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Abstract

Spiking Neural Networks (SNNs) demonstrate significant potential for energy-
efficient neuromorphic computing through an event-driven paradigm. While train-
ing methods and computational models have greatly advanced, SNNs struggle to
achieve competitive performance in visual long-sequence modeling tasks. In artifi-
cial neural networks, the effective receptive field (ERF) serves as a valuable tool for
analyzing feature extraction capabilities in visual long-sequence modeling. Inspired
by this, we introduce the Spatio-Temporal Effective Receptive Field (ST-ERF)
to analyze the ERF distributions across various Transformer-based SNNs. Based
on the proposed ST-ERF, we reveal that these models suffer from establishing a
robust global ST-ERF, thereby limiting their visual feature modeling capabilities.
To overcome this issue, we propose two novel channel-mixer architectures: multi-
layer-perceptron-based mixer (MLPixer) and splash-and-reconstruct block (SRB).
These architectures enhance global spatial ERF through all timesteps in early net-
work stages of Transformer-based SNNs, improving performance on challenging
visual long-sequence modeling tasks. Extensive experiments conducted on the
Meta-SDT variants and across object detection and semantic segmentation tasks
further validate the effectiveness of our proposed method. Beyond these specific
applications, we believe the proposed ST-ERF framework can provide valuable
insights for designing and optimizing SNN architectures across a broader range of
tasks. The code is available at § EricZhang1412/Spatial-temporal-ERF.

1 Introduction

Spiking Neural Networks (SNNs) [1, 2] have emerged as a prominent research focus, characterized
by binary spike activation that offers high sparsity, event-driven processing [3, 4], and biological
plausibility [5]. Recent advances in encoding schemes [6, 7, 8], training methodologies [9, 10],
and neuromorphic hardware [11, 12, 13] have enabled SNNs to achieve remarkable success in
diverse tasks, including image processing [14, 15, 16], point/event analysis [17, 18], language
understanding [19, 20, 21], and speech processing [22, 23, 24]. Nonetheless, SNNs still struggle to
achieve performance comparable to their Artificial Neural Networks (ANNs) counterparts in visual
long-sequence modeling tasks.

Compared to conventional image classification, visual long-sequence modeling tasks [25, 26] demand
spatially dense outputs with prediction scales several orders of magnitude higher. This paradigm
requires architectures capable of modeling long-range spatial dependencies, which are essential for
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Figure 1: (a) The human visual field. (b) ERF in ANNs. (c) ST-ERF in SNNs. It extends the ERF to
the temporal dimension, thus facilitating a comprehensive analysis of feature extraction in SNNs.

achieving competitive performance [25]. The Transformer [27] architecture introduces a self-attention
mechanism that enables effective modeling of long-range spatial dependencies [28, 29, 30]. Motivated
by this, recent studies have proposed various Transformer-based SNNs [31, 32, 33, 34], achieving
notable progress in visual long-sequence tasks [15]. However, simply combining Transformers
with SNNs may lead to suboptimal designs without fully considering the intrinsic spatio-temporal
dynamics of spiking neurons. To bridge this gap, a more structured and interpretable framework is
required to examine how SNNs model spatio-temporal dependencies. In this context, receptive field
(RF) analysis offers a concrete lens through which their feature extraction capacity and attention
allocation can be theoretically characterized.

In neuroscience, the RF represents the region of sensory input that can modulate a neuron’s activ-
ity [35]. Borrowing this concept, the deep learning community defines a neuron’s RF as the region of
the input that can influence its output [36], with its size determined by network topology. However,
this topology-based definition treats all positions within the RF equally, ignoring the learnable weights
that determine the actual contribution of each input location. To refine this problem, researchers
proposed the effective receptive field (ERF) [37] to quantify input features’ contributions to output
features via gradient analysis. Unlike topology-based RF, gradient-based ERF provides a more
faithful characterization of the network’s feature extraction patterns. However, such framework
cannot be directly applied to SNNs due to the intrinsic spatio-temporal dynamics of spiking neurons.
Therefore, we introduce the Spatial-Temporal Effective Receptive Field (ST-ERF) framework, which
quantifies input feature contributions across spatio-temporal locations to characterize SNNs’ feature
extraction patterns. By jointly modeling temporal dependencies and spatial relationships, ST-ERF
facilitates a comprehensive analysis of information processing in SNNs.

Based on the proposed ST-ERF, we analyze various Transformer-based SNNs and identify that
existing models fail to establish effective global receptive fields across all timesteps. This limitation
stems from the prevalent use of convolutional channel-mixers, which inherently introduce locality
bias [38]. Despite facilitating efficient local feature extraction and long-range sparse modeling, this
architectural design fundamentally constrains the long-range dense spatial interactions necessary
for effective visual long-sequence modeling in SNNs. Building on these insights, we propose
two novel channel-mixer architectures: multi-layer-perceptron-based mixer (MLPixer) and splash-
and-reconstruct block (SRB). These designs use pixel-wise MLPs to keep spatial features separate
when mixing channels, which reduces locality bias and improves the global receptive field in
early stages of Transformer-based SNNs. Extensive experiments demonstrate the effectiveness
of our methods on visual long-sequence tasks. Specially, on COCO 2017 object detection and
ADE20K semantic segmentation, our Meta-SDT-Base [33] with SRB achieves 48.9% APb

50 and
43.7% mIoU, respectively, while maintaining a smaller model size. These results surpass state-of-the-
art Transformer-based SNNs, thereby validating our ST-ERF analysis and further advancing SNNs in
visual long-sequence modeling. Our main contributions are listed as follows:
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• We propose the ST-ERF framework, extending the traditional ERF concept to the temporal
dimension with rigorous mathematical formalization. ST-ERF systematically quantifies how
input features at different spatial and temporal locations contribute to output features. This
provides a theoretical tool for understanding and optimizing feature extraction in SNNs.

