
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

KIMI-DEV: AGENTLESS TRAINING AS SKILL PRIOR
FOR SWE-AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) are increasingly applied to software engineering
(SWE), with SWE-bench as a key benchmark. Solutions are split into SWE-Agent
frameworks with multi-turn interactions and workflow-based Agentless methods
with single-turn verifiable steps. We argue these paradigms are not mutually ex-
clusive: reasoning-intensive Agentless training induces skill priors, including lo-
calization, code edit, and self-reflection that enable efficient and effective SWE-
Agent adaptation. In this work, we first curate the Agentless training recipe and
present Kimi-Dev, an open-source SWE LLM achieving 60.4% on SWE-bench
Verified, the best among workflow approaches. With additional SFT adaptation
on 5k publicly-available trajectories, Kimi-Dev powers SWE-Agents to 48.6%
pass@1, on par with that of Claude 3.5 Sonnet (241022 version). These results
show that structured skill priors from Agentless training can bridge workflow and
agentic frameworks for transferable coding agents.

1 INTRODUCTION

Recent days have witnessed the rapid development of Large Language Models (LLMs) automating
Software-Engineering (SWE) tasks (Jimenez et al., 2023; Yang et al., 2024a; Xia et al., 2024; An-
thropic, 2024; Pan et al., 2024; Wang et al., 2025a; Wei et al., 2025; Yang et al., 2025a; Kimi et al.,
2025; OpenAI, 2025c). Among the benchmarks that track the progress of LLM coding agents in
SWE scenarios, SWE-bench (Jimenez et al., 2023) stands out as one of the most representative ones:
Given an issue that reports a bug in a real-world GitHub repository, a model is required to produce
a patch that fixes the bug, the correctness of which is further judged by whether the corresponding
unit tests are passed after its application. The difficulty of the task (as of the date the benchmark was
proposed), the existence of the outcome reward with the provided auto-eval harness, as well as the
real-world economic value it reflects, have made the SWE-bench a focal point of the field.

Two lines of solutions have emerged for the SWE-bench task. Agent-based solutions like SWE-
Agent (Yang et al., 2024a) and OpenHands (Wang et al., 2025a) take an interactionist approach:
Instructed with the necessary task description, a predefined set of available tools, as well as the
specific problem statement, the agent is required to interact with an executable environment for
multiple turns, make change to the source codes, and determine when to stop autonomously. In
contrast, workflow-based solutions like Agentless (Xia et al., 2024) pre-define the solving progress
as a pipeline, which consists of steps like localization, bug repair, and test composition. Such task
decomposition transforms the agentic task into generating correct responses for a chain of single-
turn problems with verifiable rewards (Guo et al., 2025; Wei et al., 2025; He et al., 2025).

The two paradigms have been widely viewed as mutually exclusive. On the one hand, SWE-Agents
are born with higher potential and better adaptability, thanks to the higher degree of freedom of the
multi-turn interaction without the fixed routines. However, it has also proved more difficult to train
with such frameworks due to their end-to-end nature (Luo et al., 2025; Cao et al., 2025). On the other
hand, Agentless methods offer better modularity and the ease to train with Reinforcement Learning
with Verifiable Rewards (RLVR) techniques, but more limited exploration space and flexibility, and
difficulty in behavior monitoring as the erroneous patterns appear only in the single-turn long rea-
soning contents (Pan et al., 2024). However, we challenge the dichotomy from the perspective of
training recipe: We argue that Agentless training should not be viewed as the ultimate deliverable,
but rather as a way to induce skill priors – atomic capabilities such as the localization of buggy im-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

plementations and the update of erroneous code snippets, as well as self-reflection and verification,
all of which help scaffold the efficient adaptation of more capable and generalizable SWE-agents.

Guided by this perspective, we introduce Kimi-Dev, an open-source code LLM for SWE tasks.
Specifically, we first develop an Agentless training recipe, which includes mid-training, cold-start,
reinforcement learning, and test-time self-play. This results in 60.4% accuracy on SWE-bench Ver-
ified, the SoTA performance among the workflow-based solutions. Building on this, we show that
Agentless training induces skill priors: a minimal SFT cold-start from Kimi-Dev with 5k publicly-
available trajectories enables efficient SWE-agent adaptation and reaches 48.6% pass@1 score, sim-
ilar to that of Claude 3.5 Sonnet (the 20241022 version, Anthropic (2024)). We demonstrate that
these induced skills transfer from the non-agentic workflows to the agentic frameworks, and the
self-reflection in long Chain-of-Thoughts baked through Agentless training further enable the agen-
tic model to leverage more turns and succeed with a longer horizon. Finally, we also show that the
skills from Agentless training generalize beyond SWE-bench Verified to broader benchmarks like
SWE-bench-live (Zhang et al., 2025) and SWE-bench Multilingual (Yang et al., 2025c). Together,
these results reframe the relationship between Agentless and agentic frameworks: not mutually ex-
clusive, but as complementary stages in building transferable coding LLMs. This shift offers a prin-
cipled view that training with structural skill priors could scaffold autonomous agentic interaction.

The remainder of this paper is organized as follows. Section 2 reviews the background of the frame-
work dichotomy and outlines the challenges of training SWE-Agents. Section 3 presents our Agent-
less training recipe and the experimental results. Section 4 demonstrates how these Agentless-
induced skill priors enable efficient SWE-Agent adaptation, and evaluates the skill transfer and
generalization beyond SWE-bench Verified.

2 BACKGROUND

In this section, we first review the two dominant frameworks for SWE tasks and their dichotomy in
Section 2.1. We then summarize the progress and challenges of training SWE-Agents in Section 2.2.
The background introduction sets the stage for reinterpreting Agentless training as skill priors for
SWE-Agents, a central theme developed throughout the later sections.

2.1 FRAMEWORK DICHOTOMY

Two paradigms currently dominate the solutions for automating software engineering tasks. Agent-
less approaches decompose SWE tasks into modular workflows (Xia et al., 2024; Wei et al., 2025;
Ma et al., 2025a;b; Xie et al., 2025). Typical workflows consist of bug localization, bug repair, and
test generation. This design provides modularity and stability: each step could be optimized sepa-
rately as a single-turn problem with verifiable rewards (Wei et al., 2025; He et al., 2025). However,
such rigidity comes at the cost of flexibility. When encountering scenarios requiring multiple rounds
of incremental updates, the Agentless approaches struggle to adapt.

By contrast, SWE-agents adopt an end-to-end, multi-turn reasoning paradigm (Yang et al., 2024a;
Wang et al., 2025a). Rather than following a fixed workflow, they iteratively plan, act, and reflect,
resembling how human developers debug complex issues. This design enables greater adaptability,
but introduces significant difficulties: trajectories often extend over tens or even hundreds of steps,
context windows of the LLMs must span over the entire interaction history, and the model must
handle exploration, reasoning, and tool use simultaneously.

The dichotomy between fixed workflows (e.g., Agentless) and agentic frameworks (e.g., SWE-
Agent) has shaped much of the community’s perspective. The two paradigms are often regarded
as mutually exclusive: one trades off flexibility and performance ceiling for modularity and stabil-
ity, whereas the other makes the reverse compromise. Our work challenges this dichotomy, as we
demonstrate that Agentless training induces skill priors that make further SWE-agent training both
more stable and more efficient.

2.2 TRAINING SWE-AGENTS

Training SWE-agents relies on acquiring high-quality trajectories through interactions with exe-
cutable environments. Constructing such large-scale environments and collecting reliable trajecto-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Agentless framework for Kimi-Dev: the duo of BugFixer and TestWriter.

ries, however, requires substantial human labor as well as costly calls to frontier models, making data
collection slow and resource-demanding (Pan et al., 2024; Badertdinov et al., 2024b). Recent studies
also attempt to scale environment construction by synthesizing bugs for the reverse construction of
executable runtime (Jain et al., 2025; Yang et al., 2025c). However, credit assignment across long
horizons still remains challenging, as outcome rewards are sparse and often only available when a
final patch passes its tests. Reinforcement learning techniques have been proposed, but frequently
suffer from instability or collapse when trajectories exceed dozens of steps (Luo et al., 2025; Cao
et al., 2025). SWE-agent training is also highly sensitive to initialization: starting from a generic
pre-trained model often leads to brittle behaviors, such as failing to use tools effectively or getting
stuck in infinite loops of specific action patterns (Pan et al., 2024; Yang et al., 2025c).

These limitations motivate our central hypothesis: instead of training SWE-agents entirely from
scratch, one can first induce skill priors through agentless training, enhancing the atomic capabilities
like localization, repair, test composition, and self-reflection. These priors lay a foundation that
makes subsequent agentic training both more efficient and more generalizable.

3 AGENTLESS TRAINING RECIPE

Instead of training SWE-agents from scratch, we leverage Agentless training to induce skill priors.
Skill priors enhanced by Agentless training include but are not limited to bug localization, patch gen-
eration, self-reflection and verification, which lay the foundation for end-to-end agentic interaction.
In this section, we elaborate our Agentless training recipe: the duo framework design of BugFixer
and TestWriter, mid-training and cold-start, reinforcement learning, and test-time self-play. Sec-
tions 3.1–3.4 detail these ingredients, and Section 3.5 presents the experimental results for each of
them. This training recipe results in Kimi-Dev, an open-source 72B model that achieves 60.4% on
SWE-bench Verified, the SoTA performance among the workflow-based solutions.

3.1 FRAMEWORK: THE DUO OF BUGFIXER AND TESTWRITER

In GitHub issue resolution, we conceptualize the process as the collaboration between two important
roles: the BugFixer, who produces patches that correctly address software bugs, and the TestWriter,
who creates reproducible unit tests that capture the reported bug. A resolution is considered suc-
cessful when the BugFixer’s patch passes the tests provided for the issue, while a high-quality test
from the TestWriter should fail on the pre-fix version of the code and pass once the fix is applied.

Each role relies on two core skills: (i) file localization, the ability to identify the specific files relevant
to the bug or test, and (ii) code edit, the ability to implement the necessary modifications. For Bug-
Fixer, effective code edits repair the defective program logic, whereas for TestWriter, they update
precise unit test functions that reproduce the issue into the test files. As illustrated in Figure 1, these
two skills constitute the fundamental abilities underlying GitHub issue resolution. Thus, we enhance
these skills through the following training recipes, including mid-training, cold-start, and RL.

3.2 MID-TRAINING & COLD START

To enhance the model’s prior as both a BugFixer and a TestWriter, we perform mid-training with
∼150B tokens in high-quality and real-world data. With the Qwen 2.5-72B-Base (Qwen et al.,
2024) model as a starting point, we collect millions of GitHub issues and PR commits to form its
mid-training dataset, which consists of (i) ∼50B tokens in the form of Agentless derived from the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

natural diff patch, (ii) ∼20B tokens of curated PR commit packs, and (iii) ∼20B tokens of synthetic
data with reasoning and agentic interaction patterns (upsampled by a factor of 4 during training).
The data recipe is carefully constructed to enable the model to learn how human developers reason
with GitHub issues, implement code fixes, and develop unit tests. We also performed strict data
decontamination to exclude any repository from the SWE-bench Verified test set. Mid-training
sufficiently enhances the knowledge in the model about practical bug fixes and unit tests, making it
a better starting point for later stages. The details of the recipe are covered in Appendix A.

To activate the model’s long Chain-of-Thought (CoT) capability, we also construct a cold-start
dataset with reasoning trajectories based on the SWE-Gym (Pan et al., 2024) and SWE-bench-extra
(Badertdinov et al., 2024a) datasets, generated by the DeepSeek R1 model (Luo et al. (2025), the
20250120 version). In this setup, R1 acts the roles of Bugfixer and Testwriter, producing out-
puts such as file localization and code edits. Through supervised finetuning as a cold start with
this dataset, we enable the model to acquire essential reasoning skills, including problem analysis,
method sketching, self-refinement, and exploration of alternative solutions.

3.3 REINFORCEMENT LEARNING

After mid-training and cold-start, the model demonstrates strong performance in localization.
Therefore, reinforcement learning (RL) focuses solely on the code edit stage. We construct a
training set specifically for this stage, where each prompt is equipped with an executable environ-
ment. We further employ multiple localization rollouts from the initial model to generate varied file
location predictions, which diversifies the prompts used in code-edit RL.

For the RL algorithm, we adopt the policy optimization method proposed by Kimi k1.5 (Team et al.,
2025), which has shown promising results on reasoning tasks in both math and coding. Unlike
GRPO (Shao et al., 2024) that eliminates the critic by using average rewards for advantage estima-
tion, Kimi k1.5 (Team et al., 2025) adopts a simpler policy gradient approach motivated by path
consistency (Nachum et al., 2017). The specific RL objective is provided in Appendix C.1.

When adapting the algorithm in our SWE-bench setting, we highlight the following 3 key desiderata:

1. Outcome-based reward only: We rely solely on the final execution outcome from the
environment as the raw reward (0 or 1), without incorporating any format- or process-
based signals. For BugFixer, a positive reward is given if the generated patch passes all
ground-truth unittests. For TestWriter, a positive reward is assigned when the predicted
test raises a failure in the absence of the ground-truth bugfix patch and, once the patch is
applied, the failure is resolved.

2. Adaptive prompt selection: Prompts with pass@16 = 0 are initially discarded as they do
not contribute to the batch loss, effectively enlarging the usable batch size. A curriculum
learning scheme is then applied: once the success rate on the current set exceeds a
threshold, previously excluded prompts (with initial pass@16 = 0 but improved under RL)
are reintroduced to gradually raise task difficulty.

3. Positive example reinforcement: As performance improvements begin to plateau in later
stages of training, we incorporate the positive samples from the recent RL iterations into
the training batch of the current iteration. This approach reinforces the model’s reliance on
successful patterns, thereby accelerating convergence in the final phase.

Robust sandbox infrastructure. We construct the docker environment with Kubernetes (Burns
et al., 2016), which provides a secure and scalable sandbox infrastructure and efficient training and
rollouts. The infra supports over 10,000 concurrent instances with robust performance, making it
ideal for competitive programming and software engineering tasks (see Appendix D).

3.4 TEST-TIME SELF-PLAY

After RL, the model masters the roles of both a BugFixer and a TestWriter. During test time,
it adopts a self-play mechanism to coordinate its bug-fixing and test-writing abilities. Following
Agentless (Xia et al., 2024), we leverage the model to generate 40 candidate patches and 40 tests
for each instance. Each patch generation involves independent runs of the localization and code edit
from BugFixer, where the first run uses greedy decoding (temperature 0), and the remaining 39 use

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison for models on SWE-bench Verified under Agentless-like frame-
works. All the performances are obtained under the standard 40 patch, 40 test setting (Xia et al.,
2024), except that Llama3-SWE-RL uses 500 patches and 30 tests.

Model #Params Resolve Rate (%)

Llama3-SWE-RL (Wei et al., 2025) 70B 41.0
Seed1.5-Thinking (Seed et al., 2025) 200B 47.0
OpenAI-o1 (OpenAI, 2024) - 48.9
DeepSeek-R1-0120 (Guo et al., 2025) 671B 49.2
OpenAI-o3-mini-high (OpenAI, 2025a) - 49.3
Claude 3.5 Sonnet (241022) (Anthropic, 2024) - 50.8
MiniMax-M1 (Chen et al., 2025a) 456B 56.0
DeepSeek-R1-0528 (Guo et al., 2025) 671B 57.6
SWE-SWISS (He et al., 2025) 32B 58.2
Kimi-Dev (Ours) 72B 60.4

temperature 1 to ensure diversity. Similarly, 40 tests are generated independently from TestWriter.
For the test patch candidates, to guarantee their validity, we first filter out those failing to raise a
failure in the original repo without applying any BugFixer patch.

Denote the rest TestWriter patches as set T , and the BugFixer patches as set B. For each bi ∈ B
and tj ∈ T , we execute the test suite over the test file modified by tj for twice: first without bi,
and then with bi applied. From the execution log for the first run, we get the count of the failed and
the passed tests from tj , denoted as F(j) and P(j). Comparing the execution logs for the two test
suite runs, we get the count of the fail-to-pass and the pass-to-pass tests, denoted as FP(i, j) and
PP(i, j), respectively. We then calculate the score for each bi with

Si =

∑
j FP(i, j)∑

j F(j)
+

∑
j PP(i, j)∑

j P(j)
, (1)

where the first part reflects the performance of bi under reproduction tests, and the second part
could be viewed as the characterization of bi under regression tests (Xia et al., 2024). We select the
BugFixer patch bi with the highest Si score as the ultimate answer.

