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Abstract. We construct a model to predict which of two chatbots will perform better
on a given prompt. We also model the difficulty of user-generated prompts on a scale
from 1 to 9.

1. Introduction

As the usage of large language model (LLM)-based chat assistants (chatbots) prolifer-
ates, it is increasingly important to develop new methods of comparing and evaluating
chatbot performance. In this paper, we use data from conversations between 20 differ-
ent chatbots and humans and user voting on the performance of the chatbots to create
a model that predicts which of two chatbots will perform better on a given prompt.
This builds on previous work of Zheng et al. [3], who introduce the LMSYS-Chat-1M
dataset and explore trends in the performance of 25 chatbots on different prompt clus-
ters. Our findings offer insight into the variance in the capabilities of different chatbots
when responding to prompts of varying topics and difficulties.

As researchers are actively developing new benchmarks for evaluating chatbot per-
formance and seeking to tune chatbot performance on difficult prompts, it is useful to
understand what factors contribute to the difficulty of a prompt. Therefore, we also
model the complexity of user-generated prompts on a scale from 1 to 9. This relates to
an extensive body of work studying the effectiveness of different kinds of prompt pat-
terns [2] and analyzing the current capabilities and limitations of chatbot performance
on area-specific prompts [1].

2. Description of data

The dataset consists of 25322 cleaned conversations between humans and chatbots.
Each sample consists of a question ID, the names of two chatbots, the full conversations
between the user and the two chatbots named, the user ID, and the user’s vote for
the name of the chatbot that performed better on the given prompt. Additionally,
there are auxiliary datasets containing 256-dimensional text embeddings for each of the
human questions, generated by OpenAI’s text-embedding model, and evaluated topic
models and hardness scores for each question from GPT 3.5. The conversations were
cleaned to remove non-English conversations, conversations with multiple rounds, and
conversations with toxic or harmful content. Potential sources of bias in the dataset
include ambiguity in user voting on the difficulty of a prompt and the winner of a chatbot
matchup, and sampling bias from excluding non-English conversations or only surveying
users on Chatbot Arena from April to June 2023.

We cleaned our data by imputing missing values. We computed win rate for each model
by dividing the number of total wins by the number of total questions faced. GPT-4 had
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Figure 1. Distribution of prompt lengths

the highest win rate of 0.67. We also computed win rate on difficult questions (those with
average hardness scores of 9 out of 9). We found high correlation coefficients between
win rate on difficult questions and the overall win rate, with a correlation of 0.94. This
showed us that models that perform well on hard tasks are also likely to win in general.
Moving onto prompt lengths, we found the mean to be 197 however there were large
outliers and significant variability, including a maximum length of 2560. For modeling,
we removed data in prompt length that were outliers and beyond the 1.5x interquartile
range.

We found a similar result for response lengths, with large outliers and a long right hand
tail. We created histograms and KDE plots for both prompt length and response length
to visualize the distributions. After prompt lengths we computed ELO rating for all of
the chatbots. The standard deviation of the ELO ratings was 119 and the maximum
was 1233. We found ELO rating to be a good predictor of what chatbot would win a
particular engagement. When looking at topic modeling we found the most common
topics for the prompts which were problem solving and creativity. When looking at
the distribution of battles we found that Vicuna-13b had the most battles between the
chatbots and GPT4all-13b-snoozy had the lowest number of battles. We cleaned and
processed hardness scores assigned to each prompt. We then averaged multiple scores
into a single metric which was analyzed to understand the difficulty of questions and
how models fared on harder questions. We also utilized box plots to understand the
distributions of response lengths, hardness scores and ELO rating. We created bar plots
to display the counts for outcomes, win, lose or tie.

3. Methodology

3.1. Task A: Predicting the Winning Model. We used multiclass logistic regression
to predict which chatbot model would win the user vote. Given a prompt and two
chatbots, model A and model B, we predicted whether whether model A or model B
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would win, or whether they would tie (with equally good answers) or tie (with equally
bad answers).