• We analyze various Transformer-based SNNs using the ST-ERF framework, revealing a
critical limitation that existing models fail to establish a global ERF across all timesteps.
To overcome this issue, we introduce two novel channel mixer designs: MLPixer and
SRB, enabling Transformer-based SNNs to fully exploit their global modeling potential of
long-range dependencies.

• We conduct extensive experiments on visual long-sequence modeling tasks and demonstrate
that our method achieves superior performance. For instance, our Meta-SDT-Base with SRB
achieves 48.9% APb

50 on COCO 2017 detection and 43.7% mIoU on ADE20K segmentation.
It significantly outperforms existing state-of-the-art Transformer-based SNNs while using a
smaller model size. These results strongly support the validity of our ST-ERF theoretical
analysis and demonstrate the effectiveness of the proposed architectural designs.

2 Related Works

2.1 Receptive Field in Neural Networks

The human visual system perceives the external world through the visual fields of both eyes. As
illustrated in Figure 1(a), each eye covers a specific region of the visual space, and these regions
partially overlap in the center to enable binocular vision. Neurons along the visual pathway respond
selectively to stimuli within their RFs. Over the past decades, the RF theory has profoundly influ-
enced our understanding of how the brain filters and integrates visual information across spatial
locations [39]. Inspired by the RF theory, deep neural networks adopt a similar principle by charac-
terizing hierarchical ERFs that capture progressively abstract representations of input data. As shown
in Figure 1(b), the ERF [37] formalizes this process by analyzing how spatial stimuli contribute to
network activations. ERF has motivated extensive research at different architectural levels, from
understanding basic operators [40] to designing higher-level modules and network structures such as
Adaptive Receptive Fields [41], RF-Next [42], and AutoRF [43]. RF-based analysis has also driven
advances in computational efficiency for lightweight architectures, influencing the development of
CNN-based MobileNet variants [44, 45, 46] and MLP-based networks such as MLP-Mixer [47] and
TSMixer [48]. Building on these insights, this work extends the ERF concept to SNNs, offering a
theoretical framework for analyzing and optimizing their spatio-temporal feature extraction processes.

2.2 Visual Long-sequence Modeling in SNNs

Visual long-sequence modeling refers to tasks that require multiple predictions per image, rather
than a single-label classification [49]. These tasks mainly include detection, segmentation, video
understanding, and so on [25]. As these tasks involve modeling complex spatial and temporal
dependencies, they demand architectures capable of capturing long-range contextual information.
Transformer has become the dominant paradigm for visual long-sequence modeling owing to its
global self-attention mechanism and flexible scalability. However, such models still suffer from high
computational costs, primarily due to the quadratic complexity of self-attention, dense prediction
requirements, and high-resolution inputs [50]. Recently, leveraging the sparse spike-driven nature
of SNNs has emerged as a promising direction to mitigate these computational costs. Spike-driven
Transformer series [51, 33, 52] adapt the standard Metaformer into an SNN framework for object
detection and semantic segmentation, demonstrating the feasibility of SNNs in dense prediction tasks.
Spike2Former [15] integrates normalized integer leaky-and-integrated firing (NI-LIF) neurons and
spike-driven deformable attention to achieve competitive performance on segmentation benchmarks
while maintaining low energy consumption. Despite these advancements, SNNs still lag behind
ANNs in visual long-sequence modeling. This underscores the need for deeper investigation into
SNNs’ spatio-temporal bottlenecks and architectural optimization.
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3 Theoretical Analysis of Spatio-temporal Effective Receptive Field

In this section, we first introduce the concept of ERF in conventional ANNs. Subsequently, we extend
this conventional ERF into the temporal dimension to characterize the ST-ERF in SNNs. Finally, we
introduce a loss-derived method to efficiently compute ST-ERF in SNNs.

3.1 ERF in ANNs

The concept of the ERF has been widely adopted to analyze how input features contribute to network
activations and how such influences are distributed within the RF [40, 41]. Under the assumption
of a single channel per layer, Luo et al. [37] mathematically characterized how each input feature
contributes to the output of a neural network layer. It can be defined as follows:

ERF(i,j)[y(m,n);x] =
∂y(m,n)

∂x(i,j)
, (1)

where x ∈ R1 is the input feature and y ∈ R2 is the output feature. In this manner, the ERF measures
the partial derivative of an output feature y(m,n) ∈ y with respect to each input feature x(i,j) ∈ x
within a given layer. As illustrated in Figure 1(b), the ERF of a given network F(; θ) describes the
input regions that contribute to a particular output activation.

As shown in Eq. (1), the ERF can be computed at any output location. However, most studies evaluate
the ERF at the central output feature y(0,0) by assigning a unit gradient to this location [53, 54]. This
practice establishes a centered and symmetric reference, ensuring stable and comparable visualization
results. In this work, we also follow the setting of [37] and adopt the ERF at the central output feature
y(0,0) as the evaluation metric.

