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Dealing with Noisy Data in Federated Learning: An Incentive
Mechanism with Flexible Pricing

ABSTRACT

Federated Learning (FL) has emerged as a promising training frame-

work that enables a server to effectively train a global model by

coordinating multiple devices, i.e., clients, without sharing their

raw data. Keeping data locally can ensure data privacy, but also

makes the server difficult to assess data quality, leading to the noisy

data issue. Specifically, for any given taring task, only a portion of

each client’s data is relevant and beneficial, while the rest may be

redundant or noisy. Training with excessive noisy data can degrade

performance. Motivated by this, we investigate the limitations of

existing studies and develop an incentive mechanism with flexible

pricing tailored for noisy data settings. The insight lies in mitigat-

ing the impact of noisy data by selecting appropriate clients and

incentivizing them to clean their data spontaneously. Further, both

rigorous theoretical analysis and extensive simulations compared

with state-of-the-art methods have been well-conducted to validate

the effectiveness of the proposed mechanism.

CCS CONCEPTS

• Computing methodologies→ Distributed computing method-
ologies.
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1 INTRODUCTION

In recent years, Federated Learning (FL) has emerged as a promising

decentralized training framework. It leverages the power ofmultiple

devices, referred to as clients, to collectively train a global model

without sharing clients’ local data, thereby ensuring both efficiency

and privacy [16]. Consequently, FL has been extensively studied

and applied in various fields [3, 4, 29].

Typically, a FL system incorporates two main components: a

server and multiple clients. The server trains a global model by

iteratively coordinating clients over finite rounds. At each round,

clients perform local training, produce local models, and commu-

nicates them back to the server for aggregation. Throughout this
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Figure 1: Components of defined noise score.

process, raw data remains stored locally on the clients, thereby

preserving data privacy. This, however, also prevents the server

from assessing the data quality, giving rise to the noisy data issue.
More precisely, given a specific task like handwritten digit recog-

nition [8], the printed digits included in each client’s local dataset

can be regarded as the redundant and noisy data. Evidently, includ-

ing such noisy data, especifically when it is associated with the same

labels as relevant data, will mislead and manipulate the training

process unpredictably, significantly degrading the FL performance

as depicted in Fig. 1.

This noisy data issue was first proposed and studied by Tuor et
al. [26]. They introduced a centralized benchmark model trained

on a small, task-specific dataset to select relevant data for each

client during local training. In contrast, Nagalapatti et al. [20] de-
veloped FLRD, which allows clients to train their own relevant

data selection models, further facilitating local training. Different

from these methods [20, 26] that focus on the local training phase,

Li et al. [10] considered the aggregation phase and proposed a

learning-based reweighting approach that adjusts the weight for

each training sample. However, we argue that existing studies still

have notable limitations in practical scenarios, say, they all relied

on auxiliary, task-specific datasets to tackle the issue, incurring

additional training costs and reduced generality.

Motivated by this, we explore a novel perspective to address the

noisy data issue: an incentive mechanism approach. An incentive

mechanism typically comprises two phases: the client selection

phase that picks clients for local training and the pricing phase

that determines payments to compensate clients’ expense [21]. Its

feasibility and effectiveness lie in alleviating the negative impact

of noisy data by selecting clients with low noise and high comple-

mentarity during the selection phase, and by incentivizing clients

to clean their noisy data spontaneously by paying suitably in the

pricing phase.

Designing such amechanism tailored for noisy data issues presents

several specific challenges. One essential step before client selection

is to detect and measure the noise level of each client for various

training tasks. To enhance generality, we avoid relying on prior

knowledge, such as the auxiliary datasets used in [20, 26]. This

makes accurately detecting noisy data becomes even more diffi-

cult. Thus, the first challenge emerges as designing a noise detection

1
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policy that effectively balances the trade-off between accuracy and
uncertainty.

Merely detecting the noise level is insufficient, especifically when

detection accuracy cannot be ensured without prior knowledge. To

this end, we further tackle the noisy data issue in the client selec-

tion phase. In addition to considering the noisy levels of clients,

we also focus on leveraging the complementarity between clients

to counteract the negative impact of noisy data on local training.

Unfortunately, clients’ complementarity is unknown in advance,

making it challenging to choose appropriate client sets. One pos-

sible solution is to iteratively explore and try different client sets

over rounds and observe their actual training utility. However, one

cannot consistently explore new client sets; it is also important

to exploit and choose those client sets that have performed well

previously, to facilitate the final training performance. Therefore,

the second challenge is to select low-noise clients while balancing the
trade-off between exploration and exploitation.

After selection, we tend to pay these selected clients for two

goals. One is to cover their expense to motivate them join FL, i.e.,

individual rationality. Another one is further incentivizing clients

to clean their noisy data spontaneously. Existing incentive mecha-

nisms can successfully achieve the first goal by paying clients based

on their costs, which are submitted by themselves via the reverse-

auction framework [14, 18, 27]. They also ensure clients to submit

their true costs rather than lies, i.e., truthfulness. However, these

existing mechanisms fail to further achieve the second goal as they

cannot accurately control the produced payments. Hence, the third
challenge is to price accurately and flexibly, thereby incentivizing
clients to clean their noisy data while enforcing truthfulness.

To overcome these challenges, we develop a novel Flexible Pric-

ing based Incentive mechanism tailored for Noisy FL settings (FPIN).

For the first challenge, FPIN presents a noise detection policy, which

allows the server to measure and quantify the noise level of a client

based on the discrepancy between its submitted local model and the

aggregated global model. This policy merely relies on each client’s

local model rather than an auxiliary dataset, enhancing general-

ity of FPIN. For the second challenge, FPIN includes a selection

policy, which utilizes a combinatorial bandit based online learning

method to effectively balances exploring unknown and potential

client sets with exploiting low-noise and high-complementarity

client sets. Actually, this policy iteratively gains useful knowledge

from making mistakes over rounds, ultimately facilitating the train-

ing performance. For the third challenge, FPIN contains a pricing

policy, which can flexibly and dynamically control the payment pro-

duced for selected clients based on their noise levels. This thereby

encourages clients to clean their own data while achieving both

truthfulness and individual rationality. Finally, FPIN’s effectiveness

is validated through both theoretical analysis and experimental

simulations. Our contributions are summarized as follows:

• Problem. As far as we know, we are the first to address the

noisy data issue from an incentive prospective. The insight

lies in selecting low-noise clients, utilizing complementarity

between them, and encouraging them by suitable payments.

• Method.We carefully study the impact posed by noise data

and develop a Flexible Pricing based Incentive mechanism

tailored for Noisy FL settings (FPIN), including a noise de-

tection policy, a client selection policy, and a pricing policy.

• Analysis. We provide crucial guarantees of FPIN through

theoretical analysis. It includes selection regret bound, truth-

fulness, individual rationality, noise robustness, and con-

vergence rate of the whole training process.

• Simulation.We conduct extensive experimental simula-

tions based on real-world datasets compared with well-

known benchmarks. The results align with our theoretical

findings and illustrate the effectiveness of FPIN.

The rest of the paper is organized as follows. We review related

works in Section 2, introduce the system model, and formulate

the analyzed problems in Section 3.We design our framework in

Section 4. The effectiveness of the framework is evaluated in Section

5 theoretically and in Section 6 numerically. The paper is concluded

in Section 7. Appendices are shown in Section 8.

2 RELATEDWORK

2.1 Noise in FL

The noisy label problem has been widely analyzed in federated

learning to effectively improve the robustness of the system. In

the beginning, Tuor et al.[26] proposed a distributed method that

uses a small benchmark model to evaluate the relevance of data

samples at each client, and then only selects the relevant data to

participate in the federated learning process. Unlike previous ap-

proaches, FLRD introduced by Nagalapatti et al. [20] allows clients

to build their own models for relevant data selection, leading to

more efficient local training. Li et al.[9] introduced FedDiv, which

extracts knowledge from all clients to facilitate federated noise

filtering. Previous research has mainly focused on the local train-

ing phase, emphasizing client-side model optimization while often

overlooking the challenges of global model aggregation and the

effects of noisy clients on overall performance. Focusing on the

aggregation phase, Li et al. [10] proposed a learning-based reweight-

ing approach that modifies the weight assigned to each training

sample. Fang et al.[2] proposed RHFL that addresses label noise by

aligning heterogeneous model feedback using public data, applying

a noise-tolerant loss function, and implementing a client confidence

reweighting scheme for adaptive collaboration. Nonetheless, we

argue that existing studies have considerable limitations in practical

contexts, primarily due to its reliance on auxiliary, task-specific

datasets to tackle the challenges, leading to higher training costs

and diminished applicability.

2.2 Incentive Machanism in FL

Incentive mechanisms based on game theory, auction theory, and

others have been extensively studied in federated learning. Pan et

al.[21] proposes a new incentive mechanism for graph federated

learning, addressing hclientful and delayed agent contributions by

introducing an agent valuation function based on gradient align-

ment and graph diversity.Murhekar et al.[17]models a collaborative

FL framework, introducing a budget-balanced mechanism to max-

imize agents’ welfare, along with a protocol FedBR-BG utilizing

best response dynamics. Wu et al.[27] presents an incentive-aware

algorithm that offers differentiated training-time model rewards

2
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to clients in federated learning, addressing challenges with post-

training incentives and ensuring optimal model recovery. Zhang

et al.[30] proposed RRAFL, a federated learning incentive mecha-

nism based on reputation and reverse auction, which selects par-

ticipants through a reputation assessment that indirectly reflects

their data quality and reliability. Lu et al.[14] presents MAGFL, a

Multi-attribute Auction-based Grouped Federated Learning scheme

that clusters clients, evaluates group quality, distributes economic

rewards, and incorporates Adam operations to accelerate conver-

gence. However, these existing mechanisms cannot further incen-

tivize clients to voluntarily clean their noisy data because they

cannot accurately control the payments generated.

