box instruction-tuned models, indicating a stable and
transferable polysemantic topology that persists across architectures and training regimes. Post-hoc
annotation suggests that fewer than 30% of these shared interference structures align with higher-
order relations readily intelligible to humans; many counterintuitive cases may therefore serve as
generators of testable hypotheses about latent knowledge structure. Finally, by leveraging the uneven
distribution of features across neurons, we assess models’ sensitivity to neuron-level manipulations
across degrees of polysemanticity and reveal asymmetric effects in “super-neurons.” Together,
these findings provide a foundation for future work on the structural properties, vulnerabilities, and
representational robustness of LLMs.
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A RELATED WORK

A.1 A BRIEF REVIEW ON LLM ADVERSARIAL INTERVENTIONS

Over the past five years, a growing body of high-impact research has revealed that even aligned
LLMs remain vulnerable to a set of converging attack strategies. First, prompt-space jailbreaks
have evolved from handcrafted exploits into automated, highly transferable methods. For instance,
a single gradient-and-greedy–optimized “universal suffix” can consistently bypass refusal policies
in ChatGPT, Bard, Claude, and a wide range of open-source models—demonstrating both query
efficiency and cross-model generalizability (Zou et al., 2023). Second, activation-space steering
techniques like Contrastive Activation Addition (CAA) show that simple linear interventions in the
residual stream can steer behaviors such as hallucination, sycophancy, or toxicity with minimal
performance degradation (Panickssery et al., 2023). Third, parameter-space backdoors, such as the
Composite Backdoor Attack, embed stealthy triggers during fine-tuning that achieve near-perfect
malicious compliance without affecting standard benchmarks (Huang et al., 2023). Mechanistic
interpretability offers a unifying explanation: transformer activations encode more features than they
have dimensions, forcing representations into a compressed superposition and leading to widespread
polysemantic overlap (Elhage et al., 2022). Recent work with SAEs has begun to isolate—and in
some cases manipulate—these overlapping features directly (Nanda, 2024). Building on this insight,
our intervention targets SAE-derived polysemantic directions, integrating prompt-, activation-, and
neuron-level interventions into a unified, transferable framework that broadens the known landscape
of LLM vulnerabilities.

A.2 A BRIEF REVIEW ON SAE-BASED INTERVENTION TECHNIQUES IN LLMS

SAE-based interventions represent a promising direction for developing more interpretable and
controllable LLMs. Recent research have introduced a diverse set of SAE-based techniques, such
as clamping, patching, and causal tracing, applied across a range of use cases (Farrell et al., 2024;
Cunningham et al., 2023; Marks et al., 2024). Empirical results indicate that these methods can be
highly effective. For example, targeted unlearning via SAE features has been shown to suppress
undesired capabilities with fewer side effects than global fine-tuning (Khoriaty et al., 2025; Muhamed
et al., 2025), while feature-level steering enables more nuanced output control than prompt-based
methods alone (Rajamanoharan et al., 2024). A key advantage of SAE-based approaches is their
efficiency at inference time: they often require only a forward pass with lightweight vector operations
and typically do not require model retraining, making them well-suited for real-time interventions.

However, the approach is still in its early stages. Key limitations include challenges in achieving
complete and disentangled feature representations, which depend heavily on SAE training quality
and selection procedures (Chanin et al., 2024). Computational overhead remains non-trivial, though
recent developments such as k-sparse autoencoders and JumpReLU activations offer promising
improvements in scalability (Rajamanoharan et al., 2024). There is also a growing need for standard-
ized evaluation benchmarks tailored to intervention methods. A unified benchmark would enable
more meaningful comparisons across studies. Currently, researchers often rely on custom evaluation
protocols, limiting cross-paper comparability.

In summary, SAE-based interventions offer a powerful mechanism for both understanding and
steering model behavior. They uniquely bridge interpretability and utility: not only can we decode
model activations into human-interpretable concepts (Cunningham et al., 2023), but we can also
use those same features to drive controlled behavioral change (Khoriaty et al., 2025). In this
work, rather than focusing on a specific downstream application, we leverage SAEs to investigate
structural sensitivities in LLMs—demonstrating that polysemantic features can serve as a substrate
for transferable, interpretable interventions. This perspective highlights the broader role of SAEs in
the design of more transparent and controllable AI systems.
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B IMPACT STATEMENT

This work systematically investigates a semantic vulnerability in LLMs rooted in polysemanticity—
where single neurons encode multiple semantically dissimilar features. We introduce four com-
plementary approaches that expose this vulnerability: manipulating SAE-derived features, token
gradients, and prompts to steer model outputs via semantically unrelated inputs, and intervening
at the neuron level to reveal a correlation between polysemanticity and output sensitivity. We also
identify a class of “super-neurons” whose amplification disproportionately alters model behavior,
while masking them has a limited effect. These findings not only highlight the unique characteristics
of the structural fragility of LLMs but also provide practical tools for probing and controlling their
internal mechanisms. Our work lays a foundation for future research in AI safety and mechanistic in-
terpretability, not only enabling defenses against such vulnerabilities and more targeted interventions
for alignment, but also offering a theoretical lens into the model’s internal organization, revealing
stable yet counterintuitive interference patterns that may reflect a form of unconscious knowledge
association.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs play a significant role in our study. We list the usages of LLMs below.

Synthetic data generation. For the dataset used for intervention experiments, we use
DeepSeek-V3 to generate incomplete sentences for next-token completion. Details are elabo-
rated in Appendix E.

SAE feature auto-interpretation. The SAE feature glosses in the main experiments are generated
by GPT-4-mini. For cross-validation, we also annotate a subsample of SAE features using
DeepSeek-V3. Details in Appendix J.

Feature pair association analysis. To investigate whether the seemingly unrelated interference
feature pairs present higher-order associations that are still comprehensible, we ask GPT-5-mini
and DeepSeek-V3 to label these feature pairs for a post-hoc check. Details in Appendix M.

Grammar check for paper writing. We use LLMs to refine phrasing, correct grammar, and im-
prove readability during manuscript preparation, while all substantive ideas, analyses, and conclusions
remain our own.
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D SPARSE AUTOENCODER TRAINING

SAEs are a rapidly developing tool for probing the polysemantic structure of neurons (Shu et al.,
2025). Given the activation vector a ∈ Rdembed from a particular model layer, an SAE projects it into a
higher-dimensional sparse code f ∈ Rdsae in order to disentangle the multiple semantics that a single
neuron may simultaneously encode. The forward computation and the resulting feature definition f
are shown below:

f = ReLU
(
Wenca+ benc

)
,

ā = Wdecf + bdec.

