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Abstract001

Large language models (LLMs) are increas-002
ingly used in clinical decision support, yet cur-003
rent evaluation methods often fail to distinguish004
genuine medical reasoning from superficial pat-005
terns. We introduce DeVisE (Demographics006
and Vital signs Evaluation), a behavioral test-007
ing framework for probing fine-grained clinical008
understanding. We construct a dataset of ICU009
discharge notes from MIMIC-IV, generating010
both raw (real-world) and template-based (syn-011
thetic) versions with controlled single-variable012
counterfactuals targeting demographic (age,013
gender, ethnicity) and vital sign attributes.014
On DeVisE, we evaluate five LLMs span-015
ning general-purpose and medically fine-tuned016
variants, under both zero-shot and fine-tuned017
settings. We assess model behavior via (1)018
input-level sensitivity–how counterfactuals al-019
ter the likelihood of a note; and (2) downstream020
reasoning–how they affect predicted hospital021
length-of-stay. Our results show that zero-shot022
models exhibit more coherent counterfactual023
reasoning patterns, while fine-tuned models024
tend to be more stable yet less responsive to025
clinically meaningful changes. Notably, de-026
mographic factors subtly but consistently influ-027
ence outputs, emphasizing the importance of028
fairness-aware evaluation. This work highlights029
the utility of behavioral testing in exposing the030
reasoning strategies of clinical LLMs and in-031
forming the design of safer, more transparent032
medical AI systems.1033

1 Introduction034

Large language models (LLMs) are increasingly ap-035

plied to the medical domain, showing strong perfor-036

mance in clinical tasks when fine-tuned on domain-037

specific data (McDuff et al., 2023; Singhal et al.,038

2025; Van Veen et al., 2024; Gu et al., 2021). How-039

ever, conventional medical benchmarks (Yao et al.,040

1We will publicly release all code needed to reproduce our
results and the benchmark data.

2024; Bakhshandeh, 2023; Xu et al., 2023) pri- 041

marily rely on coarse-grained metrics such as AU- 042

ROC and F1 scores, which provide limited insight 043

into whether models perform deep medical reason- 044

ing (Van Aken et al., 2021a; MacPhail et al., 2024; 045

Jullien et al., 2024) or rely on shortcuts and spuri- 046

ous correlations. In fact, models that perform well 047

on these benchmarks can still struggle in scenarios 048

requiring fine-grained clinical reasoning (Aguiar 049

et al., 2024; Ceballos-Arroyo et al., 2024), partic- 050

ularly in tasks involving temporal understanding 051

of events in clinical notes (MacPhail et al., 2024; 052

Kougia et al., 2024). 053

To address this gap, behavioral testing offers 054

a complementary evaluation paradigm. Originat- 055

ing in software engineering, it involves assessing 056

a system’s behavior through its input–output re- 057

sponses, without requiring access to its internal 058

workings (Beizer and Wiley, 1996). In Natural 059

Language Processing (NLP), Ribeiro et al. (2020) 060

adapted this approach to evaluate linguistic capa- 061

bilities across a range of tasks. 062

In this work, we introduce DeVisE, a behavioral 063

testing benchmark based on MIMIC-IV discharge 064

summaries (Johnson et al., 2023) focusing on mini- 065

mally differing counterfactuals in key clinical vari- 066

ables: demographics (age, gender, ethnicity) and vi- 067

tal signs (heart rate, respiration rate, oxygen satura- 068

tion, and blood pressure). Our benchmark includes 069

1, 000 high-quality, manually clinical notes. Be- 070

havioral testing in this context enables transparent 071

evaluation of LLMs, helping clinicians and devel- 072

opers assess whether model outputs are grounded 073

in clinically meaningful reasoning, an essential step 074

given that clinical outcomes can depend on subtle 075

variations in patient data such as changes in vital 076

signs (Alghatani et al., 2021; Downey et al., 2017; 077

Herasevich et al., 2022). 078

Because raw clinical notes are often noisy, filled 079

with abbreviations and domain-specific jargon, we 080

additionally construct synthetic, template-based 081
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notes that are noise-free and contain only the vari-082

ables of interest and their counterfactuals. By com-083

paring model behavior on both raw and template-084

based clinical notes, we address a relatively unex-085

plored aspect of medical LLM evaluation in behav-086

ioral testing setting. To our knowledge, most prior087

approaches have focused solely on structured tem-088

plates or synthetic inputs (Van Aken et al., 2021a;089

MacPhail et al., 2024; Aguiar et al., 2024; Ra-090

jagopal et al., 2021).091

Our contributions in this study are:092

• We introduce DeVisE (Demographics and093

Vital signs Evaluation), a novel clinical NLP094

benchmark based on behavioural testing with095

minimally differing counterfactuals across de-096

mographics and vital signs clinical variables.097

• We create raw and template-based clinical098

notes and their counterfactuals, and compare099

how models fare when applied to the raw100

notes and to template-based clinical notes.101

• We compare state-of-the-art LLMs across102

different dimensions: fine-tuned vs. zero-103

shot, medical vs. general purpose, reasoning104

vs. non-reasoning, and given only inputs vs.105

downstream (see Fig. 1 for more details).106

2 Related Work107

Several studies have explored the limitations of108

traditional evaluation methods for LLMs in the109

medical domain, and have proposed frameworks to110

better understand model behavior. Lee et al. (Lee111

et al., 2025), analyzed LLM robustness to distribu-112

tion shifts and missing data in hospital records for113

triage, finding improved performance over tradi-114

tional models but evidence of demographic biases,115

particularly along gender and racial lines.116

In the context of demographic variables, van117

Aken et al. (Van Aken et al., 2021a) showed that118

models with similar AUROC scores can behave119

differently when evaluated on finer-grained capa-120

bilities such as bias sensitivity through age, gender,121

and ethnicity, and Zack et al.(Zack et al., 2024) and122

Zhao et al. (Zhao et al., 2024) further found that123

GPT-4 and other LLMs often favor majority groups,124

producing less accurate predictions for minorities125

and amplifying existing disparities.126

Researchers have also studied robustness in clin-127

ical tasks by examining whether models produce128

Demographics
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Structured
Template
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Unstructured
Raw Note
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Single
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Figure 1: Overview of DeVisE. We construct a dataset
of 1,000 MIMIC-IV discharge summaries with manu-
ally validated single-variable counterfactuals targeting
key clinical attributes, including demographics (age,
gender, ethnicity) and vital signs (heart, respiration rate,
oxygen saturation, temperature, blood pressure). We
compare LLM predictions using both raw (noisy, real-
world) and template-based (clean, synthetic) clinical
notes. Behavioral evaluations are conducted across five
LLMs, probing their sensitivity to input perturbations
(e.g., “How does a change in age affect the model’s be-
lief in this note?”) and downstream effects (e.g., “How
does this change affect predicted length-of-stay?”).