3 PRELIMINARIES

3.1 Reverse-auction based FL System

We consider a reverse-auction based FL system, including a cloud

server that acts as a buyer, denoted by S, and 𝑁 distributed clients

as the sellers, denoted by [𝑁 ]. Products are training services that
clients can provide for server S. Each client 𝑖 ∈ [𝑁 ] maintains a

local model denoted by vector𝑤𝑖,𝑡 , where 𝑡 ∈ [𝑇 ] represents the 𝑡-th
round given total 𝑇 discrete communication rounds of this system.

Also, each client is associated with a local dataset D𝑖 = {(𝑥 𝑗 , 𝑦 𝑗 ) :
𝑗 ∈ [𝑀𝑖 ]}, where 𝑦 𝑗 is the ground-truth label with respect to 𝑥 𝑗 and

𝑀𝑖 = |D𝑖 |. In practical scenarios, there is several noise contained

in D𝑖 , i.e., the data irrelevant with the given training task, which

is represented by D′
𝑖
⊆D𝑖 ,∀𝑖 ∈ [𝑁 ]. We then provide the specific

workflow of the reverse-auction based FL system.

Cost submission. At the beginning of each round 𝑡 , server

S solicit costs of all clients for subsequent pricing. Clients then

upload their costs, denoted by 𝑐𝑖,𝑡 , to represent their expense like

computational consumption and communication overhead [13].

Client selection. Receiving costs of clients, server S chooses a

client set 𝐼𝑡 out of total 𝑁 clients according to both their costs and

previous feedback on training contributions. Local training. These

selected clients 𝐼𝑡 then start local training. The loss of client 𝑖 on

a specific labeled example 𝑑 = (𝑥,𝑦) is denoted as 𝑓𝑖 (𝑤𝑖,𝑡 , 𝑑). The
average loss over local dataset D𝑖 is denoted as

𝐹𝑖 (𝑤𝑖,𝑡 ,D𝑖 )= (1/|D𝑖 |)
∑︁

𝑑∈D𝑖
𝑓𝑖 (𝑤𝑖,𝑡 , 𝑑) (1)

and the local training goal of client 𝑖 is to find a model 𝑤𝑖,𝑡 that

yields an acceptably small average loss,

𝑤𝑖,𝑡 = arg min𝑤 𝐹𝑖 (𝑤,D𝑖 ). (2)

Global aggregation. Local models𝑤𝑖,𝑡 derived in Eq. 2 are then

uploaded by clients in 𝐼𝑡 to server S and are aggregated to a global

model as𝑤𝑡 =
∑
𝑖∈𝐼𝑡 𝑝𝑖𝑤𝑖,𝑡 , where the weight 𝑝𝑖=|D𝑖 |/

∑
𝑘∈𝐼𝑡 |D𝑘 |.

This aggregated model 𝑤𝑡 is subsequently downloaded to each

client. Payment determination. Afterward, sever S determines

payments for selected clients based on their costs and contributions,

denoted by 𝑝𝑖,𝑡 ,∀𝑖 ∈ 𝐼𝑡 . After the five phasesmentioned above, round

𝑡 terminates and the next round 𝑡 +1 starts. All FL rounds ultimately

end as the global model 𝑤𝑇 convergences at round 𝑇 . Therefore,

the final training goal of FL is to find a global model𝑤𝑇 such that

𝑤𝑇 = arg min𝑤

∑︁
𝑖∈𝐼𝑡

𝑝𝑖𝐹𝑖 (𝑤,D𝑖 ) . (3)

We primarily focus on client selection and payment determination

phases of the FL system in this paper, which are modeled as follows.

3.2 Selection Model

The insight of the selection phase is to sample clients with both

low noise and high contribution to training. We define the noise

score 𝑙𝑖 =𝑙 (D𝑖 ) to represent noise levels of client 𝑖 ∈ [𝑁 ] and which
will be precisely quantified in subsequent sections. A higher value

of 𝑙𝑖 indicates a greater noise level. Afterward, to measure clients’

contributions to training, the optimal approach is to use their impor-

tance |D𝑖 |
√︃

1

|D𝑖 |
∑
𝑑∈D𝑖 ∥∇𝑓𝑖 (𝑤𝑖,𝑡 , 𝑑)∥2, where ∇𝑓𝑖 (𝑤𝑖,𝑡 , 𝑑) is the

L2-norm of the gradient of a given sample 𝑑 ∈D𝑖 [6]. However, this
approach is impractical as calculating this importance introduces

too much extra computational time. Instead, we utilize a pragmatic

variant of this importance to represent the statistical utility inspired

by [5, 7]. We further consider the noise level and formally define

the statistical utility in Definition 1. The insight is a larger gradient

norm intuitively yields a higher loss. Also, the selection policy is

given in Definition 2.

Definition 1 (Statistical utility). Reflecting both the im-
portance and noise level, the statistical utility of a client 𝑖 ∈ [𝑁 ] at
round 𝑡 ∈ [𝑇 ] is formally represented by

𝑢𝑖,𝑡 =
|D𝑖 |
𝑙 (D𝑖 )

√︂
1

|D𝑖 |
∑︁

𝑑∈D𝑖
𝑓𝑖 (𝑤𝑖,𝑡 , 𝑑)2 . (4)

All statistical utilities of client 𝑖 up to round 𝑡 can be denoted by a
sequence𝑈𝑖,𝑡 = {𝑢𝑖,𝜏 :𝑖 ∈ 𝐼𝜏 , 𝜏 ∈ [1 :𝑡]}, where 𝐼𝜏 represents the client
set selected at communication round 𝜏 .

Definition 2 (Selection Policy). Given the cost set C𝑡 = {𝑐𝑖,𝑡 :

𝑖 ∈ [𝑁 ]}, the utility set U𝑡 = {𝑢𝑖,𝑡 : 𝑖 ∈ [𝑁 ]}, and the cardinality
constraint 𝐾 , a selection policy 𝜋𝑠 assists server S in sampling a client
set 𝐼𝑡 to optimize the global model, i.e., 𝜋𝑠 (C𝑡 ,U𝑡 , 𝐾)= 𝐼𝑡 .

3.3 Pricing Model

In the system, we assume that all clients are rational and selfish [27],

indicating that each client 𝑖 ∈ [𝑁 ] may declare a false cost 𝑐′
𝑖,𝑡
≠𝑐𝑖,𝑡

to get more payments. This results in unfair competition among

clients, thereby degrading the training performance. To prevent

such strategic behaviors, cover clients’ expense, and incentivize

clients to clean noise, the pricing policy 𝜋𝑝 should be designed to

achieve truthfulness, individual rationality, and noise robustness.

Formally, we define the pricing policy in Definition 3 and these

properties in Definitions 4-6.

Definition 3 (Pricing Policy). The pricing policy 𝜋𝑝 is uti-
lized by server S to determine the payment for each client in 𝐼𝑡 , i.e.,
𝜋𝑝 (𝑐𝑖,𝑡 , C−𝑖,𝑡 ,U𝑡 , 𝜅)=𝑝𝑖,𝑡 ,∀𝑖 ∈ 𝐼𝑡 , where C−𝑖,𝑡 =C𝑡 \{𝑐𝑖,𝑡 }.

Definition 4 (Truthfulness). The pricing policy 𝜋𝑝 achieves
truthfulness if for any fake cost 𝑐′

𝑖,𝑡
∈R and 𝑐′

𝑖,𝑡
≠𝑐𝑖,𝑡 , it holds that

𝜋𝑝 (𝑐𝑖,𝑡 , C−𝑖,𝑡 ,U𝑡 , 𝐾) ≥𝜋𝑝 (𝑐′𝑖,𝑡 , C−𝑖,𝑡 ,U𝑡 , 𝐾),∀𝑡 ∈ [𝑇 ] . (5)

This implies that being truthful is the dominant strategy for clients.

Definition 5 (Individual rationality). The pricing policy
𝜋𝑝 is individually rational if for any client 𝑖 ∈ [𝑁 ], it holds that

𝜋𝑝 (𝑐𝑖,𝑡 , C−𝑖,𝑡 ,U𝑡 , 𝐾) ≥ 𝑐𝑖,𝑡 ,∀𝑡 ∈ [𝑇 ] . (6)

This ensures that the payment is sufficient to cover clients’ expense.

3
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Definition 6 (Noise robustness). The pricing policy𝜋𝑝 achieves
noise robustness in noisy FL if for any client 𝑖 ∈ [𝑁 ], it holds that

𝜋𝑝 (𝑐𝑖,𝑡 , C−𝑖,𝑡 ,U𝑡 , 𝐾)−𝑐𝑖,𝑡 ≤ 𝑙 (D𝑖 ),∀𝑡 ∈ [𝑇 ] . (7)

This indicates that the client with low noise levels can obtain a better
award in addition to the part covering the cost.

3.4 Problem Formulation

The key problem involved in selection and pricing phases is to de-

velop policy 𝜋𝑠 and policy 𝜋𝑝 . For 𝜋𝑠 , it aims to select clients with

high statistical utilities at each round iteratively, further maximiz-

ingz the expected cumulative utility E[𝑈𝜋𝑠 (𝑇 )] over total𝑇 rounds.

This problem is referred to as the noisy client selection problem, i.e.,

Maximize :E[𝑈𝜋𝑠 (𝑇 )] = E[
∑︁

𝑡 ∈[𝑇 ]

∑︁
𝑖∈[𝑁 ] 𝑥𝑖,𝑡𝑢𝑖,𝑡 ], (8)

Subject to : 𝑥𝑖,𝑡 ∈ {0, 1},∀𝑖 ∈ [𝑁 ], 𝑡 ∈ [𝑇 ], (9)

|𝐼𝑡 | = 𝐾, 𝐼𝑡 ⊆ [𝑁 ] . (10)

In Eqs. 8 and 9, 𝑥𝑖,𝑡 is an binary indicator denoting whether a client

𝑖 is selected at round 𝑡 , where 1 for selected and 0 for not selected.