The encoder and decoder parameters are

Wenc ∈ Rdsae×dembed , Wdec ∈ Rdembed×dsae , benc ∈ Rdsae , bdec ∈ Rdembed .

The SAE is trained by dictionary learning to minimize

L =
∥∥a− ā

∥∥ 2

2
+ λ

∑
i

fi
∥∥Wdec [·,i]

∥∥
2
,

where the first term is the reconstruction loss and the second encourages sparsity (weighted by λ).

For each feature fi, its direction in the embedding space is defined as the unit-norm decoder column.
Note that the activation can be represented as linear combination of feature directions. The seman-
tics of features are interpreted by large language models, such as GPT-4o-mini, based on their
activation texts.

ŵi =
Wdec [·,i]∥∥Wdec [·,i]

∥∥
2

.
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E DATASET GENERATION

The investigation of the interference effects of SAE features is conducted within the contexts where
they are likely to fire, which allows us to manipulate the expression of these features without
significantly compromising the model. For example, when given the prompt “In the weekend, we are
going to", the features related to locations are incorporated into our examination. Additionally, we
observe a positive correlation between the boost of a SAE feature and the increased probability of its
high-activation tokens in the model’s next-token predictions. Therefore, here we simply construct
sentences for each token in the model’s vocabulary, ensuring that these sentences are grammatically
capable of leading to the token and evaluate the expression of features with respect to the tokens’
output probabilities.

System: Generate exactly 3 incomplete English sentences where the next word
would clearly be "target_token". Return a JSON dictionary where:
- The ONLY key is the exact "target_token" (including
spaces/capitalization) - The value is a list of 3 sentence fragments that
naturally lead to "target_token"
Example for "target_token=‘ apple’":
{
" apple": [
"She reached into the basket and grabbed",
"The teacher pointed to the red",
"He washed and polished his"
]
}
Rules:
1. All sentences MUST grammatically require "target_token" next to it
2. Use different contexts / scenarios for variety 3. Maintain exact
formatting - no additional keys or explanations
User: target_token={token}

We also use DeepSeek-V3 to roughly classify the token types:
System: You are a linguistic analyzer. Your task is to classify tokens
from language model vocabularies into semantic categories.

Given a list of tokens, classify each token into ONE of these categories:

- person: Names, pronouns, occupations, human-related terms
Examples: " John", " Mary", " doctor", " teacher", " he", " she", "
people"

- location: Cities, countries, geographical features, places
Examples: " London", " America", " mountain", " beach", " city", "
Paris", " China"

- time: Time units, dates, temporal expressions, seasons
Examples: " Monday", " January", " morning", " year", " day", " week", "
winter"

- number: Numerical digits, number words, mathematical terms
Examples: " one", " two", " 1", " 2", " first", " hundred", " plus", "
minus"

- animal: All living creatures, insects, pets, wildlife
Examples: " dog", " cat", " bird", " lion", " fish", " elephant", "
butterfly"

- food: Edible items, drinks, cooking terms, ingredients
Examples: " apple", " bread", " water", " coffee", " chicken", " rice",
" pizza"
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- color: Color names, shades, visual descriptors
Examples: " red", " blue", " green", " black", " white", " yellow", "
purple"

- emotion: Feelings, emotional states, psychological terms
Examples: " happy", " sad", " angry", " love", " fear", " excited", "
worried"

- body: Human/animal body parts, anatomy
Examples: " head", " hand", " eye", " heart", " leg", " face", " brain"

- transport: Vehicles, transportation methods
Examples: " car", " bus", " train", " plane", " ship", " bicycle", "
truck"

- science: Scientific terms, elements, physics/chemistry concepts
Examples: " oxygen", " energy", " atom", " DNA", " gravity", " electron",
" acid"

- abstract: Philosophy, ideas, concepts, mental constructs
Examples: " freedom", " justice", " truth", " idea", " concept", "
theory", " belief"

- object: Physical items, tools, furniture, equipment
Examples: " table", " chair", " book", " phone", " computer", " tool", "
box"

- action: Verbs, activities, movements, processes
Examples: " run", " walk", " eat", " think", " write", " jump", " sleep"

- unknown: Anything that doesn’t clearly fit into the above categories

Return a JSON object where each key is a token and each value is its
category.

Rules:
1. Classify ALL provided tokens
2. Use EXACT token strings as keys (including spaces)
3. Choose the MOST appropriate single category
4. Use lowercase category names only
5. When in doubt, use “unknown"
6. Return ONLY the JSON object, no additional text

User: Classify these tokens:
token_str_1, token_str_2, ....
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Here we provide a table of some example tokens and their sentences generated by DeepSeek-V3
(See Table 2).

Table 2: Token type and prompt sentences examples

Token Type Sentence Examples
London location After a long flight, we finally arrived in

The train from Paris was heading straight to
She always dreamed of visiting the historic city of

harbor location The cruise ship slowly approached the bustling
Fishermen gathered at the edge of the protected
The city’s economy thrived thanks to its busy

Mike person After the meeting, everyone turned to
The teacher called on
She handed the report directly to

Trump person The media has been closely following the latest statements from
During the debate, the moderator asked a direct question to
Many supporters gathered outside the venue to catch a glimpse of

expert person After years of practice, she became an
The company hired an
When it comes to antique furniture, he’s an

loves emotion She truly believes that everyone
The way he looks at her shows how much he
Despite their differences, their friendship

hates emotion Everyone knows that she
The way he treats people shows he
It’s clear from his expression that he

apple object She reached into the bag and pulled out
The smoothie recipe called for one chopped
He carefully balanced the shiny red

sad emotion After hearing the bad news, she felt incredibly
The movie’s ending left everyone feeling
His eyes told a story of being deeply

happy emotion After receiving the good news, she felt extremely
The children were laughing and playing, clearly very
Winning the competition made him incredibly
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F SUPPORTIVE STATISTICS

Active features refer to SAE features that have input texts enabling them to reach an active state.
In addition to the semantic clustering of active features mentioned in the main text, we also apply
agglomerative clustering to cluster their interference values. The threshold for dividing clusters is set
to 0.4. As shown in Figure 7, the vast majority of clusters contain only one feature, indicating that
only a small number of features exhibit high interference with others.