3.5 EXPERIMENTS

3.5.1 MAIN RESULTS

Figure 2: The performance on SWE-
bench Verified after mid-training with
different training token budgets.

We evaluate our approach on SWE-bench Verified
(Jimenez et al., 2023), which includes 500 GitHub issues
guaranteed to be solved by human programmers. Table
1 shows the overall results. Unlike SWE-RL (Wei et al.,
2025), which relies on text-based similarity to the ground-
truth patch, we use execution results as the reward signal,
reducing shortcuts and improving solution quality. Unlike
most Agentless approaches (Xia et al., 2024; Guo et al.,
2025; He et al., 2025), which place a single-file reproduc-
tion test at the root directory of the repository, we leverage
the two-stage TestWriter to better capture repository con-
text and align with human standard workflows (OpenAI,
2025). Kimi-Dev model achieves the state-of-the-art per-
formance among open-source models, resolving 60.4% of
the issues in SWE-bench Verified.

3.5.2 MID-TRAINING

In this section, we evaluate the relationship between the amount of data used during mid-training
and model performance. Specifically, we finetuned Qwen 2.5-72B-Base with the subset of mid-
training data of 50B, 100B, and approximately 150B tokens, and then lightly activated them using
the same 2,000 Bugfixer input-output pairs as cold start. We report BugFixer pass@1 without self-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) 72B Joint RL, BugFixer (b) 72B Joint RL, TestWriter

Figure 3: Joint code-edit RL experiments on the model after mid-training and cold-start. The pass
rate for BugFixer and the reproduced rate for TestWriter are reported as pass@1 with tempera-
ture=1.0. The performance improves consistently as the output becomes increasingly longer.

play for simplicity of evaluation. Figure 2 shows that increasing the number of tokens in mid-training
consistently improves model performance, highlighting the effectiveness of this stage.

3.5.3 REINFORCEMENT LEARNING

Experimental setup We set the training step per RL iteration as 5 and sample 10 rollouts for
each of the 1,024 problems from the union of SWE-gym (Pan et al., 2024) and SWE-bench-extra
(Badertdinov et al., 2024b). We dynamically adjust the prompt set every 20 iterations to gradually
increase task difficulty. We fix the maximum training context length as 64k tokens, since the prompt
input contains the contents of the entire files localized by the initial model in advance.

Results Figure 3 shows the performance and response length curves on the test set during RL train-
ing. The pass rate and the reproduced rate are calculated from pass@1 and temperature=1. Specifi-
cally, we observe that both model performance and response length steadily increase, reflecting the
expected benefits of RL scaling. Similar RL scaling curves are also observed in our ablation ex-
periments run on Qwen2.5-14B-Instruct models, proving the effectiveness of the RL training recipe
across models of different sizes. The experimental details, as well as the ablation studies on positive
example reinforcement in Section 3.3, are listed in Appendix C.3). The lengthy outputs consist of
in-depth problem analysis and self-reflection patterns, similar to those in the math and code reason-
ing tasks (Team et al., 2025; Guo et al., 2025). We have also observed that for TestWriter, occasional
false-positive examples take place during RL training due to the lack of reproduction coverage. We
leave the case studies in Appendix F and further improvement for future work.

3.5.4 TEST-TIME SELF-PLAY

Figure 4: Test-time self-play on SWE-bench Verified.
Performance improves with more generated patches
and tests. Left: Execution-based self-play consis-
tently surpasses BugFixer majority voting. Right: Self-
play performances remain below pass@N where the
ground-truth test patch is used, suggesting the room ex-
ists for TestWriter to improve.

Following Section 3.4, we evaluate how
the final performance on the SWE-bench
Verified scales with the number of patches
and tests generated. The temperature is
fixed at 0 for the initial rollout and set
to 1.0 for the subsequent 39 rollouts. As
shown on the left of Figure 4, perfor-
mance improves from 48.0% to 60.4% as
the number of patch test pairs increases
from 1×1 to 40×40, and consistently out-
performs the results obtained from the ma-
jority vote of BugFixer patches. Specifi-
cally, the self-play result obtained from 3
patches and 3 tests for each instance has
already surpassed the performance with
majority voting from 40 BugFixer patches. This demonstrates the effectiveness of additional in-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Single-attempt performance of different models on SWE-bench Verified under end-to-end
agentic frameworks, categorized by proprietary or open-weight models, and size over or under 100B.
“Internal” denotes results achieved with their in-house agentic frameworks.

Model System #Params Pass Rate (%)

Proprietary

Gemini 2.5 Pro (Comanici et al., 2025) Internal - 60.3
OpenAI-o3 (OpenAI, 2025) Internal - 69.1
GPT-5 (OpenAI, 2025c) Internal - 74.9
Claude 3.5 Sonnet (241022) (Anthropic, 2024) SWE-Agent - 49.0
Claude 3.7 Sonnet (Anthropic, 2025a) SWE-Agent - 62.3
Claude 4.0 Sonnet (Anthropic, 2025b) SWE-Agent - 72.7

Open Weight, ≥ 100B

gpt-oss-120b (High) (OpenAI, 2025b) Internal 120B 62.4
DeepSeek-v3.1 (Guo et al., 2025) Internal 671B 66.0
Kimi-K2-0905 (Kimi et al., 2025) SWE-Agent 1T 69.2
Qwen3-Coder (Yang et al., 2025a) OpenHands 480B 69.6

Open Weight, < 100B

Openhands-LM (Wang et al., 2025b) OpenHands 32B 37.2
Skywork-SWE (Zeng et al., 2025) OpenHands 32B 38.0
SWE-agent-LM (Yang et al., 2025b) SWE-Agent 32B 40.2
DeepSWE (Luo et al., 2025) OpenHands 32B 42.2
Devstral-Small-2507 (AI & AI, 2025) OpenHands 24B 53.6
gpt-oss-20b (High) (OpenAI, 2025b) Internal 20B 60.7
Kimi-Dev (SFTed) SWE-Agent 72B 48.6

formation from test-time execution. The room for improvement of TestWriter, though, still exists
for more powerful self-play: Shown on Figure 4, self-play performances remain below pass@N,
where ground-truth test cases serve as the criterion for issue resolution. This finding aligns with An-
thropic (2024), which introduced a final edge-case checking phase to generate a more diverse set of
test cases, thereby strengthening the role of the “TestWriter” in their SWE-Agent framework. We
also report preliminary observations of a potential parallel scaling phenomenon, which requires no
additional training and may enable scalable performance improvements (see Appendix G).

4 INITIALIZING SWE-AGENTS FROM AGENTLESS TRAINING

End-to-end multi-turn frameworks, such as SWE-Agent (Yang et al., 2024a; Anthropic, 2024) and
OpenHands (Wang et al., 2025a), enable agents to leverage tools and interact with environments.
Specifically, the system prompt employed in the SWE-Agent framework (Anthropic, 2024) outlines
a five-stage workflow: (i) repo exploration, (ii) error reproduction via a test script, (iii) code edit
for bug repair, (iv) test re-execution for validation, and (v) edge-case generation and checks. Unlike
Agentless, the SWE-Agent framework doesn’t enforce a strict stage-wise workflow; the agent can
reflect, transition, and redo freely until it deems the task complete and submits.

The performance potential is therefore higher without a fixed routine; However, the training for
SWE-Agent is more challenging because of the sparsity of the outcome reward for long-horizon
credit assignment. Meanwhile, our Kimi-Dev model has undergone Agentless training, with its skills
of localization and code edit for BugFixer and TestWriter strengthened elaborately. In this section,
we investigate whether it can serve as an effective prior for multi-turn SWE-Agent scenarios.

4.1 PERFORMANCE AFTER SWE-AGENT FINE-TUNING

We use the publicly available SWE-Agent trajectories to finetune Kimi-Dev. The finetuning dataset
we used is released by SWE-smith (Yang et al., 2025b), consisting of 5,016 SWE-Agent trajectories
collected with Claude 3.7 Sonnet (Anthropic, 2025a) in the synthetic environments. We perform
supervised fine-tuning over Kimi-Dev, setting the maximum context length as 64K tokens during
training, and allowing up to 128K tokens and 100 turns during inference.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: Comparing the quality of the raw Base, the Agentless mid-trained (MT), the Agentless
mid-trained with reasoning-intensive cold-start (SFT), and the Kimi-Dev model after RL as the prior
for SWE-Agent adaptation. The tokens of the SWE-Agent SFT trajectories are swept over different
scales, and the SWE-Agent performances are reported up to pass@3 on SWE-bench Verified.

As shown in Table 2, without collecting more trajectory data over realistic environments, or con-
ducting additional multi-turn agentic RL, our finetuned model achieves a pass@1 score of 48.6%
on SWE-bench Verified under the agentic framework setup, without additional test-time scaling.
Using the same SFT data, our finetuned Kimi-Dev model outperforms the SWE-agent-LM (Yang
et al., 2025c), with the performance comparable to that of Claude 3.5 Sonnet (49% by the 241022
version). The pass@10 of our SWE-Agent adapted model is 74.0% and surpasses the pass@30 of
our model under Agentless (73.8%), proving the higher potential for the SWE-Agent framework.

4.2 SKILL TRANSFER AND GENERALIZATION

The results shown in Section 4.1 demonstrate that Kimi-Dev, a model with extensive Agentless
training, could be adapted to end-to-end SWE-Agents with lightweight supervised finetuning. As
the Agentless training recipe consists of mid-training, cold-start (SFT) and RL, we explore the con-
tribution of each part in the recipe to the SWE-Agent capability after adaptation.

To figure this out, we perform SWE-Agent SFT on the original Qwen2.5-72B (Base), the mid-
trained model (MT), the model then activated with Agentless-formatted long CoT data (SFT), and
the (Kimi-Dev) model after finishing RL training (RL). As we are treating the four models as the
prior for SWE-Agents1, and a good prior always demonstrates the ability of fast adaptation with a
few shots (Finn et al., 2017; Brown et al., 2020), we also sweep the amount of SWE-Agent SFT data
to measure the efficiency of each prior in SWE-Agent adaptation.

Specifically, we randomly shuffle the 5,016 SWE-Agent trajectories and construct nested subsets
of sizes 100, 200, 500, 1,000, and 2,000, where each smaller subset is contained within the larger
ones. In addition, we prepend two extreme baselines: (i) zero-shot, where the prior model is directly
evaluated under the SWE-Agent framework without finetuning, and (ii) one-step gradient descent,
where the model is updated with a single gradient step using the 100-trajectory subset. This yields a
range of SFT token budgets spanning {0, 221, 223, 224, 1.1× 225, 1.1× 226, 1.1× 227, 1.5× 228}.
After these lightweight SFT experiments, we evaluate performance in terms of pass@{1,2,3} under
the SWE-Agent framework, with evaluations for pass@1 conducted at temperature 0, and those for
pass@2 and pass@3 at temperature 1.0.

Figure 5 presents the SWE-Agent performances of each prior (Base, MT, SFT, RL) after being
fine-tuned with different amounts of agentic trajectories. We have the following observations:

1. The RL prior is outperformed by all the other models in nearly all the SWE-Agent SFT
settings. This demonstrates that the Agentless training recipe indeed strengthens the prior
in terms of SWE-Agent adaptation. For example, To achieve the top pass@1 performance

1We slightly abuse the term “prior” to refer to a model to be finetuned with SWE-Agent trajectories in the
following analysis.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: Left: Performance of the four priors under turn limits after SWE-Agent adaptation. Right:
The characterization of the BugFixer and the reflection skills for each prior by counting the resolved
cases of the 3 runs at Stage-3 cutoff moment, and comparing those with the final success cases.

of the Base prior, the RL prior needs only 223 SWE-Agent SFT tokens, whereas the Base
prior consumes 1.5× 228 tokens.

2. The MT prior is lagged behind the SFT and the RL ones in extremely data-scarce settings
(zero-shot (0) and one-step gradient descent (221)), but quickly becomes on par with them
after 200 trajectories (224) are available for finetuning. This indicates that adaptation effi-
ciency remains comparable after the prior is strengthened through Agentless mid-training.

3. The performance of the SFT prior is mostly similar to the RL one except for two cases: (i)
The SFT prior outperforms the RL one under the zero-shot setting. This is reasonable, as
the RL prior might overfit to the Agentless input-output format, while the SFT prior suffers
less from this. (ii) The SFT prior exhibits a significant degradation with 200 SWE-Agent
trajectories (224). A potential reason could be that the 200 trajectories collapse onto a single
data mode, leading the SFT prior to overfit through memorization (Chu et al., 2025); the
RL prior instead embeds stronger transferable skills and thus generalizes better.

From long CoT to extended multi-turn interactions. We hypothesize that reflective behav-
iors cultivated through long chain-of-thought reasoning may transfer to settings requiring extended
multi-turn interactions. To examine this, we evaluate the four priors (Base, MT, SFT, and RL) by
finetuning on the 5,016 trajectories and test on SWE-bench Verified, under varying turn limits with
pass@3 as the metric (Figure 6, left). The distinct interaction-length profiles show supportive evi-
dence: the RL prior, after finetuning, continues to make progress beyond 70 turns, while the SFT,
mid-trained, and raw models show diminishing returns around 70, 60, and 50 turns, respectively.

We further evaluate the efficacy of the Agentless skill priors (BugFixer and reflection) in the SWE-
Agent adapted model. For BugFixer, given that the SWE-Agent may autonomously reflect between
the five stages, we examine the moment in each trajectory when the bug fix of the third stage is
initially completed, and the test rerun of the fourth stage has not yet been entered. Heuristically,
when the SWE-Agent just completes the third stage, it has not yet obtained the execution feedback
from the fourth stage, and thus has not further reflected based on the execution information or refined
the bug fix. We therefore calculate the success rate of direct submission at this cutoff moment,
which reflects the capability of the BugFixer skill. Regarding reflection, we further compare the
performance at the cutoff point with the performance after full completion for each problem. The
increment in the number of successful problems is used to reflect the capability of the reflection skill.
We use Kimi-K2 to annotate the SWE-Agent stage each turn lies in along each trajectory. Figure 6
demonstrates that both skills are strengthened in the RL prior, leading to superior performance.

5 CONCLUSION AND FUTURE WORK

In this work, we reframed Agentless and agentic paradigms for automated software engineering as
complementary rather than competing. By introducing Kimi-Dev, we demonstrated that structured
Agentless training can induce transferable skill priors, including bug localization, code repair, and
self-reflection. As a result, Kimi-Dev not only achieves SoTA results on SWE-bench Verified among
the workflow-based approaches, but enables efficient SWE-Agent adaptation as well. These findings
establish a novel path toward building more generalizable coding agents through staged training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS AND REPRODUCIBILITY STATEMENTS

This work obeys the Code of Ethics required by the ICLR conference. The study does not involve
human subjects or animal experimentation. The personally identifiable information from raw data
is excluded for privacy consideration (see the mid-training data recipe detailed in Appendix A).

For all of the experiments, we have covered the detailed setups in the appendices: mid-training for
Agentless in Appendix A, details of the used dockers in Appendix B, Agentless RL in Appendix C,
agent infrastructure in Appendix D, and case studies in Appendix F.

REFERENCES

Mistral AI and All Hands AI. Devstral-small-2507. https://mistral.ai/news/
devstral-2507, July 2025.

Anthropic. Raising the bar on swe-bench verified with claude 3.5 sonnet. Online; AI model, Oct
2024. URL https://www.anthropic.com/engineering/swe-bench-sonnet.

Anthropic. Claude 3.7 sonnet: Hybrid reasoning model. https://www.anthropic.com/
news/claude-3-7-sonnet, February 2025a.

Anthropic. Claude sonnet 4. https://www.anthropic.com/news/claude-4, May
2025b.