𝐼𝑡 ⊆ [𝑁 ] is the client set selected at each round 𝑡 , i.e., 𝑥𝑖,𝑡 =1,∀𝑖 ∈ 𝐼𝑡 .
Eq. 10 indicates the cardinality constraint. It can be observed that

maximizing the cumulative utility over 𝑇 rounds is substantially

equivalent to minimizing its regret R𝜋𝑠 (𝑇 ), which is defined as the

utility difference between policy 𝜋𝑠 and the optimal policy 𝜋∗𝑠 ,

R𝜋𝑠 (𝑇 ) = 𝑤𝜋∗𝑠 (𝑇 ) − E[𝑤𝜋𝑠 (𝑇 )], (11)

where𝑤𝜋∗𝑠 (𝑇 )=max𝐼⊆[𝑁 ]: |𝐼 |=𝐾
∑
𝑡 ∈[𝑇 ]

∑
𝑖∈𝐼 𝑢𝑖,𝑡 is the cumulative

utility of consistently selecting the best 𝐾-size client set. For policy

𝜋𝑝 , it aims to pay clients flexibly and accurately in order to achieve

truthfulness, individual rationality, and noise robustness. This is

referred to as the flexible pricing problem.

4 MECHANISM DESIGN OF FPIN

We describe here the details of Flexible Pricing based Incentive

mechanism tailored for Noisy FL settings (FPIN).

4.1 Noise Level Detection

Accurately detecting the noise levels 𝑙 (D𝑖 ) of each client is crucial

for the following selection and pricing phases. However, as we

mentioned above, previous studies either rely on auxiliary datasets

[20, 26] or require all clients to join a pre-training process for noise

detection [28], leading to impracticality for FL applications.

We aim to explore a practical approach for identifying clients’

noise levels. Pre-simulations revel that, during the training process,

clients with high noise levels consistently exhibit a local model

that diverges more significantly from the global model compared

to low-noise and clean clients. Based on these findings, we let the

noise level 𝑙 (D𝑖 ) for client 𝑖 be proportional to the discrepancy

of the aggregated global model and the local model. Specifically,

𝑙 (D𝑖 ) ∝ ∥𝑤𝑡 −𝑤𝑖,𝑡 ∥2, where ∥𝑤𝑡 −𝑤𝑖,𝑡 ∥2 represents the Euclidean

distance between two model parameters𝑤𝑡 and𝑤𝑖,𝑡 .

Yet, only the model discrepancy cannot describe the noise level

sufficiently. Studies on deep learning have revealed two phases of

the model evolution: The former is dimensionality compression

that captures underlying data distribution, while the latter is di-

mensionality expansion that enables the model to fit clean or noisy
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Figure 2: An illustration on the relationship between actual

noise levels and the defined noise score on various datasets.
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Figure 3: The components of defined noise score.

data [1, 15, 25]. Based on this evidence, they demonstrate the effec-

tiveness of using Cross-Entropy (CE) loss to exhibit the data quality

between noisy and clean labels. Following this insight, we let the

noise level 𝑙 (D𝑖 ) also be proportional to CE loss on each client’s

local model, i.e., 𝑙 (D𝑖 ) ∝CE(𝑦,𝑦). As shown in Fig. 3, combining

the analysis above yields the formal definition of the noise score,

𝑙 (D𝑖 ) = −∥𝑤𝑡 −𝑤𝑖,𝑡 ∥2
∑︁
(𝑥 𝑗 ,𝑦 𝑗 ) ∈D𝑖

𝑦 𝑗 log𝜓𝑖 (𝑤𝑖,𝑡 , 𝑥 𝑗 ),∀𝑖, 𝑡 . (12)

Here,𝜓𝑖 (·, ·) represents the learning model kept by client 𝑖 , which

can produce a predicted label 𝑦 𝑗 given a sample data 𝑥 𝑗 . This noise

score has been evaluated using various datasets in a noisy FL setting,

in which the noise is simulated using Guassian distributions. The

results are depicted in Fig. 2, where x-axis represents the actual

imposed noise level. It can be observed that the defined noise level

𝑙 (D𝑖 ) precisely aligns with the actual noise level in most cases.

This highlights the feasibility and accuracy of 𝑙 (D𝑖 ). Note that,

as marked by the red box, only a few cases exhibit inconsistency.

However, this is acceptable, as we will further address and mitigate

the noise issue in the subsequent phases of FPIN.

4.2 Noisy Client Selection

In order to enhance the performance of noisy FL settings, the key

in the selection phase is to select as appropriate client sets with

low noise and high contributions as possible. To this end, we have

proposed in Definition 1 the statistical utility 𝑢𝑖,𝑡 that measures

both the data quality and noise level of clients. A simple method

is to directly select the top-𝐾 clients with the highest value of

𝑢𝑖,𝑡 . However, this method requires all clients to participate in

the local training at each round and produces 𝑢𝑖,𝑡 ,∀𝑖 ∈ [𝑁 ],∀𝑡 ∈
[𝑇 ] cooperated with Server S. This is impractical in real-world

application scenarios because this method yields too much training

cost and communication overhead, especially when total clients

are sufficiently large.

As a result, we allow in this paper server 𝑆 to select the client

set 𝐼𝑡 based on clients’ previous utilities, like utility mean, instead

of the last utility solicited from all clients at the current round.

Clients just need to calculate their utilities when selected, thereby

reducing a great deal of consumption. However, merely using the

utility mean also raises a concern: several potential clients may not

be selected all the time due to they does perform well at the former

4
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Algorithm 1: FPIN

Input: Clients [𝑁 ], edge servers [𝑀], cardinality constraint

𝐾 , time horizon 𝑇 , cloud aggregation cycle 𝜏 ,

learning ratio 𝜂, epoch number 𝐸, initial model𝑤0

Output: Global model𝑤𝑇
1 𝑡←1,𝑤𝑖,1←𝑤0,∀𝑖 ∈ [𝑁 ]. Select all clients once to generate

noise score 𝑙 (D𝑖 ) and statistical utilities 𝑢𝑖,1,∀𝑖 ∈ [𝑁 ];
2 𝑈𝑖,𝑡←{𝑢𝑖,𝑡 },∀𝑖 ∈ [𝑁 ], 𝐼1 ← [𝑁 ], I ← {𝐼1};
3 𝑡 ← 𝑡 + 1, initialize 𝑒𝑖,𝑡 based on Eq. 13;

4 while 𝑡 ≤ 𝑇 do

// Cost submission phase

5 Clients submit costs C𝑡 = {𝑐𝑖,𝑡 :∀𝑖 ∈ [𝑁 ]} to sever S;
// Client selection phase

6 Compute 𝜌𝑖,𝑡←𝑢𝑖,𝑡 +𝑒𝑖,𝑡 ,∀𝑖 ∈ [𝑁 ] according to Eq. 13;

7 𝐼𝑡←the top-𝐾 clients with the highest value of 𝜌𝑖,𝑡/𝑐𝑖,𝑡 ;
// Local training phase

8 foreach client 𝑖 ∈ 𝐼𝑡 do
9 foreach local epoch 𝜍 ∈ [1 : 𝐸] do
10 𝑤𝑖,𝑡−1←𝑤𝑖,𝑡−1−𝜂𝑡−1∇𝐹𝑖 (𝑤𝑖,𝑡−1, 𝑑𝑖 );

11 𝑤𝑖,𝑡←𝑤𝑖,𝑡−1, 𝑢𝑖,𝑡←
√︃
|D𝑖 |

∑
𝑑∈D𝑖 𝑓𝑖 (𝑤𝑖,𝑡 , 𝑑)2/𝑙 (D𝑖 );

12 𝑈𝑖,𝑡 ← 𝑈𝑖,𝑡−1 ∪ {𝑢𝑖,𝑡 }, update 𝑒𝑖,𝑡+1;
13 Upload𝑤𝑖,𝑡 , 𝑢𝑖,𝑡 to server S;
14 𝑢𝑖,𝑡←𝑢𝑖,𝑡−1,𝑤𝑖,𝑡←𝑤𝑖,𝑡−1, ∀𝑖 ∈ [𝑁 ]\𝐼𝑡 ;U𝑡←{𝑢𝑖,𝑡 :𝑖 ∈ [𝑁 ]};

// Global aggregation phase

15 𝑤𝑡←
∑
𝑖∈𝐼𝑡 ( |D𝑖 |/

∑
𝑘∈𝐼𝑡 |D𝑘 |)𝑤𝑖,𝑡 ;𝑤𝑖,𝑡←𝑤𝑡 ,∀𝑖 ∈ 𝐼𝑡 ;

// Payment determination phase

16 foreach client 𝑖 ∈ 𝐼𝑡 do 𝑝𝑖,𝑡←𝜋𝑝 (𝑐𝑖,𝑡 , C−𝑖,𝑡 ,U𝑡 , 𝐾);
17 𝑡←𝑡 + 1;

18 return The ultimate cloud model𝑤𝑇

rounds. To address this concern, we modify the utility mean by

including an additive term as follows:

𝜌𝑖,𝑡 = 𝑢𝑖,𝑡 + 𝑒𝑖,𝑡 and 𝑒𝑖,𝑡 =
𝑐𝑚𝑖𝑛 + 𝑢𝑚𝑎𝑥

𝑐𝑚𝑖𝑛

√︄
(𝐾 + 1) ln 𝑡
|𝑈𝑖,𝑡−1 |

. (13)

We then formally refer to 𝜌𝑖,𝑡 as the modified mean. Here, 𝑈𝑖,𝑡 is
the statistical utility sequence presented in Definition 1 and |𝑈𝑖,𝑡−1 |
represents the number of times client 𝑖 has been selected in the first

𝑡−1 rounds. Then, 𝑢𝑖,𝑡 =
∑
𝑢∈𝑈𝑖,𝑡−1

𝑢/|𝑈𝑖,𝑡−1 | is the empirical mean

of client 𝑖’s statistical utilities, 𝑐𝑚𝑖𝑛 = min𝑖∈[𝑁 ],𝑡 ∈[𝑇 ] 𝑐𝑖,𝑡 , 𝑢𝑚𝑎𝑥 =
min𝑖∈[𝑁 ],𝑡 ∈[𝑇 ] 𝑢𝑖,𝑡 , and 𝑒𝑖,𝑡 is the exploration term. We can find

that a client’s modified mean will gradually increase over rounds

if it is not selected consistently, i.e., |𝑈𝑖,𝑡−1 | remains unchanged,

until this client is selected. This means term 𝑒𝑖,𝑡 performs well in

exploring potential clients.