consistent outputs in response to small input vari- 129

ations. MacPhail et al.(MacPhail et al., 2024) 130

introduced template-based tests for adverse drug 131

event classification, showing inconsistent perfor- 132

mance on capabilities like temporal reasoning and 133

negation, even among models with similar perfor- 134

mances. Kougia et al.(Kougia et al., 2024) similarly 135

found that biomedical LLMs often fail at event se- 136

quencing, affecting reliability in clinical decision- 137

making. Natural Language Inference (NLI) has 138

been used to assess reasoning consistency. Altinok 139

et al. (Altinok, 2024) and Aguiar et al. (Aguiar 140

et al., 2024) introduced contrast sets and system- 141
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atic perturbations to evaluate modelfaithfulness and142

consistency, revealing substantial variance even143

among closely related models.144

While these studies highlight the limitations of145

traditional evaluation methods, most focus on struc-146

tured templates. Behavioral analysis over raw clin-147

ical notes, especially with controlled perturbations,148

remains largely unexplored. To address this gap,149

we introduce DeVisE, a systematic behavioral eval-150

uation framework designed to assess model sensi-151

tivity to demographic and vital sign variations in152

both raw and template-based clinical notes.153

3 Methods154

DeVisE is a behavioral testing framework designed155

to evaluate two key capabilities in medical LLMs:156

sensitivity to demographic variables and to vital157

signs. Sensitivity to demographics is crucial for158

mitigating biases, while sensitivity to vitals re-159

quires basic numerical reasoning. To probe these160

capabilities, we construct counterfactual discharge161

summaries in which only one clinical variable is162

modified at a time.163

3.1 Clinical variables164

Demographics. We focus on gender, age, and eth-165

nicity, selected for their availability in clinical notes166

and documented impact on model bias (Van Aken167

et al., 2021a; Celi et al., 2022). For example, fair-168

ness can be assessed by comparing predicted prob-169

abilities across demographic groups (Zhao et al.,170

2024).171

Vital signs. We select heart rate, respiration rate,172

oxygen saturation, blood pressure, and tempera-173

ture based on their clinical importance, availability,174

and sensitivity in decision making (Alghatani et al.,175

2021; Downey et al., 2017; Herasevich et al., 2022).176

We expect small numerical changes in vitals to177

lead to proportionally small changes in model pre-178

dictions; large prediction shifts from minor input179

changes indicate instability and poor robustness.180

3.2 Data181

Dataset. To create DeVisE, we use MIMIC-IV182

discharge summaries (Johnson et al., 2023), which183

document the full course of a patient’s hospital stay.184

Raw clinical notes. Following Röhr et al. (2024)185

and Van Aken et al. (2021b), we extract only pa-186

tient information available at admission to avoid187

data leakage from events that take place after the188

admission. That allows us to use these notes to189

make predictions about the progress of the patient 190

during their stay. We retain the following sections: 191

chief complaint, present illness, medical history, 192

admission medications, allergies, physical exam, 193

family history, and social history. 194

Template-based notes. We construct synthetic 195

versions of the notes that include only demograph- 196

ics and vitals. These noise-free templates allow us 197

to evaluate model behavior in a controlled setting 198

(see Figure A.2). 199

Population statistics. Our test set includes 1,000 200

admissions, broadly representative of the adult in- 201

tensive care 201 unit (ICU) population in MIMIC- 202

IV: 45% female, mean age 64±17 years, and 31% 203

non-white (see Table 6). Missingness for vital signs 204

was low (<6%) except for respiration rate (12%) 205

and temperature (27%). For each variable, we re- 206

place non-missing values and generate counterfac- 207

tuals: 33,005 (blood pressure), 28,650 (heart rate), 208

22,110 (temperature), 19,250 (respiration rate), and 209

13,286 (oxygen saturation). 210

3.2.1 Counterfactuals 211

We create counterfactuals by systematically mod- 212

ifying one variable per summary, either a demo- 213

graphic attribute or a vital sign, while keeping all 214

other content unchanged. For each variable, val- 215

ues are grouped into clinically meaningful classes 216

based on official guidelines (American Heart Asso- 217

ciation, 2024; Royal College of Physicians, 2017; 218

World Health Organization, 2016; Society of Criti- 219

cal Care Medicine, 2021, 2015; Infectious Diseases 220

Society of America, 2003) (see Tables 1 and 2). We 221

sample five random values per class from validated 222

ranges and apply these replacements to generate 223

counterfactual notes. 224

Vital signs mentioned in raw notes often do 225

not align with structured data. Therefore, we ex- 226

tract vital values directly from the physical exam 227

section using few-shot prompting with LLaMA 228

3 70B (Grattafiori et al., 2024). Rule-based ap- 229

proaches were insufficient due to high variability 230

in phrasing; LLM extraction yielded more reliable 231

results, confirmed via manual inspection. 232

Counterfactuals evaluation. We validate coun- 233

terfactual consistency using a combination of au- 234

tomated and manual checks. First, we use the 235

GNU diff tool2 to identify changes between origi- 236

nal and counterfactual summaries. Then, we con- 237

firm whether the modified value matches the in- 238

2https://www.gnu.org/software/diffutils/
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Demographic Classes

Age

18–35: young adults
36–55: middle aged adults
56–75: older adults
≥ 76: elderly

Gender
Female
Male

Ethnicity

Asian & Pacific
Black
Hispanic/Latino
Other/Unknown
White

Table 1: Categories used for demographic counterfac-
tual variables.