Ibragim Badertdinov, Maria Trofimova, Yuri Anapolskiy, Sergey Abramov, Karina Zainullina,
Alexander Golubev, Sergey Polezhaev, Daria Litvintseva, Simon Karasik, Filipp Fisin, et al. Scal-
ing data collection for training software engineering agents. Nebius blog, 2024a.

Ibragim Badertdinov, Maria Trofimova, Yury Anapolskiy, Sergey Abramov, Karina Zainullina,
Alexander Golubev, Sergey Polezhaev, Daria Litvintseva, Simon Karasik, Filipp Fisin, Sergey
Skvortsov, Maxim Nekrashevich, Anton Shevtsov, and Boris Yangel. Scaling data collection for
training software engineering agents. Nebius blog, 2024b.

Ibragim Badertdinov, Alexander Golubev, Maksim Nekrashevich, Anton Shevtsov, Simon Karasik,
Andrei Andriushchenko, Maria Trofimova, Daria Litvintseva, and Boris Yangel. Swe-rebench:
An automated pipeline for task collection and decontaminated evaluation of software engineering
agents, 2025. URL https://arxiv.org/abs/2505.20411.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. Advances in Neural
Information Processing Systems, 33:1877–1901, 2020. URL https://arxiv.org/abs/
2005.14165.

Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes. Borg, Omega, and
Kubernetes. In Proceedings of the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’16), pp. 285–301, 2016.

Shiyi Cao, Sumanth Hegde, Dacheng Li, Tyler Griggs, Shu Liu, Eric Tang, Jiayi Pan, Xingyao
Wang, Akshay Malik, Graham Neubig, Kourosh Hakhamaneshi, Richard Liaw, Philipp Moritz,
Matei Zaharia, Joseph E. Gonzalez, and Ion Stoica. Skyrl-v0: Train real-world long-horizon
agents via reinforcement learning, 2025.

Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan, Changqing Yu,
Chao Wang, Cheng Zhu, et al. Minimax-m1: Scaling test-time compute efficiently with lightning
attention. arXiv preprint arXiv:2506.13585, 2025a.

Mouxiang Chen, Binyuan Hui, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Jianling Sun, Junyang Lin,
and Zhongxin Liu. Parallel scaling law for language models. arXiv preprint arXiv:2505.10475,
2025b.

10

https://mistral.ai/news/devstral-2507
https://mistral.ai/news/devstral-2507
https://www.anthropic.com/engineering/swe-bench-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2505.20411
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. SFT memorizes, RL generalizes: A comparative study of founda-
tion model post-training. In Forty-second International Conference on Machine Learning, 2025.
URL https://openreview.net/forum?id=dYur3yabMj.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Xinran Gu, Kaifeng Lyu, Jiazheng Li, and Jingzhao Zhang. Data mixing can induce phase transitions
in knowledge acquisition. arXiv preprint arXiv:2505.18091, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhenyu He, Qingping Yang, Wei Sheng, Xiaojian Zhong, Kechi Zhang, Chenxin An, Wenlei Shi,
Tianle Cai, Di He, Jiaze Chen, Jingjing Xu, and Mingxuan Wang. Swe-swiss: A multi-task
fine-tuning and rl recipe for high-performance issue resolution. Notion page, 2025.

Naman Jain, Jaskirat Singh, Manish Shetty, Liang Zheng, Koushik Sen, and Ion Stoica. R2e-gym:
Procedural environments and hybrid verifiers for scaling open-weights swe agents. arXiv preprint
arXiv:2504.07164, 2025.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Team Kimi, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Michael Luo, Naman Jain, Jaskirat Singh, Sijun Tan, Ameen Patel, Qingyang Wu, Alpay Ariyak,
Colin Cai, Shang Zhu Tarun Venkat, Ben Athiwaratkun, Manan Roongta, Ce Zhang, Li Erran Li,
Raluca Ada Popa, Koushik Sen, and Ion Stoica. DeepSWE: Training a State-of-the-Art Coding
Agent from Scratch by Scaling RL. Notion page, 2025. Notion Blog.

Yingwei Ma, Rongyu Cao, Yongchang Cao, Yue Zhang, Jue Chen, Yibo Liu, Yuchen Liu, Binhua Li,
Fei Huang, and Yongbin Li. Swe-gpt: A process-centric language model for automated software
improvement. Proc. ACM Softw. Eng., 2(ISSTA), June 2025a. doi: 10.1145/3728981. URL
https://doi.org/10.1145/3728981.

Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li, Fei Huang, and Yongbin Li. Alibaba ling-
maagent: Improving automated issue resolution via comprehensive repository exploration. In
Proceedings of the 33rd ACM International Conference on the Foundations of Software Engi-
neering, pp. 238–249, 2025b.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the
gap between value and policy based reinforcement learning. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/facf9f743b083008a894eee7baa16469-Paper.pdf.

OpenAI. Openai o1 system card. Technical report, OpenAI, 2024. URL https://arxiv.org/
abs/2412.16720. Includes o1 and o1-mini models, safety and evaluation work.

11

https://openreview.net/forum?id=dYur3yabMj
https://www.notion.so/SWE-Swiss-A-Multi-Task-Fine-Tuning-and-RL-Recipe-for-High-Performance-Issue-Resolution-21e174dedd4880ea829ed4c861c44f88
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://doi.org/10.1145/3728981
https://proceedings.neurips.cc/paper_files/paper/2017/file/facf9f743b083008a894eee7baa16469-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/facf9f743b083008a894eee7baa16469-Paper.pdf
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.16720

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

OpenAI. Introducing codex. https://openai.com/index/introducing-codex/, May
2025.

OpenAI. Openai o3 and openai o4-mini system card. Technical report, OpenAI, Apr 2025. URL
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/
o3-and-o4-mini-system-card.pdf.

OpenAI. Openai o3-mini system card. Technical report / system card, OpenAI, 2025a. URL
https://cdn.openai.com/o3-mini-system-card-feb10.pdf. Description of
o3-mini model, its safety evaluations and reasoning benchmarks.

OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025b. URL https://arxiv.org/abs/
2508.10925.

OpenAI. Gpt-5 system card. OpenAI website, Aug 2025c. URL https://cdn.openai.com/
gpt-5-system-card.pdf.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym. arXiv preprint
arXiv:2412.21139, 2024.

Jiayi Pan, Xiuyu Li, Long Lian, Charlie Victor Snell, Yifei Zhou, Adam Yala, Trevor Darrell, Kurt
Keutzer, and Alane Suhr. Learning adaptive parallel reasoning with language models. In Second
Conference on Language Modeling, 2025. URL https://openreview.net/forum?id=
YgwQ7sXPXU.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2024.
URL https://arxiv.org/abs/2412.15115.

ByteDance Seed, Jiaze Chen, Tiantian Fan, Xin Liu, Lingjun Liu, Zhiqi Lin, Mingxuan Wang,
Chengyi Wang, Xiangpeng Wei, Wenyuan Xu, et al. Seed1. 5-thinking: Advancing superb rea-
soning models with reinforcement learning. arXiv preprint arXiv:2504.13914, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for AI soft-
ware developers as generalist agents. In The Thirteenth International Conference on Learning
Representations, 2025a. URL https://openreview.net/forum?id=OJd3ayDDoF.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for AI soft-
ware developers as generalist agents. In The Thirteenth International Conference on Learning
Representations, 2025b. URL https://openreview.net/forum?id=OJd3ayDDoF.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via rein-
forcement learning on open software evolution. arXiv preprint arXiv:2502.18449, 2025.

12

https://openai.com/index/introducing-codex/
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925
https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf
https://openreview.net/forum?id=YgwQ7sXPXU
https://openreview.net/forum?id=YgwQ7sXPXU
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=OJd3ayDDoF
https://openreview.net/forum?id=OJd3ayDDoF

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint arXiv:2407.01489, 2024.

Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai Lam, Difan Zou, and Kai Chen. SWE-fixer:
Training open-source LLMs for effective and efficient GitHub issue resolution. In Wanxiang
Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the
Association for Computational Linguistics: ACL 2025, pp. 1123–1139, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/
v1/2025.findings-acl.62. URL https://aclanthology.org/2025.findings-acl.
62/.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024a.

John Yang, Kilian Leret, Carlos E Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents. arXiv preprint arXiv:2504.21798, 2025b.

John Yang, Kilian Lieret, Carlos E. Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents, 2025c. URL https://arxiv.org/abs/2504.21798.

Zonghan Yang, Peng Li, Ming Yan, Ji Zhang, Fei Huang, and Yang Liu. ReAct Meets ActRe:
Autonomous Annotation of Agent Trajectories for Contrastive Self-Training. In First Con-
ference on Language Modeling, 2024b. URL https://openreview.net/forum?id=
0VLBwQGWpA.

Liang Zeng, Yongcong Li, Yuzhen Xiao, Changshi Li, Chris Yuhao Liu, Rui Yan, Tianwen Wei,
Jujie He, Xuchen Song, Yang Liu, et al. Skywork-swe: Unveiling data scaling laws for software
engineering in llms. arXiv preprint arXiv:2506.19290, 2025.

Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang,
Maoquan Wang, Yufan Huang, Shengyu Fu, et al. Swe-bench goes live! arXiv preprint
arXiv:2505.23419, 2025.

13

https://aclanthology.org/2025.findings-acl.62/
https://aclanthology.org/2025.findings-acl.62/
https://arxiv.org/abs/2504.21798
https://openreview.net/forum?id=0VLBwQGWpA
https://openreview.net/forum?id=0VLBwQGWpA

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A DETAILS OF MID-TRAINING

We curate a mid-training data recipe with a focus on enhancing SWE capabilities. Central to this
effort is the collection of pull request (PR) data from GitHub, which provides extensive coverage
of real-world bug fixes, feature requests, and code enhancements. To ensure data quality, we apply
two filters: (i) we only retain repositories that have accumulated at least five GitHub stars, thereby
excluding sparsely maintained projects with limited community engagement; and (ii) we remove any
repositories overlapping with the SWE-bench benchmark (Jimenez et al., 2023) to prevent potential
data leakage. For each candidate repository, we query the GitHub API for all PRs with the state
MERGED, while discarding those abandoned, superseded, or left under review. To preserve more
context information, we also snapshot the entire codebase at the base commit before the first code
change in the PR.

After data crawling, we incorporate two complementary forms for the natural code change data:
(i) natural diff patches and (ii) PR commit packs. A natural diff patch consolidates all commits
in a PR into the final code difference, typically expressed as SEARCH–REPLACE blocks. This
format aligns with the Agentless paradigm, in which the model must directly output the final patch.
In contrast, a commit pack captures the sequence of human-authored commits within a PR, where
each commit message (textual reasoning) is paired with the corresponding code modification (ac-
tion). This structure closely parallels the SWE-Agent setting, where intermediate reasoning steps
are interleaved with actions. However, the distinction of the utilities for the two types of data is
not absolute: commit messages in a PR commit pack can still inform the model’s knowledge and
indirectly strengthen its reasoning ability in the Agentless setting.

Natural diff patches. The natural diff patches used in the mid-training data recipe are processed
with the following rules:

• Incorporate the agentless prompt template (see Prompts 1,2,3,4; These four prompt tem-
plates are also used in the later stages, including cold-start, RL, and test-time self-play),
and apply a loss mask to the prompt part. For the localization prompt, the response is set
as the files modified in the ground-truth diff patch.

• If a related issue to the PR exists, use its content of the related issue; otherwise, use the PR
title as the surrogate of the issue content.

• If a related issue to the PR exists, prepend the issue discussion at the beginning of the
output in the code edit response. We aim to strengthen the model’s capability of code edit
reasoning by leveraging the discussion contents.

• Discard PRs that include modifications to files other than {.py, .md, .rst}.

• For PRs containing {.md, .rst} file modifications, retain only the Python diffs and rewrite
them into SEARCH–REPLACE blocks.

• Remove PRs involving file additions or deletions.

• For the code edits with only line insertions or deletions, preserve the original Git diff hunks
as the SEARCH content in the SEARCH–REPLACE blocks.

• Ensure that no more than three Python files are modified per PR.

• Apply a filtering script to exclude PRs with non-{.py, .md, .rst} modifications, or PRs
modifying more than three Python files.

• Further exclude PRs containing more than five SEARCH–REPLACE blocks.

A total of ∼50B tokens for natural diff patches are obtained after applying these filtering rules.

1 Please look through the following GitHub problem description and
Repository structure and provide a list of files that one would need
to edit to fix the problem.

2

3 ### GitHub Problem Description ###
4 {related issue / PR title content}

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

5

6 ###
7

8 ### Repository Structure ###
9 {file structure induced by the repo snapshot}

10

11

12 ###
13

14 Please only provide the full path and return at most 5 files.
15 The returned files should be separated by new lines ordered by most to

least important and wrapped with ‘‘‘
16 For example:
17 ‘‘‘
18 file1.py
19 file2.py
20 ‘‘‘

Listing 1: Agentless prompt template: Localization for BugFixer.

21 Please look through the following GitHub problem description and
Repository structure and provide a list of test files that should be
run after applying the patch to fix the issue.

22

23 ### GitHub Problem Description ###
24 {related issue / PR title content}
25

26 ###
27

28 ### Repository Structure ###
29 {file structure induced by the repo snapshot}
30

31

32 ###
33

34 Please only provide the full path and return at most 5 files.
35 The returned files should be separated by new lines ordered by most to

least important and wrapped with ‘‘‘
36 For example:
37 ‘‘‘
38 file1.py
39 file2.py
40 ‘‘‘

Listing 2: Agentless prompt template: Localization for TestWriter.

41 We are currently solving the following issue within our repository.
Here is the issue text:

42 --- BEGIN ISSUE ---
43 {related issue / PR title content}
44 --- END ISSUE ---
45

46

47 Below are some code segments, each from a relevant file. One or more of
these files may contain bugs.

48

49 --- BEGIN FILE ---
50 ‘‘‘
51 ### {filename1}
52 {content of filename1}
53

54 ### {filename2}
55 {content of filename2}
56 {...}

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

57

58 ‘‘‘
59 --- END FILE ---
60

61 Please first localize the bug based on the issue statement, and then
generate *SEARCH/REPLACE* edits to fix the issue.

62

63 Every *SEARCH/REPLACE* edit must use this format:
64 1. The file path
65 2. The start of search block: <<<<<<< SEARCH
66 3. A contiguous chunk of lines to search for in the existing source

code
67 4. The dividing line: =======
68 5. The lines to replace into the source code
69 6. The end of the replace block: >>>>>>> REPLACE
70

71 Here is an example:
72

73 ‘‘‘python
74 ### mathweb/flask/app.py
75 <<<<<<< SEARCH
76 from flask import Flask
77 =======
78 import math
79 from flask import Flask
80 >>>>>>> REPLACE
81 ‘‘‘
82

83 Please note that the *SEARCH/REPLACE* edit REQUIRES PROPER INDENTATION.
If you would like to add the line ’ print(x)’, you must

fully write that out, with all those spaces before the code!
84 Wrap the *SEARCH/REPLACE* edit in blocks ‘‘‘python...‘‘‘.

Listing 3: Agentless prompt template: Code edit for BugFixer.

85 We are currently solving the following issue within our repository.
Here is the issue text:

86 --- BEGIN ISSUE ---
87 {related issue / PR title content}
88 --- END ISSUE ---
89

90

91 Below are some code segments, each from a relevant test file. One or
more of these files may be added some new tests which can reproduce
the issue.

92

93 --- BEGIN FILE ---
94 ‘‘‘
95 ### {filename1}
96 {content of filename1}
97

98 ### {filename2}
99 {content of filename2}

100 {...}
101

102 ‘‘‘
103 --- END FILE ---
104

105 Please first localize some possible locations in those test files
within the repo, and then generate *SEARCH/REPLACE* edit updates to
the **test** files in the repo, so that the erroneous scenario
described in the problem is reproduced.