We next provide a detailed description of our mechanism FPIN in

Algorithm 1.We beginwith initializing themodel of each client with

𝑤0 and selecting all clients once to update the necessary variables

𝑢𝑖,𝑡 , 𝑈𝑖,𝑡 , 𝑒𝑖,𝑡 , and 𝑙 (D𝑖 ) for the first selection (lines 1-3). In the

iterative part (lines 4-17), each communication round 𝑡 >1 primarily

includes three phases. All clients reveal their costs 𝑐𝑖,𝑡 to sever

S at the cost submission phase. Then the top 𝐾 clients with the

highest value of 𝜌𝑖,𝑡/𝑐𝑖,𝑡 are selected at the client selection phase.

At the local training phase, each selected client 𝑖 ∈ 𝐼𝑡 trains its local

Algorithm 2: Flexible pricing policy, i.e., 𝜋𝑝

Input: Cardinality constraint 𝐾 , selected client set 𝐼𝑡 , cost

set C𝑖,𝑡 , utility setU𝑡 , an arbitrary constant 𝜃

Output: Payment 𝑝𝑘,𝑡 for client 𝑘 ∈ 𝐼𝑡
1 Compute 𝜌𝑖,𝑡 ,∀𝑖 ∈ [𝑁 ] based on C𝑖,𝑡 ,U𝑡 according to Eq. 13;
2 Sort clients in descending order with respect to 𝜌𝑖,𝑡/𝑐𝑖,𝑡 ;
3 Compute the critical value 𝑝𝑐

𝑘,𝑡
← 𝜌𝑘,𝑡

𝜌𝐾+1,𝑡
𝑐𝐾+1,𝑡 ;

4 Search a client 𝑗 satisfying that 𝜌 𝑗,𝑡/𝑐 𝑗,𝑡 < 𝜌𝑘,𝑡/𝑐𝑘,𝑡 while
𝜌 𝑗,𝑡 > 𝜌𝑘,𝑡 , and let 𝑝′

𝑘,𝑡
← 𝜌𝑘,𝑡

𝜌 𝑗,𝑡
𝑐 𝑗,𝑡 , 𝛾 ← 0;

5 while 𝜌 𝑗,𝑡/𝑐 𝑗,𝑡 < 𝜌𝑘,𝑡/𝑐𝑘,𝑡 do
6 foreach client 𝑖 ∈ [𝑁 ] do 𝑐𝑖,𝑡 ← 𝑐𝑖,𝑡 + 𝜃 ;
7 Sort clients in descending order with 𝜌𝑖,𝑡/𝑐𝑖,𝑡 again;
8 𝛾 ← 𝛾 + 1;

9 𝛾0 ← 𝛾 , 𝑝′
𝑘,𝑡
← 𝑝′

𝑘,𝑡
− (𝛾0 − 1) (1 − 𝜌𝑘,𝑡

𝜌 𝑗,𝑡
)𝜃 ;

10 return 𝑝𝑘,𝑡 = min{𝑝′
𝑘,𝑡
, 𝑝𝑐
𝑘,𝑡
}

model, updates necessary variables, and uploads𝑤𝑖,𝑡 , 𝑢𝑖,𝑡 to server

S (lines 8-13), while other clients [𝑁 ]\𝐼𝑡 remain unchanged (line

14). At the aggregation phase, server S aggregates models from

the selected clients using FedAVG [16] (line 15) and communicates

the aggregated model𝑤𝑡 back. Finally, server 𝑆 pays each selected

client with payment 𝑝𝑖,𝑡 decided using pricing policy 𝜋𝑝 (line 16),

which will be described in the following section. These phases

above run iteratively until round 𝑇 , yielding final global model𝑤𝑇 .

4.3 Flexible Pricing

Table 1: The frequency of finding client 𝑗

𝑁 10
1

10
2

10
3

10
4

10
5

# find 𝑗 456 785 926 974 992

# not find 𝑗 554 215 74 26 8

Success rate 45.6% 78.5% 92.6% 97.4% 99.2%

In this section, we focus on designing a pricing policy 𝜋𝑝 in FPIN

to prevent clients’ strategic behaviors, compensate their expense,

and incentivize them to clean noise spontaneously. The details of 𝜋𝑝
are described in Algorithm 2. Assuming to determine the payment

for client 𝑘 , we first sort all clients based on their mean-cost ratio

𝜌𝑖,𝑡/𝑐𝑖,𝑡 . Then a classic Myerson’s critical value 𝑝𝑐
𝑘,𝑡

is derived for

comparison, where 𝜌𝐾+1,𝑡 and 𝑐𝐾+1 are the modified utility and cost

of the (𝐾 + 1)-th client in the sorted sequence, which is essentially

the first client not selected by server S. Next, we try to search a

client 𝑗 with a lower mean-cost ratio 𝜌 𝑗,𝑡/𝑐 𝑗,𝑡 and a higher modified

mean 𝜌 𝑗,𝑡 compared to client 𝑘 (line 4). Table 1 illustrates that the

success rate of finding such a client is satisfactory. We then initialize

a temporary payment 𝑝′
𝑘,𝑡

as (𝜌𝑘,𝑡/𝜌 𝑗,𝑡 )𝑐 𝑗,𝑡 and a counter 𝛾 as 0 for

following calculation. When such a client 𝑗 ’s mean-cost ratio is less

than that of client 𝑘 , Algorithm 2 enters the iterative part (lines 5-8).

Here, each client’s cost is updated by adding the noise score 𝑙 (D𝑖 ).
We then re-sort clients in descending order and update counter 𝛾

until client 𝑗 ’s mean-cost ratio becomes no less than that of client

𝑘 . Finally, we get client 𝑘’s payment of 𝑝𝑘,𝑡 =min{𝑝′
𝑘,𝑡
, 𝑝𝑐
𝑘,𝑡
}.
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5 THEORETICAL ANALYSIS

In this section, we start by proving the truthfulness, individual ra-

tionality, and noise robustness of the pricing policy 𝜋𝑝 in Theorems

1-3. Next, we provide a convergence analysis of FPIN in Theorem 4.

5.1 Analysis on Pricing

Theorem 1. The payment determined by 𝜋𝑝 for each client 𝑖 ∈
[𝑁 ] achieves asymptotic truthfulness.

Proof. We begin by proving that the selection policy 𝜋𝑠 in

Algorithm 1 (lines 6-7) is cost-monotonic. A selection policy is con-

sidered cost-monotonic [22] if, when a client 𝑖 is selected based on

its mean-cost ratio 𝜌𝑖,𝑡/𝑐𝑖,𝑡 , this client will also be selected with a

different mean-cost ratio 𝜌𝑖,𝑡/𝑐′𝑖,𝑡 , where 𝑐
′
𝑖,𝑡

< 𝑐𝑖,𝑡 . According to Al-

gorithm 1, selecting client 𝑖 indicates that 𝜌𝑖,𝑡/𝑐𝑖,𝑡 > 𝜌𝐾+1,𝑡/𝑐𝐾+1,𝑡 ,
where 𝜌𝐾+1,𝑡 and 𝑐𝐾+1,𝑡 are the modified mean and cost of the

(𝐾 + 1)-th client in the sorted clients. If client 𝑖’s cost is decreased

from 𝑐𝑖,𝑡 to 𝑐
′
𝑖,𝑡
, it still holds that 𝜌𝑖,𝑡/𝑐′𝑖,𝑡 >𝜌𝐾+1,𝑡 /𝑐𝐾+1. Thus, the

selection policy 𝜋𝑠 in Algorithm 1 is cost-monotonic. Furthermore,

we provide two cases to demonstrate the truthfulness of 𝜋𝑠 .

Case 1:When 𝑝𝑘,𝑡 =𝑝
𝑐
𝑘,𝑡

, we prove that 𝑝𝑐
𝑘,𝑡

ensures truthfulness.

Assume that a client 𝑖 is selected when it truthfully submits its cost

𝑐𝑖,𝑡 , yielding a profit of 𝛽 = 𝑝𝑐
𝑖,𝑡
−𝑐𝑖,𝑡 . If client 𝑖 submits a fake

cost 𝑐′
𝑖,𝑡

≠ 𝑐𝑖,𝑡 , there are two possible outcomes with the new

mean-cost ratio 𝜌𝑖,𝑡/𝑐′𝑖,𝑡 . (1) Client 𝑖 is selected, and its profit is still

𝛽′
1
= 𝑝𝑐

𝑖,𝑡
−𝑐𝑖,𝑡 as client 𝑖’s payment does not rely on its own cost 𝑐𝑖,𝑡

according to Algorithm 2. (2) Client 𝑖 is not selected, resulting in a

profit of 𝛽′
2
= 0. Note that we will prove 𝑝𝑐

𝑖,𝑡
− 𝑐𝑖,𝑡 > 0 in Theorem

2. Therefore, we have 𝛽 >max{𝛽′
1
, 𝛽′

2
}, indicating that client 𝑖 can

maximize its profit by truthfully submitting its cost 𝑐𝑖,𝑡 .

