Under review as a conference paper at ICLR 2026

KIMI-DEV: AGENTLESS TRAINING AS SKILL PRIOR
FOR SWE-AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) are increasingly applied to software engineering
(SWE), with SWE-bench as a key benchmark. Solutions are split into SWE-Agent
frameworks with multi-turn interactions and workflow-based Agentless methods
with single-turn verifiable steps. We argue these paradigms are not mutually ex-
clusive: reasoning-intensive Agentless training induces skill priors, including lo-
calization, code edit, and self-reflection that enable efficient and effective SWE-
Agent adaptation. In this work, we first curate the Agentless training recipe and
present Kimi-Dev, an open-source SWE LLM achieving 60.4% on SWE-bench
Verified, the best among workflow approaches. With additional SFT adaptation
on 5k publicly-available trajectories, Kimi-Dev powers SWE-Agents to 48.6%
pass@1, on par with that of Claude 3.5 Sonnet (241022 version). These results
show that structured skill priors from Agentless training can bridge workflow and
agentic frameworks for transferable coding agents.

1 INTRODUCTION

Recent days have witnessed the rapid development of Large Language Models (LLMs) automating
Software-Engineering (SWE) tasks (Jimenez et al.| [2023} [Yang et al., [2024a; Xia et al.| 2024} |An-
thropic}, 2024} |Pan et al.| 2024; Wang et al., |2025a}; |Wei et al., 2025} |Yang et al., |2025a; |Kimi et al.}
2025} |OpenAlL [2025¢c). Among the benchmarks that track the progress of LLM coding agents in
SWE scenarios, SWE-bench (Jimenez et al.,[2023)) stands out as one of the most representative ones:
Given an issue that reports a bug in a real-world GitHub repository, a model is required to produce
a patch that fixes the bug, the correctness of which is further judged by whether the corresponding
unit tests are passed after its application. The difficulty of the task (as of the date the benchmark was
proposed), the existence of the outcome reward with the provided auto-eval harness, as well as the
real-world economic value it reflects, have made the SWE-bench a focal point of the field.

Two lines of solutions have emerged for the SWE-bench task. Agent-based solutions like SWE-
Agent (Yang et all 2024a) and OpenHands (Wang et al., 2025a)) take an interactionist approach:
Instructed with the necessary task description, a predefined set of available tools, as well as the
specific problem statement, the agent is required to interact with an executable environment for
multiple turns, make change to the source codes, and determine when to stop autonomously. In
contrast, workflow-based solutions like Agentless (Xia et al.,[2024) pre-define the solving progress
as a pipeline, which consists of steps like localization, bug repair, and test composition. Such task
decomposition transforms the agentic task into generating correct responses for a chain of single-
turn problems with verifiable rewards (Guo et al., 2025 |Wei et al., 2025} [He et al., 2025)).

The two paradigms have been widely viewed as mutually exclusive. On the one hand, SWE-Agents
are born with higher potential and better adaptability, thanks to the higher degree of freedom of the
multi-turn interaction without the fixed routines. However, it has also proved more difficult to train
with such frameworks due to their end-to-end nature (Luo et al.,[2025;|Cao et al.,[2025). On the other
hand, Agentless methods offer better modularity and the ease to train with Reinforcement Learning
with Verifiable Rewards (RLVR) techniques, but more limited exploration space and flexibility, and
difficulty in behavior monitoring as the erroneous patterns appear only in the single-turn long rea-
soning contents (Pan et al) 2024). However, we challenge the dichotomy from the perspective of
training recipe: We argue that Agentless training should not be viewed as the ultimate deliverable,
but rather as a way to induce skill priors — atomic capabilities such as the localization of buggy im-



Under review as a conference paper at ICLR 2026

plementations and the update of erroneous code snippets, as well as self-reflection and verification,
all of which help scaffold the efficient adaptation of more capable and generalizable SWE-agents.