106

107 Every *SEARCH/REPLACE* edit must use this format:
108 1. The file path

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

109 2. The start of search block: <<<<<<< SEARCH
110 3. A contiguous chunk of lines to search for in the existing source

code
111 4. The dividing line: =======
112 5. The lines to replace into the source code
113 6. The end of the replace block: >>>>>>> REPLACE
114

115 Here is an example:
116

117 ‘‘‘python
118 ### mathweb/flask/app.py
119 <<<<<<< SEARCH
120 from flask import Flask
121 =======
122 import math
123 from flask import Flask
124

125 def test__rules__std_L060_raised() -> None:
126 try:
127 sql = "SELECT IFNULL(NULL, 100),
128 NVL(NULL,100);"
129 result = lint(sql, rules=["L060"])
130 assert len(result) == 2
131 except:
132 print("Other issues")
133 return
134

135 try:
136 assert result[0]["description"] == "Use ’COALESCE’ instead of ’

IFNULL’."
137 assert result[1]["description"] == "Use ’COALESCE’ instead of ’

NVL’."
138 print("Issue resolved")
139 except AssertionError:
140 print("Issue reproduced")
141 return
142

143 return
144 >>>>>>> REPLACE
145 ‘‘‘
146

147 Please note that the *SEARCH/REPLACE* edit REQUIRES PROPER INDENTATION.
If you would like to add the line ’ print(x)’, you must

fully write that out, with all those spaces before the code!
148 Wrap the *SEARCH/REPLACE* edit in blocks ‘‘‘python...‘‘‘.

Listing 4: Agentless prompt template: Code edit for TestWriter.

PR commit packs. The PR commit packs used in the mid-training data recipe are processed with
the following rules:

• Discard PRs that include modifications to files other than {.py, .md, .rst}.

• For {.md, .rst} file modifications, retain the “diff –git” signature but remove the actual
content changes.

• Ensure that each PR modifies at most five Python files (with at least one required). PRs
exceeding this limit are discarded.

• Apply a filtering script to exclude PRs containing non-{.py, .md, .rst} file modifications or
those modifying more than five Python files.

• Filter out all of the developer signatures and GitHub IDs for ethics considerations.

A total of ∼20B tokens for PR commit packs are obtained after applying these filtering rules.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

In addition, we incorporate synthetic data to further enhance both the reasoning and agentic capa-
bilities of the model. A key observation is that the ground-truth reward for the localization stage
in the Agentless setting can be derived directly from the diff patch, since the set of files requiring
modification is explicitly indicated.

Synthetic reasoning data. To improve reasoning quality, we perform a lightweight SFT of the
Qwen-2.5-72B-Instruct model on 2,000 R1 trajectories. The resulting model is then used to generate
large-scale rollouts for the localization stage of both BugFixer and TestWriter. We retain only the
rollouts that achieve exactly correct file localizations. This procedure yields approximately ∼10B
tokens of reasoning-intensive data dedicated to Agentless localization in the mid-training recipe.

Synthetic agentic interactions. To strengthen agentic capabilities, we simulate agent–environment
interactions with a custom tool set designed to mimic file-system operations without execution. This
design is motivated by practical constraints: while repository snapshots from GitHub are available,
not all snapshots are equipped with an executable Docker environment. As a result, shell commands
are disabled. Instead, we introduce synthetic tools that allow the agent to view file contents and per-
form keyword-based search for localization, which effectively reproduces the first stage of Agentless
but in an agentic manner. The specification of this tool set is covered in the system prompt, which is
then used to elicit agentic interaction rollouts from the Qwen-2.5-72B-Instruct model. The complete
system prompt is provided in Prompt 5. We apply a loss mask only to the system prompt, and en-
able the model to simultaneously learn both actions and observations along the trajectory, inspired
by Yang et al. (2024b). This approach integrates both policy and world modeling into mid training.

149 Your job is to look through the given GitHub problem description and
Repository structure, and edit updates to the files in the repo to
resolve the problem.

150 The job is divided into two stages:
151 + In Stage 1, you should localize the files the files that you would

need to edit to fix the problem.
152 + In Stage 2, you should edit the updates to the repo.
153 Let’s begin from Stage 1 to localize the bugs:
154

155 In Stage 1, besides reading the provided Repository structure, you can
use the following skills for exploration. The skills are to be
called in an environment wrapped by <execute> and </execute>, listed
in the form of python functions as below:

156

157 open_file(path: str, is_all | None = False, line_number: int | None =
1, context_lines: int | None = 100) -> None:

158 Opens the file at the given path in the editor for exploration.
159 By default, only the first 100 lines of the file are displayed. To

open the entire file, set ‘is_all‘ to ‘True‘.
160 The ‘context_lines‘ parameter determines the maximum number of

lines to be displayed, with a cap of 100 lines. Use ‘scroll_up‘
and ‘scroll_down‘ to view more content up or down.

161 If a ‘line_number‘ is provided, the window will be moved to include
that line.

162 Note: When ‘is_all‘ is set to ‘True‘, the ‘line_number‘ and ‘
context_lines‘ parameters will not take effect, as the entire
file will be opened and displayed without any line-specific
focus or context limitation.

163 Args:
164 path: str: The path to the file to open. the full path of the

filename should be provided.
165 is_all: bool | None = False: If set to ‘True‘, the entire file will

be opened. Defaults to ‘False‘.
166 line_number: int | None = 1: The line number to move to. Defaults

to 1.
167 context_lines: int | None = 100: Only shows this number of lines in

the context window (usually from line 1), with line_number as
the center (if possible). Defaults to 100.

168

169 goto_line(line_number: int) -> None:
170 Moves the window to show the specified line number.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

171 Args:
172 line_number: int: The line number to move to.
173

174 goto_class_or_func(class_or_func_name: str) -> None:
175 Moves the window to show the specified class or function in the

current open file.
176 Args:
177 class_or_func_name: str: The name of the given class, function, or

method in a class to move to.
178

179 scroll_down() -> None:
180 Moves the window down by 100 lines.
181 Args:
182 None
183

184 scroll_up() -> None:
185 Moves the window up by 100 lines.
186 Args:
187 None
188

189 search_dir(search_term: str, dir_path: str | None) -> None:
190 Searches for search_term in all files in dir. If dir is not

provided, searches in the entire repository. Filename, fine-
grained line number, and the relative class or function it is
located in (if applied) will be shown for each found position.

191 Args:
192 search_term: str: The term to search for.
193 dir_path: str: The path to the directory to search. Should be full

path filename.
194

195 search_file(search_term: str, file_path: str | None = None) -> None:
196 Searches for search_term in file. If file is not provided, searches

in the current open file. Filename, fine-grained line number,
and the relative class or function it is located in (if applied)
will be shown for each found position.

197 Args:
198 search_term: str: The term to search for.
199 file_path: str | None: The path to the file to search. Should be

full path filename if provided.
200

201 find_file(file_name: str, dir_path: str | None) -> None:
202 Finds all files with the given name in the specified directory. If

dir is not provided, find in the entire repository.
203 Args:
204 file_name: str: The name of the file to find.
205 dir_path: str: The path to the directory to search.
206

207 str_replace(path: str, old_str, new_str)
208 old_str=[the old content to be replaced]
209 new_str=[the new content after replacement]
210 -> None:
211 Replace the old content (old_str) in the file at the given path

with the new content (new_str). This is the skill that you will
be using to edit the updates.

212 Args:
213 path: str: The path to the file to be updated. The full path of the

filename should be provided.
214 old_str: str: The old content to be replaced. Note that this

argument should be written in a new line starting with "old_str
=", and the string content should not be quoted.

215 new_str: str: The new content after replacement. Note that this
argument should be written in a new line starting with "new_str
=", and the string content should not be quoted.

216

217 Example:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

218 Assuming a call is shown as follows:
219 ‘‘‘
220 str_replace("filename.py", old_str, new_str)
221 old_str= a
222

223 new_str= b
224 c
225 ‘‘‘
226 Then it will function as replacing the ’ a\n’ string with the ’

b\nc ’ string in the ‘filename.py‘ file.
227

228 insert(path: str, insert_line: int, new_str)
229 new_str=[the new content to be inserted]
230 -> None:
231 Insert the new content (new_str) in the file at the given path.

When you want to add an entirely new class/function to the file,
it would be better to use this method.

232 Args:
233 path: str: The path to the file to be updated. The full path of the

filename should be provided.
234 insert_line: int: The Line number below which the new content is to

be added. This Line number should be within the range of lines
of the file: [0, Lines_of_the_File]. Specifically, when
insert_line = 0, the added content starts from the top of the
file.

235 new_str: str: The new content to be inserted. Note that this
argument should be written in a new line starting with "new_str
=", and the string content should not be quoted.

236

237 Example:
238 Assuming a call is shown as follows:
239 ‘‘‘
240 insert("test_filename.py", 5, new_str)
241 new_str= def test_add():
242 assert add(1, 2) == 3
243 ‘‘‘
244 Then it will function as inserting the string ’ def test_add():\

n assert add(1, 2) == 3’ below the Line 5 of the ‘
test_filename.py‘ file.

245

246 stop() -> None:
247 Terminate the editing process.
248 Args:
249 None
250

251 NOTE:
252 Responses should be concise.
253 When exploring, you should attempt fewer things at a time: Include ONLY

ONE <execute> per response, and use a SINGLE skill listed above
within the <execute> environment. DO NOT use other python functions,
as the environment does not support them.

254 You should first reason in the verbal form, then use a skill with <
execute> and </execute>.

255 You should avoid apologies and thanks in the responses.
256

257

258 When you finish exploring and analyzing with the provided skills,
please return at most 3 files with the full path only. Each full
path should be placed in a single line, INSTEAD OF BROKEN WITH
MULTIPLE LINES.

259 The returned files should be separated by new lines ordered by most to
least important, wrapped with ‘‘‘ and NOTHING ELSE.

260 An example for a full output:
261 ‘‘‘
262 full_path_to_file1.py

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

263 full_path_to_file2.py
264 ‘‘‘
265

266 Now Let’s start!
267

268 ### GitHub Problem Description ###
269

270 {issue content}
271

272 ### Repository Structure ###
273

274 {file structure}
275

276 ###

Listing 5: A non-execution set of tools empowering the simulation of agentic interaction trajectories.

After completing the initial localization stage, the agent is guided into the code-editing phase
through a follow-up instruction: “Now let’s move on to Stage 2 and edit the updates. Remem-
ber, you can still decide at any point whether a file actually requires modification.” We retain partial
rollouts from Stage 1, provided that the localization results include at least one correct file.

In Stage 2, we first simulate the agent’s interaction by allowing it to open incorrectly localized files,
and we artificially inject agentic reasoning patterns such as “I realize that I do not need to modify
this file” after inspecting the file content. This procedure is designed to strengthen the self-reflection
ability of the agent by exposing it to false-positive contexts regarding the issue to be solved.

Subsequently, we transcribe the ground-truth PR commit pack into trajectory form: each commit
message is treated as the agent’s reasoning step, and each code update is represented as the cor-
responding action, expressed through the “str replace” or “insert” tools. These interactions are
appended to the trajectory, followed by a terminating “stop” call. Due to storage constraints on
repository snapshots, this trajectory simulation is applied to only a subset of PRs. Overall, this pro-
cess contributes approximately ∼10B tokens of agentic interaction data to the mid-training recipe.
Future directions for scaling this component in the data recipe include leveraging the idea of envi-
ronment scaling (Yang et al., 2025c).

Training. We perform mid-training using a standard next token prediction approach, initialized
from the Qwen2.5-72B-Base (Qwen et al., 2024) model. We upsample the synthetic part of the data
by a factor of 4 during mid-training, inspired by the practice in Grattafiori et al. (2024); Qwen et al.
(2024); Gu et al. (2025). A global batch size of 256 with a maximum sequence length of 32K tokens
is used, optimizing for long-context capabilities necessary for real-world software engineering tasks.
The learning rate is set to 2e-5, with a cosine decay schedule and a minimum learning rate of 2e-6.
The warm-up phase covers over approximately 3 billion tokens, followed by learning rate decay
until approximately 150 billion tokens are processed. The training was conducted on 256 NVIDIA
H100 GPUs and lasted for 213 hours.

B DOCKER ENVIRONMENTS

Table 3: The sources of the docker environments used in the development of Kimi-Dev.
Dataset Name Dataset Link Number of Dockers
SWE-Gym (Pan et al.
(2024))

https://huggingface.co/
datasets/SWE-Gym/
SWE-Gym/

2,356

SWE-bench-extra
(Badertdinov et al. (2024a))

https://huggingface.co/
datasets/nebius/
SWE-bench-extra/

3,846

R2E-Gym-Lite (Jain et al.
(2025))

https://huggingface.co/
datasets/R2E-Gym/
R2E-Gym-Lite

3,671

21

https://huggingface.co/datasets/SWE-Gym/SWE-Gym/
https://huggingface.co/datasets/SWE-Gym/SWE-Gym/
https://huggingface.co/datasets/SWE-Gym/SWE-Gym/
https://huggingface.co/datasets/nebius/SWE-bench-extra/
https://huggingface.co/datasets/nebius/SWE-bench-extra/
https://huggingface.co/datasets/nebius/SWE-bench-extra/
https://huggingface.co/datasets/R2E-Gym/R2E-Gym-Lite
https://huggingface.co/datasets/R2E-Gym/R2E-Gym-Lite
https://huggingface.co/datasets/R2E-Gym/R2E-Gym-Lite

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Docker environment construction. To validate non-ground-truth patches generated by model roll-
outs and expand our dataset, we required executable Docker environments. We combined publicly
available datasets with custom-configured Docker environments (see Table. 3). Among them, SWE-
Gym and R2E-Gym-Lite open-source their dockers that we can directly use. For datasets lacking
Docker support (SWE-Bench-Extra), we implemented an automated configuration method:

1. Initialize a Docker environment with fixed dependencies.
2. Select Python version based on commit year.
3. Install dependencies via requirements.txt and “pip install -e .”.
4. Resolve ModuleNotFound errors during test execution.
5. Validate success if a FAIL TO PASS test transitions from failing (without gt patch) to

passing (with gt patch).

Out of 6.38k SWE-bench-extra instances, 3,846 environments are successfully constructed and sub-
sequently used for cold-start and RL training.

C MORE DETAILS OF RL TRAINING

C.1 RL TRAINING OBJECTIVE

For the RL algorithm, we adopt the policy optimization method proposed by Kimi k1.5 (Team et al.,
2025), which has shown promising results on reasoning tasks in both math and code. Unlike GRPO
(Shao et al., 2024), which eliminates the critic by using average rewards for advantage estimation,
Kimi k1.5 (Team et al., 2025) adopts a simpler policy gradient approach. Specifically, we optimize
the policy πθ using the following objective:

Jθ = Eq∼P (Q),{oi}G
i=1∼πθ(·|q)

{
G∑
i=1

[(
Ri(q, oi)−mean({Rj}Gj=1)− τ log

πθ(oi|q)
πθref (oi|q)

)2
]
,

}
(2)

where q is a prompt sampled from the prompt data distribution P (Q). {oi}Gi=1 are G responses
generated by the current policy πθ for prompt q. Ri(q, oi) is the reward for response oi. The
mean reward across the G responses is used as a baseline to center the reward (similar to advantage
estimation). The final term penalizes divergence from a reference policy πθref , with weight τ . This
formulation avoids the need for a critic or value model by using group-wise relative rewards, and
supports stable updates through KL regularization.

C.2 PROMPT SET SELECTION

Figure 7: Ablation of positive example
reinforcement during 72B Bugfixer RL.

In the main text, we introduce the adaptive prompt selec-
tion method for RL training. Specifically, we construct
an initial prompt set of 1,200 problems by selecting those
with pass@16 > 0 from SWE-Gym (Pan et al., 2024),
SWE-bench-extra (Badertdinov et al., 2025), and R2E-
gym (Jain et al., 2025). Then, every 100 training steps,
we expand the prompt set by adding 500 new problems.
These additional problems are randomly sampled from
the pool of problems for which the current model has
pass@16 = 0, thereby progressively increasing the dif-
ficulty.

C.3 RL EXPERIMENT ABLATION

Figure 8 shows the performance of the Qwen2.5-14B
model in RL experiments, where both the BugFixer and the TestWriter exhibit clear scaling law
behavior.

Furthermore, Figure 7 illustrates the effect of our proposed positive example reinforcement. We
incorporated this improvement in the later stage of training and found that the RL of BugFixer

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

achieved better performance compared to not using this trick. The main reason is that positive
examples can reinforce the correct reasoning patterns, enabling the model to converge more quickly,
especially when its exploration ability diminishes in the later stages. It is noticed that a similar trick
was also applied in the development of the Seed1.5-thinking model (Seed et al., 2025).