3.2 ST-ERF in SNNs

Due to the inherent temporal dynamics, SNNs require additional consideration of the input at each
timestep. To address this, we formally define the ST-ERF (i.e., ERF(S,T )). Firstly, we redefine the
mapping relationship of SNNs. Consider a SNN layer with learnable parameters θ that maps input
spike features x[1 : T ] ∈ R̂1 to output spike features y[1 : T ] ∈ R̂2:

y[1 : T ] = F(x[1 : T ]; θ),F : R̂1 → R̂2. (2)
Its ERF needs to account not only for the accumulation across spatial dimensions but also for that
across temporal dimensions. Specifically, ERF(S,T ) ∈ R̂1 can be expressed as:

ERF
(S,T )
(i,j) [ y(m,n)[t], τ ;x ] =

∂y(m,n)[t]

∂x(i,j)[t− τ ]
, 1 ≤ t ≤ T, 0 ≤ τ ≤ t− 1. (3)

Accordingly, ERF(S,T ) quantifies how much each input feature x(i,j)[t − τ ] ∈ x at a previous
timestep t − τ contributes to a specific output feature y(m,n)[t] ∈ y. Based on this definition, the
spatial ERF (i.e., ERF(S)) can be seen as the weighted average of the ST-ERFs over all timesteps:

ERF
(S)
(i,j)[ y(m,n);x] =

1

T

T∑
t=1

t−1∑
τ=0

w(t, τ) · ERF(S,T )
(i,j) [ y(m,n)[t];x, τ ], (4)

where w(t, τ) represents the relative contribution of the input with delay τ at time t to the output. The
specific form of w(t, τ) depends on the neuronal dynamics and network architecture. For example,
in Leaky Integrate-and-Fire (LIF) neurons, inputs closer to the current time step may have a higher
influence due to the decay of membrane potential over time.

The temporal ERF (i.e., ERF(T )) can be seen as the integration over the spatial dimensions of
ST-ERF to indicate the contribution of inputs at different timesteps to the final output:

ERF(T )[τ ;x] =
∑
i,j

∑
m,n

ERF
(S,T )
(i,j) [ y(m,n)[T ];x, τ ]. (5)

As shown in Figure 1(c), we visualize an example of the ST-ERF. Similar to conventional ERF
analysis, we focus on the center of the feature map at a specific timestep (e.g., the final timestep
in Fig. 1(c)) to analyze the spatio-temporal feature representations in an SNN. Depending on the
purpose of analysis, one may investigate the spatial distribution of the ST-ERF at a given timestep
(spatial ERF) or its temporal distribution across one or more layers (temporal ERF).
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3.3 Loss-Derived Calculation for ST-ERFs

Based on Eq. (3), computing the ST-ERF in SNNs requires evaluating first-order derivatives of
outputs with respect to all input features. To obtain the ST-ERF conveniently, we introduce the
loss-derived calculation method to efficiently compute using PyTorch’s Automatic Differentiation
functionality. Consider a SNN with input spike features sℓ−1, output spike features sℓ at the ℓ-th layer,
and an arbitrary loss function L. The spatial ERF of SNNs can be easily obtained by calculating the
average of the gradient of the loss with respect to input features at position (i, j) across all timesteps
T . Specifically, it can be computed as follows:

ERF
(S)
(i,j)[ s

ℓ
(0,0)] =

1

T

T∑
t=1

∂sℓ(0,0)[t]

∂sℓ−1
(i,j)[t]

=
1

T

T∑
t=1

∂L
∂sℓ−1

(i,j)[t]
,when∀t, ∂L

∂sℓ
(̂i,ĵ)

[t]
=

{
1, î = 0, ĵ = 0,

0, otherwise
.

(6)
The temporal ERF of SNNs can be obtained by calculating the sum of the gradient of the loss function
with respect to input features at timestep T − τ across all spatial positions. It can be computed as:

ERF(T )[τ ] =
∑
i,j

∑
î,ĵ

∂sℓ
(̂i,ĵ)

[T ]

∂sℓ−1
(i,j)[T − τ ]

=
∑
i,j

∂L
∂sℓ−1

(i,j)[T − τ ]
, when ∀î, ĵ, ∂L

∂sℓ
(̂i,ĵ)

[T ]
= 1. (7)

Proof can be found in Appendix A. We refer to the conditions in Eq. (6) and (7) as gradient stimuli.
Based on this proposition, we could easily obtain the spatial and temporal ERF with automatic
back-propagation without an explicit loss function.

4 Problem Analysis on Transformer-based SNNs using ST-ERF

In this section, we use the ST-ERF framework to analyze existing Transformer-based SNNs and
identify their limitations in visual long-sequence modeling tasks.

4.1 Different ST-ERF Behaviors in Transformer-based SNNs

We apply the ST-ERF framework to analyze Transformer-based SNNs’ spatial ERF behaviors across
all timesteps. Specifically, we compared two groups of architectures(a: ViT-like architecture group
and b: Meta-architecture group) with their ANN counterparts to investigate the differences in the
formation of their spatial ERFs. For the loss-derived calculation, we set the central patch across all
channels and timesteps in the output tensor as the gradient stimuli (uniform values of 1), then perform
automatic back-propagation. Each experiment comprised 60 iterations using randomly sampled input
tensors under standard normal distribution (µ = 0, σ2 = 1). Note that we average the ST-ERF over
all timesteps to obtain a clear visualization.

ViT-B SDT-V1 (8-384)

ANN SNN
(a) (b)

ANN

CAFormer-s18 Meta-SDT-S

SNN

Figure 2: Comparison of spatial ERF with ANN Vision Transformers and ST-ERF with different
Transformer-based SNNs. (a) ViT-like architecture comparison group: ViT-B and SDT-V1. (b)
Meta-architecture comparison group: CAFormer-s18 and its counterpart Meta-SDT-S.