Vital Sign Classes Range

Heart Rate (bpm)

Very low ≤40
Low 41–50
Normal 51–90
High 91–110
Very high 111–130
LTH ≥131

Blood Pressure
(mmHg)

Very low ≤ 70/40
Low 71–89 / 41–59
Normal 90–119 / 60–79
Elevated 120–129 / 60–79
High 130–139 / 80–89
Very high 140–179 / 90–119
LTH ≥ 180/120

Respiration Rate
(bpm)

Very low ≤ 8
Low 9–11
Normal 12–20
High 21–24
Very high ≥ 25

Oxygen Saturation
(% SpO2)

LTL ≤ 91
Very low 92–93
Low 94–95
Normal ≥96

Temperature (°F)

LTL ≤ 82.4
Very low 82.5–89.4
Low 89.5–94.9
Normal 95.0–100.2
High 100.3–103.9
LTH ≥ 104.0

Table 2: Categorization of vital signs into clinically
meaningful ranges for counterfactual generation. LTL:
life-threateningly low. LTH: life-threateningly high.

tended counterfactual. Any unexpected edits are239

Class Length of Stay (LOS)

1 ≤ 3 days
2 > 3 and ≤ 7 days
3 > 7 and ≤ 14 days
4 > 14 days

Table 3: Length-of-stay (LOS) class definitions used for
downstream prediction tasks.

flagged for manual correction. This iterative pro- 240

cess improved reliability. 241

Manual review revealed a 5% error rate in the 242

automatically extracted vitals. Since demographic 243

values were taken from structured data and mod- 244

ified via regular expressions, their error rate was 245

zero. The final test set consists of 1,000 manually 246

verified notes and their associated counterfactuals. 247

4 Experimental Setup 248

We evaluate LLM robustness to minimal edits in 249

demographics and vital signs using two approaches: 250

1) Measuring changes in log-probabilities between 251

original and counterfactual notes; and 2) Predict- 252

ing length-of-stay (LOS) from both versions and 253

analyzing shifts in their predicted distributions. We 254

choose LOS as the downstream task due to its clin- 255

ical relevance for hospital resource planning and 256

patient management (McMullan et al., 2004) and 257

its dependence on multiple patient factors (Zebin 258

et al., 2019; Naemi et al., 2021). Since admission- 259

time vitals are known to influence LOS prediction, 260

this task offers a meaningful testbed for reasoning. 261

We follow prior work (Röhr et al., 2024) to define 262

four LOS classes (see Table 3). 263

Admission note probabilities. We compute the 264

average log-likelihood per token and analyze the 265

mean and standard deviation of differences be- 266

tween original and counterfactual notes. This re- 267

veals model sensitivity and “surprise” to input 268

changes. 269

Zero-shot and fine-tuned LOS. Models are eval- 270

uated both zero-shot and after fine-tuning for 4- 271

way LOS classification. Fine-tuning uses MIMIC- 272

IV admission summaries. We compare general- 273

purpose and medical-domain models to assess 274

whether task alignment improves robustness. De- 275

tails are in Appendix A.3. 276

4.1 Evaluation Metrics 277

We analyze model behavior by comparing pre- 278

dicted LOS distributions for original vs. counter- 279
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factual notes. For each pair, we compute:280