Guided by this perspective, we introduce Kimi-Dev, an open-source code LLM for SWE tasks.
Specifically, we first develop an Agentless training recipe, which includes mid-training, cold-start,
reinforcement learning, and test-time self-play. This results in 60.4% accuracy on SWE-bench Ver-
ified, the SoTA performance among the workflow-based solutions. Building on this, we show that
Agentless training induces skill priors: a minimal SFT cold-start from Kimi-Dev with 5k publicly-
available trajectories enables efficient SWE-agent adaptation and reaches 48.6% pass@ 1 score, sim-
ilar to that of Claude 3.5 Sonnet (the 20241022 version, |Anthropic| (2024)). We demonstrate that
these induced skills transfer from the non-agentic workflows to the agentic frameworks, and the
self-reflection in long Chain-of-Thoughts baked through Agentless training further enable the agen-
tic model to leverage more turns and succeed with a longer horizon. Finally, we also show that the
skills from Agentless training generalize beyond SWE-bench Verified to broader benchmarks like
SWE-bench-live (Zhang et al.l [2025) and SWE-bench Multilingual (Yang et al.l [2025c). Together,
these results reframe the relationship between Agentless and agentic frameworks: not mutually ex-
clusive, but as complementary stages in building transferable coding LLMs. This shift offers a prin-
cipled view that training with structural skill priors could scaffold autonomous agentic interaction.

The remainder of this paper is organized as follows. Section[2]reviews the background of the frame-
work dichotomy and outlines the challenges of training SWE-Agents. Section [3|presents our Agent-
less training recipe and the experimental results. Section [ demonstrates how these Agentless-
induced skill priors enable efficient SWE-Agent adaptation, and evaluates the skill transfer and
generalization beyond SWE-bench Verified.

2 BACKGROUND

In this section, we first review the two dominant frameworks for SWE tasks and their dichotomy in
Section[2.T} We then summarize the progress and challenges of training SWE-Agents in Section[2.2]
The background introduction sets the stage for reinterpreting Agentless training as skill priors for
SWE-Agents, a central theme developed throughout the later sections.

2.1 FRAMEWORK DICHOTOMY

Two paradigms currently dominate the solutions for automating software engineering tasks. Agent-
less approaches decompose SWE tasks into modular workflows (Xia et al.| 2024} [Wei et al.| 2025
Ma et al., [2025a3b; Xie et al., [2025). Typical workflows consist of bug localization, bug repair, and
test generation. This design provides modularity and stability: each step could be optimized sepa-
rately as a single-turn problem with verifiable rewards (Wei et al.| 2025 [He et al., [2025)). However,
such rigidity comes at the cost of flexibility. When encountering scenarios requiring multiple rounds
of incremental updates, the Agentless approaches struggle to adapt.

By contrast, SWE-agents adopt an end-to-end, multi-turn reasoning paradigm (Yang et al., |[2024a;
Wang et al.,|2025a). Rather than following a fixed workflow, they iteratively plan, act, and reflect,
resembling how human developers debug complex issues. This design enables greater adaptability,
but introduces significant difficulties: trajectories often extend over tens or even hundreds of steps,
context windows of the LLMs must span over the entire interaction history, and the model must
handle exploration, reasoning, and tool use simultaneously.

The dichotomy between fixed workflows (e.g., Agentless) and agentic frameworks (e.g., SWE-
Agent) has shaped much of the community’s perspective. The two paradigms are often regarded
as mutually exclusive: one trades off flexibility and performance ceiling for modularity and stabil-
ity, whereas the other makes the reverse compromise. Our work challenges this dichotomy, as we
demonstrate that Agentless training induces skill priors that make further SWE-agent training both
more stable and more efficient.

2.2 TRAINING SWE-AGENTS

Training SWE-agents relies on acquiring high-quality trajectories through interactions with exe-
cutable environments. Constructing such large-scale environments and collecting reliable trajecto-



Under review as a conference paper at ICLR 2026

Generate Test Case

File Localization /\ File Localization
EO\ o\ﬁ EC‘

BugFixer ¢ =) TestWriter
Code Edit Fix Bugs Code Edit

Figure 1: Agentless framework for Kimi-Dev: the duo of BugFixer and TestWriter.

ries, however, requires substantial human labor as well as costly calls to frontier models, making data
collection slow and resource-demanding (Pan et al.,|2024; Badertdinov et al.,2024b). Recent studies
also attempt to scale environment construction by synthesizing bugs for the reverse construction of
executable runtime (Jain et al., 2025} [Yang et al.| 2025c)). However, credit assignment across long
horizons still remains challenging, as outcome rewards are sparse and often only available when a
final patch passes its tests. Reinforcement learning techniques have been proposed, but frequently
suffer from instability or collapse when trajectories exceed dozens of steps (Luo et al., 2025} |Cao
et al., 2025). SWE-agent training is also highly sensitive to initialization: starting from a generic
pre-trained model often leads to brittle behaviors, such as failing to use tools effectively or getting
stuck in infinite loops of specific action patterns (Pan et al.l 2024} Yang et al.l 2025c¢).