We first split the data into training and validation sets using a randomized 80%-20%
split. We loaded 256-dimensional text embeddings for each prompt, generated by Open
AI’s text-embedding model. We used PCA to reduce the embeddings to 200 dimensions,
capturing approximately 95% of the variance. Then we used K-means clustering to cluster
the training prompts. We found that using 25 clusters was optimal for the accuracy rate
of the models we later trained on each cluster; using more clusters resulted in overfitting
on the training data.

Sampling random prompts from each cluster revealed that our clusters were capturing
intuitively meaningful similarities between prompts. For instance, there was a cluster
of programming questions, a cluster of creative writing tasks, a cluster of arithmetic
questions, a cluster of investing and finance questions, a cluster of basic social interac-
tion tasks, a cluster of historical factual recall questions, and a cluster of philosophical
questions, among others. Exploratory data analysis on the clusters also revealed that
the clusters differed meaningfully from each other in hardness, the percentage of ties,
and the percentage of ties where both models performed poorly. In particular, creative
writing tasks and philosophical questions were generally more difficult, and basic social
interactions were generally easier. Different models also performed substantially better
or worse on certain clusters. For example, although GPT-4 had the highest ELO score
overall and an even higher ELO on hard questions, it underperformed on philosophical
questions, where it only ranked 6th. We also found that certain clusters were significantly
more likely to have ties, or adversarial examples where a model with a lower ELO score
performed better than a model with a higher ELO score, and that the percentage of ties
(of both kinds) and adversarial examples occurred was similar between the clusters in
the training and validation sets. This analysis suggested that it would make sense to
train different models on each cluster, so that the importance of each feature could be
weighted differently on each cluster, ensuring that our final predictions would be more
sensitive to the differences between clusters.

Exploring the data also showed that easier questions were more likely to result in a tie
where both models performing well, and harder questions were more likely to result in a
tie where both models performed poorly. Therefore we included features related to the
difficulty of the question, namely the length of the prompt and the hardness score.

Finally, we included the average response lengths of the two models being compared,
because our exploratory data analysis had shown that models with longer responses were
more likely to be voted as the winner. We also included the ELO score of each model
on prompts with the same hardness score, because we found that there was significant
variance in how the models performed across prompts of different difficulties. For exam-
ple, GPT-4 was ranked first among all the models on questions with hardness scores of
5 and above, and it outperformed the other models more on harder questions. However,
on questions with hardness scores of 4 and below, it was ranked behind at least one of
Claude-V1 and Claude-Instant-V1.

We trained a logistic regression model to predict the outcome on each cluster. We used
the following features to train each model:

(1) Length of the prompt
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(2) Hardness score of the prompt (imputed to be the mean hardness score of 7 if
missing)

(3) ELO score of model A on the entire training set
(4) ELO score of model B on the entire training set
(5) ELO score of model A on the cluster (if model A responded to fewer than 10

prompts in the cluster, we set this to be the ELO score on the entire training set)
(6) ELO score of model B on the cluster (if model B responded to fewer than 10

prompts in the cluster, we set this to be the ELO score on the entire training set)
(7) ELO score of model A on all prompts with the same rounded hardness score
(8) ELO score of model B on all prompts with the same rounded hardness score
(9) Average response length of model A
(10) Average response length of model B

To predict the outcome of a particular battle, we first projected the textual embedding
of the prompt onto the principal components we computed from our training set, then
assigned the reduced embedding to one of our predetermined clusters of embeddings, and
then used the logistic regression model trained on that cluster to output a prediction.

3.2. Task B: Predicting the Hardness Score. For predicting hardness scores, we
chose to use a linear regression model. Linear regression is very interpretable and ac-
curately describes the relationships between our features and the hardness score. We
rounded the continuous outputs of the linear regression model to generate integer hard-
ness scores from 1 to 9.