• Jensen–Shannon divergence (JSD) between281

the predicted distributions.282

• Expected LOS shift ∆ELOS, calculated283

as the difference in expected LOS (i.e.,284

probability-weighted average of class dura-285

tions).286

These metrics are aggregated per admission (by287

hadm_id), then averaged across counterfactuals for288

each variable to ensure comparability. We further289

group results by model family (e.g., fine-tuned vs.290

zero-shot) and perturbation severity.291

Severity scale. We define a severity scale from292

−4 to +4 based on how much a variable’s class293

changes from original to counterfactual (e.g., from294

“normal” to “very high” = +2). This enables track-295

ing whether model outputs shift in clinically ex-296

pected directions.297

We use the following behavioral metrics:298

• Percentage of correct direction (%Corr299

Dir). This metric measures how often the300

model’s ∆ELOS aligns with the direction of301

change in severity. Specifically, whether an302

increase in severity led to an increase in pre-303

dicted LOS and vice-versa.304

• Percentage of monotonicity (%Mono). This305

metric tracks whether the predicted ∆ELOS306

follow a consistent upward/downward trend307

across severity levels. For each of the 9 sever-308

ity levels, ranging from −4 to +4, we com-309

pute the mean predicted ∆ELOS. We then310

evaluate how many consecutive steps follow311

the expected trend: positive severity values312

should correspond to positive changes in LOS313

(longer stays), and negative severity values314

to negative changes (shorter stays). A step315

is considered correct if both the sign of the316

change and the direction of the trend (increas-317

ing or decreasing) align with the progression318

of the severity.319

• Percentage of flips (%Flip). While the pre-320

vious metrics focus on the expected LOS val-321

ues, this metric looks at prediction stability in322

terms of class labels. It measures how often323

the most probable LOS class changes between324

the original and counterfactual inputs, indi-325

cating whether counterfactual perturbations326

caused categorical prediction shifts.327

• Distribution of LOS shifts. To understand 328

whether LLMs favor increased or decreased 329

LOS, we calculate the percentage of coun- 330

terfactuals that resulted in increased (%∆E+) 331

versus decreased (1−%∆E+) expected LOS. 332

We also report the average magnitude of these 333

shifts in both directions. 334

4.2 Large language models (LLMs) 335

We evaluate five LLMs of varying architectures 336

and domains: OpenBioLLM (Ankit Pal, 2024), 337

Meditron3-Phi4 (OpenMeditron, 2025), Phi 4 (Ab- 338

din et al., 2024), LLaMA 3 Instruct (Grattafiori 339

et al., 2024), and DeepSeek R1 Distill (Guo et al., 340

2025). 341

We categorize the models along three axes used 342

in our analysis: (1) fine-tuned vs. zero-shot, 343

(2) medical-domain vs. general-purpose, and (3) 344

reasoning-oriented vs. non-reasoning. These 345

groupings are used to assess differences in robust- 346

ness, sensitivity, and behavioral consistency across 347

model types. See Table 7 for model specifications 348

and categorizations. 349

5 Results 350

5.1 Vital signs 351

Figure 2 compares the Jensen-Shannon divergence 352

(JSD) across models when perturbed with vital sign 353

counterfactuals. On raw notes, vital changes cause 354

minimal distributional shift (Figure 2a), while 355

template-based notes lead to notably higher shifts, 356

especially in the zero-shot (ZS) setting (Figure 2b). 357

Fine-tuned (FT) models achieve modest but 358

higher F1 scores than their ZS counterparts (Ta- 359

ble 4). However, ZS models show greater behav- 360

ioral sensitivity, with elevated ∆ELOS, %Flip, and 361

%Mono. Flip rates in FT models remain below 1 362

The relationship between perturbation severity 363

and ∆ELOS (Figure 3) is more clinically coherent 364

for raw notes. While ZS models predict larger 365

changes on templates, they often fail to decrease 366

LOS with decreasing severity, indicating less reli- 367

able monotonic behavior. 368

All models tend to increase LOS predictions un- 369

der perturbations (%∆E+ > 50), with the strongest 370

effect in ZS template-based settings (e.g., Meditron: 371

54% → 96%). This pattern indicates models’ gen- 372

eral inclination to associate changes in vitals with 373

worsening outcomes. 374

Behavioral differences also emerge without an 375

explicit prediction task. Changes in token-level log- 376
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Figure 2: Comparison of JSD per model using raw vs structured notes. Templates-based experiments in ZS setting
show a greater JSD than FT and all experiments on raw notes. (For clarity, outliers are hidden).

Model Setting Acc F1 % ∆E+ Avg ∆E+ / ∆E− Std ∆E+ Std ∆E− Avg JSD Std JSD %Corr Dir %Flip %Mono Top 1 Vital
dsR1(FT) raw 0.723 0.220 56 0.142 / -0.134 0.357 0.258 0.001 0.006 48 0 63 respiration rate
llama3(FT) raw 0.722 0.311 63 0.130 / -0.057 0.356 0.098 0.001 0.006 42 0 63 blood pressure
phi4(FT) raw 0.723 0.273 64 0.126 / -0.096 0.308 0.199 0.001 0.005 41 0 63 blood pressure
obllm(FT) raw 0.723 0.240 63 0.072 / -0.068 0.267 0.179 0.000 0.005 43 0 63 blood pressure
meditron(ZS) raw 0.332 0.214 54 0.071 / -0.077 0.110 0.197 0.000 0.001 43 4 100 temperature
dsR1(ZS) raw 0.163 0.120 65 0.093 / -0.048 0.152 0.099 0.000 0.002 49 2 88 temperature
llama3(ZS) raw 0.116 0.119 64 0.138 / -0.146 0.517 0.600 0.006 0.047 42 2 88 blood pressure
phi4(ZS) raw 0.080 0.082 63 0.146 / -0.156 0.294 0.521 0.002 0.016 42 2 100 blood pressure
obllm(ZS) raw 0.119 0.118 58 0.109 / -0.139 0.200 0.411 0.001 0.006 37 2 75 blood pressure
dsR1(FT) template 0.722 0.210 63 0.167 / -0.148 0.175 0.185 0.000 0.001 49 0 44 respiration rate
llama3(FT) template 0.722 0.210 66 0.464 / -0.258 0.401 0.267 0.003 0.004 44 0 44 respiration rate
phi4(FT) template 0.722 0.210 59 0.138 / -0.121 0.216 0.200 0.001 0.002 44 0 44 respiration rate
obllm(FT) template 0.722 0.210 67 0.271 / -0.194 0.227 0.201 0.001 0.002 47 0 67 oxygen saturation
meditron(ZS) template 0.327 0.184 96 2.198 / -0.429 1.040 0.525 0.029 0.026 35 73 89 temperature
dsR1(ZS) template 0.217 0.113 49 1.091 / -1.185 1.318 0.856 0.087 0.059 37 15 78 respiration rate
llama3(ZS) template 0.258 0.149 76 1.925 / -0.398 3.805 1.334 0.151 0.311 42 18 56 oxygen saturation
phi4(ZS) template 0.187 0.165 76 3.679 / -0.985 3.534 1.452 0.158 0.228 40 41 89 oxygen saturation
obllm(ZS) template 0.179 0.098 75 1.033 / -0.311 1.189 0.481 0.009 0.020 31 15 78 oxygen saturation

Table 4: Detailed performance and behavioral summary for each model variant across note types. FT = fine-tuned,
ZS = zero-shot. Orange = medical LLM, gray = reasoning LLM, white = general purpose. Highest values are bold,
and lowest are underlined.

Model Avg ∆ loglik ± Std

dsR1 −0.0015± 0.0083
llama3 −0.0019± 0.0116

meditron −0.0012± 0.0128
obllm −0.0008± 0.0086
phi4 −0.0011± 0.0113

Table 5: Mean ∆ log-likelihood per token (± std) across
models.

likelihoods remain small but consistently scale with377

severity (Table 5, Figure 4), suggesting models are378

linguistically surprised by the counterfactuals even379

when untrained on LOS prediction.380

Medical LLMs in the FT setting are more con-381

servative, showing lower JSD and ∆ELOS, yet com-382

parable accuracy and directional correctness to383

general-purpose models. In contrast, medical ZS384

models outperform on accuracy and F1, albeit with385

higher flip rates. DeepseekR1 stands out with the386

highest % correct direction across most settings 387

and is particularly stable in ZS raw notes. 388

Figure 5 breaks down JSD by vital sign. In raw 389

notes, blood pressure dominates model sensitivity, 390

while in templates, respiration rate is most influ- 391

ential. Some models, like DeepseekR1(FT), main- 392

tain consistent vital focus, while others shift across 393

FT/ZS settings. 394

5.2 Demographic variables 395

Demographic perturbations reveal consistent and 396

often statistically significant effects in the ZS set- 397

ting with template-based inputs (Figure 6). Among 398

demographic factors, age consistently shows the 399

strongest influence: older age groups are associated 400

with longer predicted LOS across all models. These 401

effects persist despite minimal textual changes, em- 402

phasizing the models’ sensitivity to demographic 403

shifts. 404

In contrast, gender and race show smaller aver- 405

age effects, but still impact predictions near deci- 406
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Figure 3: Effect of note modification on ∆ELOS patterns by severity across models using raw vs template-based
notes. Raw notes show a more clinically reasonable pattern. Template-based notes show greater magnitude of effect.
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Figure 4: ∆Avg log-likelihood per model (raw notes).
There is an increased change in log-likelihood with
increasingly positive or negative severity.