(a) 14B BugFixer (b) 14B TestWriter

Figure 8: RL scaling experiments on Qwen2.5-14B model.

D AGENT INFRASTRUCTURE

We present a unified sandbox architecture designed for hybrid cloud cluster environments, lever-
aging Kubernetes orchestration to provide researchers with a flexible, secure, and highly scalable
code execution platform. The architecture is accessible through a Python SDK and implements an
ephemeral, use-and-destroy paradigm that ensures resource efficiency and security isolation. The
system demonstrates exceptional scalability, supporting over 10,000 concurrent sandbox instances
while maintaining performance stability. This infrastructure serves as a foundational platform for
diverse computational scenarios, including automated code evaluation and RL experiments.

The system employs a sidecar container pattern to efficiently orchestrate and manage a heteroge-
neous collection of over 25,000 docker images sourced from multiple datasets. This architectural
choice enables optimal resource utilization while maintaining isolation between different execution
environments. Additionally, we have developed a proprietary Software Engineering (SWE) image-
building pipeline that continuously expands the repository of supported images, thereby enhancing
the system’s adaptability to diverse computational workloads and research requirements.

E SKILL GENERALIZATION

In this section, we study whether the skills incentivized by Agentless training and SWE-Agent adap-
tation through SWE-Smith trajectories could transfer to other SWE tasks. We use SWE-bench-live
and SWE-bench Multilingual as our testbeds.

SWE-bench-live (Zhang et al., 2025) is a benchmark for real-world issue resolution, evaluating AI
systems on software engineering tasks. Using an automated curation pipeline, it is updated monthly
to ensure fresh tasks and rigorous, contamination-free evaluation. For our experiments, we selected
the default set of 300 tasks, with data collected between October 2024 and March 2025. Compared
to SWE-bench Verified, SWE-bench-live exhibits a higher degree of distributional shift.

SWE-bench Multilingual (Yang et al., 2025c) introduces 300 curated tasks from 42 GitHub repos-
itories across 9 programming languages, including Rust, Java, PHP, Ruby, JavaScript/TypeScript,
Go, and C/C++, covering domains such as web frameworks, data tools, core utilities, and libraries.
Compared to SWE-bench Verified, which focuses exclusively on Python, SWE-bench Multilingual
exhibits greater linguistic and domain diversity, posing additional challenges in cross-language gen-
eralization and transferability of software engineering capabilities.

Similar to previous experiments, we evaluated four model stages as the priors: the original Qwen2.5-
72B (Base), the mid-trained model (MT), the model activated with reasoning data through super-

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

vised finetuning (SFT), and the model after RL training (RL). We still use the open-source SWE-
smith trajectories to activate the agentic capabilities of each prior.

Figures 9 and 10 show the performance of the four priors on SWE-bench-Live and SWE-bench
Multilingual under varied amounts of agentic trajectories for adaptation (221 as one-step gradient
descent, 223, 1.1 × 227, and 1.5 × 228 as 100, 2,000, and 5,016 training trajectories). Each SWE-
Agent adaptation experiment is conducted throught lightweight supervised finetuning, the training
time of which ranges from several minutes to two hours at most.

Compared to the Base prior, those specifically enhanced with Agentless skills (SFT and RL) demon-
strate stronger task generalization, especially under the data-scarce settings. However, when more
SWE-Smith trajectories are used for adaptation, the performances of the Base and the MT priors
become closer to those of the SFT and the RL priors. This could be attributed to the gaps between
the different SWE tasks. The exploration for recipes that enable stronger out-of-distribution and
task-agnostic generalization is left for future work.

(a) #SFT = 221. (b) #SFT = 223. (c) #SFT = 1.1× 227. (d) #SFT = 1.5× 228.

Figure 9: Generalization analysis on SWE-bench-Live.

(a) #SFT = 221. (b) #SFT = 223. (c) #SFT = 1.1× 227. (d) #SFT = 1.5× 228.

Figure 10: Generalization analysis on SWE-bench Multilingual.

F CASE STUDY

F.1 BUGFIXER TRAJECTORIES

We provide a Bugfixer’s response trajectory during the code repair stage (see Listing 6).
From this, we can observe that the initial code given was return self[i, j - pos -
other.cols], but the model quickly realized its mistake and corrected it to return self[i,
j - other.cols]. Although some repetitive self-reflections followed, the increasing response
length indeed improved answer accuracy and robustness in our experiments.

277 ◁think▷
278 Okay, let’s tackle this problem. The user reported an issue where the

Matrix.col_insert() method isn’t working correctly. The example
given shows that after inserting a matrix V into M at position 3,
the resulting matrix has the inserted columns shifted incorrectly.
The expected result would have the inserted columns at positions 3
and 4, but the actual output shows them starting at position 3, but
the original matrix’s columns after the insert are shifted upwards
instead of remaining in their original positions.

279

280 First, I need to understand how col_insert works. Looking at the code
provided, especially in the MatrixShaping class in sympy/matrices/

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

common.py, the _eval_col_insert method is responsible for inserting
columns. The current implementation shifts the existing columns to
the right by the number of columns inserted. However, the bug might
be in how the original matrix’s columns are being shifted.

281

282 Let me look at the existing code for _eval_col_insert:
283

284 def _eval_col_insert(self, pos, other):
285 cols = self.cols
286

287 def entry(i, j):
288 if j < pos:
289 return self[i, j]
290 elif pos <= j < pos + other.cols:
291 return other[i, j - pos]
292 return self[i, j - pos - other.cols]
293

294 return self._new(self.rows, self.cols + other.cols,
295 lambda i, j: entry(i, j))
296

297 Wait, the problem here is in the last case. When j is greater than or
equal to pos + other.cols, the code subtracts (pos + other.cols)
from j. But that’s incorrect because the original columns after the
inserted ones should start at j = pos + other.cols. So for the
original matrix’s columns that come after the inserted ones, their
new positions should be j + other.cols. But in the current code,
when j is in the original matrix’s columns (after the inserted ones)
, the code is subtracting (pos + other.cols), which would
incorrectly shift them.

298

299 Wait, let’s think again. The original code for the entry function:
300

301 if j < pos:
302 return self[i, j] # original columns before pos
303 elif pos <= j < pos + other.cols:
304 return other[i, j - pos] # inserted columns
305 return self[i, j - pos - other.cols] # original columns after the

inserted ones
306

307 Wait, no. Let’s say the original matrix has cols = 6. We insert 2
columns at pos=3. The new total cols is 6 + 2 = 8. The original
columns after pos 3 (columns 3,4,5) should now be at positions
5,6,7. But according to the code, when j is >=3 +2=5 (since pos +
other.cols =3+2=5), then the code returns self[i, j -5 -2] = self[i,
j -7]. Wait, that’s not right. For example, if j=5 (the new column
5), then j - pos - other.cols =5 -3 -2=0. So the original column 0
would be mapped to the new column 5. That’s definitely wrong.

308

309 Ah, here’s the mistake. The code is subtracting (pos + other.cols) from
j, but that’s incorrect. The original columns after the inserted
ones should be shifted to the right by other.cols. So, the correct
calculation should be j - other.cols. For example, original column 3
becomes 3 +2=5, original column 4 becomes 6, etc.

310

311 So the line in the code:
312

313 return self[i, j - pos - other.cols]
314

315 should be:
316

317 return self[i, j - other.cols]
318

319 Because the inserted columns have taken up ’other.cols’ positions
starting at ’pos’, so the original columns after ’pos’ are shifted

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

by ’other.cols’ to the right. Therefore, to get the correct original
column index, we subtract ’other.cols’ from the current j.

320

321 So the fix is to change the subtraction from (pos + other.cols) to
other.cols. Let me check:

322

323 Original code:
324

325 return self[i, j - pos - other.cols]
326

327 Corrected code:
328

329 return self[i, j - other.cols]
330

331 Wait, no. Wait, the original columns after the inserted block (which
starts at pos and has other.cols columns) would start at j = pos +
other.cols. So for those j values, the original column index would
be j - (pos + other.cols). Wait, no. Let’s think with numbers.

332

333 Original matrix has 6 columns. Insert 2 columns at position 3. The new
matrix has 8 columns. The original columns 0,1,2 remain in positions
0,1,2. The inserted 2 columns are at positions 3 and 4. The

original columns 3,4,5 now become 5,6,7.
334

335 So for j in 5,6,7 (original columns 3,4,5), the mapping is:
336

337 5 \rightarrow 3
338

339 6 \rightarrow 4
340

341 7 \rightarrow 5
342

343 So the formula should be original_column = j - inserted_columns. In
this case, inserted_columns is other.cols. So the code should
subtract other.cols from j when accessing the original matrix’s
columns after the inserted block.

344

345 Therefore, the line:
346

347 return self[i, j - pos - other.cols]
348

349 should be:
350

351 return self[i, j - other.cols]
352

353 Because pos is where the insertion starts, but the original columns
after the inserted block are shifted by other.cols. Let’s verify
with the example:

354

355 pos =3, other.cols=2. For j=5 (new column 5), original column index is
5 -2=3, which is correct. For j=6, 6-2=4; j=7, 7-2=5. That’s correct
.

356

357 So the error in the original code was subtracting (pos + other.cols)
instead of other.cols. The pos is the starting position of the
insertion, but after inserting other.cols columns, the original
columns after the inserted block are shifted by other.cols.
Therefore, the correct subtraction is other.cols.

358

359 Thus, the fix is to change the line in the _eval_col_insert method from
:

360

361 return self[i, j - pos - other.cols]
362

363 to:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

364

365 return self[i, j - other.cols]
366

367 Now, looking back at the code in the _eval_col_insert function:
368

369 The code for the else clause is:
370

371 return self[i, j - pos - other.cols]
372

373 Which is incorrect. Changing that to j - other.cols should fix the
problem.

374

375 So the SEARCH block would look for the lines:
376

377 def _eval_col_insert(self, pos, other):
378 cols = self.cols
379

380 def entry(i, j):
381 if j < pos:
382 return self[i, j]
383 elif pos <= j < pos + other.cols:
384 return other[i, j - pos]
385 return self[i, j - pos - other.cols]
386

387 return self._new(self.rows, self.cols + other.cols,
388 lambda i, j: entry(i, j))
389

390 And the REPLACE block would change the last part to:
391

392 elif pos <= j < pos + other.cols:
393 return other[i, j - pos]
394 return self[i, j - other.cols]
395

396 So the correction is in the return statement of the entry function. The
original code subtracted (pos + other.cols) from j, but it should

subtract other.cols instead.
397

398 Therefore, the correct SEARCH/REPLACE block would be:
399

400 ### sympy/matrices/common.py
401 <<<<<<< SEARCH
402 def _eval_col_insert(self, pos, other):
403 cols = self.cols
404

405 def entry(i, j):
406 if j < pos:
407 return self[i, j]
408 elif pos <= j < pos + other.cols:
409 return other[i, j - pos]
410 return self[i, j - pos - other.cols]
411

412 return self._new(self.rows, self.cols + other.cols,
413 lambda i, j: entry(i, j))
414 =======
415 def _eval_col_insert(self, pos, other):
416 def entry(i, j):
417 if j < pos:
418 return self[i, j]
419 elif pos <= j < pos + other.cols:
420 return other[i, j - pos]
421 return self[i, j - other.cols]
422

423 return self._new(self.rows, self.cols + other.cols,
424 lambda i, j: entry(i, j))
425 >>>>>>> REPLACE

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

426

427 This change corrects the column shifting calculation for the original
matrix’s columns after the inserted block. Instead of subtracting (
pos + other.cols), we subtract other.cols, which properly shifts the
original columns to the right by the number of inserted columns.

428 ◁/think▷
429

430 ‘‘‘python
431 ### sympy/matrices/common.py
432 <<<<<<< SEARCH
433 def _eval_col_insert(self, pos, other):
434 cols = self.cols
435

436 def entry(i, j):
437 if j < pos:
438 return self[i, j]
439 elif pos <= j < pos + other.cols:
440 return other[i, j - pos]
441 return self[i, j - pos - other.cols]
442

443 return self._new(self.rows, self.cols + other.cols,
444 lambda i, j: entry(i, j))
445 =======
446 def _eval_col_insert(self, pos, other):
447 def entry(i, j):
448 if j < pos:
449 return self[i, j]
450 elif pos <= j < pos + other.cols:
451 return other[i, j - pos]
452 return self[i, j - other.cols]
453

454 return self._new(self.rows, self.cols + other.cols,
455 lambda i, j: entry(i, j))
456 >>>>>>> REPLACE
457 ‘‘‘

Listing 6: Reasoning trajectory example for BugFixer.

F.2 TESTWRITER FALSE POSITIVE CASES

During the RL training process, we observed that the Testwriter component exhibits some false
positives, which can result in tests that contain certain gaps. This might cause the test patches
generated by the model to be mistakenly considered as correct. Consequently, the performance
improvement of Testwriter does not accurately reflect the actual performance. In this section, we
provide two intuitive examples to illustrate this phenomenon, and leave further enhancement for
TestWriter as future work.

Listing 7 shows the ground-truth test patch for instance django django-16877, with Listing 8
showing the test patch generated by theTestWriter. A detailed comparison reveals that the model-
generated test cases are not comprehensive: Two locations should have been tested, but only one
was checked, and the effect of mark safe was not considered. In practice, this allowed the model-
predicted patch to pass the TestWriter reward check, but result in a false positive.

The second example instance is sympy sympy-13974, with Listings 9 and 10 showing the ground-
truth and model-generated test patches. In this case, the coverage of the generated test is also
insufficient. The generated test does not account for the need to satisfy the associativity prop-
erty, e.g., assert tensor product simp(TP(A, B)**x) == TP(A**x, B**x). As
a consequence, it fails to serve as a reliable judge for BugFixer.

1 diff --git a/tests/template_tests/filter_tests/test_escapeseq.py b/
tests/template_tests/filter_tests/test_escapeseq.py

2 new file mode 100644
3 --- /dev/null

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

4 +++ b/tests/template_tests/filter_tests/test_escapeseq.py
5 @@ -0,0 +1,59 @@
6 +from django.test import SimpleTestCase
7 +from django.utils.safestring import mark_safe
8 +
9 +from ..utils import setup

10 +
11 +
12 +class EscapeseqTests(SimpleTestCase):
13 + """
14 + The "escapeseq" filter works the same whether autoescape is on or

off,
15 + and has no effect on strings already marked as safe.
16 + """
17 +
18 + @setup(
19 + {
20 + "escapeseq_basic": (
21 + ’{{ a|escapeseq|join:", " }} -- {{ b|escapeseq|join:",

" }}’
22 +),
23 + }
24 +)
25 + def test_basic(self):
26 + output = self.engine.render_to_string(
27 + "escapeseq_basic",
28 + {"a": ["x&y", "<p>"], "b": [mark_safe("x&y"), mark_safe("<

p>")]},
29 +)
30 + self.assertEqual(output, "x&y, <p> -- x&y, <p>")
31 +
32 + @setup(
33 + {
34 + "escapeseq_autoescape_off": (
35 + ’{% autoescape off %}{{ a|escapeseq|join:", " }}’
36 + " -- "
37 + ’{{ b|escapeseq|join:", "}}{% endautoescape %}’
38 +)
39 + }
40 +)
41 + def test_autoescape_off(self):
42 + output = self.engine.render_to_string(
43 + "escapeseq_autoescape_off",
44 + {"a": ["x&y", "<p>"], "b": [mark_safe("x&y"), mark_safe("<

p>")]},
45 +)
46 + self.assertEqual(output, "x&y, <p> -- x&y, <p>")
47 +
48 + @setup({"escapeseq_join": ’{{ a|escapeseq|join:"
" }}’})
49 + def test_chain_join(self):
50 + output = self.engine.render_to_string("escapeseq_join", {"a":

["x&y", "<p>"]})
51 + self.assertEqual(output, "x&y
<p>")
52 +
53 + @setup(
54 + {
55 + "escapeseq_join_autoescape_off": (
56 + ’{% autoescape off %}{{ a|escapeseq|join:"
" }}{%

endautoescape %}’
57 +),
58 + }
59 +)
60 + def test_chain_join_autoescape_off(self):
61 + output = self.engine.render_to_string(
62 + "escapeseq_join_autoescape_off", {"a": ["x&y", "<p>"]}

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

63 +)
64 + self.assertEqual(output, "x&y
<p>")

Listing 7: GT test patch of django django-16877.