For feature engineering we created numerous features that captured the underlying
trends of the data. The features we created include:

(1) Prompt length (number of words)
(2) Prompt length (number of characters)
(3) Sentiment score
(4) Subjectivity score
(5) Flesch reading ease
(6) 20 clusters of embeddings
(7) Topic modeling (topics with at least 2 occurrences)

We started with some simple features like counting the number of words and characters
in the prompts. Both features were correlated to the hardness score and as such would
be good predictors. We also added in sentiment and subjectivity scores for the prompts.
The sentiment feature calculates the positivity or negativity of the prompts. Sentiment,
and especially extreme sentiment like highly negative or highly positive prompts come
with extra complexity. Because of their emotional complexity, the prompts with high
negative or high positive scores may be difficult for the chatbots to understand, this is
why we included sentiment in the features. Prompts with high subjectivity (e.g. prompts
including many user opinions) are more difficult for chatbots to understand, whereas more
factual or objective questions are more easily understood by chatbots. Because subjectiv-
ity creates complexity in questions we also included this as a feature. We also calculated
a complexity score of the prompts based on the Flesch reading ease. The score is cal-
culated based on a combination of length, sentences and syllables. As such this feature
directly describes the complexity of the prompts. We also incorporated the embeddings
by creating 35 clusters of embeddings using K-means clustering. Embeddings can capture
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subtleties in the prompts including semantic meaning, complexity and simplicity. For ex-
ample embeddings can capture idioms which can be difficult for chatbots to understand.
We then one-hot encoded these clusters into our dataset. Finally we included the topic
modeling dataset in our analyses. Topic modeling is a proxy for complexity, for example
common sense reasoning, expert knowledge and emotional analysis are usually the most
difficult for chatbots to answer. By including topics that appeared at least twice, we
were able to capture large swaths of this information in the model.

To improve model performance, we standardized the numeric features in our data
frame. The standardization scaled the features to have a mean of zero and a standard
deviation of one, as our data has varying magnitudes, units and range. Standardization
can help with multi-collinearity. Some of our features like word count, prompt length and
Flesch reading ease are closely related, as such standardization helps reduce the chances
of multicollinearity. Standardization also allows for easier interpretation of the model as
all the scales are the same.

4. Summary of results

4.1. Task A: Predicting the Winning Model. After standardizing our features for
greater interpretability, examining the coefficients of the model on each cluster showed
that the prompt length and score were more important for determining the tied classes
than for the untied classes. In general, model ELO, model ELO on the cluster, and model
ELO on prompts with the same hardness score were the most important features, but the
respective coefficients of these features differed significantly from cluster to cluster. The
interpretability of the differences in coefficients is somewhat limited by the fact that there
is a high level of collinearity between these features; their pairwise correlations are over
0.9. However, our model outperformed the baseline models that predicted the winner
based on any of these three pairs of features individually, suggesting that it is capturing
some genuine variance between clusters as to which features are the most important.

We experimented with using other models, including a random forest classifier model;
a logistic regression model that was trained on all the data (not segmented by cluster)
with additional features such as the percentages of ties, bad ties, and adversarial examples
(where the model with lower ELO won) in each cluster; logistic regression models trained
on each cluster that ensembled the outcomes of simpler baseline models (described in
section 5); and an ensemble of two binary logistic regression models, which we describe
in further detail below. Our model outperformed each of these models on the validation
data. The random forest classifier significantly overfitted on the training data, while the
other models produced similar but slightly lower accuracy scores on both the training
and validation data.

The ensemble of two binary logistic regression models was the most interesting alter-
native we considered. The first of the two models was trained to predict the winner on
data without ties, outputting either model A or model B. The second model was trained
only on tied battles, to distinguish between good ties and bad ties. We used the predicted
probabilities to manually tune indeterminacy thresholds centered around 0.5 for the first
model, where we would predict a tied outcome and use the second model to predict the
kind of tie. However, this model was ultimately unsuccessful because the distribution of
predicted probabilities on the tied data was too similar to the distribution of predicted
probabilities on the untied data. Because there were more than twice as many untied
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battles than tied battles, this meant that predicting any ties at all decreased the accu-
racy score substantially, because any indeterminacy threshold would capture more untied
battles than tied battles.