sion boundaries, as evidenced by flip rates reach-407

ing up to 6% in ZS models. While most model408

comparisons for gender and race are significant,409

exceptions include gender in obllm(ZS) and the410

“Other/Unknown” race category in llama3(ZS).411

Model-wise, dsR1(ZS) exhibits the most stable412

behavior, with the lowest ∆ELOS and minimal flips.413

Conversely, obllm(ZS) and phi4(ZS) display larger414

shifts for race and gender, respectively. Notably,415

race effects tend to be larger than gender effects,416

and all models predict shorter LOS for female and417

Black patients compared to other groups. These dis-418

parities mirror known societal biases and raise im-419

portant concerns about fairness in medical LLMs.420

In the FT setting, models are much less respon-421

sive to demographic changes: ∆ELOS is near zero,422

and no flips are observed (Figure 8). This suggests423

that task-specific fine-tuning may inadvertently sup-424

press meaningful demographic sensitivity ,whether425

beneficial or harmful, and highlights the need for426

fairness-aware training objectives.427

For comprehensive results disaggregated by428

model, demographic variable, and class, see Ta-429

bles 10 and 11. 430

6 Discussion 431

Fine-tuned vs Zero-shot. Despite lower accuracy, 432

zero-shot models exhibit clearer behavioral trends 433

in both JSD and LOS shifts across severity levels 434

(Table 4). This suggests that, without task-specific 435

tuning, they may rely more on generalizable rea- 436

soning patterns, e.g., associating low oxygen satu- 437

ration or extreme blood pressure with longer LOS. 438

In contrast, fine-tuned models are more conserva- 439

tive, often underreacting to clinically significant 440

changes. This may reflect overfitting to skewed 441

LOS label distributions (e.g., bias toward bucket 442

1), resulting in reduced sensitivity to causal varia- 443

tion. These findings challenge the assumption that 444

fine-tuning always improves robustness, raising 445

questions about when it instead reinforces heuristic 446

behaviors. 447

Medical vs General-purpose. Domain-specific 448

models, both fine-tuned and zero-shot, reacted less 449

strongly to counterfactuals than general-purpose 450

ones, as indicated by lower JSD and ∆ELOS 451

value(Tables 8, 9), possibly due to more conserva- 452

tive priors learned from biomedical corpora. How- 453

ever, they achieved higher %Mono, suggesting 454

closer alignment with clinical expectations. Inter- 455

estingly, zero-shot medical models outperformed 456

general ones in accuracy despite showing more pre- 457

diction flips, likely reflecting better domain priors. 458

Reasoning vs Non-reasoning. DeepSeekR1 459

demonstrated strong task-aligned and clinically co- 460

herent behavior, particularly in its fine-tuned vari- 461

ant. It achieved high %Corr Dir with minimal pre- 462

diction flips, especially on raw notes (Figure 3), 463

positioning it between the conservative medical 464

models and the more volatile general-purpose ones. 465
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Figure 5: Comparison of JSD per vital sign using raw vs template-based notes across all models. (For clarity,
outliers are hidden). Low magnitude of effects with a subtle different ranking between raw and template-based
notes.
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Figure 6: Heatmap ∆ELOS by demographic classes per
model (zero-shot) All comparisons between variables
are significant except the tiles left blank. Age variable
shows the biggest effects and flips.

These findings suggest that reasoning-focused pre-466

training can offer a balance of robustness and sen-467

sitivity, making it a promising foundation for de-468

veloping clinically reliable LLMs.469

Task vs No-task. Even in the absence of a down-470

stream task, models responded systematically to471

increasing counterfactual severity. Log-likelihood472

shifts follow a pyramid-like pattern across severity473

levels (Figure 4), reflecting that models perceive474

the perturbations as increasingly surprising at the475

language modeling level. This supports the use of476

task-agnostic behavioral probes as an early diag-477

nostic signal.478

Template-based vs Raw Notes. Template-based479

notes resulted in noisier and less coherent LOS480

predictions (Fig.3). The absence of contextual in-481

formation may reduce the model’s ability to rea-482

son about changes. In contrast, raw notes helped 483

models contextualize vital sign changes more ef- 484

fectively, though the importance of vitals was di- 485

luted by other information. Variability across both 486

formats (see Tables 4, 5) highlights ongoing uncer- 487

tainty in model behavior. 488

Demographic Variables. Demographic attributes 489

influenced model predictions. While average LOS 490

shifts were small for gender and race, frequent class 491

flips near decision boundaries (Fig. 6) suggest po- 492

tential fairness concerns. Consistent underpredic- 493

tion of LOS for women and black patients across all 494

models highlights the importance of including de- 495

mographic evaluation in clinical LLM benchmarks. 496

These patterns likely reflect biases encoded during 497

pretraining, even in zero-shot models. 498

7 Conclusion 499

These results highlight the importance of behav- 500

ioral evaluation in understanding how medical 501

LLMs respond to perturbations. We find that zero- 502

shot models can display surprisingly coherent rea- 503

soning patterns, while fine-tuned models tend to 504

favor conservative and stable outputs, sometimes at 505

the expense of sensitivity to clinically meaningful 506

changes. Demographic variables subtly but consis- 507

tently influence predictions, underscoring the need 508

for fairness-aware evaluations. Future research 509

should explore targeted fine-tuning strategies that 510

preserve reasoning ability while improving calibra- 511

tion and fairness, as well as the development of 512

diagnostic tools to detect and mitigate model bias 513

in real-world clinical settings. 514
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Limitations515