In Figure 8, we also provide an overview of the distribution of semantic similarity and interference
values between features, as well as their correlations. Since the distribution and correlation of these
two types of data remain largely consistent across all layers of the model, we present a representative
example layer for illustration.

A B

Figure 6: Number of active features extracted by SAEs per layer. A is the result of Pythia-70M,
and B is the result of GPT-2-Small. Error bars represent 95% confidence intervals.

A B

Figure 7: Interference Cluster Size Distribution. A is the result of Pythia-70M, and B is the
result of GPT-2-Small. Error bars represent 95% confidence intervals.
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A B C

D E F

Figure 8: Semantic similarity and interference distribution of Pythia Res-4 and
GPT2-Small Res Post-4 layer. (A–C) are the results of Pythia-Res-4. For semantic
similarity, 14.0% of values are below 0.15, 29.6% are below 0.2, 67.4% are below 0.3, and 89.6%
are below 0.4. For interference, 85.5% of values are below 0.1, 96.4% are below 0.2, 99.2% are
below 0.3, and 99.8% are below 0.4. The bivarite analysis suggests semantic similarity and inter-
ference value is positively associated (β = 0.071, s.d = 0.092, p < 0.001). (D–F) are the results
of GPT-2-Smal Res Post-4. For semantic similarity, 10.8% of values are below 0.15, 24.5%
are below 0.2, 63.3% are below 0.3, and 89.5% are below 0.4. For interference, 95.6% of values
are below 0.15, 99.7% are below 0.2, approximately all values are below 0.3 and 0.4. The bivarite
analysis also suggests a positive association (β = 0.030, s.d = 0.049, p < 0.001).

G DEFINITION OF THE ALTERNATIVE METRIC: WEIGHTED OVERLAP

In addition to the weighted cosine similarity, we report results with an alternative metric, weighted
overlap, which measures the raw probability mass assigned to the feature-associated token set
Tf ⊂ V in Section H and I. This metric does not smooth over near misses via embedding similarity;
instead, it directly captures how much of the model’s next-token distribution lands on tokens in Tf .

Definition. For a model output distribution P ∈ ∆|V | and target token set Tf ,

w(P, Tf ) =
∑
t∈Tf

P (t). (3)

Intervention effect. Let O and Õ denote the model’s output distributions before and after interven-
tion, respectively. The (absolute) change in weighted overlap is

∆w = w(Õ, Tf ) − w(O, Tf ). (4)

Relative change. When a scale-free summary is preferred, we also report the relative change:

∆̂w =
w(Õ, Tf )− w(O, Tf )

max{w(O, Tf ), ϵ}
, (5)

where ϵ > 0 is a small constant to avoid division by zero.
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H INTERVENTION TEST WITH FEATURE DIRECTION

H.1 GENERALIZED FORMULATION OF A STEERING-VECTOR INTERVENTION

Let x1:T ∈ {1, · · · , V }T be the input sequence, E ∈ RV×d be the token-embedding matrix, and G1

to GL be the blocks of a decoder-only Transformer. The unperturbed hidden states are

H0 = E[x1:T ], Hℓ = Gℓ (Hℓ−1) (ℓ = 1, . . . , L).

For any layer index p, we denote the vectorized activation as

Ap = vec (Hp) ∈ Rd×T .

With different strategies, we extract the steering direction zp ∈ Rd×T . For injection at site s, we
define the linear Jacobian:

Φp→s : Rd×T → Rds

obtained by composing linear portions between indices p and s. The transported steering direction is

zs =

{
Φp→szp, if s > p

Φ†
s→pzp, if s < p

where † denotes the Moore–Penrose pseudo-inverse. When s = p, we set zs = zp. Eventually, we
modify the activation at site s:

Ãs = As + αzs.

The network proceeds normally with this perturbation, yielding modified hidden states H̃ℓ and logits
ỹ1:T .

H.2 EXPERIMENT DETAILS

To obtain the complete intervention data of various levels of interference features on the target
features, we first filtered out all features in each layer that contained interference values at all levels,
and for which the semantic similarity with the target feature is below the four selected thresholds.
Subsequently, we select a subset of these features as the target features and identify the corresponding
interference features across the various interference levels. Next, we search for other interference
features with low interference values to the target features for experimentation. Specifically, other in-
terference features are selected based on the interference values lying in intervals:[0.0, 0.1], [0.1, 0.2],
[0.2, 0.3] and [0.3, 0.4]. The scale parameter was tested within the range of [−20, 20], and we avoid
larger ranges to prevent severe disruption of the model.

Due to limitations on computational power, we sample clusters and features across various layers. In
each SAE experiment with Pythia-70M, we sample 180 target features and collect approximately
2,700 interference features. In each SAE experiment with GPT-2-Small, we sample 480 target
features and collect approximately 7, 200 interference features. For gradient experiments, we reduced
60% sampled features, but three times the number of gradient intervention vectors are extracted to
keep the test set scale. As mentioned in the main text, for each feature, we focus on its top-activating
token and use DeepSeek-V3 to generate three prompt sentences for it. For each sentence, we test
within the aforementioned scale range and record the result with the greatest improvement in the
two metrics. This result means the best performance that the steering vector can achieve to induce
the semantics of output toward the target feature without significantly disrupting the model. The
final two metrics are averaged across all sentences for all features. To show the robustness of our
experiments, the results of the alternative metric are presented in Figure 9.
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Figure 9: Feature-level intervention effects measured by weighted overlap. Subpanels follow
the same conventions as Figure 3, but intervention effects are computed using relative change of
weighted overlap (∆̂w). For (A–B), error bars indicate 95% confidence intervals; for (C), error bars
denote 90%, 95%, and 99% confidence intervals.

I INTERVENTION TEST WITH TOKEN’S GRADIENT

I.1 TOKEN GRADIENT DIRECTION EXTRACTION

Given a tokenized input sequence x = [x0, . . . , xT−1], let ei = E[xi] denote the embedding of token
xi, and e = [e0, . . . , eT−1] the full input embedding sequence. Let fℓ : RT×d → AT

ℓ denote the
model’s transformation up to layer ℓ. The activation at position i is:

aℓ,i = fℓ(e)[i] ∈ Aℓ.