The comparison of ViT-like architectures is illustrated in Figure 2(a). Compared with the classic
ViT-B, SDT-V1 exhibits a more centrally concentrated yet markedly narrower spatial ERF. This
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observation suggests that the architectural modifications in SDT-V1 may restrict the receptive field’s
spatial extent, thereby enhancing its attention on local spatial dependencies. In fact, SDT-V1 adopts
a fundamentally different strategy from the vanilla ViT in the patch splitting stage. Specifically,
SDT-V1 employs the Spike Patch Splitting (SPS) module, consisting a Patch Splitting Module (PSM)
to linearly project the input image and a Relative Position Embedding (RPE) [55] block to generate
the latent position information. The SPS module incorporates multiple convolutional layers at the
early stage of the network, facilitating low-level spatial features extraction from input images.

The comparison of meta-architectures is illustrated in Figure 2(b). Although Meta-SDT exhibits
ERF behaviors similar to those of its ANN counterparts, it also struggles to maintain long-range
feature attention. This limitation can be attributed to the additional employment of convolutional
layers, which tend to emphasize localized features rather than global spatial contexts. Compared with
CAFormer, Meta-SDT introduces the Re-parameterization Convolution (RepConv)[56] to perform
the linear projection of queries, keys, and values[51]. This design enhances local feature extraction,
yet it inherently constrains the model’s capacity to aggregate information across distant spatial regions.
Together, these findings suggest that the convolutional operations enhances local feature sensitivity
but poses challenges for maintaining long-range spatial coherence in Transformer-based SNNs.

4.2 Visual Long-sequence Modeling Needs Global ST-ERF

Visual long-sequence modeling tasks often involve dense predictions across an entire image, requiring
the processing of thousands of input tokens [25]. Therefore, capturing long-range dependencies and
global context is crucial for achieving accurate and robust representations [57]. Prior studies have
found that vision models with global receptive fields often excel at segmentation and detection, for
instance when using self-attention mechanisms as in Transformer architectures [57, 58]. In contrast,
architectures lacking global context integration tend to struggle. While early convolutional layers
excel at extracting low-level structural patterns [59], their locality inherently limits the capacity to
capture long-range dependencies, making them suboptimal for visual long-sequence tasks.

However, despite the need for global spatial awareness in visual long-sequence modeling,
Transformers-based SNNs still fail to achieve a truly global ST-ERF. As discussed above, they
tend to focus heavily on the center and expand to limited size. This contrasts sharply with the
expected behavior required for visual long-sequence modeling tasks, where the weak global ST-ERF
limits information aggregation and consequently degrades performance on such scenarios [57].

5 Methods

In this section, we propose two novel channel-mixing designs, MLPixer and SRB, which enable
Transformer-based SNNs to more effectively capture long-range dependencies. Furthermore, we
integrate these modules into the Meta-SDT architecture to enhance performance on visual long-
sequence modeling tasks.

5.1 Design of Channel Mixer Block

To enhance the global modeling capability of SNN in visual long-sequence tasks, we propose two
novel channel mixer designs. The first is the multi-layer perceptron-based mixer (MLPixer), which
employs a two-layer MLP structure to more effectively extract global features. It is defined as follows:

MLPixer(X) = BN
(
MLP

(
SN{BN(MLP{SN(X)})}

))
, (8)

where X ∈ RT×B×N×D denotes the input of channel mixers in the Transformer block. SN(·) denotes
a spiking neuron layer that transforms the input sequence into the spike trains. MLP(·) denotes a
single-layer fully connected (FC) operation, and BN(·) denotes batch normalization.

Compared with vanilla channel mixers [60, 51] that rely on convolution operations, the MLPixer
employs a two-layer MLP operation to mix features across channels. This design reduces reliance on
convolutional operations, mitigating the ERF’s bias toward a Gaussian-like central concentration and
enabling SNNs to capture long-range dependencies more effectively.

6



(a)

Conv

BN

Conv

BN

MLP

BN

MLP

BN

(b)

MLP

BN

Conv

BN

(c)

Figure 3: Comparison between the original channel mixer design and our proposed methods, along
with their ST-ERF. For clearer visualization, the ST-ERF is averaged over timesteps. (a) Vanilla
convolution-based channel mixer. (b) Proposed MLPixer architecture. (c) Proposed SRB architecture.
Obviously, the vanilla convolution-based channel mixer exhibits a limited ST-ERF, whereas our
MLPixer and SRB modules achieve a more global ST-ERF. Moreover, due to the reduced use of
convolutions, MLPixer exhibits an even broader effective receptive field.

Building on this, we further propose the SRB module. It replaces only the second convolution in the
channel mixer with a single-layer MLP operation. Specifically, the SRB is defined as follows:

SRB(X) = BN
(
MLP

(
SN{BN(Conv{SN(X)})}

))
. (9)

Here, Conv(·) denotes a 1×1 convolution operation. In this manner, SRB module reduces additional
parameters while maintaining performance. To validate the effectiveness of our approach, we visualize
the ERFs of the Conv-based mixer, the MLPixer, and the SRB modules.