This work does not cover an extensive range of516

model capabilities, other relevant aspects such as517

temporal reasoning are not included. Addition-518

ally, the fine-tuning data for length-of-stay (LOS)519

prediction was imbalanced, which may have af-520

fected model performance. Finally, some vital521

signs, such as oxygen saturation and respiration522

rate, had limited value ranges, resulting in fewer523

than five unique counterfactuals due to the small524

number of non-redundant available values.525
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A Appendix736

A.1 Raw Clinical Note Examples737

Correct Discharge Note (Raw).738

PRESENT ILLNESS: The patient is a ___ year-old fe-
male with a history of NSCLC (stage IV) who presents
with shortness of breath. (. . . )
MEDICAL HISTORY: CAD s/p MI ___, s/p CABG ___,
Hypertension, Dyslipidemia, CVA: small left posterior
frontal infarct in ___, Macular Degeneration, NSCLC-
stage IV. (. . . )
MEDICATION ON ADMISSION: amlodipine 5 mg, ator-
vastatin [Lipitor] 80 mg, calcitriol 0.25 mcg, clopidogrel
[Plavix] 75 mg, folic acid 1 mg, furosemide 40 mg. (. . . )
ALLERGIES: Codeine
PHYSICAL EXAM: On Admission: Vitals: T: 96.9, BP:
118/51, HR: 94 , RR: 18, O2Sat: 94% on 5L with face
tent.
FAMILY HISTORY: Father died of CAD; mother had
stomach cancer and osteosarcoma.
SOCIAL HISTORY: ___.

739

740

Counterfactual Discharge Note (Raw). Iden-741

tical to the correct note, except for the heart rate742

in PHYSICAL EXAM, which is replaced by HR: 120743

instead of HR: 94. We do not reproduce the entire744

note to avoid clutter.745

A.2 Template-based clinical note examples746

Correct Discharge Note (Template). The original747

discharge note example shown in template-based748

format:749
Age: 67

Gender: F
Ethnicity: White
Vitals:
Heart Rate: 94
Blood Pressure: 118/51
Respiration Rate: 18
Temperature: 96.9
Oxygen Saturation: 94%

750

751

Counterfactual Discharge Note (Template).752

Age: 67
Gender: F
Ethnicity: White
Vitals:
Heart Rate: 120
Blood Pressure: 118/51
Respiration Rate: 18
Temperature: 96.9
Oxygen Saturation: 94%

753

754

A.3 Fine-tuning Specification 755

Only admission-time sections were retained to 756

avoid leakage of future information. Fine-tuning 757

was conducted with the LLaMA Factory frame- 758

work using LoRA adapters, trained over 3 epochs 759

(learning rate: 5e-5, batch size: 2, gradient accu- 760

mulation: 4). Evaluation was performed every 10 761

steps using a held-out validation set. 762

A.4 Full Population Statistics 763

Table 6 presents cohort statistics, including demo- 764

graphics, vitals, and missing data percentages. 765

Variable Value Missing (%)

Sex (M / F) 55.2% / 44.8% 0%

Race White: 69.1% 0%
Other/Unknown: 13.2%
Black: 10.2%
Asian/Pacific: 4.0%
Hispanic/Latino: 3.5%

Age (years) 63.64 ± 16.85 0%

Temperature (°F) 97.10 ± 7.69 27%
Heart rate (bpm) 83.86 ± 20.47 5.7%
Respiration rate (bpm) 18.93 ± 5.38 12%
Oxygen saturation (%) 96.99 ± 3.49 5.1%
Systolic BP (mmHg) 128.90 ± 24.15 4.3%
Diastolic BP (mmHg) 71.03 ± 15.46 4.3%

Table 6: Cohort-level statistics used for counterfactual
testing, including demographics, vitals, and percentage
of missing values.

A.5 Results 766

A.5.1 Model Specifications 767

Table 7 summarizes the LLMs used, including 768

model type, domain, and background info on train- 769

ing. 770

A.5.2 Model Group Comparisons 771

Summary statistics and pairwise significance tests 772

across model groups and settings (FT vs. ZS; tem- 773

plate vs. raw) are available in Tables 8 and 9. 774
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LLM Base Parameters Domain Nickname Notes

OpenBioLLM
(Ankit Pal, 2024)

Llama-3.3-
70B-Instruct

70B Biomedical obllm Outperforms GPT-4, Gemini, Meditron, and Med-
PaLM-2 on biomedical benchmarks.

Meditron3-Phi4
(OpenMeditron, 2025)

Phi-4 14B Biomedical meditron Finetuned version of Phi-4 on medical corpora.

Phi 4
(Abdin et al., 2024)

Phi-4 14B General-purpose phi4 Trained for efficient language understanding and
reasoning.

Llama 3 Instruct
(Grattafiori et al., 2024)

Llama-3.3-
70B-Instruct

70B General-purpose llama3 Instruction-tuned. Strong performance on general
reasoning and text-based tasks.

DeepSeek R1 Distill
(Guo et al., 2025)

Llama-3.3-
70B-Instruct

70B General-purpose
(reasoning-focused)

dsR1 Distilled from DeepSeek-R1 using Llama 3.3-
70B-Instruct; optimized for multi-step reasoning.

Table 7: List of large language models (LLMs) evaluated in this study, including architecture, domain specialization,
and training context.