Figure 2. Distribution of differences in ELO

As a simplified example of this phenomenon, in figure 4.1 we show the KDE plot of the
difference in ELOs between model A and model B on the tied data and the untied data
respectively. The KDE curve of the tied data has a slightly higher and narrower peak
than that of the untied data, indicating that, as we might intuitively expect, models with
similar ELO scores are slightly more likely to tie against each other than models with
very different ELO scores. However, there is not enough separation in the KDE curves
to define a threshold where it is more likely for two models to tie than for one of them
to win, especially because it is overall more than twice as likely for a battle to result in
a winner than a tie.

4.2. Task B: Predicting the Hardness Score. After defining the features and trans-
forming these where it made sense, we explored different regression models to accomplish
the lowest loss possible. We started with a linear regression model as our baseline, which
had a MSE of 3.5. Linear regression is a highly interpretable model that would give us
insight into how our features performed. For example, we could look at the coefficients
and easily understand what the most and least important features were. This was made
even easier by standardizing all the numeric features to compare importance. The fea-
ture importance scores are below. It is interesting that the most important features are
associated with length of the prompt and response, these are things we included in our
base model and that we found in our early EDA were important for predicting hardness
score.

We also explored using logistic regression models to predict hardness scores. We tried
two approaches: a multiclass logistic regression model that predicted a binned hardness
score (low, medium, or high); and a threshold approach using an ensemble of 9 binary
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classifiers, one for each numerical score, that predicted whether a given prompt’s hardness
score was above or below the given number. We achieved a ROC of 0.70 in the bin logistic
approach with an accuracy score of 0.60. However, it was a nontrivial task to transform
the prediction of the multiclass regression into a numerical score. We tried a majority
vote approach to calculate an expected value of each class prediction. We would assign a
median value for each class and multiply that against the probabilities of the multiclass
model. This ultimately did not perform as well as the linear regression model. The
threshold approach was successful at predicting a binary classification for each numerical
score and accuracy scores were high for each model, but when combined into a single
model, the model had higher MSE than linear regression.

Feature Importance
log prompt length 1.023984
square sentiment -0.842829
log word count -0.409146
subjectivity 0.318256

topic cluster 5 0.282826
topic cluster 2 0.207631
topic cluster 16 -0.188652
topic cluster 11 0.131599
topic cluster 1 0.131032
topic cluster 19 0.099715
topic cluster 4 0.095947
topic cluster 12 0.076605
topic cluster 3 0.075392
topic cluster 8 0.075283
topic cluster 6 0.064288
topic cluster 18 -0.057234
topic cluster 9 0.030806
topic cluster 7 -0.022664
topic cluster 14 -0.016247
topic cluster 0.007219

topic cluster 10 -0.006448
topic cluster 15 0.006013
topic cluster 17 0.004064
topic cluster 13 0.003021

flesch reading ease -0.000887
Table 1. Baseline model feature importance scores

5. Discussion

5.1. Task A: Predicting the Winning Model. We compared our model to the fol-
lowing three baseline models:

(1) Predict that the model with higher ELO wins
(2) Predict that the model with higher ELO on prompts in the same cluster wins
(3) Predict that the model with higher ELO on prompts with the same score wins
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The accuracy scores of the models on the training and validation sets are shown in
Table 5.2.

Training Validation
Our model 0.565 0.544
Model (1) 0.530 0.528
Model (2) 0.541 0.530
Model (3) 0.533 0.525

Table 2. Baseline model accuracy scores

From Table 5.2, we can see that our model outperformed each of the baseline models
on both the training and validation sets. Our model had a slightly higher accuracy score
on the training set than on the validation set, but this difference was not large enough
to suggest that overfitting was an issue.