As shown in Figure 3(a), the vanilla convolution-based channel mixer exhibits a limited ST-ERF. In
contrast, the proposed MLPixer and SRB modules demonstrate a more global ST-ERF. Furthermore,
the comparison between Figure 3(b) and Figure 3(c) further demonstrates that MLPixer exhibits
a more global ERF. This stems from reduced use of convolutions and further suggests that MLPs
provide stronger global modeling capacity than convolutional operators. We will validate the proposed
module on visual long-sequence modeling tasks in the experiment section.
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Figure 4: The overall architecture of Meta-SDT, which typically comprises four hierarchical stages.
The first two stages use convolution-based SNN blocks, while the latter two adopt Transformer-SNN
blocks. To strengthen the global modeling capacity of SNNs, we introduce two novel channel mixer
architectures, MLPixer and SRB, to replace the convolution-based SNN blocks in the first two stages.
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5.2 Overall Architecture

To further validate the effectiveness of our approach, we integrate the proposed SRB and MLPixer
modules into the CAFormer [60] and Meta-SDT [33] architectures. As shown in Figure 4, these
architectures adopt a multi-stage design, where the first two stages consist of Conv-based SNN
blocks, and the latter two stages comprise Transformer-SNN blocks. In this work, we replace only
the operations in the first two stages. Specifically, the first two stages are represented as:

X′ = X+ SSC(X),X′′ = X′ +Mixerϵ(X
′). (10)

Here, Mixerϵ(·) is the channel mixer. In this work, we implement the approach using both the
MLPixer module and the SRB module. Similar to the vanilla channel mixer, our method adopts
an up-projection followed by a down-projection with a nonlinear activation in between, where
ϵ > 1 represents the intermediate dimensional expansion ratio. SSC(·) is the spike-driven separable
convolution block as token mixer, it is defined as follows:

SSC(X) = PWConv2(SN(DWConv(SN(PWConv1(SN(X)))))) . (11)

PWConv1(·) and PWConv2(·) are pointwise convolutions, DWConv(·) is depthwise convolution.
SN(·) denotes the spiking neuron layer. To maintain the spike-driven characteristics of the network,
we implement membrane-shortcut residual connection mechanism. Furthermore, Transformer-SNN
blocks are utilized in Stage 3 and Stage 4, following the same configuration as that of Meta-SDT-
V3 [33]. We will further verify the effectiveness of the proposed method in the experimental section.

6 Experiments

In this section, we validate the effectiveness of our method through visualization and experimental
analysis. First, we examine the changes in the ST-ERF after integrating the proposed modules into
Meta-SDT, showing that our method achieves stronger global spatial receptive fields across all stages.
Second, we evaluate its performance improvement on long-sequence modeling tasks, including object
detection and semantic segmentation. Finally, we further investigate the method on complex event
modeling tasks to assess its applicability in more challenging scenarios.

6.1 ST-ERF Behavior in Transformer-based SNNs

In order to study the impact of our proposed block on the receptive field of Meta-SDT, we compared
temporal-averaged spatial ERFs between our two Meta-SDT variants with previous models. We
initialized the central spatial feature across all channels and timesteps in the output tensor as uniform
gradient stimuli (value = 1), and propagated the gradients backward through the network. Each
experiment consisted of 60 iterations with input tensors randomly drawn from a standard normal
distribution (µ = 0, σ2 = 1).

The results are illustrated in Figure 5. Surprisingly, we found that Spikformer exhibits diffuse
receptive fields across all stages. The SDT-V1, Meta-SDT, and QKFormer demonstrate markedly
centered distribution that gradually expand as the network deepens, all manifesting a Gaussian-like
effect. Additionally, we observed dissipation of spatial ERF in SDT-V1 during the final stage. In
contrast, our proposed two Meta-SDT variants establish robust global spatial receptive fields in the
early stages. The MLPixer-SDT establishes a strong global spatial ERF in Stage 1. As the network
deepens, its spatial ERF selectively contracts toward specific regions. The ERF behavior in SRB-SDT
is slightly different, as it only begins to form a preliminary spatial ERF at Stage 2, and this distribution
continues to evolve with increasing network depth.

6.2 Performance in Visual Long-sequence Modeling Tasks

We selected two challenging datasets to evaluate performance on classic visual long-sequence model-
ing tasks: object detection and instance segmentation on COCO 2017, and semantic segmentation on
the ADE20K dataset. We choose the Meta-SDT(v3) [33] as the baseline and construct Meta-SDT
variants with MLPixer(ϵ4), MLPixer(ϵ6) and SRB(ϵ4).

Performance on COCO 2017 We evaluate the efficacy of the MLPixer and SRB on Meta-SDT and
select the classic and large-scale COCO [61] dataset as our benchmark for evaluation. Following
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Spikformer (8-512) SDT-V1 (8-384) Meta-SDT-S QKFormer (10-384) MLPixer-SDT-S ( )
Ours #1

SR-SDT-S ( )
Ours #2

Evolving through stages

Figure 5: Comparison of temporal-averaged spatial ERF evolution across stages. From top to bottom
are Stage 1 through Stage 4. Spikformer shows diffuse receptive fields across all stages. SDT-V1,
Meta-SDT, and QKFormer exhibit more centered spatial distributions that gradually expand as depth
increases. Our two Meta-SDT variants establish global spatial receptive fields in the early stages.

the previous work [51, 33, 52], we use the MMdetection [62] codebase with a spiking version and
then deploy our model. We employ the Meta-SDT [33] with two variants as the backbone network
to extract features, along with fine-tuning Mask R-CNN [63] for object detection and instance
segmentation. All backbone networks are pretrained on ImageNet-1K [64], while the incremental
layers are initialized following [65]. During fine-tuning, we strictly obey the 1× training schedule.