We define a scalar probe loss that selects this activation via a linear projection vector v ∈ Rd:

L = ⟨aℓ,i, v⟩.

The gradient of this loss with respect to the input embedding ei is:

gℓ,i :=
∂L
∂ei

=
∂⟨aℓ,i, v⟩

∂ei
.

We then normalize this vector to obtain a direction in embedding space:

ĝℓ,i :=
gℓ,i

∥gℓ,i∥2
.

We refer to ĝℓ,i as the token gradient direction—the direction in input embedding space along which
perturbations to token xi most increase its activation in Aℓ along v.

I.2 EXPERIMENT DETAILS

Steering with the feature direction requires a pretrained sparse auto-encoder of the target model,
which incorporates substantial computational costs and lacks scalability. To break this limitation,
we need to explore a general approach. Observe that the SAE features are activated mainly by the
top-activating token in its activation texts, while other tokens are just diluting its expression. Based
on this observation, we can obtain a better steering vector by focusing on this particular token, and
a sketch is as follows. We first feed the feature’s activation text into the model, then compute the
gradients of the top-activating token with respect to all neurons in the layer. The resulting gradients
are combined to form a vector.

The SAE dataset from Neuronpedia contains approximately 50 activation text segments per active
SAE feature, each strongly activating its corresponding feature. Due to computational limitations, we
try to extract the gradient vectors from the first 3 activation texts of each feature. Also, we scale the
vector within the same range [0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 17, 20]. Each experiment on
steering with token gradients combined with steering with feature directions can be done in one hour
and a half for Pythia-70M and six hours for GPT-2-Small, running on a single thread of Intel
i7-14700K. The results of the alternative evaluation metric are presented in Figure 10.
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Table 3: Examples of interventions using SAE features, token gradients, and prompt injections

Type Model Intervention Target feature Result

Feature Pythia-70M Steering feature
vector: occur-
rences of specific
surnames

Geographical loca-
tions

“In the next week, we will go to”
↑ Entered ↓ Dropped

Berlin +0.025 our -0.029
London +0.012 some -0.012
To +0.010 an -0.010

GPT-2-Small Steering feature
vector: positive
or negative event
outcomes

Expressions of sad-
ness

“After hearing the bad news,
she felt incredibly”

↑ Entered ↓ Dropped
grateful +0.051 bad -0.047
blessed +0.028 guilty -0.044
excited +0.028 uncomfortable -0.025

Token Pythia-70M Steering token vec-
tor: legal terminol-
ogy related to li-
censes and their im-
plications

Elements related to
political commen-
tary and critique

“In the election of this year, it
is suggested to vote for”
↑ Entered ↓ Dropped

Donald +0.030 an -0.020
more +0.026 one -0.015
@ +0.015 President -0.013

GPT-2-Small Steering token vec-
tor: key terms re-
lated to prices and
transactions

References to loca-
tion Tokyo

“The organizing committee just
announced that the upcoming

finals will be held in”
↑ Entered ↓ Dropped

Tokyo +0.005 Toronto -0.007
Seoul +0.003 Seattle -0.005
Moscow +0.004 London -0.001

Llama-3.1-
8b-Instruct

Steering gradient
vector: references
to the world and its
various aspects

References to
‘Switzerland’

“I would like to recommend you
to spend holidays in”

↑ Entered ↓ Dropped
Switzerland +0.16 Italy -0.034
Germany +0.089 Greece -0.016
Canada +0.015 Bulgaria -0.012

Prompt Pythia-70M Injection of the to-
kens “Court” and
“Dat”, both before
and within the text

References to loca-
tions

“In the upcoming holiday, we will
go to”

↑ Entered ↓ Dropped
Japan +0.021 some -0.014
Europe +0.015 an -0.006
Tokyo +0.012 see +0.003

GPT-2-Small Prepending the in-
jection text “(team
writers writers)”

Terms related to
names or surnames

“After years of hard work, the award
finally went to”

↑ Entered ↓ Dropped
Steve +0.005 China -0.006
John +0.002 waste -0.005
one +0.003 Donald +0.003

Llama-3.1-
8b-Instruct

Prepending the in-
jection text “(place-
ment from place-
ment)”

References to loca-
tions

“In the next weekend we will go to”
↑ Entered ↓ Dropped

Paris +0.011 another -0.013
** +0.010 H -0.003
- +0.006 K -0.003

Note: ↑ Entered means that corresponding tokens entered the top-10; ↓ Dropped means that corresponding
tokens dropped from the top-10. Gray-shaded rows indicate black-box interventions.

J EXPERIMENTS WITH DEEPSEEK-V3 FEATURE DESCRIPTIONS

To evaluate the sensitivity of our findings to the selection of LLMs for auto-interpretation, we
employ an alternative model, DeepSeek-V3, to interpret the features of a sparse auto-encoder. The
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Figure 10: Token-level intervention effects measured by weighted overlap. Subpanels follow
the same conventions as Figure 4, but intervention effects are computed using relative change of
weighted overlap (∆̂w). For (A–B), error bars indicate 95% confidence intervals; for (C), error bars
denote 90%, 95%, and 99% confidence intervals.

explanation text is subsequently processed by the text-embedding-3-large model to obtain
embeddings. These embeddings are then utilized as semantic vectors to assess the similarity between
features. For this illustrative sampling, features from the Pythia-70M att-5 layer are selected. The
interpretation of features by large models is generated by feeding the model the top-activating texts
of the feature and denoting the high activating tokens in it. Specifically, the prompts we write for
DeepSeek-V3 are as listed below.

System: We’re studying neurons in a neural network. Each neuron activates
on some particular word or concept in a short document. The activating
words in each document are enclosed by « and ». Look at the parts of
the document the neuron activates for and summarize in a single sentence
what the neuron is activating on. Try to be general in your explanations.
Don’t just repeat activation words. Also, you can summarize multiple
points if the text content is not highly consistent. Pay attention to
things like the capitalization and punctuation of the activating words
or concepts, if that seems relevant. Keep the explanation as short and
simple as possible, limited to 32 words or less. Omit punctuation and
formatting.
User: The activating documents are given below:
1.activation_text_1
2.activation_text_2
...
5.activation_text_5

In Figure 11, we compare semantic relatedness among SAE features using embeddings of explana-
tions generated by DeepSeek-V3 and GPT-4o-mini. The left density plot shows that pairwise
similarities from the two models are tightly aligned, while the right heatmaps further illustrate that
both models induce comparable feature–feature semantic structure.