These limitations motivate our central hypothesis: instead of training SWE-agents entirely from
scratch, one can first induce skill priors through agentless training, enhancing the atomic capabilities
like localization, repair, test composition, and self-reflection. These priors lay a foundation that
makes subsequent agentic training both more efficient and more generalizable.

3 AGENTLESS TRAINING RECIPE

Instead of training SWE-agents from scratch, we leverage Agentless training to induce skill priors.
Skill priors enhanced by Agentless training include but are not limited to bug localization, patch gen-
eration, self-reflection and verification, which lay the foundation for end-to-end agentic interaction.
In this section, we elaborate our Agentless training recipe: the duo framework design of BugFixer
and TestWriter, mid-training and cold-start, reinforcement learning, and test-time self-play. Sec-
tions [3.TH3.4] detail these ingredients, and Section [3.5] presents the experimental results for each of
them. This training recipe results in Kimi-Dev, an open-source 72B model that achieves 60.4% on
SWE-bench Verified, the SOTA performance among the workflow-based solutions.

3.1 FRAMEWORK: THE DUO OF BUGFIXER AND TESTWRITER

In GitHub issue resolution, we conceptualize the process as the collaboration between two important
roles: the BugFixer, who produces patches that correctly address software bugs, and the TestWriter,
who creates reproducible unit tests that capture the reported bug. A resolution is considered suc-
cessful when the BugFixer’s patch passes the tests provided for the issue, while a high-quality test
from the TestWriter should fail on the pre-fix version of the code and pass once the fix is applied.

Each role relies on two core skills: (i) file localization, the ability to identify the specific files relevant
to the bug or test, and (ii) code edit, the ability to implement the necessary modifications. For Bug-
Fixer, effective code edits repair the defective program logic, whereas for TestWriter, they update
precise unit test functions that reproduce the issue into the test files. As illustrated in Figure[T] these
two skills constitute the fundamental abilities underlying GitHub issue resolution. Thus, we enhance
these skills through the following training recipes, including mid-training, cold-start, and RL.

3.2 MID-TRAINING & COLD START

To enhance the model’s prior as both a BugFixer and a TestWriter, we perform mid-training with
~150B tokens in high-quality and real-world data. With the Qwen 2.5-72B-Base (Qwen et al.
2024) model as a starting point, we collect millions of GitHub issues and PR commits to form its
mid-training dataset, which consists of (i) ~50B tokens in the form of Agentless derived from the



Under review as a conference paper at ICLR 2026

natural diff patch, (ii) ~20B tokens of curated PR commit packs, and (iii) ~20B tokens of synthetic
data with reasoning and agentic interaction patterns (upsampled by a factor of 4 during training).
The data recipe is carefully constructed to enable the model to learn how human developers reason
with GitHub issues, implement code fixes, and develop unit tests. We also performed strict data
decontamination to exclude any repository from the SWE-bench Verified test set. Mid-training
sufficiently enhances the knowledge in the model about practical bug fixes and unit tests, making it
a better starting point for later stages. The details of the recipe are covered in Appendix [A]

To activate the model’s long Chain-of-Thought (CoT) capability, we also construct a cold-start
dataset with reasoning trajectories based on the SWE-Gym (Pan et al.,2024) and SWE-bench-extra
(Badertdinov et al., |2024a)) datasets, generated by the DeepSeek R1 model (Luo et al|(2025), the
20250120 version). In this setup, R1 acts the roles of Bugfixer and Testwriter, producing out-
puts such as file localization and code edits. Through supervised finetuning as a cold start with
this dataset, we enable the model to acquire essential reasoning skills, including problem analysis,
method sketching, self-refinement, and exploration of alternative solutions.

3.3 REINFORCEMENT LEARNING

After mid-training and cold-start, the model demonstrates strong performance in localization.
Therefore, reinforcement learning (RL) focuses solely on the code edit stage. We construct a
training set specifically for this stage, where each prompt is equipped with an executable environ-
ment. We further employ multiple localization rollouts from the initial model to generate varied file
location predictions, which diversifies the prompts used in code-edit RL.