Similarly, assume that a client 𝑖 is not selected when submitting

its cost 𝑐𝑖,𝑡 truthfully and its profit is 𝛽 = 0 now. If client 𝑖 declares

a fake cost 𝑐′
𝑖,𝑡
, there are two possible outcomes. (1) Client 𝑖 is not

selected, leading to a profit of 𝛽′
1
= 0. (2) Client 𝑖 is selected, and its

profit is 𝛽′
2
= 𝑝𝑐

𝑖,𝑡
−𝑐𝑖,𝑡 now.When client 𝑖’s mean-cost ratio changes

from 𝜌𝑖,𝑡/𝑐𝑖,𝑡 to 𝜌𝑖,𝑡/𝑐′𝑖,𝑡 , there must be a client whose mean-cost

ratio is exceeded by client 𝑖 . Without loss of generality, we assume

that client is 𝑗 ∈ [𝑁 ], and the following holds

𝜌𝑖,𝑡/𝑐′𝑖,𝑡 ≥ 𝜌𝐾+1,𝑡/𝑐𝐾+1,𝑡 ≥ 𝜌 𝑗,𝑡/𝑐 𝑗,𝑡 > 𝜌𝑖,𝑡/𝑐𝑖,𝑡 . (14)

Then, client 𝑖 gets the payment of

𝑝𝑐𝑖,𝑡 = (𝜌𝑖,𝑡/𝜌𝐾+1,𝑡 )𝑐𝐾+1,𝑡 < (𝜌𝐾+1,𝑡/𝜌𝐾+1,𝑡 )𝑐𝑖,𝑡 =𝑐𝑖,𝑡 . (15)

We thus have 𝛽 > max{𝛽′
1
, 𝛽′

2
}, meaning client 𝑖 achieves maximum

profit by truthfully submitting its cost 𝑐𝑖,𝑡 .

Case 2:When 𝑝𝑘,𝑡 = 𝑝
′
𝑘,𝑡

, we prove that 𝑝𝑐
𝑘,𝑡

ensures asymptotic

truthfulness. According to Definition 4 and Algorithm 2, a selected

client 𝑖 ∈ 𝐼𝑡 who submits the cost truthful will receive a payment of

𝑝′
𝑖,𝑡
. If client 𝑖 is not truthful, the maximum payment it can receive is

𝑝𝑐
𝑖,𝑡

under the Myerson-based pricing strategy [19]. Consequently,

we say that 𝑝𝑐
𝑖,𝑡
−𝑝′

𝑖,𝑡
= 𝑜 (𝑝′

𝑖,𝑡
) holds since, for any constant 𝜆, we can

find a constant 𝜖 = (𝑝𝑐
𝑖,𝑡
−𝑐𝑖,𝑡 )/𝜆 such that 𝑝𝑐

𝑖,𝑡
−𝑝′

𝑖,𝑡
<𝜆𝑝′

𝑖,𝑡
,∀𝑝′

𝑖,𝑡
>𝜖 .

This is because 𝑝𝑐
𝑖,𝑡
−𝑝′

𝑖,𝑡
< 𝑝𝑐

𝑖,𝑡
−𝑐𝑖,𝑡 due to Eq. 23 in Theorem 3. □

Theorem 2. The payment determined by 𝜋𝑝 for each client 𝑖 ∈
[𝑁 ] achieves individual rationality.

Proof. Individual rationality indicates that each client 𝑖 ∈ [𝑁 ]
can obtain a payment 𝑝𝑖,𝑡 that is no less than its cost 𝑐𝑖,𝑡 . In line 3

of Algorithm 2, we get the critical value 𝑝𝑐
𝑘,𝑡

= (𝜌𝑘,𝑡/𝜌𝐾+1,𝑡 )𝑐𝐾+1,𝑡
for client 𝑘 . Since client 𝑘 is selected among the top 𝐾 clients, we

have 𝜌𝑘,𝑡/𝑐𝑘,𝑡 ≥ 𝜌𝐾+1,𝑡 /𝑐𝐾+1,𝑡 . It then follows that the critical value

𝑝𝑐
𝑘,𝑡
≥ 𝑐𝑘,𝑡 and we have 𝑝′

𝑘,𝑡
> 𝑐𝑘,𝑡 in Eq. 23. Thus, the payment

ensures 𝑝𝑘,𝑡 =min{𝑝′
𝑘,𝑡
, 𝑝𝑐
𝑘,𝑡
} ≥𝑐𝑘,𝑡 , which completes the proof. □

Theorem 3. The payment determined by 𝜋𝑝 for each client 𝑖 ∈ 𝐼𝑡
achieves noise robustness, i.e., 𝑝𝑖,𝑡 <𝑐𝑖,𝑡 +𝜃 .

Proof. As described in Algorithm 2 (line 4), we search a client

𝑗 satisfying that 𝜌𝑘,𝑡/𝑐𝑘,𝑡 > 𝜌 𝑗,𝑡/𝑐 𝑗,𝑡 . Then it holds that

𝑝′
𝑘,𝑡

= (𝜌𝑘,𝑡/𝜌 𝑗,𝑡 )𝑐 𝑗,𝑡 > 𝑐𝑘,𝑡 . (16)

We define a function ℎ(𝑥)= 𝜌𝑘,𝑡
𝜌 𝑗,𝑡
(𝑐 𝑗,𝑡 +𝑥𝜃 )−(𝑐𝑘,𝑡 +𝑥𝜃 ). Then,

ℎ(0) = (𝜌𝑘,𝑡/𝜌 𝑗,𝑡 )𝑐 𝑗,𝑡 − 𝑐𝑘,𝑡 > 0, (17)

ℎ(𝛾0−1)= (𝜌𝑘,𝑡/𝜌 𝑗,𝑡 ) (𝑐 𝑗,𝑡 +(𝛾0 − 1)𝜃 )−(𝑐𝑘,𝑡 +(𝛾0−1)𝜃 )>0, (18)

ℎ(𝛾0) = (𝜌𝑘,𝑡/𝜌 𝑗,𝑡 ) (𝑐 𝑗,𝑡 + 𝛾0𝜃 ) − (𝑐𝑘,𝑡 + 𝛾0𝜃 ) ≤ 0, (19)

where 𝛾0 is the counter that indicates the termination of the while

loop in line 5. The inequality in Eq. 17 holds due to Eq. 16, while

Eqs. 18-19 hold since, according to Algorithm 2 (line 5), the while

loop terminates when 𝜌 𝑗,𝑡/(𝑐 𝑗,𝑡 +𝛾0𝜃 ) ≥ 𝜌𝑘,𝑡/(𝑐𝑘,𝑡 +𝛾0𝜃 ). When

𝛾 = 𝛾0 − 1, the while loop does not terminate, and it holds that

𝜌 𝑗,𝑡/(𝑐 𝑗,𝑡 +𝛾𝜃 )<𝜌𝑘,𝑡/(𝑐𝑘,𝑡 +𝛾𝜃 ). According to Eqs. 17-19, it follows

ℎ(𝛾0 − 1)= (𝜌𝑘,𝑡/𝜌 𝑗,𝑡 )𝑐 𝑗,𝑡 −𝑐𝑘,𝑡 −(1−𝜌𝑘,𝑡/𝜌 𝑗,𝑡 ) (𝛾0 − 1)𝜃 >0, (20)

ℎ(𝛾0)= (𝜌𝑘,𝑡/𝜌 𝑗,𝑡 )𝑐 𝑗,𝑡 −𝑐𝑘,𝑡 −(1−𝜌𝑘,𝑡/𝜌 𝑗,𝑡 )𝛾0𝜃 ≤ 0 (21)

Therefore,

(1−
𝜌𝑘,𝑡

𝜌 𝑗,𝑡
) (𝛾0−1)𝜃+𝑐𝑘,𝑡 <

𝜌𝑘,𝑡

𝜌 𝑗,𝑡
𝑐 𝑗,𝑡 ≤ (1−

𝜌𝑘,𝑡

𝜌 𝑗,𝑡
)𝛾0𝜃+𝑐𝑘,𝑡 . (22)

Due to the definition of 𝑝′
𝑘,𝑡

in Algorithm 3 (lines 3 and 9), we have

𝑐𝑘,𝑡 < 𝑝
′
𝑘,𝑡
≤ (1 − 𝜌𝑘,𝑡/𝜌 𝑗,𝑡 )𝜃 + 𝑐𝑘,𝑡 . (23)

Since 𝜌 𝑗,𝑡 , 𝜌𝑘,𝑡 > 0 by Eq. 13, we have 𝑝𝑘,𝑡 ≤ 𝑝′𝑘,𝑡 < 𝑐𝑘,𝑡 +𝜃 . By
assigning a specific noise score 𝜃 such that 𝜃 ∝1/𝑙 (D𝑖 ), the payment

determined by 𝜋𝑝 can ensure 𝑝𝑘,𝑡−𝑐𝑘,𝑡 <𝜙 (1/𝑙 (D𝑖 )), in which 𝜙 (·)
is a proportional function. This implies that a client with a lower

noise level (i.e., a smaller noise score 𝜃 ) may receive more additional

profit, thereby achieving noise robustness. □

5.2 Analysis on Convergence

We provide several assumptions and additional notations motivated

by previous studies [12, 23] to analyze convergence of FPIN.

Assumption 1. The objective function 𝐹𝑖 (·),∀𝑖 ∈ [𝑁 ] is 𝐿-smooth,
i.e., given any model pair,𝑤 and 𝜑 , it holds that 𝐹𝑖 (𝜑) ≤ 𝐹𝑖 (𝑤)+⟨𝜑−
𝑤,∇𝐹𝑖 (𝑤)⟩+𝐿∥𝜑 −𝑤 ∥/2.