1 diff --git a/tests/template_tests/filter_tests/test_safeseq.py b/tests/
template_tests/filter_tests/test_safeseq.py

2 --- a/tests/template_tests/filter_tests/test_safeseq.py
3 +++ b/tests/template_tests/filter_tests/test_safeseq.py
4 @@ -20,3 +20,20 @@
5 def test_safeseq02(self):
6 output = self.engine.render_to_string("safeseq02", {"a": ["&",

"<"]})
7 self.assertEqual(output, "&, < -- &, <")
8 +
9 + # New tests for escapeseq

10 + @setup({"escapeseq01": ’{{ a|escapeseq|join:", " }}’})
11 + def test_escapeseq01(self):
12 + output = self.engine.render_to_string("escapeseq01", {"a":

["&", "<"]})
13 + self.assertEqual(output, "&, <")
14 +
15 + @setup(
16 + {
17 + "escapeseq02": (
18 + ’{% autoescape off %}{{ a|escapeseq|join:", " }}{%

endautoescape %}’
19 +)
20 + }
21 +)
22 + def test_escapeseq02(self):
23 + output = self.engine.render_to_string("escapeseq02", {"a":

["&", "<"]})
24 + self.assertEqual(output, "&, <")

Listing 8: Model predicted test patch of django django-16877.

1 diff --git a/sympy/physics/quantum/tests/test_tensorproduct.py b/sympy/
physics/quantum/tests/test_tensorproduct.py

2 --- a/sympy/physics/quantum/tests/test_tensorproduct.py
3 +++ b/sympy/physics/quantum/tests/test_tensorproduct.py
4 @@ -10,7 +10,7 @@
5 from sympy.physics.quantum.density import Density
6 from sympy.core.trace import Tr
7

8 -A, B, C = symbols(’A,B,C’, commutative=False)
9 +A, B, C, D = symbols(’A,B,C,D’, commutative=False)

10 x = symbols(’x’)
11

12 mat1 = Matrix([[1, 2*I], [1 + I, 3]])
13 @@ -47,6 +47,11 @@ def test_tensor_product_commutator():
14

15 def test_tensor_product_simp():
16 assert tensor_product_simp(TP(A, B)*TP(B, C)) == TP(A*B, B*C)
17 + # tests for Pow-expressions
18 + assert tensor_product_simp(TP(A, B)**x) == TP(A**x, B**x)
19 + assert tensor_product_simp(x*TP(A, B)**2) == x*TP(A**2,B**2)
20 + assert tensor_product_simp(x*(TP(A, B)**2)*TP(C,D)) == x*TP(A**2*C

,B**2*D)
21 + assert tensor_product_simp(TP(A,B)-TP(C,D)**x) == TP(A,B)-TP(C**x,

D**x)
22

23

24 def test_issue_5923():

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Listing 9: GT test patch for sympy sympy-13974.

1 diff --git a/sympy/physics/quantum/tests/test_tensorproduct.py b/sympy/
physics/quantum/tests/test_tensorproduct.py

2 --- a/sympy/physics/quantum/tests/test_tensorproduct.py
3 +++ b/sympy/physics/quantum/tests/test_tensorproduct.py
4 @@ -47,6 +47,27 @@
5

6 def test_tensor_product_simp():
7 assert tensor_product_simp(TP(A, B)*TP(B, C)) == TP(A*B, B*C)
8 +
9 + # Test tensor product powers

10 + a = symbols(’a’, commutative=False)
11 + t1 = TP(1, 1) * TP(1, 1)
12 + t1_simp = tensor_product_simp(t1)
13 + assert t1_simp == TP(1, 1), f"Expected 1x1, got {t1_simp}"
14 +
15 + # Test with Pauli matrices
16 + from sympy.physics.paulialgebra import Pauli
17 + t2 = TP(1, Pauli(3)) * TP(1, Pauli(3))
18 + t2_simp = tensor_product_simp(t2)
19 + assert t2_simp == TP(1, 1), f"Expected 1x1, got {t2_simp}"
20 +
21 + # Test substitution cases from issue
22 + expr1 = TP(1, 1) * TP(1, a)
23 + result1 = expr1.subs(a, 1)
24 + assert tensor_product_simp(result1) == TP(1, 1), f"Substitution 1

failed: {result1}"
25 +
26 + expr2 = TP(1, Pauli(3)) * TP(1, a)
27 + result2 = expr2.subs(a, Pauli(3))
28 + assert tensor_product_simp(result2) == TP(1, 1), f"Substitution 2

failed: {result2}"
29

30

31 def test_issue_5923():

Listing 10: Model predicted test patch of sympy sympy-13974.

G EMERGENT PARALLEL SCALING

Figure 11: Emergent parallel scaling re-
sults on SWE-bench Verified.

Compared to the self-play method that leverages execu-
tion during test time, parallel scaling (Chen et al., 2025b;
Pan et al., 2025) is a recently-introduced test-time scal-
ing method that aggregates multiple independent rollouts
for additional improvement. While previous works in-
centivize the ability of parallel scaling through training,
or train a separate reward model (Pan et al., 2024; Jain
et al., 2025) for patch selection, we observe that the par-
allel scaling effect emerges in our model without any spe-
cific training. Specifically, patch candidates from parallel
rollouts of BugFixer are used to prompt the model to sum-
marize their differences and compose a new bugfix patch.
Listing 11 is the prompt template of parallel scaling. In
the emplate, promblem statement is the GitHub is-
sue, and trajs content represents the content of multiple patch candidates.

458 We are currently solving the following issue within our repository.
Here is the issue text:

459 --- BEGIN ISSUE ---

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

460 {problem_statement}
461 --- END ISSUE ---
462

463 Below are some thinking trajectories, each from llm reasoning model.
Only one trajetory is right.

464 --- BEGIN FILE ---
465 ‘‘‘
466 {trajs_content}
467 ‘‘‘
468 --- END FILE ---
469

470 Please first summary and analyze the key differences between the
trajectories, and then generate *SEARCH/REPLACE* edits to fix the
issue.

471

472 Every *SEARCH/REPLACE* edit must use this format:
473 1. The file path
474 2. The start of search block: <<<<<<< SEARCH
475 3. A contiguous chunk of lines to search for in the existing source

code
476 4. The dividing line: =======
477 5. The lines to replace into the source code
478 6. The end of the replace block: >>>>>>> REPLACE
479

480 Here is an example:
481

482 ‘‘‘python
483 ### mathweb/flask/app.py
484 <<<<<<< SEARCH
485 from flask import Flask
486 =======
487 import math
488 from flask import Flask
489 >>>>>>> REPLACE
490 ‘‘‘
491

492 Please note that the *SEARCH/REPLACE* edit REQUIRES PROPER INDENTATION.
If you would like to add the line ’ print(x)’, you must

fully write that out, with all those spaces before the code!
493 Wrap the *SEARCH/REPLACE* edit in blocks ‘‘‘python...‘‘‘.
494 The summary of the key differences between the trajectories should be

in the thinking part.

Listing 11: The prompt template for parallel scaling.

The results in Figure 11 show that the performance of the parallel aggregation improves as the
number of patch candidates in the prompt increases. The advantage of this scaling paradigm over
majority voting lies in its ability to leverage the model’s own capacity to analyze multiple candidate
patches, thereby surpassing the simplistic approach of weighting answers merely by their frequency
of occurrence: Listing 12 covers a full example with 14 different input patch candidates, and how the
model successfully recognizes the correct one and generates a novel patch with additional reasoning.

495 Prompt:
496 We are currently solving the following issue within our repository.

Here is the issue text:
497 --- BEGIN ISSUE ---
498 Data <@filename isn’t relative to the YAML file
499 The [docs say](https://gabbi.readthedocs.io/en/latest/format.html#data)

:
500

501 > If the value is a string that begins with <@ then the rest of the
string is treated as the name of a file to be loaded from the same
directory as the YAML file.

502

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

503 But I haven’t found it works like this unless I cd into the directory
containing the yaml file.

504

505 ‘_load_data_file‘ says:
506 ‘‘‘python
507 path = os.path.join(self.test_directory, os.path.basename(filename))
508 ‘‘‘
509 this does a few things:
510 - makes the path begin with ‘self.test_directory‘ (defaults to ‘.‘, the

current working directory)
511 - disguards any folders in the <@ ‘filename‘ path
512 - appends ‘filename‘
513

514 This means, if I’m in ‘/‘, and I have a test that says ‘data: <@cake.
jpg‘, I cannot run my tests as advised in the docs:

515 ‘gabbi-run -- /my/test.yaml /my/other.yaml‘
516

517 ‘FileNotFoundError: [Errno 2] No such file or directory: ’./cake.jpg’‘
518

519 So in our test running script, we have to start with ‘cd tests/‘.
520

521 My preference, would be to make the path relative to the location of
the yaml file. That way, I can run my tests from whatever directory.

522

523 Obviously this isn’t possible when redirecting with ‘<‘ as the filename
is never seen by gabbi. So I’m happy is discuss other ideas.

524

525 ---
526

527 Furthermore I can’t keep my test data in a child directory, unless I cd
into that directory like:

528 ‘‘‘shell
529 cd yaml_tests/test_data
530 gabbi-run -- ../test_things.yaml
531 ‘‘‘
532

533 So for that reason, I’d like to allow directories like ‘<@test_data/
filename.txt‘ to be included in the path.

534

535 ---
536

537 Happy to write the patch, if we come up with an approach here.
538 --- END ISSUE ---
539

540

541 Below are some thinking trajectories, each from llm reasoning model.
542

543 --- BEGIN FILE ---
544 ‘‘‘
545 Answer 1:
546 ‘‘‘python
547 ### gabbi/runner.py
548 <<<<<<< SEARCH
549 import argparse
550 from importlib import import_module
551 import sys
552 import unittest
553 =======
554 import argparse
555 from importlib import import_module
556 import os
557 import sys
558 import unittest
559 >>>>>>> REPLACE
560 ‘‘‘

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

561 ‘‘‘python
562 ### gabbi/runner.py
563 <<<<<<< SEARCH
564 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
565 failfast=False):
566 """Run the tests from the YAML in handle."""
567 data = utils.load_yaml(handle)
568 if force_ssl:
569 if ’defaults’ in data:
570 data[’defaults’][’ssl’] = True
571 else:
572 data[’defaults’] = {’ssl’: True}
573

574 loader = unittest.defaultTestLoader
575 test_suite = suitemaker.test_suite_from_dict(
576 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
577 handlers=handler_objects)
578

579 result = ConciseTestRunner(
580 verbosity=2, failfast=failfast).run(test_suite)
581 return result.wasSuccessful()
582 =======
583 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
584 failfast=False, test_directory=’.’):
585 """Run the tests from the YAML in handle."""
586 data = utils.load_yaml(handle)
587 if force_ssl:
588 if ’defaults’ in data:
589 data[’defaults’][’ssl’] = True
590 else:
591 data[’defaults’] = {’ssl’: True}
592

593 loader = unittest.defaultTestLoader
594 test_suite = suitemaker.test_suite_from_dict(
595 loader, ’input’, data, test_directory, host, port, None, None,
596 prefix=prefix, handlers=handler_objects)
597

598 result = ConciseTestRunner(
599 verbosity=2, failfast=failfast).run(test_suite)
600 return result.wasSuccessful()
601 >>>>>>> REPLACE
602 ‘‘‘
603 ‘‘‘python
604 ### gabbi/runner.py
605 <<<<<<< SEARCH
606 else:
607 for input_file in input_files:
608 with open(input_file, ’r’) as fh:
609 success = run_suite(fh, handler_objects, host, port,
610 prefix, force_ssl, failfast)
611 =======
612 else:
613 for input_file in input_files:
614 test_directory = os.path.dirname(input_file) or ’.’
615 with open(input_file, ’r’) as fh:
616 success = run_suite(fh, handler_objects, host, port,
617 prefix, force_ssl, failfast,
618 test_directory=test_directory)
619 >>>>>>> REPLACE
620 ‘‘‘
621

622 Answer 2:

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

623 ‘‘‘python
624 ### gabbi/runner.py
625 <<<<<<< SEARCH
626 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
627 failfast=False):
628 =======
629 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
630 failfast=False, test_directory=’.’):
631 >>>>>>> REPLACE
632 ‘‘‘
633 ‘‘‘python
634 ### gabbi/runner.py
635 <<<<<<< SEARCH
636 test_suite = suitemaker.test_suite_from_dict(
637 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
638 handlers=handler_objects)
639 =======
640 test_suite = suitemaker.test_suite_from_dict(
641 loader, ’input’, data, test_directory, host, port, None, None,

prefix=prefix,
642 handlers=handler_objects)
643 >>>>>>> REPLACE
644 ‘‘‘
645 ‘‘‘python
646 ### gabbi/runner.py
647 <<<<<<< SEARCH
648 success = run_suite(fh, handler_objects, host, port,
649 prefix, force_ssl, failfast)
650 =======
651 test_directory = os.path.dirname(input_file) or ’.’
652 success = run_suite(fh, handler_objects, host, port,
653 prefix, force_ssl, failfast,

test_directory=test_directory)
654 >>>>>>> REPLACE
655 ‘‘‘
656

657 Answer 3:
658 ‘‘‘python
659 ### gabbi/runner.py
660 <<<<<<< SEARCH
661 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
662 failfast=False):
663 """Run the tests from the YAML in handle."""
664 data = utils.load_yaml(handle)
665 if force_ssl:
666 if ’defaults’ in data:
667 data[’defaults’][’ssl’] = True
668 else:
669 data[’defaults’] = {’ssl’: True}
670

671 loader = unittest.defaultTestLoader
672 test_suite = suitemaker.test_suite_from_dict(
673 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
674 handlers=handler_objects)
675

676 result = ConciseTestRunner(
677 verbosity=2, failfast=failfast).run(test_suite)
678 return result.wasSuccessful()
679 =======

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

680 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=
False,

681 failfast=False, test_directory=’.’):
682 """Run the tests from the YAML in handle."""
683 data = utils.load_yaml(handle)
684 if force_ssl:
685 if ’defaults’ in data:
686 data[’defaults’][’ssl’] = True
687 else:
688 data[’defaults’] = {’ssl’: True}
689

690 loader = unittest.defaultTestLoader
691 test_suite = suitemaker.test_suite_from_dict(
692 loader, ’input’, data, test_directory, host, port, None, None,
693 prefix=prefix, handlers=handler_objects)
694

695 result = ConciseTestRunner(
696 verbosity=2, failfast=failfast).run(test_suite)
697 return result.wasSuccessful()
698 >>>>>>> REPLACE
699 ‘‘‘
700 ‘‘‘python
701 ### gabbi/runner.py
702 <<<<<<< SEARCH
703 for input_file in input_files:
704 with open(input_file, ’r’) as fh:
705 success = run_suite(fh, handler_objects, host, port,
706 prefix, force_ssl, failfast)
707 if not failure: # once failed, this is considered

immutable
708 failure = not success
709 if failure and failfast:
710 break
711 =======
712 for input_file in input_files:
713 test_directory = os.path.dirname(input_file)
714 with open(input_file, ’r’) as fh:
715 success = run_suite(
716 fh, handler_objects, host, port, prefix, force_ssl,
717 failfast, test_directory=test_directory)
718 if not failure: # once failed, this is considered

immutable
719 failure = not success
720 if failure and failfast:
721 break
722 >>>>>>> REPLACE
723 ‘‘‘
724

725 Answer 4:
726 ‘‘‘python
727 ### gabbi/runner.py
728 <<<<<<< SEARCH
729 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
730 failfast=False):
731 =======
732 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
733 failfast=False, test_directory=’.’):
734 >>>>>>> REPLACE
735 ‘‘‘
736 ‘‘‘python
737 ### gabbi/runner.py
738 <<<<<<< SEARCH
739 test_suite = suitemaker.test_suite_from_dict(