The comparison results of object detection and instance segmentation are shown in Table 1. Under
the same training schedule, both the MLPixer and SRB variants outperforms the baseline across all
metrics. More specifically, the SRB variant exceeds the performance of SDTv3-T and SDTv3-B by
10.42% and 4.26% on the APb

50 metric, while maintaining almost the same model size. In conclusion,
our approach demonstrates efficacy in object detection and instance segmentation, setting a new
benchmark for COCO dataset in the SNN domain.

Performance on ADE20K We evaluate the performance of MLPixer and SRB on the semantic
segmentation task using the challenging ADE20K dataset [66]. Similar to the COCO experiments, we
utilize the spiking version of MMSegmentation [67] as our codebase and employ the Meta-SDT [33]
with two variants as the backbone network. We fine-tune the Semantic FPN framework [68] for
semantic segmentation. Backbone networks are initialized with ImageNet-1K pre-trained weights
[64], and new layers follow the initialization scheme of [65]. All models are strictly obey the same
training schedule for 160k iterations.

As shown in Table 2, both MLPixer and SRB variants surpass the baseline in terms of mIoU. The SRB
variant improves performance by 3.3% and 2.6% over SDTv3-T and SDTv3-B, respectively, while
reducing parameters by 0.3M and 1.2M. The MLPixer(ϵ4) variant achieves the largest parameter
reduction of 0.6M and 2.4M, with comparable or superior accuracy to SDTv3-T and SDTv3-B. These
results highlight the effectiveness of the proposed modules in enhancing semantic segmentation on
ADE20K.

6.3 Performance in Complex Event Modeling Tasks

Event-based Tracking We evaluate the effectiveness of two channel mixers in the context of
event-based tracking, a highly challenging yet practically significant application domain for SNNs.
Our experiments follow the SDTrack pipeline [18], which employs the Global Trajectory Prompt
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Arch. #T #P APb APb
50 APb

75 APm APm
50 APm

75

SDTv3-T[33] 4 25M 15.2 35.5 10.2 15.2 33.0 12.3
MLPixer(ϵ4) 4 24M 16.2 37.0 11.5 15.2 32.9 12.5
MLPixer(ϵ6) 4 25M 17.5 38.5 13.2 16.2 34.5 13.5
SRB(ϵ4) 4 25M 18.2 39.2 13.8 17.5 34.8 14.3

SDTv3-B[33] 4 39M 21.7 46.9 17.0 20.1 41.8 17.5
MLPixer(ϵ4) 4 36M 22.9 47.6 19.2 21.0 43.4 18.3
MLPixer(ϵ6) 4 39M 25.1 48.8 22.5 21.9 43.5 19.6
SRB(ϵ4) 4 37M 25.8 48.9 22.8 22.5 43.9 20.4

Table 1: Object detection and instance segmenta-
tion with Mask R-CNN on COCO val2017, using
ImageNet-1K pre-training and 1× training schedule.

Arch. Ch. Mixer #T Param.(M) mIoU(%)

SDTv3
-T[33]

C2d-k3(ϵ4) 4 6.5 BASE 34.9 BASE
MLPix.(ϵ4) 4 5.9 (↓0.6) 34.9 (↑0.0)
MLPix.(ϵ6) 4 6.6 (↑0.1) 35.9 (↑1.0)

SRB(ϵ4) 4 6.2 (↓0.3) 38.2 (↑3.3)

SDTv3
-B[33]

C2d-k3(ϵ4) 4 20.4 BASE 41.1 BASE
MLPix.(ϵ4) 4 18.0 (↓2.4) 42.0 (↑0.9)
MLPix.(ϵ6) 4 20.7 (↑0.3) 43.4 (↑2.3)

SRB(ϵ4) 4 19.2 (↓1.2) 43.7 (↑2.6)

Table 2: Segmentation results on ADE20K
based on different mixer block, using
ImageNet-1K pre-training and 160k iter.

method to convert event streams into event frames. We strictly adhere to the original training
protocol, modifying only the backbone by replacing SDTrack with our proposed SDTrack+MLPixer
or SDTrack+SRB variants. As presented in Table 3, extensive experiments on the FE108 [69] and
VisEvent [70] datasets demonstrate that our architectures surpass the original SDTrack in several key
metrics. These results confirm that both the MLPixer and SRB designs preserve the Transformers-
based SNNs’ performance, yet highlight opportunities for further improvement in subsequent temporal
benchmarks.

Table 3: Performance comparison on event-based object tracking, a challenging yet important
application for SNNs. Evaluation is conducted on two benchmark datasets, FE108 and VisEvent.

Architecture Timesteps Param. (M) FE108 [69] VisEvent [70]

AUC(%) PR(%) AUC(%) PR(%)

SD-Track(Tiny) [18] 4× 1 19.61 56.7 89.1 35.4 48.7
+MLPixer (ϵ = 4) 4× 1 20.21 57.1 89.2 33.7 47.3
+MLPixer (ϵ = 6) 4× 1 22.99 57.9 90.1 34.5 48.9
+SRB (ϵ = 4) 4× 1 21.43 58.2 88.5 33.8 48.0