Figure 12 compares SAE feature-direction and gradient-based interventions under auto-interpretations
from GPT-4o-mini and DeepSeek-V3. Semantic dissimilarity threshold is set to different scales
for intervention feature selection. Although this check is limited to a single layer (and thus exhibits
greater variance), we consistently observe that high-interference, low-semantic-similarity features
steer the target far more strongly than a random baseline. This pattern holds under both interpreters,
indicating robustness to the choice of auto-interpretation model.
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Figure 11: Semantic relatedness between features from the view of DeepSeek-V3 and
GPT-4o-mini.

Figure 12: Intervention effects under GPT-4o-mini vs. DeepSeek-V3 auto-interpretations
of SAE features. Top row shows SAE-direction interventions; bottom row shows gradient-based
interventions. Columns are the evaluation metrics: left, ∆c; right, ∆̂w. Error bars denote 95%
confidence intervals.
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K BLACK-BOX INTERVENTIONS ON LARGER MODELS

We hypothesize that the polysemantic structures learned by large language models may exhibit some
degree of generalizability. To explore this further, the interference study is extended to larger models
without pretrained sparse auto-encoders.

K.1 STEERING WITH TOKEN GRADIENT VECTOR

The scalable intervention on Llama-3.1-8B-Instruct is conducted by first selecting target
type tokens as mentioned above and identifying target features in Pythia-70M and GPT-2-Small
for which these tokens are the top-activating ones. The two interference feature sets in Pythia-70M
and GPT-2-Small with respect to the target features are then identified. Next, we collect the
top-activating tokens in two models respectively, and compute the union. The figure13 shows a sketch
of the interference tokens extracted from two models.

(a) Person interference tokens (b) Location interference tokens (c) Emotion interference tokens

Figure 13: Three types of interference tokens

After getting the tokens, we proceed to collect the activation texts, which may activate interference fea-
tures of the target in black-box models. Due to computational constraints, we only compute gradients
from and perform operations on the first half of residual layers in Llama-3.1-8B-Instruct.
The intervention experiments are done for three target token types, each containing about 100 sen-
tences. More intervention examples are listed below. It takes about 20 minutes for a single RTX4090
GPU to find a highly effective gradient vector for steering.

Table 4: Examples of interventions on Llama-3.1-8B-Instruct Using Token Gradient Vector

Type Intervention feature Result
location terms related to data and its presen-

tation
“After months of planning, our road

trip finally reached”
↑ Entered ↓ Dropped

New +0.017 an -0.006
Seattle +0.015 it -0.007
San +0.011 our -0.002

the verb “be” in various forms and
contexts

“She always dreamed of
owning a small cafe in”
↑ Entered ↓ Dropped

Vienna +0.080 France -0.008
Munich +0.071 town -0.007
Berlin +0.038 Italy -0.006

Continued on next page
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Table 4 – Examples of interventions Using Token Gradient Vector (Continued)
Type Intervention feature Result

proper nouns, names, and references
to specific roles or positions

“This novel’s opening scene takes
place aboard a train to”
↑ Entered ↓ Dropped

Beijing +0.023 New -0.026
Tokyo +0.020 Venice -0.009
Shanghai +0.018 Istanbul -0.010

quantitative data points related to
statistics and performance metrics

“The rebels established their
hidden base deep within”
↑ Entered ↓ Dropped

Afghanistan +0.018 an -0.009
Germany +0.015 their -0.003
Eastern +0.014 one -0.002

references to specific labeled items
or categories

“His last known coordinates
placed him somewhere near”

↑ Entered ↓ Dropped
Paris +0.012 an -0.003
New +0.010 their -0.003
Moscow +0.009 Lake -0.002

person quantitative data points related to
statistics and performance metrics

“Nobody expected the mysterious
package to be from”

↑ Entered ↓ Dropped
Paul +0.261 the -0.104
Emmanuel +0.026 a -0.078
Matthew +0.021 Lake -0.51

references to academic institutions
or concepts

“The voice on the recording
definitely belongs to”
↑ Entered ↓ Dropped

Robert +0.015 a -0.101
Patrick +0.012 the -0.088
David +0.009 me -0.033

phrases related to pre-approval pro-
cesses and conditional statements

“The fingerprints found at the
scene match those of”
↑ Entered ↓ Dropped

Michael +0.003 your -0.017
Richard +0.003 one -0.011
Smith +0.004 both -0.008

keywords related to file management
and programming constructs

“This traditional folk song
was popularized by”

↑ Entered ↓ Dropped
Bruce +0.010 Pete -0.086
Walter +0.010 American -0.032
Paul +0.007 Woody -0.021

terms related to multimedia and
video production

“The confidential information was
leaked by former employee”
↑ Entered ↓ Dropped

Mike +0.017 and -0.024
Tom +0.012 who -0.024
Bill +0.011 to -0.010

emotion instances of the verb “is.” “After trying the new recipe,
my brother absolutely”
↑ Entered ↓ Dropped

love +0.121 fell -0.042
hate +0.095 LO -0.037
dislike +0.015 ad -0.031

Continued on next page
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Table 4 – Examples of interventions Using Token Gradient Vector (Continued)
Type Intervention feature Result

references to legal documents and
real estate transactions

“Science proves that most
infants naturally”

↑ Entered ↓ Dropped
Like +0.048 develop -0.099
like +0.020 prefer -0.051
love -0.001 learn -0.034

phrases indicating topics of discus-
sion or content focus

“His body language suggests
he secretly”

↑ Entered ↓ Dropped
love +0.457 wants -0.158
loved +0.012 enjoys -0.069
hate +0.015 hopes -0.062

phrases indicating relationships and
affiliations in contexts such as
surveillance, borders, and regula-
tions

“This fabric texture makes
allergy sufferers”

↑ Entered ↓ Dropped
love +0.126 miserable -0.091
like +0.020 feel -0.074
hate +0.027 and -0.043

statements that conclude or summa-
rize concepts

“After the concert
critics began to”

↑ Entered ↓ Dropped
hate +0.017 question -0.070
love +0.016 praise -0.064
enjoy +0.010 dissect -0.054

Note: ↑ Entered means that corresponding tokens entered the top-10; ↓ Dropped means that corresponding
tokens dropped from the top-10. Gray-shaded rows indicate black-box interventions.