For the RL algorithm, we adopt the policy optimization method proposed by Kimi k1.5 (Team et al.,
2025), which has shown promising results on reasoning tasks in both math and coding. Unlike
GRPO (Shao et al} 2024) that eliminates the critic by using average rewards for advantage estima-
tion, Kimi k1.5 (Team et al [2025) adopts a simpler policy gradient approach motivated by path
consistency (Nachum et al.,[2017). The specific RL objective is provided in Appendix [C.1]

When adapting the algorithm in our SWE-bench setting, we highlight the following 3 key desiderata:

1. Outcome-based reward only: We rely solely on the final execution outcome from the
environment as the raw reward (0 or 1), without incorporating any format- or process-
based signals. For BugFixer, a positive reward is given if the generated patch passes all
ground-truth unittests. For TestWriter, a positive reward is assigned when (i) the predicted
test raises a failure in the repo without the ground-truth bugfix patch applied, AND (ii) the
failure is resolved once the ground-truth bugfix patch is applied.

2. Adaptive prompt selection: Prompts with pass@ 16 = 0 are initially discarded as they do
not contribute to the batch loss. This results in an initial prompt set of 1,200 problems and
enlarges the effective batch size. A curriculum learning scheme is then applied: once the
success rate on the current set exceeds a threshold, 500 new (previously excluded) prompts
(with initial pass@ 16 = 0 but improved under RL) are reintroduced every 100 RL steps to
gradually raise task difficulty.

3. Positive example reinforcement: As performance improvements begin to plateau in later
stages of training, we incorporate the positive samples from the recent RL iterations into
the training batch of the current iteration. This approach reinforces the model’s reliance on
successful patterns, thereby accelerating convergence in the final phase.

Robust sandbox infrastructure. We construct the docker environment with Kubernetes (Burns
et al.l 2016), which provides a secure and scalable sandbox infrastructure and efficient training and
rollouts. The infra supports over 10,000 concurrent instances with robust performance, making it
ideal for competitive programming and software engineering tasks (see Appendix D).

3.4 TEST-TIME SELF-PLAY

After RL, the model masters the roles of both a BugFixer and a TestWriter. During test time,
it adopts a self-play mechanism to coordinate its bug-fixing and test-writing abilities. Following
Agentless (Xia et al., 2024)), we leverage the model to generate 40 candidate patches and 40 tests
for each instance. Each patch generation involves independent runs of the localization and code edit



Under review as a conference paper at ICLR 2026

Table 1: Performance comparison for models on SWE-bench Verified under Agentless-like frame-
works. All the performances are obtained under the standard 40 patch, 40 test setting (Xia et al.,
2024), except that Llama3-SWE-RL uses 500 patches and 30 tests.

Model #Params Resolve Rate (%)
Llama3-SWE-RL (Wei et al .| 2025)) 70B 41.0
Seed1.5-Thinking (Seed et al.|[2025) 200B 47.0
OpenAl-ol (OpenAl, |2024) - 48.9
DeepSeek-R1-0120 (Guo et al., 2025) 671B 49.2
OpenAl-03-mini-high (OpenAl,|2025a) - 49.3
Claude 3.5 Sonnet (241022) (Anthropic, [2024) - 50.8
MiniMax-M1 (Chen et al.,|[2025a) 456B 56.0
DeepSeek-R1-0528 (Guo et al.,[2025) 671B 57.6
SWE-SWISS (He et al.,|2025) 32B 58.2
Kimi-Dev (Ours) 72B 60.4

from BugFixer, where the first run uses greedy decoding (temperature 0), and the remaining 39 use
temperature 1 to ensure diversity. Similarly, 40 tests are generated independently from TestWriter.
For the test patch candidates, to guarantee their validity, we first filter out those failing to raise a
failure in the original repo without applying any BugFixer patch.

Denote the rest TestWriter patches as set 7, and the BugFixer patches as set 5. For each b, € B
and t; € T, we execute the test suite over the test file modified by ¢; for twice: first without b;,
and then with b; applied. From the execution log for the first run, we get the count of the failed and
the passed tests from ¢;, denoted as F(j) and P(j). Comparing the execution logs for the two test
suite runs, we get the count of the fail-to-pass and the pass-to-pass tests, denoted as FP (3, j) and
PP(, j), respectively. We then calculate the score for each b; with

5 = ZiFP(0.d) | 3, PPG.J)
Zj F(j) Zj P(j)
where the first part reflects the performance of b; under reproduction tests, and the second part

could be viewed as the characterization of b; under regression tests (Xia et al.,[2024). We select the
BugFixer patch b; with the highest \S; score as the ultimate answer.