7 Conclusion

This paper presents ST-ERF as a novel framework for analyzing the spatial-temporal modeling
behaviors in SNNs from a new perspective. Through this analysis, an inherent limitation in current
Transformer-based SNN models is identified when applied to visual long-sequence modeling tasks.
To address this limitation, two channel-mixer architectures, MLPixer and SRB, are proposed. Visu-
alization of ST-ERF demonstrates that both modules enhance the global receptive field. Extensive
experiments on long-sequence modeling tasks, including object detection and semantic segmentation,
show that MLPixer and SRB improve overall performance, with SRB achieving an optimal balance
between accuracy and model size. Furthermore, the study investigates complex event modeling tasks
to assess the applicability of MLPixer and SRB in more challenging scenarios. Overall, the proposed
ST-ERF framework offers valuable insights for the design and optimization of SNN architectures
across a wide range of tasks.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction clearly describe our contribution, the algorithm,
and the experimental results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: This paper discusses the limitations of the work in Appendix C.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We mentioned our proposition and properties of ST-ERF and provided a whole
set of proofs in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed description of our model architecture and present all
the training details, including dataset processing methods and hyperparameter settings in
Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We mentioned our data in Appendix B. The code is compressed in the supple-
mental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the full details in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Although we did provided mean ± std range to show several experiments’
numerical range, we need to clarify that the numerical experiments are focused on the
validation of ST-ERF properties, so we provided several independent trials with different
input samples and different network initialization. The mean value of performance (e.g. the
fitted curve) is solid enough to clarify our theories.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This paper provides sufficient information on the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper strictly adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is a foundational research and not tied to particular societal applica-
tions.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, the paper properly credits the creators or original owners of assets (e.g.,
code, data, models) and explicitly mentions and respects the relevant licenses and terms of
use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are introduced in this article.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The proposed method in this research does not involve LLMs as any important,
original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Proof of 3.3

Proof. Leaky Integrate-and-Fire (LIF) model [5, 2] can be described by the following equations:

vℓ[t] = hℓ[t− 1] + f(wℓ,xℓ−1[t− 1]), (Charging function), (12)

sℓ[t] = Θ(vℓ[t]− ϑ), (Firing function), (13)

hℓ[t] =

{
βvℓ[t]− ϑsℓ[t], soft reset
vℓ[t](1− sℓ[t]), hard reset

(Leak-and-reset function), (14)

where β is the decay constant, t is the time step, wℓ is the weight matrix of layer ℓ, f(·) is the
operation that stands for convolution (Conv) or fully connected (FC), x is the input, and Θ(·) denotes
the Heaviside step function. When the membrane potential v exceeds the firing threshold ϑ, the
LIF neuron will trigger a spike s; otherwise, it remains inactive. After spike emission, the neuron
invokes the reset mechanism, where the soft reset function is employed. h is the membrane potential
following the reset function.

For the back-propagation of this neuron, we introduce the training process of SNN gradient de-
scent and the parameter update method of spatio-temporal back-propagation (STBP) [9, 71]. The
accumulated gradients of loss L with respect to weights w at layer ℓ can be calculated as:

∂L
∂wℓ

=

T∑
t=1

∂L
∂sℓ+1[t]

∂sℓ+1[t]

∂vℓ+1[t]
(
∂vℓ+1[t]

∂wℓ
+

∑
τ<t

τ∏
i=t−1

(
∂vℓ+1[i+ 1]

∂vℓ+1[i]
+

∂vℓ+1[i+ 1]

∂sℓ+1[i]

∂sℓ+1[i]

∂vℓ+1[i]

)
∂vℓ+1[τ ]

∂wℓ
),

(15)

where sℓ[t] and vℓ[t] represent the output spikes and membrane potential of the neuron in layer ℓ, at
time t. Moreover, notice that ∂sℓ[t]

∂vℓ[t]
is non-differentiable. To overcome this problem, Wu et al. [9]

propose the surrogate function to make only the neurons whose membrane potentials close to the
firing threshold receive nonzero gradients during back-propagation.

In this paper, we use the rectangle function, which has been shown to be effective in gradient descent
and may be calculated by:

∂sℓ[t]

∂vℓ[t]
=

1

a
sign

(∣∣vℓ[t]− ϑ
∣∣ < a

2

)
, (16)

where a is a defined coefficient for controlling the width of the gradient window.

To compute
∑T

t=1

∂sℓ(0,0)[t]

∂sℓ−1
(i,j)

[t]
, we follow the chain rule with an arbitrary loss L. Consider∑T

t=1
∂L

∂sℓ−1
(i,j)

[t]
:

T∑
t=1

∂L
∂sℓ−1

(i,j)[t]
=

T∑
t=1

∑
î,ĵ

∂L
∂sℓ

(̂i,ĵ)
[t]

∂sℓ
(̂i,ĵ)

[t]

∂sℓ−1
(i,j)[t]

=
∑
î

∑
ĵ

T∑
t=1

∂L
∂sℓ

(̂i,ĵ)
[t]

∂sℓ
(̂i,ĵ)

[t]

∂sℓ−1
(i,j)[t]

=
∑
î̸=0

∑
ĵ ̸=0

T∑
t=1

∂L
∂sℓ

(̂i,ĵ)
[t]

∂sℓ
(̂i,ĵ)

[t]

∂sℓ−1
(i,j)[t]

+

T∑
t=1

∂L
∂sℓ(0,0)[t]

∂sℓ(0,0)[t]

∂sℓ−1
(i,j)[t]

.

(17)

When the following conditions are met:

∀t ∈ T,
∂L

∂sℓ
(̂i,ĵ)

[t]
=

{
1 î = 0, ĵ = 0,

0 otherwise
. (18)
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We can get:

T∑
t=1

∂L
∂sℓ−1

(i,j)[t]
=

T∑
t=1

∂sℓ(0,0)[t]

∂sℓ−1
(i,j)[t]

,
1

T

T∑
t=1

∂L
∂sℓ−1

(i,j)[t]
=

1

T

T∑
t=1

∂sℓ(0,0)[t]

∂sℓ−1
(i,j)[t]

. (19)

The spatial ERF at position (i, j) can thus be calculated by summing the gradients of the loss with
respect to all timesteps.