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

740 loader, ’input’, data, ’.’, host, port, None, None, prefix=
prefix,

741 handlers=handler_objects)
742 =======
743 test_suite = suitemaker.test_suite_from_dict(
744 loader, ’input’, data, test_directory, host, port, None, None,
745 prefix=prefix, handlers=handler_objects)
746 >>>>>>> REPLACE
747 ‘‘‘
748 ‘‘‘python
749 ### gabbi/runner.py
750 <<<<<<< SEARCH
751 for input_file in input_files:
752 with open(input_file, ’r’) as fh:
753 success = run_suite(fh, handler_objects, host, port,
754 prefix, force_ssl, failfast)
755 =======
756 for input_file in input_files:
757 # Determine test directory based on input file’s location
758 test_directory = os.path.dirname(os.path.abspath(input_file))

or ’.’
759 with open(input_file, ’r’) as fh:
760 success = run_suite(fh, handler_objects, host, port,
761 prefix, force_ssl, failfast,
762 test_directory=test_directory)
763 >>>>>>> REPLACE
764 ‘‘‘
765

766 Answer 5:
767 ‘‘‘python
768 ### gabbi/runner.py
769 <<<<<<< SEARCH
770 import sys
771 import unittest
772 =======
773 import os
774 import sys
775 import unittest
776 >>>>>>> REPLACE
777 ‘‘‘
778 ‘‘‘python
779 ### gabbi/runner.py
780 <<<<<<< SEARCH
781 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
782 failfast=False):
783 =======
784 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
785 failfast=False, test_directory=’.’):
786 >>>>>>> REPLACE
787 ‘‘‘
788 ‘‘‘python
789 ### gabbi/runner.py
790 <<<<<<< SEARCH
791 test_suite = suitemaker.test_suite_from_dict(
792 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
793 handlers=handler_objects)
794 =======
795 test_suite = suitemaker.test_suite_from_dict(
796 loader, ’input’, data, test_directory, host, port, None, None,
797 prefix=prefix, handlers=handler_objects)
798 >>>>>>> REPLACE
799 ‘‘‘

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

800 ‘‘‘python
801 ### gabbi/runner.py
802 <<<<<<< SEARCH
803 for input_file in input_files:
804 with open(input_file, ’r’) as fh:
805 success = run_suite(fh, handler_objects, host, port,
806 prefix, force_ssl, failfast)
807 =======
808 for input_file in input_files:
809 test_directory = os.path.dirname(input_file) or ’.’
810 with open(input_file, ’r’) as fh:
811 success = run_suite(fh, handler_objects, host, port,
812 prefix, force_ssl, failfast,
813 test_directory=test_directory)
814 >>>>>>> REPLACE
815 ‘‘‘
816

817 Answer 6:
818 ‘‘‘python
819 ### gabbi/driver.py
820 <<<<<<< SEARCH
821 file_suite = suitemaker.test_suite_from_dict(
822 loader, test_base_name, suite_dict, path, host, port,
823 fixture_module, intercept, prefix=prefix,
824 test_loader_name=test_loader_name, handlers=handler_objects

,
825 inner_fixtures=inner_fixtures)
826 =======
827 test_file_dir = os.path.dirname(test_file)
828 file_suite = suitemaker.test_suite_from_dict(
829 loader, test_base_name, suite_dict, test_file_dir, host,

port,
830 fixture_module, intercept, prefix=prefix,
831 test_loader_name=test_loader_name, handlers=handler_objects

,
832 inner_fixtures=inner_fixtures)
833 >>>>>>> REPLACE
834 ‘‘‘
835 ‘‘‘python
836 ### gabbi/runner.py
837 <<<<<<< SEARCH
838 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
839 failfast=False):
840 =======
841 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
842 failfast=False, test_directory=’.’):
843 >>>>>>> REPLACE
844 ‘‘‘
845 ‘‘‘python
846 ### gabbi/runner.py
847 <<<<<<< SEARCH
848 test_suite = suitemaker.test_suite_from_dict(
849 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
850 handlers=handler_objects)
851 =======
852 test_suite = suitemaker.test_suite_from_dict(
853 loader, ’input’, data, test_directory, host, port, None, None,
854 prefix=prefix, handlers=handler_objects)
855 >>>>>>> REPLACE
856 ‘‘‘
857 ‘‘‘python
858 ### gabbi/runner.py

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

859 <<<<<<< SEARCH
860 success = run_suite(fh, handler_objects, host, port,
861 prefix, force_ssl, failfast)
862 =======
863 test_directory = os.path.dirname(input_file)
864 success = run_suite(fh, handler_objects, host, port,
865 prefix, force_ssl, failfast,

test_directory)
866 >>>>>>> REPLACE
867 ‘‘‘
868

869 Answer 7:
870 ‘‘‘python
871 ### gabbi/runner.py
872 <<<<<<< SEARCH
873 import argparse
874 from importlib import import_module
875 import sys
876 import unittest
877 =======
878 import argparse
879 from importlib import import_module
880 import os
881 import sys
882 import unittest
883 >>>>>>> REPLACE
884 ‘‘‘
885 ‘‘‘python
886 ### gabbi/runner.py
887 <<<<<<< SEARCH
888 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
889 failfast=False):
890 """Run the tests from the YAML in handle."""
891 data = utils.load_yaml(handle)
892 if force_ssl:
893 if ’defaults’ in data:
894 data[’defaults’][’ssl’] = True
895 else:
896 data[’defaults’] = {’ssl’: True}
897

898 loader = unittest.defaultTestLoader
899 test_suite = suitemaker.test_suite_from_dict(
900 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
901 handlers=handler_objects)
902 =======
903 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
904 failfast=False, test_directory=’.’):
905 """Run the tests from the YAML in handle."""
906 data = utils.load_yaml(handle)
907 if force_ssl:
908 if ’defaults’ in data:
909 data[’defaults’][’ssl’] = True
910 else:
911 data[’defaults’] = {’ssl’: True}
912

913 loader = unittest.defaultTestLoader
914 test_suite = suitemaker.test_suite_from_dict(
915 loader, ’input’, data, test_directory, host, port, None, None,
916 prefix=prefix, handlers=handler_objects)
917 >>>>>>> REPLACE
918 ‘‘‘
919 ‘‘‘python

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

920 ### gabbi/runner.py
921 <<<<<<< SEARCH
922 with open(input_file, ’r’) as fh:
923 success = run_suite(fh, handler_objects, host, port,
924 prefix, force_ssl, failfast)
925 if not failure: # once failed, this is considered

immutable
926 failure = not success
927 if failure and failfast:
928 break
929 =======
930 test_dir = os.path.dirname(os.path.abspath(input_file))
931 with open(input_file, ’r’) as fh:
932 success = run_suite(fh, handler_objects, host, port,
933 prefix, force_ssl, failfast,

test_directory=test_dir)
934 if not failure: # once failed, this is considered

immutable
935 failure = not success
936 if failure and failfast:
937 break
938 >>>>>>> REPLACE
939 ‘‘‘
940

941 Answer 8:
942 ‘‘‘python
943 ### gabbi/runner.py
944 <<<<<<< SEARCH
945 data = utils.load_yaml(handle)
946 if force_ssl:
947 if ’defaults’ in data:
948 data[’defaults’][’ssl’] = True
949 else:
950 data[’defaults’] = {’ssl’: True}
951

952 loader = unittest.defaultTestLoader
953 test_suite = suitemaker.test_suite_from_dict(
954 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
955 handlers=handler_objects)
956 =======
957 data = utils.load_yaml(handle)
958 if force_ssl:
959 if ’defaults’ in data:
960 data[’defaults’][’ssl’] = True
961 else:
962 data[’defaults’] = {’ssl’: True}
963

964 # Determine test directory based on input handle
965 if hasattr(handle, ’name’):
966 test_directory = os.path.dirname(os.path.abspath(handle.name))
967 else:
968 test_directory = ’.’
969

970 loader = unittest.defaultTestLoader
971 test_suite = suitemaker.test_suite_from_dict(
972 loader, ’input’, data, test_directory, host, port, None, None,
973 prefix=prefix, handlers=handler_objects)
974 >>>>>>> REPLACE
975 ‘‘‘
976

977 Answer 9:
978 ‘‘‘python
979 ### gabbi/driver.py
980 <<<<<<< SEARCH

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

981 for test_file in glob.iglob(’%s/*.yaml’ % path):
982 if ’_’ in os.path.basename(test_file):
983 warnings.warn(exception.GabbiSyntaxWarning(
984 "’_’ in test filename %s. This can break suite grouping

."
985 % test_file))
986 if intercept:
987 host = str(uuid.uuid4())
988 suite_dict = utils.load_yaml(yaml_file=test_file)
989 test_base_name = os.path.splitext(os.path.basename(test_file))

[0]
990 if all_test_base_name:
991 test_base_name = ’%s_%s’ % (all_test_base_name,

test_base_name)
992

993 if require_ssl:
994 if ’defaults’ in suite_dict:
995 suite_dict[’defaults’][’ssl’] = True
996 else:
997 suite_dict[’defaults’] = {’ssl’: True}
998

999 file_suite = suitemaker.test_suite_from_dict(
1000 loader, test_base_name, suite_dict, path, host, port,
1001 fixture_module, intercept, prefix=prefix,
1002 test_loader_name=test_loader_name, handlers=handler_objects

,
1003 inner_fixtures=inner_fixtures)
1004 =======
1005 for test_file in glob.iglob(’%s/*.yaml’ % path):
1006 if ’_’ in os.path.basename(test_file):
1007 warnings.warn(exception.GabbiSyntaxWarning(
1008 "’_’ in test filename %s. This can break suite grouping

."
1009 % test_file))
1010 if intercept:
1011 host = str(uuid.uuid4())
1012 suite_dict = utils.load_yaml(yaml_file=test_file)
1013 test_base_name = os.path.splitext(os.path.basename(test_file))

[0]
1014 if all_test_base_name:
1015 test_base_name = ’%s_%s’ % (all_test_base_name,

test_base_name)
1016

1017 if require_ssl:
1018 if ’defaults’ in suite_dict:
1019 suite_dict[’defaults’][’ssl’] = True
1020 else:
1021 suite_dict[’defaults’] = {’ssl’: True}
1022

1023 # Use absolute path of the YAML file’s directory
1024 test_file_dir = os.path.dirname(os.path.abspath(test_file))
1025 file_suite = suitemaker.test_suite_from_dict(
1026 loader, test_base_name, suite_dict, test_file_dir, host,

port,
1027 fixture_module, intercept, prefix=prefix,
1028 test_loader_name=test_loader_name, handlers=handler_objects

,
1029 inner_fixtures=inner_fixtures)
1030 >>>>>>> REPLACE
1031 ‘‘‘
1032

1033 Answer 10:
1034 ‘‘‘python
1035 ### gabbi/runner.py
1036 <<<<<<< SEARCH

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

1037 import argparse
1038 from importlib import import_module
1039 import sys
1040 import unittest
1041 =======
1042 import argparse
1043 from importlib import import_module
1044 import os
1045 import sys
1046 import unittest
1047 >>>>>>> REPLACE
1048 ‘‘‘
1049 ‘‘‘python
1050 ### gabbi/runner.py
1051 <<<<<<< SEARCH
1052 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
1053 failfast=False):
1054 =======
1055 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
1056 failfast=False, test_directory=’.’):
1057 >>>>>>> REPLACE
1058 ‘‘‘
1059 ‘‘‘python
1060 ### gabbi/runner.py
1061 <<<<<<< SEARCH
1062 test_suite = suitemaker.test_suite_from_dict(
1063 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
1064 force_ssl=force_ssl, failfast=failfast,
1065 handlers=handler_objects)
1066 =======
1067 test_suite = suitemaker.test_suite_from_dict(
1068 loader, ’input’, data, test_directory, host, port, None, None,
1069 prefix=prefix, force_ssl=force_ssl, failfast=failfast,
1070 handlers=handler_objects)
1071 >>>>>>> REPLACE
1072 ‘‘‘
1073 ‘‘‘python
1074 ### gabbi/runner.py
1075 <<<<<<< SEARCH
1076 success = run_suite(fh, handler_objects, host, port,
1077 prefix, force_ssl, failfast)
1078 =======
1079 test_dir = os.path.dirname(input_file)
1080 success = run_suite(fh, handler_objects, host, port,
1081 prefix, force_ssl, failfast,
1082 test_directory=test_dir)
1083 >>>>>>> REPLACE
1084 ‘‘‘
1085 ‘‘‘python
1086 ### gabbi/case.py
1087 <<<<<<< SEARCH
1088 path = os.path.join(self.test_directory, os.path.basename(filename)

)
1089 =======
1090 path = os.path.join(self.test_directory, filename)
1091 >>>>>>> REPLACE
1092 ‘‘‘
1093

1094 Answer 11:
1095 ‘‘‘python
1096 ### gabbi/runner.py
1097 <<<<<<< SEARCH

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

1098 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=
False,

1099 failfast=False):
1100 """Run the tests from the YAML in handle."""
1101 data = utils.load_yaml(handle)
1102 if force_ssl:
1103 if ’defaults’ in data:
1104 data[’defaults’][’ssl’] = True
1105 else:
1106 data[’defaults’] = {’ssl’: True}
1107

1108 loader = unittest.defaultTestLoader
1109 test_suite = suitemaker.test_suite_from_dict(
1110 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
1111 handlers=handler_objects)
1112 =======
1113 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
1114 failfast=False, test_directory=’.’):
1115 """Run the tests from the YAML in handle."""
1116 data = utils.load_yaml(handle)
1117 if force_ssl:
1118 if ’defaults’ in data:
1119 data[’defaults’][’ssl’] = True
1120 else:
1121 data[’defaults’] = {’ssl’: True}
1122

1123 loader = unittest.defaultTestLoader
1124 test_suite = suitemaker.test_suite_from_dict(
1125 loader, ’input’, data, test_directory, host, port,
1126 None, None, prefix=prefix, handlers=handler_objects)
1127 >>>>>>> REPLACE
1128 ‘‘‘
1129 ‘‘‘python
1130 ### gabbi/runner.py
1131 <<<<<<< SEARCH
1132 success = run_suite(fh, handler_objects, host, port,
1133 prefix, force_ssl, failfast)
1134 =======
1135 test_dir = os.path.dirname(input_file)
1136 success = run_suite(fh, handler_objects, host, port,
1137 prefix, force_ssl, failfast,
1138 test_directory=test_dir)
1139 >>>>>>> REPLACE
1140 ‘‘‘
1141

1142 Answer 12:
1143 ‘‘‘python
1144 ### gabbi/runner.py
1145 <<<<<<< SEARCH
1146 import argparse
1147 from importlib import import_module
1148 import sys
1149 import unittest
1150 =======
1151 import argparse
1152 from importlib import import_module
1153 import os
1154 import sys
1155 import unittest
1156 >>>>>>> REPLACE
1157 ‘‘‘
1158 ‘‘‘python
1159 ### gabbi/runner.py

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

1160 <<<<<<< SEARCH
1161 else:
1162 for input_file in input_files:
1163 with open(input_file, ’r’) as fh:
1164 success = run_suite(fh, handler_objects, host, port,
1165 prefix, force_ssl, failfast)
1166 =======
1167 else:
1168 for input_file in input_files:
1169 test_dir = os.path.dirname(os.path.abspath(input_file))
1170 with open(input_file, ’r’) as fh:
1171 success = run_suite(fh, handler_objects, host, port,
1172 prefix, force_ssl, failfast,
1173 test_directory=test_dir)
1174 >>>>>>> REPLACE
1175 ‘‘‘
1176 ‘‘‘python
1177 ### gabbi/runner.py
1178 <<<<<<< SEARCH
1179 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
1180 failfast=False):
1181 """Run the tests from the YAML in handle."""
1182 data = utils.load_yaml(handle)
1183 if force_ssl:
1184 if ’defaults’ in data:
1185 data[’defaults’][’ssl’] = True
1186 else:
1187 data[’defaults’] = {’ssl’: True}
1188

1189 loader = unittest.defaultTestLoader
1190 test_suite = suitemaker.test_suite_from_dict(
1191 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
1192 handlers=handler_objects)
1193 =======
1194 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
1195 failfast=False, test_directory=’.’):
1196 """Run the tests from the YAML in handle."""
1197 data = utils.load_yaml(handle)
1198 if force_ssl:
1199 if ’defaults’ in data:
1200 data[’defaults’][’ssl’] = True
1201 else:
1202 data[’defaults’] = {’ssl’: True}
1203