(1)

3.5 EXPERIMENTS
3.5.1 MAIN RESULTS

We evaluate our approach on SWE-bench Verified
(Jimenez et al.| 2023)), which includes 500 GitHub issues
guaranteed to be solved by human programmers. Table 36.6
shows the overall results. Unlike SWE-RL (Weli et al.,
2025)), which relies on text-based similarity to the ground-
truth patch, we use execution results as the reward signal,
reducing shortcuts and improving solution quality. Unlike
most Agentless approaches (Xia et al., [2024; |Guo et al.|
2025;|He et al., [2025)), which place a single-file reproduc-
tion test at the root directory of the repository, we leverage 50B 100B 150B
the two-stage TestWriter to better capture repository con- Mid-training tokens

text and align with human standard workflows (OpenAll
20235)). Kimi-Dev model achieves the state-of-the-art per-
formance among open-source models, resolving 60.4% of
the issues in SWE-bench Verified.

w
@

w
>

-~

32.6

S

28.6

Pass Rate (%)
w % w

N
©®

I )
o

Figure 2: The performance on SWE-
bench Verified after mid-training with
different training token budgets.

3.5.2 MID-TRAINING

In this section, we evaluate the relationship between the amount of data used during mid-training
and model performance. Specifically, we finetuned Qwen 2.5-72B-Base with the subset of mid-
training data of 50B, 100B, and approximately 150B tokens, and then lightly activated them using



Under review as a conference paper at ICLR 2026

8000 6500
—=— Token Length 46 —— Token Length
75001 —— Pass Rate (%) » 6000 Reproduced Rate (%) 35.0
7000 e 2
- o s 32.3%
5, 6500 2 =) -
g P £ 5000 300
3 6000 407Q 3 9
= ~ £ 4500 758
@ 5500 ) 9] 3
S g 2508
F 5000 A (4000 B %
36 5Q
4500 3500 2253
4000 34 3000 20.0
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
RL Training Steps RL Training Steps
(a) 72B Joint RL, BugFixer (b) 72B Joint RL, TestWriter

Figure 3: Joint code-edit RL experiments on the model after mid-training and cold-start. The pass
rate for BugFixer and the reproduced rate for TestWriter are reported as pass@1 with tempera-
ture=1.0. The performance improves consistently as the output becomes increasingly longer.

the same 2,000 Bugfixer input-output pairs as cold start. We report BugFixer pass@1 without self-
play for simplicity of evaluation. Figure[2shows that increasing the number of tokens in mid-training
consistently improves model performance, highlighting the effectiveness of this stage.

3.5.3 REINFORCEMENT LEARNING

Experimental setup We set the training step per RL iteration as 5 and sample 10 rollouts for
each of the 1,024 problems from the union of SWE-gym (Pan et al., |2024) and SWE-bench-extra
(Badertdinov et al., [2024b). We dynamically adjust the prompt set every 20 iterations to gradually
increase task difficulty. We fix the maximum training context length as 64k tokens, since the prompt
input contains the contents of the entire files localized by the initial model in advance.

Results  Figure[3|shows the performance and response length curves on the test set during RL train-
ing. The pass rate and the reproduced rate are calculated from pass@1 and temperature=1. Specifi-
cally, we observe that both model performance and response length steadily increase, reflecting the
expected benefits of RL scaling. Similar RL scaling curves are also observed in our ablation ex-
periments run on Qwen2.5-14B-Instruct models, proving the effectiveness of the RL training recipe
across models of different sizes. The experimental details, as well as the ablation studies on positive
example reinforcement in Section [3.3] are listed in Appendix [C.3). The lengthy outputs consist of
in-depth problem analysis and self-reflection patterns, similar to those in the math and code reason-
ing tasks (Team et al., 2025} |Guo et al.}[2025). We have also observed that for TestWriter, occasional
false-positive examples take place during RL training due to the lack of reproduction coverage. We
leave the case studies in Appendix [Fjand further improvement for future work.