For the temporal ERF, we need to compute
∑

i,j

∂sℓ(0,0)[T ]

∂sℓ−1
(i,j)

[T−τ ]
. We consider

∑
i,j

∂L
∂sℓ−1

(i,j)
[T−τ ]

. By

applying the chain rule:

∑
i,j

∂L
∂sℓ−1

(i,j)[T − τ ]
=

∑
i,j

∑
î,ĵ

∂L
∂sℓ

(̂i,ĵ)
[T ]

∂sℓ
(̂i,ĵ)

[T ]

∂sℓ−1
(i,j)[T − τ ]

(20)

When the following conditions are met:

∀î, ĵ, ∂L
∂sℓ

(̂i,ĵ)
[T ]

= 1 (21)

We can simplify: ∑
i,j

∂L
∂sℓ−1

(i,j)[T − τ ]
=

∑
î,ĵ

∑
i,j

∂sℓ
(̂i,ĵ)

[T ]

∂sℓ−1
(i,j)[T − τ ]

(22)

The temporal ERF at delay τ can thus be calculated by summing the gradients of the loss with respect
to all spatial positions at timestep T − τ .

B Details in Detection and Segmentation Experiments

On ImageNet-1K pretraining, we employ three scales of Meta-SDT with three different channel
mixer design ((1): Conv-Mixer; (2): MLPixer; (3): SRB) in Table 4 and utilize the hyper-parameters
in Table 5 to pre-train models in our paper for further fine-tuning on COCO 2017 and ADE20K
datasets. Note that ϵ represents the channel expand ratio (CHW → ϵ CHW → CHW).

For COCO 2017 dataset, We utilize the MMDetection [72] framework to implement the existing
models and our method. The object detection and instance segmentation framework strictly follows
Mask R-CNN, with a training schedule of 1× (12 epochs). We use a total batch size of 4/GPU,
utilize the AdamW optimizer with a learning rate of 1× 10−4 and a weight decay of 0.05. Images
are resized and cropped into 1333 × 800 for training and testing and maintain the ratio. Random
horizontal flipping and resize with a ratio of 0.5 was applied for augmentation during training. This
pre-training fine-tuning method is a commonly used strategy in ANNs.

For ADE20K dataset, we utilize the MMSegmentation [73] framework. The training configuration
strictly encompasses for 160,000 iterations. The batch size is set to 4/GPU, and the AdamW optimizer
is used. The learning rate and weight decay parameters are tuned to 2× 10−4 and 0.05, respectively.
To speed up training, we warm up the model for 1.5k iterations with a linear decay schedule. All the
experiments are conducted on 4 NVIDIA-A100 80GB GPUs.
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Table 4: Configurations of different Meta-SDT Variants.

Stage # Tokens Layer Specification Tiny Medium Base

1

H

2
×
W

2

Downsampling
Conv 7x7 stride 2
Dim 16 24 32

Conv-based
SNN block

SepConv
DWConv 7x7 stride 1
MLP ratio 2

Channel Mixer
(1)Conv+Conv ϵ = 4

(2)MLP+MLP ϵ = 4/6

(3)MLP+Conv ϵ = 4

H

4
×
W

4

Downsampling
Conv 3x3 stride 2
Dim 32 48 64

Conv-based
SNN block

SepConv
DWConv 7x7 stride 1
MLP ratio 2

Channel Mixer
(1)Conv+Conv ϵ = 4

(2)MLP+MLP ϵ = 4/6

(3)MLP+Conv ϵ = 4

2 H

8
×
W

8

Downsampling
Conv 3x3 stride 2
Dim 64 96 128

Conv-based
SNN block

SepConv
DWConv 7x7 stride 1
MLP ratio 2

Channel Mixer
(1)Conv+Conv ϵ = 4

(2)MLP+MLP ϵ = 4/6

(3)MLP+Conv ϵ = 4

# Blocks 2

3 H

16
×
W

16

Downsampling
Conv 3x3 stride 2
Dim 128 192 256

Transformer-based
SNN block

SDSA RepConv 3x3 stride 1
Channel MLP MLP ratio 4

# Blocks 6

4 H

16
×
W

16

Downsampling
Conv 3x3 stride 1
Dim 192 240 360

Transformer-based
SNN block

SDSA RepConv 3x3 stride 1
Channel MLP MLP ratio 4

# Blocks 2

Table 5: Hyper-parameters for pre-training on ImageNet-1K

Hyper-parameter Settings Hyper-parameter Settings
Model size T/M/B Timestemp 4

Epochs 200 Resolution 224*224
Batch size 1568 Optimizer LAMB

Base learning rate 6e-4 Learning rate decay Cosine
Warmup eopchs 10 Weight decay 0.05

Random augment 9/0.5 Mixup None
Cutmix None Label smoothing 0.1

C Limitations

This work presents several avenues for future exploration, such as how neuronal dynamics parameters
influence ST-ERF in more dynamic and diverse SNNs. Given that one of SNN’s major successes
stems from its inherent membrane potential memory update mechanism, this represents a particularly
worthwhile direction for deeper investigation. We will further explore the interactions between
spiking neurons’ neurodynamics and the networks’ temporal response in the future. Nevertheless, this
work provides a viable analytical framework for understanding SNN model behavior, with practical
implications for architectural design across various levels of SNNs.
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