K.2 PROMPT INJECTION

Prompt injection in our experiments is done on the token types listed in Appendix E. Based on the
classification of tokens, we also generate test sentences for each type, requiring that these sentences
grammatically lead to tokens of the target type. The prompt is as follows.
System: You are a creative writing assistant specialized in generating
incomplete sentences. Your task is to create incomplete sentences where
the next logical token would very likely be from the category category.

Requirements:
1. Generate approximately 1000 incomplete sentences
2. Each sentence should be approximately 20 tokens long when complete
3. The sentences should end at a natural point where the next word would
very likely be a category word
4. Use diverse contexts, scenarios, and grammatical structures
5. Make the sentences engaging and varied
6. Ensure the incomplete sentences create strong expectation for
category words

Examples for category:
- For ’animal’: "In the dense jungle, we could hear the roar of a wild"
- For ’color’: "The sunset painted the sky a beautiful shade of"
- For ’emotion’: "When she heard the news, her face showed pure"
- For ’location’: "Our vacation destination this summer will be"
- For ’number’: "The recipe calls for exactly"
- For ’person’: "The award ceremony will be hosted by a famous"
- For ’science’: "The experiment required careful measurement of"
- For ’time’: "The meeting is scheduled for next"
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Return your response as a Python list of strings, with exactly 1000
sentences. Format it properly as valid Python code that can be executed.
Start your response with: sentences = [
End your response with: ]

Do not include any explanatory text before or after the list.

User: Generate approximately 1000 incomplete sentences for the category
category.

Available type tokens (separated by |, each token is enclosed in quotes):
type_token_1, type_token_2, ...

IMPORTANT NOTES:
- Each token above is a separate vocabulary item from language models
- Some tokens may have leading/trailing spaces (like " dog" or "cat ")
- These are the exact token strings that should be likely to appear as the
next token after your incomplete sentences
- Consider the token boundaries when creating sentences

Please generate diverse, engaging incomplete sentences where the next
word would very likely be from the category category tokens shown above.
Make sure to use various contexts and grammatical structures.

Return as a Python list: sentences = [...]

The model returns approximately 400 to 800 sentences for each type. The dataset of token
type denotation, along with the example sentences, has been made available in the GitHub repository.

After annotating the tokens in the model’s vocabulary with type labels, we partition the token sets
based on the intervention information provided by the sparse auto-encoder. First, we filter for features
where the highly activated tokens contain the target token type, simply tagging these as target features.
Specifically, for each activation text, we identify the token with the highest activation value (max_act)
and set a ratio (here, 0.8). Tokens with activation values exceeding ratio * max_act are considered
highly activating the interference feature.

We then identify all interference features whose interference value with the target feature exceeds 0.2
and whose semantic similarity is below 0.3. Based on this set of interference features, we further
partition them into high-interference and medium-interference sets. Features with interference values
above a high_threshold (for a given target feature) are classified as high-interference features, while
those with interference values between 0.2 and high_threshold are classified as medium-interference
features.

Subsequently, we collect the highly-activating tokens from features in each set to form the respective
token sets. All remaining tokens that were not collected constitute the random token set. It should
be noted that the high-interference and medium-interference token sets exhibit significant overlap.
To address this, we deduplicate the two sets to obtain disjoint token sets. For example, in the case
of the Pythia-70M model, we annotate 1,938 tokens as belonging to the “location” type. Using
the method described above and setting 0.5 as the high-interference threshold, the resulting high-
interference token set contains 10,185 tokens, while the medium-interference set consists of 34,946
tokens. And 13,323 tokens remain in the random set. There is an overlap of 9,535 tokens between
the high- and medium-interference sets. After deduplication, the high-interference set retains 650
tokens, and the medium-interference set retains 25,404 tokens.

For experiments on Pythia-70M and GPT-2-Small, we use the token sets gener-
ated by each respective model. For experiments on Llama-3.1-8B/70B-Instuct and
Gemma-2-9B-Instruct models, we adopt the union of the token sets from the correspond-
ing interference levels of the two small models. We examine a total of eight categories of token
types: location, person, emotion, color, animal, science, number, and time. Apart from the three types
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mentioned in the main text that demonstrate strong generalizability, the test results for the remaining
types are presented below.

Table 5: Token Types without Strong Generalizability

Target Model Original High-interference Low-interference Random

Person Pythia-70M 60.28%*** 29.02% 28.58% 32.31%
GPT-2-Small 54.29%*** 27.47%*** 26.97%** 25.16%

Llama-3.1-8B-Instruct 38.85%*** 19.20%*** 19.08%*** 16.86%
Gemma-2-9B-Instruct 43.27%*** 25.36% 26.10% 25.04%

Llama-3.1-70B-Instruct 46.27%*** 21.90%*** 21.13%** 19.61%

Animal Pythia-70M 96.96%*** 28.49% 30.75% 29.83%
GPT-2-Small 86.11%*** 21.64% 18.87% 25.03%

Llama-3.1-8B-Instruct 67.07%*** 42.76%* 40.56% 40.89%
Gemma-2-9B-Instruct 26.09%*** 41.02%*** 38.50% 38.47%

Llama-3.1-70B-Instruct 49.32%*** 32.80%* 30.79% 31.43%

Emotion Pythia-70M 61.74%*** 26.13%*** 21.11% 20.68%
GPT-2-Small 58.84%*** 36.91%*** 35.22%* 33.85%

Llama-3.1-8B-Instruct 60.16%*** 27.94% 27.45% 29.37%
Gemma-2-9B-Instruct 56.55%*** 13.85% 13.63% 13.50%

Llama-3.1-70B-Instruct 51.51%*** 44.90%*** 40.63% 40.40%

Color Pythia-70M 97.31%*** 17.89% 21.49% 21.80%
GPT-2-Small 85.47%*** 35.57% 33.13% 36.93%

Llama-3.1-8B-Instruct 76.76%*** 22.01% 20.67% 20.97%
Gemma-2-9B-Instruct 22.57%*** 13.58% 16.10% 15.67%

Llama-3.1-70B-Instruct 76.85%*** 19.08% 17.88% 18.44%

Time Pythia-70M 69.92%*** 45.33%*** 45.54%*** 41.33%
GPT-2-Small 58.48%*** 31.55%*** 27.72%*** 21.42%