Model Setting Acc F1 %∆E+ Avg ∆E+ / ∆E− Std ∆E+ Std ∆E− Avg JSD Std JSD %Corr Dir %Mono
Fine-tuned raw 0.723 0.261 61 0.117 / -0.088 0.357 0.258 0.001 0.004 44 63
Zero-shot raw 0.162 0.131 61 0.112 / -0.113 0.517 0.600 0.002 0.011 43 88
Medical(FT) raw 0.723 0.240 63 0.072 / -0.068 0.267 0.179 0.001 0.005 43 63
General(FT) raw 0.723 0.292 64 0.128 / -0.076 0.356 0.098 0.001 0.004 42 63
Reasoning(FT) raw 0.723 0.220 56 0.142 / -0.134 0.357 0.258 0.001 0.005 48 63
Medical(ZS) raw 0.226 0.166 56 0.090 / -0.108 0.110 0.197 0.001 0.003 40 88
General(ZS) raw 0.098 0.100 64 0.142 / -0.151 0.294 0.521 0.004 0.025 42 88
Reasoning(ZS) raw 0.163 0.120 65 0.093 / -0.048 0.152 0.099 0.000 0.002 49 88
Fine-tuned template 0.722 0.210 63 0.260 / -0.180 0.260 0.180 0.001 0.001 46 63
Zero-shot template 0.234 0.142 74 1.985 / -0.662 1.985 0.662 0.094 0.071 37 47
Medical(FT) template 0.722 0.210 67 0.271 / -0.194 0.271 0.194 0.001 0.001 47 50
General(FT) template 0.722 0.210 63 0.301 / -0.190 0.301 0.190 0.002 0.001 44 75
Reasoning(FT) template 0.722 0.210 63 0.167 / -0.148 0.167 0.148 0.000 0.001 49 50
Medical(ZS) template 0.253 0.141 85 1.615 / -0.370 1.040 0.525 0.020 0.015 33 50
General(ZS) template 0.223 0.157 76 2.802 / -0.691 3.534 1.452 0.168 0.160 41 50
Reasoning(ZS) template 0.217 0.113 49 1.091 / -1.185 1.091 1.185 0.092 0.048 37 33

Table 8: Aggregate behavioral performance of model groups (fine-tuned (FT) vs. zero-shot (ZS), medical vs.
general-purpose vs. reasoning-focused) on raw and template-based notes..

Average Jensen-Shannon Divergence by severity per model

Counterfactual severity shift
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Figure 7: Jensen-Shannon divergence (JSD) across
counterfactual severity levels for each model on raw
clinical notes. Higher severity generally results in larger
distributional shifts.

A.5.3 JSD by Severity (Raw Notes)775

JSD sensitivity across severity levels per model is776

visualized in Figure 7.777

A.5.4 Demographic variables 778

Full demographic bias analysis is presented in Ta- 779

bles 10 and 11. Figure 8 visualizes mean LOS 780

shifts across demographic subgroups for FT mod- 781

els. In template-based settings, FT models are 782

highly biased toward LOS bucket 1, yielding 0% 783

flip rates across all demographics. 784
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Comparison ZS/FT? Setting p-value Winner

FT vs ZS (overall) — Structured < 10−10 ZS
FT vs ZS (overall) — Unstructured < 10−10 ZS

Medical vs. General FT Structured < 10−10 General
Medical vs. Reasoning FT Structured < 10−10 Medical
General vs. Reasoning FT Structured < 10−10 General
Medical vs. General FT Unstructured 10−6 General
Medical vs. Reasoning FT Unstructured < 10−10 Reasoning
General vs. Reasoning FT Unstructured < 10−10 Reasoning

Medical vs. General ZS Structured < 10−10 General
Medical vs. Reasoning ZS Structured < 10−10 Reasoning
General vs. Reasoning ZS Structured < 10−10 General
Medical vs. General ZS Unstructured < 10−10 General
Medical vs. Reasoning ZS Unstructured 0.059 Similar
General vs. Reasoning ZS Unstructured < 10−10 General

Table 9: Paired t-test comparisons of average JSD values between model groups. Significance is assessed across
note formats and training conditions.The “Winner” column indicates the group with significantly higher JSD or
“Similar” when no significant difference is found.

Elderly

Middle-aged adults

Older adults

Young adults

Female

Male

Asian and Pacific

Black

Hispanic/Latino

Other/Unknown

White

deepseekR1(FT) llama3(FT) obllm(FT) phi4(FT)

∆E[LOS] per demographic group and model (∆E | %flip)

∆E(days)
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3-0.5

Figure 8: Mean change in expected length-of-stay
(∆ELOS) across demographic subgroups for fine-tuned
models. All models consistently predict shorter LOS
for females and Black patients.
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Model Variable Class Mean ∆E Std ∆E p-value % Class Flip
dsR1(FT) age young adults -0.14 0.11 < 10−10 0%
dsR1(FT) age middle aged adults -0.03 0.09 < 10−10 0%
dsR1(FT) age older adults 0.05 0.08 < 10−10 0%
dsR1(FT) age elderly -0.02 0.10 < 10−10 0%
dsR1(FT) gender F -0.05 0.04 < 10−10 0%
dsR1(FT) gender M 0.06 0.04 < 10−10 0%
dsR1(FT) race Asian & Pacific 0.00 0.08 0.000 0%
dsR1(FT) race Black -0.05 0.08 < 10−10 0%
dsR1(FT) race Hispanic/Latino -0.02 0.08 < 10−10 0%
dsR1(FT) race Other/Unknown 0.18 0.09 < 10−10 0%
dsR1(FT) race White -0.03 0.08 < 10−10 0%
dsR1(ZS) age young adults -1.03 0.56 < 10−10 20%
dsR1(ZS) age middle aged adults -0.52 0.52 < 10−10 5%
dsR1(ZS) age older adults 0.11 0.55 < 10−10 3%
dsR1(ZS) age elderly 0.52 0.55 < 10−10 4%
dsR1(ZS) gender F -0.13 0.07 < 10−10 1%
dsR1(ZS) gender M 0.14 0.07 < 10−10 1%
dsR1(ZS) race Asian & Pacific 0.08 0.14 < 10−10 1%
dsR1(ZS) race Black 0.08 0.12 < 10−10 1%
dsR1(ZS) race Hispanic/Latino -0.05 0.15 < 10−10 1%
dsR1(ZS) race Other/Unknown -0.06 0.17 < 10−10 1%
dsR1(ZS) race White -0.07 0.11 < 10−10 1%
llama3(FT) age young adults -0.36 0.28 < 10−10 0%
llama3(FT) age middle aged adults -0.05 0.25 < 10−10 0%
llama3(FT) age older adults 0.12 0.27 < 10−10 0%
llama3(FT) age elderly -0.07 0.33 0.000 0%
llama3(FT) gender F -0.04 0.03 < 10−10 0%
llama3(FT) gender M 0.05 0.03 < 10−10 0%
llama3(FT) race Asian & Pacific -0.04 0.11 < 10−10 0%
llama3(FT) race Black -0.03 0.11 < 10−10 0%
llama3(FT) race Hispanic/Latino -0.03 0.11 < 10−10 0%
llama3(FT) race Other/Unknown 0.25 0.11 < 10−10 0%
llama3(FT) race White -0.04 0.11 < 10−10 0%
llama3(ZS) age young adults -2.22 2.10 < 10−10 52%
llama3(ZS) age middle aged adults -0.84 1.96 < 10−10 23%
llama3(ZS) age older adults 0.18 1.69 < 10−10 14%
llama3(ZS) age elderly 1.60 3.08 < 10−10 23%
llama3(ZS) gender F -0.10 0.32 < 10−10 2%
llama3(ZS) gender M 0.13 0.35 < 10−10 4%
llama3(ZS) race Asian & Pacific -0.06 0.35 < 10−10 2%
llama3(ZS) race Black 0.11 0.41 < 10−10 3%
llama3(ZS) race Hispanic/Latino 0.10 0.42 < 10−10 3%
llama3(ZS) race Other/Unknown 0.00 0.37 0.386 3%
llama3(ZS) race White -0.10 0.39 < 10−10 2%
phi4(FT) age young adults -0.53 0.28 <10−10 0%
phi4(FT) age middle aged adults -0.26 0.29 <10−10 0%
phi4(FT) age older adults 0.08 0.27 <10−10 0%
phi4(FT) age elderly 0.15 0.31 <10−10 0%
phi4(FT) gender F -0.01 0.02 <10−10 0%
phi4(FT) gender M 0.01 0.02 <10−10 0%
phi4(FT) race Asian & Pacific -0.03 0.08 <10−10 0%
phi4(FT) race Black -0.02 0.08 <10−10 0%
phi4(FT) race Hispanic/Latino -0.02 0.08 <10−10 0%
phi4(FT) race Other/Unknown 0.19 0.10 <10−10 0%
phi4(FT) race White -0.03 0.08 <10−10 0%
phi4(ZS) age young adults -4.28 2.88 <10−10 67%
phi4(ZS) age middle aged adults -2.28 2.51 <10−10 49%
phi4(ZS) age older adults 0.15 2.54 <10−10 37%
phi4(ZS) age elderly 3.36 2.82 <10−10 48%
phi4(ZS) gender F -0.12 0.20 <10−10 2%
phi4(ZS) gender M 0.15 0.23 <10−10 2%
phi4(ZS) race Asian & Pacific -0.02 0.30 <10−10 4%
phi4(ZS) race Black 0.39 0.32 <10−10 6%
phi4(ZS) race Hispanic/Latino 0.23 0.35 <10−10 6%
phi4(ZS) race Other/Unknown -0.03 0.30 <10−10 4%
phi4(ZS) race White -0.02 0.25 <10−10 2%