Assumption 2. The objective function 𝐹𝑖 (·),∀𝑖 ∈ [𝑁 ] is 𝜇-
strongly convex, i.e., given any model pair, 𝑤 and 𝜑 , it holds that
𝐹𝑖 (𝜑) ≥ 𝐹𝑖 (𝑤)+⟨𝜑−𝑤,∇𝐹𝑖 (𝑤)⟩+𝜇∥𝜑 −𝑤 ∥/2.

Assumption 3. The objective function 𝐹𝑖 (·),∀𝑖 ∈ [𝑁 ] is L-
Lipschitz continuous, i.e., given any model pair, 𝑤 and 𝜑 , it holds
that |𝐹𝑖 (𝜑)−𝐹𝑖 (𝑤) | ≤L∥𝜑−𝑤 ∥ and L>0.

These assumptions regarding objective function 𝐹𝑖 (·) are normal

and regular, say logistic regression and softmax classifier. Moreover,
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Figure 4: The accuracy of various selection policies based on different datasets given both Non-IID and IID scenarios.
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Figure 5: The accuracy of various selection policies as the

number of selected clients, 𝐾 , is increased.

we define several additional notations to accurately display the FL

process. Since every communication round 𝑡 ∈ [𝑇 ] comprises 𝐸

epochs (i.e., the local training phase in lines 7-14 of Algorithm 1 in

main paper), we leverage 𝜍 ∈ [𝑇𝐸] to represent all involved epochs.

When 𝜍/𝐸 ∈ [𝑇 ], it implies that 𝜍 is the end epoch within a round.

The local training phase of each client is re-described as

𝜑𝑖,𝜍 ← 𝑤𝑖,𝜍−1 − 𝜂𝜍−1∇𝐹𝑖 (𝑑𝑖 ,𝑤𝑖,𝜍−1), (24)

𝑤𝑖,𝜍 ←
{
𝜑𝑖,𝜍 if 𝜍/𝐸 ∉ [𝑇 ],
𝜋𝑎 ({𝜑𝑖,𝜍 , 𝑖 ∈ 𝐼𝜍 }) if 𝜍/𝐸 ∈ [𝑇 ] .

(25)

Here, 𝐼𝜍 denotes the currently selected client set, i.e., 𝐼𝑡 where

𝑡 = ⌈𝜍/𝐸⌉ −1. 𝜋𝑎 is the aggregation policy using FedAvg. We de-

note the means of 𝜑𝑖,𝜍 and 𝑤𝑖,𝜍 by 𝜑𝜍 =
∑
𝑖∈[𝑁 ] 𝑝𝑖𝜑𝑖,𝜍 and �̄�𝜍 =∑

𝑖∈[𝑁 ] 𝑝𝑖𝑤𝑖,𝜍 like settings in [12]. Let 𝑔𝜍 =
∑
𝑖∈[𝑁 ] 𝑝𝑖∇𝐹𝑖 (𝑑𝑖 ,𝑤𝑖,𝜍 )

and𝑔𝜍 =
∑
𝑖∈[𝑁 ] 𝑝𝑖∇𝐹𝑖 (𝑤𝑖,𝜍 ), where∇𝐹𝑖 (𝑤𝑖,𝜍 ) is the expected gradi-

ent over full data of client 𝑖 . Let𝑤∗ represent the optimal parameter

of the global model that maximizes 𝐹 (𝑤∗) in Eq. 2. We then provide

Theorem 4 regarding FPIN’s convergence rate.

Please refer to Appendix for the convergence analysis of FPIN,

i.e., Theorem 4.

6 SIMULATIONS

6.1 Simulation Settings

Datasets and Models.We perform all simulations for this paper

using PyTorch on a workstation featuring an NVIDIA GeForce RTX

3090 GPU based on two widely recognized datasets, MNIST and

CIFAR-10. We utilize two simple CNN models that incorporate

batch normalization layers to implement FPIN. Each model consists

of three blocks, with each block comprising a convolutional layer, a

batch normalization layer, and a ReLU activation function. We then

apply SGD optimizers, exponential decay learning rate schedulers,

and cross-entropy loss functions in simulations. We also explore

non-IID scenario for FPIN, where client heterogeneity is accurately

modeled using the Dirichlet distribution[11]. Dir(r) represents the

proportions of each class allocated to each client, sampled from the

Dirichlet distribution. By default, we distribute the entire dataset

evenly among all clients.

Benchmarks.We evaluate the effectiveness of FPIN by compar-

ing it with several well-known client selection policies.

(1) FNCL[25]: Federated Noisy Client Learning (FNCL) oper-

ates by identifying noisy clients through an accurate assess-

ment of data quality and model divergence. To address the

data heterogeneity introduced by these noisy clients, FNCL

applies a robust layerwise aggregation method, which adap-

tively aggregates the local models from clients.

(2) Oort[7]: This is promising FL framework that employs

a bandit-style strategy for client selection. Oort indirectly

enhances the diversity of datasets in FL. We initialize Oort’s

exploration rate at 0.9, establish its minimum exploration

rate at 0.1, and define its decay factor as 0.97.

(3) FedAvg[16]: FedAvg employs a random policy to selects

clients straightforwardly at each round. It performs local

training on these selected clients and aggregates clients’

local models by weighting their data volume.

(4) Loss and Cost Policy (CLP) : A variant of the selection

policy in FPIN. Considering that clients with low noise

scores are beneficial for training, MCP re-designs the se-

lection metric of clients based on two factors: clients’ local

loss and submitted costs, defined as 𝑢𝑖,𝑡 =1/(loss𝑖,𝑡 · 𝑐𝑖,𝑡 ).
(5) Minimum Cost Policy (MCP) : Another variant of FPIN,

where the utility only considers the bid as a factor, selecting

the client with the minimum bid.

Parameters. Specifically, the number of participating clients is

set to 𝑁 = 40 and 𝐾 = 8, with a total of 𝑇 = 150 global rounds. SGD

is implemented as the local training optimizer with a learning rate

of 0.01, a local batch size of 64, and local training epoch 𝐸 = 5 for

all datasets. In Gaussian noise distribution with a mean of 𝜇 = 0.3

and variance of 𝜎 = 0.45.

6.2 Simulation Results

Effectiveness Evaluation. We assess the performance of FPIN in

comparison to other baselines in both IID and Non-IID settings, as

illustrated in Fig. 4, under the conditions of noisy data from trun-

cated Gaussian distributions. The experimental results demonstrate

that FPIN outperforms the other baselines on the CIFAR-10 dataset

Compared to other benchmarks, FPIN enhances accuracy by 5% to
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Figure 6: Parameter evaluation of the noise detection in FPIN

with Gaussian distribution.

18% in the IID scenario and by 15% to 20% in the Non-IID scenario.

During the training process, FPIN effectively mitigates the influence

of noisy clients’ models by accurately distinguishing between noisy

and clean clients. The reliability score can effectively assess each

client by evaluating the quality of their local model and training loss.

Then, FPIN tends to select clients with low noise levels and high

quality to enhance the model’s performance. On the MNIST dataset,

FPIN slightly outperforms other benchmark algorithms.We observe

that the global model trained using MCP and MB fails to converge,

as evidenced by the instability of their test accuracy curves towards

the end of training in the Non-IID scenario. This instability arises

because noisy clients steer the collaborative model’s updates in a

divergent direction during the model aggregation process.

Selection Evaluation. As shown in Fig. 5a and 5b, we observe

that as the number of selected clients increases, the accuracy of

the global model also improves. However, due to differences in the

difficulty of the datasets, the accuracy gap after convergence on

MNIST is not significant. Oort combines top-k statistical utility

sampling with random exploration to select clients. However, it

cannot promptly adjust the selected client set, as clients chosen

in the previous round have a higher probability of being selected

again in the next round. Furthermore, the inherent randomness in

client selection for FedAvg, MCP, and even FNCL contributes to

the suboptimal performance of the global model. In the presence of

noise, while the selection of clients of CLP with low training loss

mitigates some of the noise’s impact, it also discards potentially

valuable clients, namely those with high training loss. Due to the

concentrated client selection of CLP, the limited amount of data

fitted does not optimize performance.

After applying this process, we classify the clients into high-

noise clients and low-noise clients. This method allows us to accu-

rately identify low-noise clients in the subsequent selection phase

of federated learning, thereby improving overall efficiency and ef-

fectiveness. As shown in Fig. 6, notably the parameter 𝛽 governs

the sensitivity of the noisy clients, and reducing its value may lead

to a decrease in the accuracy of detecting these noisy clients. Inter-

estingly, we observed that 𝛽 exhibited minimal sensitivity in the

presence of Gaussian noise.

Individual Rationality of FPIN. FP can flexibly determine

payments for each winner based on a factor that accounts for the

level of client noise. As shown in Fig. 7a, clients with lower noise

levels receive higher payment ceilings, while clients with higher

noise levels have payments closer to the 𝑦 = 𝑥 line. Meanwhile, this

also indicates that the profit obtained by each client is non-negative.

Then, the Cumulative Distribution Function (CDF) of the profits
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Figure 7: Costs and payments of clients with different noise

levels (Left part). CDF of clients’ profits based on increasing

numbers of selected clients (right part).
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Figure 8: Payments of a winner client (left part) and a loser

client (right part) as their submitted cost are varied.

for winners is shown in Fig. 7b. Our analysis reveals that all profits

generated using FPIN are non-negative, indicating that FPIN meets

the criteria for individual rationality, as demonstrated in Theorem

4. As the number of selected clients increases, the total profit per

round naturally rises.