3.5.4 TEST-TIME SELF-PLAY

6251 — Seleplay r — Self-play
—— Majority Voting Pass@N

3
&

3

Following Section [3.4] we evaluate how 5
the final performance on the SWE-bench 2.,
Verified scales with the number of patches s
and tests generated. The temperature is =" //

fixed at O for the initial rollout and set .ol il
to 1.0 for the subsequent 39 rollouts. As Number of patches: BF x TW Number of patches: BF x TW
shown on the left of Figure @] perfor-

mance improves from 48.0% to 60.4% as Figure 4: Test-time self-play on SWE-bench Verified.
the number of patch test pairs increases Performance improves with more generated patches
from 1x1 to 40x40, and consistently out- and tests. Left: Execution-based self-play consis-
performs the results obtained from the ma- tently surpasses BugFixer majority voting. nght Self-
jority vote of BugFixer patches. Specifi- Play performances remain below pass@N where the
cally, the self-play result obtained from 3 ground-truth test patch is used, suggesting the room ex-
patches and 3 tests for each instance has 1ists for TestWriter to improve.

already surpassed the performance with

@ 2 o 2
&

Pass Rate (%)
& 8

g

@
]

-
&




Under review as a conference paper at ICLR 2026

Table 2: Single-attempt performance of different models on SWE-bench Verified under end-to-end
agentic frameworks, categorized by proprietary or open-weight models, and size over or under 100B.
“Internal” denotes results achieved with their in-house agentic frameworks.

Model System #Params Pass Rate (%)
Proprietary
Gemini 2.5 Pro (Comanici et al., 2025) Internal - 60.3
OpenAl-03 (OpenAl, [2025) Internal - 69.1
GPT-5 (OpenAlL[2025c) Internal - 74.9
Claude 3.5 Sonnet (241022) (Anthropic} 2024) SWE-Agent - 49.0
Claude 3.7 Sonnet (Anthropic} [2025al) SWE-Agent - 62.3
Claude 4.0 Sonnet (Anthropicl [2025b)) SWE-Agent - 72.7
Open Weight, > 100B
gpt-o0ss-120b (High) (OpenAl, 2025b) Internal 120B 62.4
DeepSeek-v3.1 (Guo et al.| 2025) Internal 671B 66.0
Kimi-K2-0905 (Kimi et al.| [2025]) SWE-Agent 1T 69.2
Qwen3-Coder (Yang et al., [2025a) OpenHands 480B 69.6
Open Weight, < 100B
Openhands-LM (Wang et al.,|2025b) OpenHands 32B 37.2
Skywork-SWE (Zeng et al., 2025]) OpenHands 32B 38.0
SWE-agent-LM (Yang et al.,|2025b) SWE-Agent 32B 40.2
DeepSWE (Luo et al.,[2025) OpenHands 32B 42.2
Devstral-Small-2507 (Al & Al [2025) OpenHands 24B 53.6
gpt-0ss-20b (High) (OpenAl,[2025b) Internal 20B 60.7
Kimi-Dev (SFTed) SWE-Agent 72B 48.6

majority voting from 40 BugFixer patches. This demonstrates the effectiveness of additional in-
formation from test-time execution. The room for improvement of TestWriter, though, still exists
for more powerful self-play: Shown on Figure [4] self-play performances remain below pass@N,
where ground-truth test cases serve as the criterion for issue resolution. This finding aligns with |An-
thropic| (2024), which introduced a final edge-case checking phase to generate a more diverse set of
test cases, thereby strengthening the role of the “TestWriter” in their SWE-Agent framework. We
also report preliminary observations of a potential parallel scaling phenomenon, which requires no
additional training and may enable scalable performance improvements (see Appendix [G).

4 INITIALIZING SWE-AGENTS FROM AGENTLESS TRAINING

End-to-end multi-turn frameworks, such as SWE-Agent (Yang et al.| |2024a}; |Anthropic), 2024) and
OpenHands (Wang et al.| |2025a)), enable agents to leverage tools and interact with environments.
Specifically, the system prompt employed in the SWE-Agent framework (Anthropic, [2024)) outlines
a five-stage workflow: (i) repo exploration, (ii) error reproduction via a test script, (iii) code edit
for bug repair, (iv) test re-execution for validation, and (v) edge-case generation and checks. Unlike
Agentless, the SWE-Agent framework doesn’t enforce a strict stage-wise workflow; the agent can
reflect, transition, and redo freely until it deems the task complete and submits.

The performance potential is therefore higher without a fixed routine; However, the training for
SWE-Agent is more challenging because of the sparsity of the outcome reward for long-horizon
credit assignment. Meanwhile, our Kimi-Dev model has undergone Agentless training, with its skills
of localization and code edit for BugFixer and TestWriter strengthened elaborately. In this section,
we investigate whether it can serve as an effective prior for multi-turn SWE-Agent scenarios.