Table 10: Detailed demographic sensitivity results, including mean ∆ELOS, standard deviation, p-values, and class
flip percentages for each model, variable, and demographic class.
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Model Variable Class Mean ∆E Std ∆E p-value % Class Flip
obllm(FT) age middle aged adults -0.03 0.25 <10−10 0%
obllm(FT) age older adults 0.12 0.24 <10−10 0%
obllm(FT) age elderly -0.03 0.31 <10−10 0%
obllm(FT) gender F -0.03 0.03 <10−10 0%
obllm(FT) gender M 0.03 0.03 <10−10 0%
obllm(FT) race Asian & Pacific -0.02 0.15 <10−10 0%
obllm(FT) race Black -0.04 0.15 <10−10 0%
obllm(FT) race Hispanic/Latino -0.07 0.15 <10−10 0%
obllm(FT) race Other/Unknown 0.32 0.15 <10−10 0%
obllm(FT) race White -0.06 0.15 <10−10 0%
obllm(ZS) age young adults -1.39 0.90 <10−10 15%
obllm(ZS) age middle aged adults -0.76 0.88 <10−10 8%
obllm(ZS) age older adults -0.05 0.87 <10−10 8%
obllm(ZS) age elderly 1.56 1.16 <10−10 35%
obllm(ZS) gender F 0.00 0.11 0.0967 1%
obllm(ZS) gender M 0.01 0.11 0.0967 2%
obllm(ZS) race Asian & Pacific -0.47 0.25 <10−10 6%
obllm(ZS) race Black 0.53 0.25 <10−10 6%
obllm(ZS) race Hispanic/Latino -0.28 0.28 <10−10 4%
obllm(ZS) race Other/Unknown 0.18 0.24 <10−10 3%
obllm(ZS) race White -0.11 0.23 <10−10 2%
meditron(ZS) age young adults -2.63 1.27 <10−10 66%
meditron(ZS) age middle aged adults -1.07 1.22 <10−10 41%
meditron(ZS) age older adults 0.26 1.22 <10−10 25%
meditron(ZS) age elderly 0.93 1.20 <10−10 37%
meditron(ZS) gender F -0.06 0.07 <10−10 3%
meditron(ZS) gender M 0.06 0.06 <10−10 2%
meditron(ZS) race Asian & Pacific 0.03 0.14 <10−10 4%
meditron(ZS) race Black 0.15 0.11 <10−10 4%
meditron(ZS) race Hispanic/Latino 0.25 0.13 <10−10 9%
meditron(ZS) race Other/Unknown -0.01 0.12 <10−10 3%
meditron(ZS) race White 0.03 0.10 <10−10 3%
meditron(ZS) age young adults -2.63 1.27 <10−10 66%
meditron(ZS) age middle aged adults -1.07 1.22 <10−10 41%
meditron(ZS) age older adults 0.26 1.22 <10−10 25%
meditron(ZS) age elderly 0.93 1.20 <10−10 37%
meditron(ZS) gender F -0.06 0.07 <10−10 3%
meditron(ZS) gender M 0.06 0.06 <10−10 2%
meditron(ZS) race Asian & Pacific 0.03 0.14 <10−10 4%
meditron(ZS) race Black 0.15 0.11 <10−10 4%
meditron(ZS) race Hispanic/Latino 0.25 0.13 <10−10 9%
meditron(ZS) race Other/Unknown -0.01 0.12 <10−10 3%
meditron(ZS) race White 0.03 0.10 <10−10 3%

Table 11: Extended demographic analysis for additional models. Metrics follow the same format as Table 10.
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