Truthfulness of FPIN. Additionally, we validate the perfor-

mance in terms of truthfulness. In Fig. 8a, we observe that as the

declared bid increases, the winner continues to be selected, and the

FPIN payment increases until it reaches the maximum value, which

corresponds to the AUCB payment. However, when the bid exceeds

the critical value of 5.87, the winner is no longer selected, meaning

no payment is made. Thus a client will not increase its bid since

it may make the client not pulled. In Fig. 8b, we discover that the

loser is initially not selected, resulting in a payment of zero. As the

bid decreases below 3.72, the loser will be selected. However, the

client incurs a negative profit, meaning its payment does not cover

the actual cost. Therefore, clients has no incentive to misreport

their costs.

7 CONCLUSION

In this paper, we closely investigate a method for detecting the

level of noisy data from clients in federated learning and propose a

selection strategy that prioritizes clients with low noise and high

contribution. Additionally, we develop an accurate and flexible

pricing mechanism that incentivizes clients to clean their noisy

data while enforcing truthfulness. These approaches form FPIN,

with its effectiveness validated through both theoretical analysis

and numerical simulations. Simulation results demonstrate that

FPIN significantly improves the performance of global model with

noisy clients in both homogeneous and heterogeneous federated

learning settings, while also ensuring individual rationality and

asymptotic truthfulness.
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A APPENDICES

Theorem 4. Given Assumptions 1-3, the following holds

E[𝐹 (𝑤𝑇 )]−𝐹 (𝑤∗) ≤
L

𝑇𝐸+𝜅 (
𝜆1+𝜆2

4𝜇2
+(𝜅+1)C1), (26)

where 𝜅 = max{𝐸, 8𝐿/𝜇 − 1}, 𝜆1 = 4𝐿𝛤 (𝑀) + 16(𝐸 − 1)2G2, 𝜆2 =

(𝑁𝐾2𝐸2G2+4𝑁 2Δ2

𝑠 ln (1.25/𝛿))/𝐾4, G is a constant defined by [23],
and C1=E[∥�̄�1−𝑤∗∥2]. The learning ratio is set to 𝜂𝜍 =2/(𝜇 (𝜍+𝜅)),
where 𝜍 represents the 𝜍-th epoch.

Proof. The convergence property essentially reflects the dis-

crepancy in objective functions between the realized model𝑤 and

the optimal model𝑤∗. It is hard to directly obtain this discrepancy,

so we analyze the difference between models,

∥�̄�𝜍 −𝑤∗∥2 = ∥�̄�𝜍 − 𝜑𝜍 + 𝜑𝜍 −𝑤∗∥2

≤ 2(∥�̄�𝜍 − 𝜑𝜍 ∥2 + ∥𝜑𝜍 −𝑤∗∥2), (27)

where the last inequality holds due to the Cauchy-Schwarz inequal-

ity. Afterward, we separately bound ∥�̄�𝜍 − 𝜑𝜍 ∥2 and ∥𝜑𝜍 −𝑤∗∥2
in steps 1-2, and bound Eq. 27 in step 3.

Step 1: Bounding ∥�̄�𝜍 −𝜑𝜍 ∥2. When 𝜍/𝐸 ∉ [𝑇 ], it holds that �̄�𝜍 =𝜑𝜍
due to their definitions. When 𝜍/𝐸 ∈ [𝑇 ],

E[∥�̄�𝜍 − 𝜑𝜍 ∥2] = E[∥(1/𝐾)
∑︁

𝑖∈𝐼𝜍
𝜑𝑖,𝜍 − 𝜑𝜍 ∥2]

= (1/𝐾2)E[∥
∑︁

𝑖∈[𝑁 ] I{𝑖 ∈ 𝐼𝜍 }(𝜑𝑖,𝜍 − 𝜑𝜍 )∥
2]

≤ (𝑁 /𝐾2)E𝐼𝜍 [
∑︁

𝑖∈[𝑁 ] I{𝑖 ∈ 𝐼𝜍 }∥𝜑𝑖,𝜍 − 𝜑𝜍 ∥
2]

= (𝑁 /𝐾2)
∑︁

𝑖∈[𝑁 ] Pr{𝑖 ∈ 𝐼𝜍 }∥𝜑𝑖,𝜍 − 𝜑𝜍 ∥2 . (28)

The first two equalities follow from definitions of �̄�𝜍 and 𝜑
2
. The

first inequality holds also due to the Cauchy-Schwarz inequality,

i.e., ∥∑𝑖∈[𝑁 ] (𝑥𝑖−𝑦𝑖 )∥ ≤∑𝑖∈[𝑁 ] ∥𝑥𝑖−𝑦𝑖 ∥. Let 𝜍0=𝜍−𝐸. Then epoch 𝜍0

is the communication round recalling that 𝜍/𝐸 ∈ [𝑇 ]. This implies

all clients have the identical model𝑤𝑖,𝜍0
,∀𝑖 ∈ [𝑁 ]. Then,

Eq. 28≤ (𝑁 /𝐾2)
∑︁

𝑖∈[𝑁 ] ∥(𝜑𝑖,𝜍−�̄�𝜍0
) − (𝜑𝜍−�̄�𝜍0

)∥2

≤ (𝑁 /𝐾2)
∑︁

𝑖∈[𝑁 ] ∥(𝜑𝑖,𝜍−�̄�𝜍0
)∥2

= (𝑁 /𝐾2)
∑︁

𝑖∈[𝑁 ] 2(∥(𝜑𝑖,𝜍 − �̄�𝜍−1)+· · ·+(�̄�𝜍0+1 − �̄�𝜍0
)∥2

≤ (𝑁𝐸/𝐾2)
∑︁

𝑖∈[𝑁 ]

∑︁
𝜏∈[𝜍0+1,𝜍 ]

2∥𝜂𝜏−1∇𝐹𝑖 (𝑑𝑖 ,𝑤𝑖,𝜏−1)∥2, (29)

The second inequality holds from E[∥𝑥 −E[𝑥] ∥2]≤E[∥𝑥 ∥2] and
the third inequality follows from the Cauchy-Schwarz inequality

similarly. Further, due to Theorem 2.2 in [23], the expected squared

norm of stochastic gradients is upper bounded by a constant G, i.e.,
E[∥∇𝐹𝑖 (𝑑𝑖 ,𝑤𝑖,𝜍 )∥2] ≤G2

. Therefore, it holds that

E[∥�̄�𝜍−𝜑𝜍 ∥2] ≤𝜂2

𝜍0

𝑁𝐸2G2/𝐾2+2(𝑁 2/𝐾2) (2Δ2

𝑠 /(𝜖2𝐾2))·
ln(1.25/𝛿) ≤ (𝜂2

𝜍−1
𝑁𝐾2𝐸2G2+4𝑁 2Δ2

𝑠 ln(1.25/𝛿)/𝜖2)/(2𝐾4) . (30)

The last inequality holds since the learning rate 𝜂𝜍 is set to be

non-increasing and 𝜂𝜍0
≤ 2𝜂𝜍−1 as in [24].
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Step 2: Bounding ∥𝜑𝜍−𝑤∗∥2. Without out loss of generality, we set

𝜍←𝜍+1 and bound ∥𝜑𝜍+1−𝑤∗∥2 for convenience of writing. Then,

the following holds,

∥𝜑𝜍+1−𝑤∗∥2= ∥�̄�𝜍−𝜂𝜍𝑔𝜍 −𝑤∗−𝜂𝑒𝑔𝜍 +𝜂𝜍𝑔𝜍 ∥2 (31)

≤ 2(∥�̄�𝜍 −𝑤∗ − 𝜂𝜍𝑔𝜍 ∥2 + ∥𝜂𝜍𝑔𝜍 − 𝜂𝜍𝑔𝜍 ∥2)
=2(∥�̄�𝜍−𝑤∗∥2−2𝜂𝜍 ⟨�̄�𝜍−𝑤∗, 𝑔𝜍 ⟩+𝜂2

𝜍 ∥𝑔𝜍 ∥2+𝜂2

𝜍 ∥𝑔𝜍−𝑔𝜍 ∥2),
where the first inequality holds similarly with Eq. 27. For term

2𝜂𝜍 ⟨�̄�𝜍−𝑤∗, 𝑔𝜍 ⟩ in Eq. 31, it holds that

⟨�̄�𝜍−𝑤∗, 𝑔𝜍 ⟩=
∑︁

𝑖∈[𝑁 ] 𝑝𝑖 ⟨�̄�𝜍−𝑤
∗,∇𝐹𝑖 (𝑤𝑖,𝜍 )⟩

=
∑︁

𝑖∈[𝑁 ] 𝑝𝑖 (⟨�̄�𝜍−𝑤𝑖,𝜍 ,∇𝐹𝑖 (𝑤𝑖,𝜍 )⟩+⟨𝑤𝑖,𝜍−𝑤
∗,∇𝐹𝑖 (𝑤𝑖,𝜍 )⟩)

≥
∑︁

𝑖∈[𝑁 ] 𝑝𝑖 ((1/4𝜂𝜍 )∥�̄�𝜍−𝑤𝑖,𝜍 ∥
2 + 𝜂𝜍 ∥∇𝐹𝑖 (𝑤𝑖,𝜍 )∥2)+∑︁

𝑖∈[𝑁 ] 𝑝𝑖 (𝐹𝑖 (𝑤𝑖,𝜍 )−𝐹𝑖 (𝑤
∗
𝑖 )+(𝜇/8)∥𝑤𝑖,𝜍−𝑤

∗∥2), (32)

where the last inequality is by usingAM-GM inequality for ⟨�̄�𝜍−𝑤𝑖,𝜍 ,
∇𝐹𝑖 (𝑤𝑖,𝜍 )⟩ and 𝜇-strongly convexity of 𝐹𝑖 (·) for ⟨�̄�𝑖,𝜍−𝑤∗,∇𝐹𝑖 (𝑤𝑖,𝜍 )⟩.
For term ∥𝑔𝜍 ∥2, it holds that ∥𝑔𝜍 ∥2 ≤

∑
𝑖∈[𝑁 ] 𝑝𝑖 ∥∇𝐹𝑖 (𝑤𝑖,𝜍 )∥2 ≤

2𝐿
∑
𝑖∈[𝑁 ] 𝑝𝑖 (𝐹𝑖 (𝑤𝑖,𝜍 )−𝐹 ∗𝑖 ), where the first inequality follows from

the Cauchy-Schwarz inequality and the second is by applying 𝐿-

smoothness of 𝐹𝑖 (·) in Assumption 1. As for term ∥𝑔𝜍 − 𝑔𝜍 ∥2,
∥𝑔𝜍−𝑔𝜍 ∥2=∥

∑︁
𝑖∈[𝑁 ] 𝑝𝑖 (∇𝐹𝑖 (𝑑𝑖 ,𝑤𝑖,𝜍 )−∇𝐹𝑖 (𝑤𝑖,𝜍 ))∥

2
(33)

≤
∑︁

𝑖∈[𝑁 ] 𝑁𝑝
2

𝑖 ∥∇𝐹𝑖 (𝑑𝑖 ,𝑤𝑖,𝜍 )−∇𝐹𝑖 (𝑤𝑖,𝜍 )∥
2≤

∑︁
𝑖∈[𝑁 ] 𝑁𝑝

2

𝑖 𝜚
2

𝑖 .