4.1 PERFORMANCE AFTER SWE-AGENT FINE-TUNING

We use the publicly available SWE-Agent trajectories to finetune Kimi-Dev. The finetuning dataset
we used is released by SWE-smith (Yang et al.| [2025b)), consisting of 5,016 SWE-Agent trajectories
collected with Claude 3.7 Sonnet (Anthropic, 2025a) in the synthetic environments. We perform



Under review as a conference paper at ICLR 2026

® RL Pass@1

60
RL Pass@2
A RL Pass@3
50 y SFT Pass@1
SFT Pass@2

SFT Pass@3
MT Pass@1
MT Pass@2
MT Pass@3
Base Pass@1
Base Pass@2
Base Pass@3

]
o
> Eeoe>nHEO

o
(=}

//‘

0 221 223 224 11x2%  11x2% 11x2¥ 15x2%
# SWE-Agent SFT tokens

Pass Rate (%)
g 5

Figure 5: Comparing the quality of the raw Base, the Agentless mid-trained (MT), the Agentless
mid-trained with reasoning-intensive cold-start (SFT), and the Kimi-Dev model after RL as the prior
for SWE-Agent adaptation. The tokens of the SWE-Agent SFT trajectories are swept over different
scales, and the SWE-Agent performances are reported up to pass@3 on SWE-bench Verified.

supervised fine-tuning over Kimi-Dev, setting the maximum context length as 64K tokens during
training, and allowing up to 128K tokens and 100 turns during inference.

As shown in Table [2] without collecting more trajectory data over realistic environments, or con-
ducting additional multi-turn agentic RL, our finetuned model achieves a pass@1 score of 48.6%
on SWE-bench Verified under the agentic framework setup, without additional test-time scaling.
Using the same SFT data, our finetuned Kimi-Dev model outperforms the SWE-agent-LM (Yang
et al., |2025c¢), with the performance comparable to that of Claude 3.5 Sonnet (49% by the 241022
version). The pass@10 of our SWE-Agent adapted model is 74.0% and surpasses the pass@30 of
our model under Agentless (73.8%), proving the higher potential for the SWE-Agent framework.

4.2 SKILL TRANSFER AND GENERALIZATION

The results shown in Section @] demonstrate that Kimi-Dev, a model with extensive Agentless
training, could be adapted to end-to-end SWE-Agents with lightweight supervised finetuning. As
the Agentless training recipe consists of mid-training, cold-start (SFT) and RL, we explore the con-
tribution of each part in the recipe to the SWE-Agent capability after adaptation.

To figure this out, we perform SWE-Agent SFT on the original Qwen2.5-72B (Base), the mid-
trained model (MT), the model then activated with Agentless-formatted long CoT data (SFT), and
the (Kimi-Dev) model after finishing RL training (RL). As we are treating the four models as the
prior for SWE—Agentﬂ and a good prior always demonstrates the ability of fast adaptation with a
few shots (Finn et al., 2017;Brown et al.,|2020), we also sweep the amount of SWE-Agent SFT data
to measure the efficiency of each prior in SWE-Agent adaptation.

Specifically, we randomly shuffle the 5,016 SWE-Agent trajectories and construct nested subsets
of sizes 100, 200, 500, 1,000, and 2,000, where each smaller subset is contained within the larger
ones. In addition, we prepend two extreme baselines: (i) zero-shot, where the prior model is directly
evaluated under the SWE-Agent framework without finetuning, and (ii) one-step gradient descent,
where the model is updated with a single gradient step using the 100-trajectory subset. This yields a
range of SFT token budgets spanning {0, 221, 223, 224 1.1 x 225, 1.1 x 226, 1.1 x 227, 1.5 x 228},
After these lightweight SFT experiments, we evaluate performance in terms of pass@{1,2,3} under
the SWE-Agent framework, with evaluations for pass@ 1 conducted at temperature 0, and those for
pass@2 and pass@3 at temperature 1.0.

Figure [5] presents the SWE-Agent performances of each prior (Base, MT, SFT, RL) after being
fine-tuned with different amounts of agentic trajectories. We have the following observations:

"'We slightly abuse the term “prior” to refer to a model to be finetuned with SWE-Agent trajectories in the
following analysis.



Under review as a conference paper at ICLR 2026

Number of instances resolved (per bin of turns)

-
[=2]
o

» 800 { ™= Bugfixer cutoff
Q

o [ RL 2 w2 Reflection 693(+109) 718(+113)
g = SFT & 700 642(+100) //// %
S 120 I | s MT 2 6001 578(+94) 7
—- >
8 | i C__! Base § 500
|
3 80 Lo £ 400
o | o
5 JO R 2 300
] . | g
@ 404 = i £ 200
#* |r Z 100
0 10 20 30 40 50 60 70 80 90 100 Base MT SET RL
#Turns Models

Figure 6: Left: Performance of the four priors under turn limits after SWE-Agent adaptation. Right:
The characterization of the BugFixer and the reflection skills for each prior by counting the resolved
cases of the 3 runs at Stage-3 cutoff moment, and comparing those with the final success cases.