The precision and recall scores for our model on each of the four outcome classes is
shown in Table 5.1.

Model A Model B Tie Tie (both bad)
Training precision 0.573 0.575 0.429 0.495
Training recall 0.735 0.717 0.036 0.258

Validation precision 0.553 0.552 0.381 0.476
Validation recall 0.714 0.703 0.029 0.242

Table 3. Model precision and recall

The data in Table 5.1 show that our model was substantially better at identifying the
winning model in battles that did not result in a tie. In particular, our model had very
low recall (∼3%) on tied battles where both models performed equally well.

Examining the confusion matrices shows that battles where model A won were most
commonly misclassified as wins for model B, and vice versa. When we trained our model
only on data not containing ties, we achieved accuracy scores of about 77% and 75% on
the training and validation sets respectively. This shows that, even setting aside ties,
our model is not completely able to distinguish battles where model A won from battles
where model B won.

One interesting finding from the confusion matrices is that, despite the low recall for
the tied classes, our model very rarely misclassified bad ties as good ties. This shows that
our model is better at distinguishing bad ties from good ties than it is at distinguishing
tied battles from battles with a winner.

From a societal perspective, when we think of the best chatbots, or the most winning
chatbots, its important to understand that the best chatbots may be fostering a depen-
dence on them because they are so good and because they win so much. For example,
many people now use ChatGPT for everyday tasks, but there are potential downsides.
Its also important to note some potential concerns for the modeling where bias might
be introduced. For example, users who rate a chatbot as winning may then be more
likely to rate that same chatbot as thew winner in later conversations, introducing bias.
Ethically its possible that some people, especially those with lack of Internet access, lack
of ability to pay for chatbots or for some other misfortune, cannot interact with chatbots
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and therefore cannot receive their benefits. There are also concerns around user privacy
with chatbots, and how the data that is being fed into them by users, is being used for
retraining the chatbot itself. Are there conversations that the chatbot should not be
using for training that comes from users? Even if the user agrees to sending the data
in? Perhaps the user has no other avenue to get advice or talk about personal aspects
of their life with anyone else, a chatbot provides an unbiased adjudicator. These data
privacy concerns are among the top ethical issues facing chatbot creators today.

5.2. Task B: Predicting the Hardness Score. We used a linear regression model
to predict the hardness score, because the linear regression model we trained was ul-
timately more successful than the logistic regression models we attempted. However,
linear regression assumes that changes in the predictor leads to consistent changes in
the dependent variable, which might not hold true because our dependent variable is
ordinal. The relationship between topic variables and an ordinal score might not nec-
essarily be linear. Logistic regression does not assume a linear relationship between the
dependent and independent variables, making it more flexible for categorical and ordinal
data. In the future it may be advisable to attempt to train a logistic regression to achieve
this. Our team also did not try other modeling methods like XGBoost, decision trees, or
classification, the performance of the model may benefit from these different modeling
approaches. Finally, we were computationally constrained, as such, our model was not
optimized based on the features we had at hand. We worked on reducing the dimensional
of these features, however, we believe that the model would have performed better had
we been able to use all the topic modeling classes and all the embeddings, instead of
clustering them. In the future, to improve performance, these methods may be consid-
ered. From a societal perspective, as chatbots are able to answer more and more complex
questions it may lead to a loss of interpersonal communication. Especially in the cases
where a chatbot can answer questions akin to a complex field like therapy. Refining the
performance of chatbots when it comes to complex questions with high hardness with
further this. Its also important to note that there could have been some biases in the
training data we are unaware of. These biases can affect the outcome and feasibility of
the model. for example a model that has a very biased training set in some way shape
or form, will not generalize well and could lead us as researchers into poor conclusions.
These impacts should be considered when viewing this model.

Training Validation
MSE 2.37 1.53
RSME 1.95 1.39

Table 4. Linear regression loss
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