The first inequality follows from the Cauchy-Schwarz inequality

and the second is by the variance bound on stochastic gradients

for client 𝑖 [23], E[∥∇𝐹𝑖 (𝑑𝑖 ,𝑤𝑖,𝜍 )−∇𝐹𝑖 (𝑤𝑖,𝜍 )∥2] ≤ 𝜚2

𝑖
. Combining

these inequalities yields

Eq. 31≤ 2(((1−𝜂𝜍 𝜇)/4)∥�̄�𝜍−𝑤∗∥2+
∑︁

𝑖∈[𝑁 ] 𝑁𝜂
2

𝑒𝑝
2

𝑖 𝜚
2

𝑖 +

2𝜂𝜍 (2𝐿𝜂𝜍−1)
∑︁

𝑖∈[𝑁 ] 𝑝𝑖 (𝐹𝑖 (𝑤𝑖,𝜍 )−𝐹𝑖 (𝑤
∗
𝑖 ))) . (34)

The inequality follows from

∑
𝑖∈[𝑁 ] ∥𝑤𝑖,𝜍−𝑤∗∥2 ≥ 𝑁 ∥�̄�𝜍−𝑤∗∥2 in

our settings and 𝐿-smoothness of 𝐹𝑖 (·). We proceed to bound the

term F =
∑
𝑖∈[𝑁 ] 𝑝𝑖 (𝐹𝑖 (𝑤𝑖,𝜍 )−𝐹𝑖 (𝑤∗𝑖 )) in Eq. 34. Considering that

2𝐿𝜂𝜍−1<0, we then have

F =

∑︁
𝑖∈[𝑁 ] 𝑝𝑖 (𝐹𝑖 (𝑤𝑖,𝜍 )−𝐹𝑖 (�̄�𝜍 ))+

∑︁
𝑖∈[𝑁 ] 𝑝𝑖 (𝐹𝑖 (�̄�𝜍 )−𝐹𝑖 (𝑤

∗
𝑖 ))

≥−
∑︁

𝑖∈[𝑁 ] 𝑝𝑖 (𝐿𝜂𝜍 (𝐹𝑖 (�̄�𝜍 )−𝐹𝑖 (𝑤
∗
𝑖 ))+1/(2𝜂𝜍 )∥𝑤𝑖,𝜍 − �̄�𝜍 ∥2)

+ 𝐹 (�̄�𝜍 )−𝐹 (𝑤∗)= (1−𝜂𝜍𝐿)
∑︁

𝑖∈[𝑁 ] 𝑝𝑖 (𝐹𝑖 (�̄�𝜍 )−𝐹 (𝑤
∗))−

𝐿𝜂𝜍

∑︁
𝑖∈[𝑁 ] 𝑝𝑖 (𝐹 (𝑤

∗)−𝐹𝑖 (𝑤∗𝑖 ))−1/(2𝜂𝜍 )
∑︁

𝑖∈[𝑁 ] ∥𝑤𝑖,𝜍 −�̄�𝜍 ∥
2

≥ 𝐿𝜂𝜍𝛤 − (1/(2𝜂𝜍 )) (4𝜂2

𝜍 (𝐸 − 1)2G2). (35)

The first inequality follows from the convexity of 𝐹𝑖 (·), the 𝐿-
smoothness, and the AM-GM inequality. We define the individ-

ual discrepancy of clients as 𝛤 = 𝐹 ∗ − ∑
𝑖∈[𝑁 ] 𝑝𝑖𝐹

∗
𝑖
that reflects

the non-IIDness of their local datasets. In addition, the second

inequality also follows from the fact of

∑
𝑖∈[𝑁 ] ∥𝑤𝑖,𝜍 − �̄�𝜍 ∥2 ≤

4𝜂2

𝜍 (𝐸−1)2G2
obtained similarly to Eq. 30 and the fact of 1−𝜂𝜍𝐿 > 0,∑

𝑖∈[𝑁 ] 𝑝𝑖 (𝐹𝑖 (�̄�𝜍 )−𝐹 (𝑤∗))=𝐹 (�̄�𝜍 )−𝐹 (𝑤∗)>0. Further,

∥𝜑𝜍+1−𝑤∗∥2 ≤ ((1−𝜂𝜍 𝜇)/2)∥�̄�𝜍−𝑤∗∥2+ 𝜂2

𝜍B, (36)

where B=4𝐿𝛤 + 16(𝐸−1)2G2
. The inequality is by Eq. 34-35 and

𝜂𝜍 ∈ (0, 1/(4𝐿)] and 2𝜂𝜍 (1−2𝐿𝜂𝜍 ) ∈ [𝜂𝜍 , 2𝜂𝜍 ).
Step 3: Combining results of Steps 1-2 (Eqs. 30, 36) yields

E[∥�̄�𝜍+1−𝑤∗∥2] ≤ (1−𝜂𝜍 𝜇)E[∥�̄�𝜍 −𝑤∗∥2]+2𝜂2

𝜍B+ (37)

2𝜂2

𝜍𝑁𝐾
2𝐸2G2/(2𝐾4)= (1−𝜂𝜍 𝜇) · E[∥�̄�𝜍−𝑤∗∥2]+𝜂2

𝜍 (𝜆1+𝜆2).
Here, 𝜆2=𝑁𝐸

2G2/𝐾2
and 𝜆1=2B. So given a time-varying learning

rate 𝜂𝜍 =2/𝜇 (𝜍+𝜅), where 𝜅=max{𝐸, 8𝐿/𝜇−1} such that 𝜂1 ≤ 1/(4𝐿)
and𝜂𝜍 ≤ 2𝜂𝜍+𝐸 . Setting C𝜍 =E[∥�̄�𝜍+1−𝑤∗∥2], we prove by induction
that

C𝜍 ≤ 𝜉𝑖/(𝜍+𝜅), 𝜉𝑖 =max{(𝜆1+𝜆2)/(4𝜇2), (𝜅+1)C1}. (38)

When 𝜍 = 1, Eq. 38 holds due to the definition of 𝜉𝑖 . Assuming that

Eq. 38 holds at epoch 𝜍 , it also holds for 𝜍+1,

C𝜍+1 ≤ (1 − 𝜂𝜍 𝜇)C𝜍 + 𝜂2

𝜍 (𝜆1 + 𝜆2)

≤ (1− 2

𝜍+𝜅 )
𝜉𝑖

𝜍+𝜅 +
4(𝜆1+𝜆2)
𝜇2 (𝜍+𝜅)2

=
𝜉𝑖 (𝜍+𝜅−2)
(𝜍 + 𝜅)2

+ 4(𝜆1+𝜆2)
𝜇2 (𝜍+𝜅)2

=
𝜉𝑖 (𝜍+𝜅−1)
(𝜍+𝜅)2

+ 4(𝜆1+𝜆2)−𝜇2𝜉𝑖

𝜇2 (𝜍+𝜅)2
≤ 𝜉𝑖

𝜍 + 𝜅 + 1

. (39)

The last inequality is by the fact of 𝜉𝑖 ≥ (𝜆1+𝜆2)/(4𝜇2) and (𝜍+𝜅−
1)/(𝜍+𝜅)2 ≤ (𝜍+𝜅−1)/((𝜍+𝜅)2 − 1). Finally,

E[𝐹 (𝑤𝑇 )]−𝐹 (𝑤∗) ≤
L𝜉𝑖
𝑇𝐸+𝜅 ≤

L
𝑇𝐸+𝜅 (

𝜆1+𝜆2

4𝜇2
+(𝜅+1)C1) .

The first inequality holds by theL-Lipschitz continuity of both 𝐹𝑖 (·)
and 𝐹 (·), and the second one is by the definition of 𝜉𝑖 . Further, we

can represent E[𝐹 (𝑤𝑇 )]−𝐹 (𝑤∗) asymptotically as𝑂 (𝑁G2/(𝑇𝐾2)),
where G is closely related to the total noise level of clients. □

Theorem 4 implies that even affected by noisy data issue, FPIN

still achieves a sublinear convergence rate that scales as 𝑂 (1/𝑇 ).
This means the discrepancy E[𝐹 (𝑤𝑇 )]−𝐹 (𝑤∗) approaches 0 as 𝑇
becomes sufficiently large. Moreover, and a smaller total number of

clients 𝑁 , a lower total noise level G, and an increased number of

selected clients 𝐾 will yield to a converged training performance,

which is reasonable and consistent with practical reality.
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