Llama-3.1-8B-Instruct 51.41%*** 25.58% 26.29% 25.95%
Gemma-2-9B-Instruct 55.15%*** 25.10%* 25.94%*** 23.62%

Llama-3.1-70B-Instruct 78.28%*** 36.87% 36.68% 37.71%

Note: Cell values show the success rate of elevating target-type tokens into the top 30 predictions.
Gray-shaded rows indicate black-box interventions. Testing uses a shared token set from the two small

models. ***, **, and * denote t-test significance at p < 0.001, p < 0.01, and p < 0.05, respectively, vs.
random baseline. High- and low-interference tokens lie in [0.5, 1.0] and [0.2, 0.5]. Details in Appendix K.2.
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L COVERT INTERVENTION ON Hellaswag TESTSET

To further examine the impact of the interference vectors obtained in the aforementioned sections
on the overall performance of the model, we conduct a rapid validation using the experimental
results targeting the “location” type of interference in Llama-3.1-8B-Instruct. Given that
the intensity of the interference vectors applied in the previous experiments is aimed at maximizing
the disruptive effect—which likely caused substantial impairment to the model, we first reduce the
scale to 0.25 times its original value. Subsequently, we randomly select 500 test samples from the
HellaSwag validation set and evaluate each interference vector on them. Using accuracy as the
evaluation metric, the experimental results demonstrate that, out of a total of 174 interference vectors,
149 decreased the accuracy, while 25 increased it. The baseline accuracy is 77.2%, and the average
reduction in accuracy is 2.77%. Some examples that keep model performance, i.e. reduce accuracy
fewer than 1%, while still having substantial intervention effects are listed below.

Table 6: Covert Intervention on Hellaswag Dataset

Intervention Feature Top Predicted Tokens
Description of precautions related to safety
protection

“The documentary crew disappeared
while filming in remote areas of”

Raw Intervention
the 0.35 the 0.24
Papua 0.027 Papua 0.04
Nepal 0.016 Africa 0.035

Numerical data that may require ordering
or sorting

“She always dreamed of owning a
small cafe in”

Raw Intervention
the 0.34 the 0.36
a 0.27 a 0.28
her 0.21 Paris 0.13
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M TRANSFERABLE POLYSEMANTIC STRUCTURE EXPLORATION

M.1 BRAINSTORMING HIDDEN ASSOCIATIONS

In this section, we analyze shared interference patterns in GPT-2-Small and Pythia-70M,
which we previously demonstrated transfer to larger models under intervention. First, we use
DeepSeek-V3 and GPT-5-mini to annotate every selected feature pair with the following prompt
instruction.

System: You are an expert in analyzing neural network feature semantics.
Given two SAE (Sparse Autoencoder) features, their explanations, and
their top activation texts, determine if they are semantically related.
For each feature, you will see:
- An explanation describing what the feature captures
- 5 text segments where the feature activates most strongly.
High-activation tokens are marked with «<token»> or «<multiple tokens»>

Analyze the explanations and the marked tokens/activation patterns to
determine:
1. Are these two features semantically related? Consider any form of
semantic relationship - including direct overlaps (capturing similar
concepts, linguistic patterns, or contextual meanings) as well as
higher-order associations (e.g., semantic priming, thematic relatedness,
or complementary roles).
2. If related, provide a concise description (max 50 tokens) of their
relationship.
Return your analysis in this exact JSON format:
"isRelated": true/false, "description": "brief description" or null
Examples:
- Features activating on different tenses of verbs: "isRelated": true,
"description": "Both capture verbal expressions, one for past tense,
other for present tense"
- Features for numbers vs. animals: "isRelated": false, "description":
null
- Features for positive vs. negative emotions: "isRelated": true,
"description": "Both capture emotional expressions with opposite
valence"
- Features for “doctor” vs. “hospital”: "isRelated": true,
"description": "Conceptually linked via medical domain (profession vs.
location)"
- Features for “boat” vs. “sand”: "isRelated": true, "description":
"Loosely associated through beach/marine context (object vs. terrain)"

User: Feature A: feature_a
Explanation: feature_a’s explanation
Top activations: texts that activates feature_a the most
Feature B: feature_b Explanation: feature_b’s explanation
Top activations: texts that activates feature_b the most

To compare the behavior of the two automatic annotators (DeepSeek-V3 and GPT-5-mini), we
compute the share of feature pairs labeled as “related” and the simple percent agreement in two subsets.
In the Pythia-70M subset, DeepSeek-V3 labels 10.8% of pairs as related and GPT-5-mini
28.7%, with 80.3% percent agreement. In the GPT-2-Small subset, the corresponding proportions
are 3.7% (DeepSeek-V3) and 18.4% (GPT-5-mini), with 83.8% agreement. Aggregating both
subsets, DeepSeek-V3 labels 9.5% of pairs as related and GPT-5-mini 26.8%, and the overall
percent agreement was 80.9%. We define percent agreement as the proportion of pairs for which both
annotators assign the same label. Figure 15 A-B shows the agreement matrices for the two annotators.
Interestingly, the overall consistency between the two annotators is low (Pythia-70M: Cohen’s
k = 0.408; GPT-2-Small: Cohen’s k = 0.221). Compared with DeepSeek-V3, GPT-5-mini
labels significantly more feature pairs as related, suggesting greater sensitivity to latent semantic
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associations. Nevertheless, more than 70% of pairs are still judged completely unrelated in the
annotators’ combined judgment (i.e., both say unrelated).

A B

C

Figure 14: GPT-5-mini and DeepSeek-V3’s annotation reports for shared interfered feature
pairs. DS is the abbreviation of DeepSeek-V3 and G5 is the abbreviation of GPT-5-mini.

In Table 7, we further report eight qualitative examples where the two annotators flag latent associa-
tions and contrasting cases where they do not.

Table 7: Eight examples of annotated feature pairs.

Category Feature pair Interpretation

Frame Feature A: Phrases and sentences that highlight sys-
temic issues related to incarceration and its effects on
individuals and families.
Feature B: Quantitative information related to statistics
and predictions.

Incarceration content often appears
alongside quantitative/statistical refer-
ences. (from GPT-5-mini)

Orthography Feature A: Occurrences of the word “acher.”
Feature B: References to specific researchers or authors
in studies related to minimum wage.