1204 loader = unittest.defaultTestLoader
1205 test_suite = suitemaker.test_suite_from_dict(
1206 loader, ’input’, data, test_directory, host, port, None, None,
1207 prefix=prefix, handlers=handler_objects)
1208 >>>>>>> REPLACE
1209 ‘‘‘
1210

1211 Answer 13:
1212 ‘‘‘python
1213 ### gabbi/runner.py
1214 <<<<<<< SEARCH
1215 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
1216 failfast=False):
1217 """Run the tests from the YAML in handle."""
1218 data = utils.load_yaml(handle)
1219 if force_ssl:
1220 if ’defaults’ in data:

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

1221 data[’defaults’][’ssl’] = True
1222 else:
1223 data[’defaults’] = {’ssl’: True}
1224

1225 loader = unittest.defaultTestLoader
1226 test_suite = suitemaker.test_suite_from_dict(
1227 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
1228 handlers=handler_objects)
1229 =======
1230 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
1231 failfast=False, test_directory=’.’):
1232 """Run the tests from the YAML in handle."""
1233 data = utils.load_yaml(handle)
1234 if force_ssl:
1235 if ’defaults’ in data:
1236 data[’defaults’][’ssl’] = True
1237 else:
1238 data[’defaults’] = {’ssl’: True}
1239

1240 loader = unittest.defaultTestLoader
1241 test_suite = suitemaker.test_suite_from_dict(
1242 loader, ’input’, data, test_directory, host, port, None, None,
1243 prefix=prefix, handlers=handler_objects)
1244 >>>>>>> REPLACE
1245 ‘‘‘
1246 ‘‘‘python
1247 ### gabbi/runner.py
1248 <<<<<<< SEARCH
1249 for input_file in input_files:
1250 with open(input_file, ’r’) as fh:
1251 success = run_suite(fh, handler_objects, host, port,
1252 prefix, force_ssl, failfast)
1253 =======
1254 for input_file in input_files:
1255 test_dir = os.path.dirname(os.path.abspath(input_file))
1256 with open(input_file, ’r’) as fh:
1257 success = run_suite(fh, handler_objects, host, port,
1258 prefix, force_ssl, failfast,
1259 test_directory=test_dir)
1260 >>>>>>> REPLACE
1261 ‘‘‘
1262

1263 Answer 14:
1264 ‘‘‘python
1265 ### gabbi/runner.py
1266 <<<<<<< SEARCH
1267 for input_file in input_files:
1268 with open(input_file, ’r’) as fh:
1269 success = run_suite(fh, handler_objects, host, port,
1270 prefix, force_ssl, failfast)
1271 =======
1272 for input_file in input_files:
1273 with open(input_file, ’r’) as fh:
1274 success = run_suite(input_file, fh, handler_objects,

host, port,
1275 prefix, force_ssl, failfast)
1276 >>>>>>> REPLACE
1277 ‘‘‘
1278 ‘‘‘python
1279 ### gabbi/runner.py
1280 <<<<<<< SEARCH
1281 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

1282 failfast=False):
1283 """Run the tests from the YAML in handle."""
1284 data = utils.load_yaml(handle)
1285 if force_ssl:
1286 if ’defaults’ in data:
1287 data[’defaults’][’ssl’] = True
1288 else:
1289 data[’defaults’] = {’ssl’: True}
1290

1291 loader = unittest.defaultTestLoader
1292 test_directory = ’.’
1293 test_suite = suitemaker.test_suite_from_dict(
1294 loader, ’input’, data, test_directory, host, port, None, None,

prefix=prefix,
1295 handlers=handler_objects)
1296 =======
1297 def run_suite(input_file, handle, handler_objects, host, port, prefix,

force_ssl=False,
1298 failfast=False):
1299 """Run the tests from the YAML in handle."""
1300 data = utils.load_yaml(handle)
1301 if force_ssl:
1302 if ’defaults’ in data:
1303 data[’defaults’][’ssl’] = True
1304 else:
1305 data[’defaults’] = {’ssl’: True}
1306

1307 loader = unittest.defaultTestLoader
1308 test_directory = os.path.dirname(input_file) if input_file else ’.’
1309 test_suite = suitemaker.test_suite_from_dict(
1310 loader, ’input’, data, test_directory, host, port, None, None,

prefix=prefix,
1311 handlers=handler_objects)
1312 >>>>>>> REPLACE
1313 ‘‘‘
1314 ‘‘‘python
1315 ### gabbi/runner.py
1316 <<<<<<< SEARCH
1317 if not input_files:
1318 success = run_suite(sys.stdin, handler_objects, host, port,
1319 prefix, force_ssl, failfast)
1320 =======
1321 if not input_files:
1322 success = run_suite(None, sys.stdin, handler_objects, host,

port,
1323 prefix, force_ssl, failfast)
1324 >>>>>>> REPLACE
1325 ‘‘‘
1326 ‘‘‘
1327 --- END FILE ---
1328

1329 Please first summary and analyze the key differences between the
trajectories, and then generate *SEARCH/REPLACE* edits to fix the
issue.

1330

1331 Every *SEARCH/REPLACE* edit must use this format:
1332 1. The file path
1333 2. The start of search block: <<<<<<< SEARCH
1334 3. A contiguous chunk of lines to search for in the existing source

code
1335 4. The dividing line: =======
1336 5. The lines to replace into the source code
1337 6. The end of the replace block: >>>>>>> REPLACE
1338

1339 Here is an example:

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

1340

1341 ‘‘‘python
1342 ### mathweb/flask/app.py
1343 <<<<<<< SEARCH
1344 from flask import Flask
1345 =======
1346 import math
1347 from flask import Flask
1348 >>>>>>> REPLACE
1349 ‘‘‘
1350

1351 Please note that the *SEARCH/REPLACE* edit REQUIRES PROPER INDENTATION.
If you would like to add the line ’ print(x)’, you must

fully write that out, with all those spaces before the code!
1352 Wrap the *SEARCH/REPLACE* edit in blocks ‘‘‘python...‘‘‘.
1353 The summary of the key differences between the trajectories should be

in the thinking part.
1354 "
1355

1356 Response:
1357

1358 ◁think▷
1359 Okay, let’s tackle this problem. The user is having an issue where when

they specify a data file in their YAML test using the <@ syntax,
the path isn’t resolved relative to the YAML file’s location.
Instead, it’s using the current working directory. They want the
path to be relative to the YAML file so they can run tests from any
directory.

1360

1361 First, I need to understand how the current code is handling the data
file paths. The user mentioned that in _load_data_file, the code
uses os.path.join(self.test_directory, os.path.basename(filename)).
This takes the test_directory (which defaults to ’.’), discards any
directories in the filename, and appends the basename. That’s why if
the YAML is in /my/tests/test.yaml and the data is <@data.txt, it

looks for ./data.txt instead of /my/tests/data.txt.
1362

1363 The key here is to make sure that the test_directory is set to the
directory where the YAML file is located. Then, when joining with
the filename (without basename), it would correctly resolve the
relative path.

1364

1365 Looking at the provided code snippets, the main changes are in runner.
py where the test_directory is determined. The user’s proposed
solutions involve modifying the run_suite function to accept a
test_directory parameter, which is derived from the input file’s
directory.

1366

1367 In the original code, when running a suite from an input file, the
test_directory is hardcoded to ’.’. The various answers modify this
by passing the directory of the input file as test_directory. For
example, in Answer 10, they add the test_directory parameter to
run_suite and set it to os.path.dirname(input_file). Then, in case.
py, they change the path joining to use the filename directly
instead of basename.

1368

1369 Wait, the critical part is in case.py’s _load_data_file method. The
original code uses os.path.basename(filename), which strips any
directories from the filename. So if the YAML has <@test_data/file.
txt, the basename is file.txt, and it’s joined with test_directory.
But if test_directory is the YAML’s directory, then it should be
YAML_DIR/test_data/file.txt. However, the current code would do
test_directory + file.txt, which would be YAML_DIR/file.txt. That’s
incorrect. So the problem is that the code is taking the basename,
thus ignoring any subdirectories in the filename.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

1370

1371 Ah, so the fix here is to not take the basename. Instead, the filename
after <@ should be treated as a relative path from the YAML’s
directory. So in case.py’s _load_data_file, instead of using os.path
.basename(filename), we should use the filename as-is. Then, os.path
.join(self.test_directory, filename) would correctly resolve the
path relative to the YAML’s directory.

1372

1373 But wait, the filename could be an absolute path. For example, if the
YAML has <@/absolute/path/file.txt, then os.path.join would just use
the absolute path. However, the documentation says that the

filename is relative to the YAML file. So absolute paths might not
be intended. But the code should handle that.

1374

1375 So combining two changes: in runner.py, set test_directory to the YAML
file’s directory, and in case.py, stop using basename and use the
full filename.

1376

1377 Looking at Answer 10, there’s a change in case.py from os.path.basename
(filename) to filename. That’s exactly the fix needed. Then, in
runner.py, when running the suite, pass the test_directory as the
directory of the input file.

1378

1379 So the key files to modify are:
1380

1381 1. gabbi/runner.py: When calling run_suite, pass test_directory as the
directory of the input file. This involves modifying the run_suite
function to accept test_directory as a parameter and then passing it
when the input file is processed.

1382

1383 2. gabbi/case.py: Change the path construction from using os.path.
basename(filename) to using the filename directly. This allows
subdirectories in the filename to be included in the path.

1384

1385 Looking through the provided code snippets, the one that does both is
Answer 10. Let me check:

1386

1387 In Answer 10, the runner.py changes add the test_directory parameter
and set it to os.path.dirname(input_file). Then, in case.py, the
path is changed to os.path.join(self.test_directory, filename). That
would correctly resolve the path relative to the YAML’s directory,

including any subdirectories in the filename.
1388

1389 But wait, the original code in case.py uses os.path.basename(filename).
So changing that to filename means that if the input is ’test_data/

file.txt’, it’s joined as test_directory/test_data/file.txt. If
test_directory is the YAML’s directory, that’s correct.

1390

1391 -------------------- Omit some reasoning content ---------------------
1392

1393 But perhaps better to use os.path.abspath and then dirname to handle
relative paths correctly. But maybe the existing code already works.
For example, if the input_file is ’tests/test.yaml’, then os.path.

dirname would return ’tests’, which when joined with os.getcwd()
would be correct. Wait, no. os.path.dirname just gives the directory
part of the path. So if input_file is a relative path, like ’tests/

test.yaml’, then test_directory would be ’tests’, and when os.path.
join is called, it’s relative to the current working directory. But
the code in suitemaker.test_suite_from_dict might expect an absolute
path. However, the original code uses ’.’ as the test_directory,

which is relative. So perhaps using the directory of the input file
as test_directory is sufficient.

1394

1395 Another thing to consider: when the YAML is loaded from stdin (like via
redirect), the test_directory remains ’.’. That’s acceptable, as

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

the documentation mentions that when using <, the filename isn’t
seen by Gabbi, so it’s not possible to resolve the path relative to
the YAML’s original location. So in that case, the test_directory
defaults to ’.’.

1396

1397 Now, in case.py:
1398

1399 Original line:
1400

1401 path = os.path.join(self.test_directory, os.path.basename(filename))
1402

1403 Modified line:
1404

1405 path = os.path.join(self.test_directory, filename)
1406

1407 So the SEARCH/REPLACE block for case.py:
1408

1409 ### gabbi/case.py
1410 <<<<<<< SEARCH
1411 path = os.path.join(self.test_directory, os.path.basename(filename)

)
1412 =======
1413 path = os.path.join(self.test_directory, filename)
1414 >>>>>>> REPLACE
1415

1416 Putting all these together, the final edits are:
1417

1418 1. Add import os in runner.py.
1419

1420 2. Modify run_suite to accept test_directory and pass it to
test_suite_from_dict.

1421

1422 3. In the loop over input_files, compute test_directory as the
directory of input_file and pass it to run_suite.

1423

1424 4. Modify case.py’s path construction.
1425

1426 So the final answer would include these four SEARCH/REPLACE blocks.
1427 ◁/think▷
1428

1429 ‘‘‘python
1430 ### gabbi/runner.py
1431 <<<<<<< SEARCH
1432 import argparse
1433 from importlib import import_module
1434 import sys
1435 import unittest
1436 =======
1437 import argparse
1438 from importlib import import_module
1439 import os
1440 import sys
1441 import unittest
1442 >>>>>>> REPLACE
1443 ‘‘‘
1444

1445 ‘‘‘python
1446 ### gabbi/runner.py
1447 <<<<<<< SEARCH
1448 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
1449 failfast=False):
1450 =======
1451 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

1452 failfast=False, test_directory=’.’):
1453 >>>>>>> REPLACE
1454 ‘‘‘
1455

1456 ‘‘‘python
1457 ### gabbi/runner.py
1458 <<<<<<< SEARCH
1459 test_suite = suitemaker.test_suite_from_dict(
1460 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
1461 handlers=handler_objects)
1462 =======
1463 test_suite = suitemaker.test_suite_from_dict(
1464 loader, ’input’, data, test_directory, host, port, None, None,
1465 prefix=prefix, handlers=handler_objects)
1466 >>>>>>> REPLACE
1467 ‘‘‘
1468

1469 ‘‘‘python
1470 ### gabbi/runner.py
1471 <<<<<<< SEARCH
1472 else:
1473 for input_file in input_files:
1474 with open(input_file, ’r’) as fh:
1475 success = run_suite(fh, handler_objects, host, port,
1476 prefix, force_ssl, failfast)
1477 =======
1478 else:
1479 for input_file in input_files:
1480 test_directory = os.path.dirname(input_file) or ’.’
1481 with open(input_file, ’r’) as fh:
1482 success = run_suite(fh, handler_objects, host, port,
1483 prefix, force_ssl, failfast,

test_directory=test_directory)
1484 >>>>>>> REPLACE
1485 ‘‘‘
1486

1487 ‘‘‘python
1488 ### gabbi/case.py
1489 <<<<<<< SEARCH
1490 path = os.path.join(self.test_directory, os.path.basename(filename)

)
1491 =======
1492 path = os.path.join(self.test_directory, filename)
1493 >>>>>>> REPLACE
1494 ‘‘‘
1495

1496 These changes:
1497 1. Add ‘os‘ import needed for path handling
1498 2. Modify run_suite to accept a test_directory parameter
1499 3. Use the input file’s directory as the test_directory when processing

files
1500 4. Update data file path resolution to preserve directory structure

from YAML relative paths
1501 5. Remove basename handling that was stripping directory information

from data file paths
1502

1503 The net effect is that data files specified with ‘<@filename‘ in YAML
tests will now be resolved relative to their YAML file’s directory,
supporting both flat and nested directory structures for test data.
When tests are run from stdin (using ‘<‘), the default directory
remains the current working directory as before.

Listing 12: Example of emergent parallel scaling (cdent gabbi-191 in SWE-bench-extra).

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

H USE OF LARGE LANGUAGE MODELS

The initial draft of this paper was written entirely by the authors. A large language model (gpt-
5) was used only to aid with polishing the language (e.g., grammar and clarity). All conceptual
contributions, experimental designs, analyses, and conclusions are the work of the authors.

51

	Introduction
	Background
	Framework Dichotomy
	Training SWE-agents

	Agentless Training Recipe
	Framework: the Duo of Bugfixer and Testwriter
	Mid-Training & Cold Start
	Reinforcement Learning
	Test-Time Self-Play
	Experiments
	Main Results
	Mid-Training
	Reinforcement Learning
	Test-time Self-Play

	Initializing SWE-Agents from Agentless Training
	Performance after SWE-Agent Fine-tuning
	Skill Transfer and Generalization

	Conclusion and Future Work
	Details of Mid-training
	Docker environments
	More Details of RL training
	RL training objective
	Prompt set selection
	RL experiment ablation

	Agent Infrastructure
	Skill Generalization
	Case Study
	Bugfixer Trajectories
	Testwriter False Positive Cases

	Emergent Parallel scaling
	Use of Large Language Models