Both capture researcher/author name
substrings (e.g., -acher / Wascher).
(from GPT-5-mini)

Axiology Feature A: The term “dear” in emotional contexts re-
lated to relationships and feelings of affection.
Feature B: Concepts related to the notion of the sacred.

Both capture emotionally significant
concepts (affection vs. sacredness)
with deep personal or spiritual value.
(from DeepSeek-V3)

Homography Feature A: References to playing cards and card-related
concepts.
Feature B: References to the authors or studies related
to economic analysis.

Surface lexical overlap: “card” as
playing card vs “Card” (author name).
Same token, different senses. (from
GPT-5-mini)

No-relation Feature A: References to “New Guinea.”
Feature B: File formats and file compression terminol-
ogy.

None

No-relation Feature A: Instances of the abbreviation “ob” or related
terms indicating observational data or annotations.
Feature B: A specific term related to a well-known
ride-sharing company.

None

No-relation Feature A: Terms related to turbidity and its measure-
ment.
Feature B: References to specific music artists or
groups.

None

No-relation* Feature A: Occurrences of the name “Beethoven” and
related variations.
Feature B: Words related to expressions of frustration or
annoyance.

None
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M.2 FEATURE-PAIR COMPARISON TEST

Let sM(fi, fj) denote the semantic similarity (in M) between features fi and fj , and let I(fi, fj)
denote their interference value.

From the set of shared interfering feature pairs in GPT-2-Small and Pythia-70M satisfying

sM(fi, fj) < 0.4 and I(fi, fj) > 0.4,

we uniformly sample pairs for testing. For each sampled pair (f1, f2), we then search for a matched
comparison pair (f3, f4) from the same layer such that∣∣ sM(f3, f4)− sM(f1, f2)

∣∣ ≤ ε and I(f3, f4) < 0.1,

i.e., semantic similarity is tightly matched while interference is substantially lower. For
Pythia-70M, ε = 0.01; for GPT-2-Small, due to limited matching, ε = 0.05. Eventually,
we collect 3, 800 feature-pair combination for this comparative analysis.

We then present the two pairs (f1, f2) and (f3, f4) (order randomized) to GPT-5-mini, asking the
model to choose the more related pair using the prompt below.

System: You are an expert in interpretability of LLM SAE features. You
will receive two feature pairs (pair_one, pair_two). For each pair (f,
g), use their explanations and Top-5 highest-activation texts (with
high-activation tokens marked with «<token»> or «<multiple tokens»>) to
decide which pair shows higher latent relatedness.

Definition:
"Latent relatedness" means the two features in a pair likely reflect the
same underlying concept or are functionally coupled. Consider direct
overlaps (concepts, patterns, meanings) and higher-order associations
(thematic/complementary roles).

Decision criteria:
1) Explanations: semantic consistency, paraphrase/synonymy, or
complementary roles within the same domain; penalize opposite/disjoint
concepts.
2) Top-5 texts: overlap in topics/contexts; alignment of «<markers»>
pointing to the same phrase, slot, entity, or role; penalize disjoint or
contradictory evidence.

Uncertainty handling:
If evidence from (1)-(2) is insufficient or conflicting, return
"uncertain".

Output:
Return ONLY a JSON object with exactly these keys:
"more_related_pair": "pair_one" or "pair_two" or "uncertain"
"reason": brief English rationale (≤ 80 words), citing 1-2 decisive cues
(e.g., explanation alignment, shared topics, token markers).
Must be valid JSON (double quotes). No extra text.

User: PAIR ONE
Feature 1
Explanation: explanation of feature one
Texts: five activation texts of feature one

Feature 2
Explanation: explanation of feature two
Texts: five activation texts of feature two

PAIR TWO

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Feature 1
Explanation: explanation of feature one
Texts: five activation texts of feature one

Feature 2
Explanation: explanation of feature two
Texts: five activation texts of feature two
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N POLYSEMANTIC NEURON MANIPULATION

During the examination of SAE features and their connections with neurons, many features exhibit
semantically similar activation texts. To avoid repetitive analysis on similar activation texts, we
first perform feature clustering based on the semantics of activation texts, and then check neuron
connection at the cluster level. Given that the sparse auto-encoder from Neuronpedia is trained
with a sparsity setting of 3, the analysis focuses on the top three neurons with the highest alignment
values per cluster. A threshold of 0.2 is applied to filter out weak connections. Figure 15 shows the
distribution of polysemantic neurons identified in each layer. We can see that polysemantic neurons
with strong connections with aggregated features only take up fewer than 5% in each layer.

A B

Figure 15: Distribution of polysemantic neurons in each model. A is the result of Pythia-70M,
and B is the result of GPT-2-Small. Error bars represent 95% confidence intervals.

For strongly connected polysemantic neurons, we do further investigations on how suppressing or
boosting their activation influences the semantic shift in the model’s output to their aligned features.
Neurons’ activation is multiplied with a scale value in the range [0, 20]. Note that scaling within [0, 1]
suppresses activation, while scaling within [1, 20] amplifies it.
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O ETHICS STATEMENT, LIMITATIONS AND FUTURE WORKS

This paper follows the ICLR Code of Ethics. This study has three key methodological limitations.
First, we rely on SAEs to disentangle polysemantic activations; although SAEs are the de-facto tool,
their outputs fluctuate with dimensionality and hyper-parameters, yielding unstable features (Paulo
& Belrose, 2025; Heap et al., 2025; Gao et al., 2024). Second, our interventions steer only one
interference feature in one layer, while multi-feature, cross-layer manipulations could amplify and
better obscure the effect (Ameisen et al., 2025). Third, we quantify vulnerability solely via shifts
in immediate next-token probabilities on two small base models—because only they both expose
raw logits and have pre-trained SAEs—then check coarse transfer on three larger instructed models;
establishing how these interventions alter non-trivial downstream tasks in bigger models is the next
stage of this project.

P REPRODUCIBILITY STATEMENT

To balance reproducibility with responsible disclosure, we release complete code, evaluation scripts,
and synthetic data in this Github repository, but deliberately omit the matrices that catalogue shared
polysemantic directions between two small models. Publishing those mappings would make it easier
to weaponize the very vulnerabilities we study, whereas the available artifacts still permit independent
verification of all empirical claims.
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