1. The RL prior outperforms all the other models in nearly all the SWE-Agent SFT settings.
This demonstrates that the Agentless training recipe indeed strengthens the prior in terms
of SWE-Agent adaptation. For example, To achieve the top pass@1 performance of the
Base prior, the RL prior needs only 223 SWE-Agent SFT tokens, whereas the Base prior
consumes 1.5 x 228 tokens.

2. The MT prior is lagged behind the SFT and the RL ones in extremely data-scarce settings
(zero-shot (0) and one-step gradient descent (221)), but quickly becomes on par with them
after 200 trajectories (224) are available for finetuning. This indicates that adaptation effi-
ciency remains comparable after the prior is strengthened through Agentless mid-training.

3. The performance of the SFT prior is mostly similar to the RL one except for two cases: (i)
The SFT prior outperforms the RL one under the zero-shot setting. This is reasonable, as
the RL prior might overfit to the Agentless input-output format, while the SFT prior suffers
less from this. (ii) The SFT prior exhibits a significant degradation with 200 SWE-Agent
trajectories (224). A potential reason could be that the 200 trajectories collapse onto a single
data mode, leading the SFT prior to overfit through memorization 2025); the
RL prior instead embeds stronger transferable skills and thus generalizes better.

From long CoT to extended multi-turn interactions. We hypothesize that reflective behav-
iors cultivated through long chain-of-thought reasoning may transfer to settings requiring extended
multi-turn interactions. To examine this, we evaluate the four priors (Base, MT, SFT, and RL) by
finetuning on the 5,016 trajectories and test on SWE-bench Verified, under varying turn limits with
pass@3 as the metric (Figure |6} left). The distinct interaction-length profiles show supportive evi-
dence: the RL prior, after finetuning, continues to make progress beyond 70 turns, while the SFT,
mid-trained, and raw models show diminishing returns around 70, 60, and 50 turns, respectively.

We further evaluate the efficacy of the Agentless skill priors (BugFixer and reflection) in the SWE-
Agent adapted model. For BugFixer, given that the SWE-Agent may autonomously reflect between
the five stages, we examine the moment in each trajectory when the bug fix of the third stage is
initially completed, and the test rerun of the fourth stage has not yet been entered. Heuristically,
when the SWE-Agent just completes the third stage, it has not yet obtained the execution feedback
from the fourth stage, and thus has not further reflected based on the execution information or refined
the bug fix. We therefore calculate the success rate of direct submission at this cutoff moment,
which reflects the capability of the BugFixer skill. Regarding reflection, we further compare the
performance at the cutoff point with the performance after full completion for each problem. The
increment in the number of successful problems is used to reflect the capability of the reflection skill.

We use kimi-k2-0711-preview (Kimi et all] 2025)) to annotate the SWE-Agent trajectories, iden-
tifying the stage to which each turn belongs. Figure [f] (right) demonstrates that both skills are
strengthened through each stage of the Agentless training recipe: For the BugFixer skill, the cutoff
performance at Stage-3 within the SWE-Agent interaction trajectories of the four adapted models
shows consistent improvement, ranging from 484 cases resolved by the Base prior to 605 cases by
the RL prior, as measured by the number of successful resolutions within three passes. For the
reflection skill, examining the performance gains from Stage-3 to the end of the trajectories re-
veals a similar trend, with improvements increasing from +94 under the Base prior to +113 under




Under review as a conference paper at ICLR 2026

42.5
40.0

K375

S
Q D
g35.0 T 54
325 ~
P ; & 52
a —s— SFT prior, Avg@5 a
30.0
A~ SFT prior, Min@5-Max@5 50
27.5 —e— RL prior, Avg@5 44 —— SFT prior, Pass@3 —— SFT prior, Pass@5
25.0 RL prior, Min@5-Max@5 42 —— RL prior, Pass@3 48 —— RL prior, Pass@5
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Steps Steps Steps

Figure 7: Comparison between the SFT Prior and the RL Prior when further applied with end-to-
end SWE-Agent RL. Left: Pass@]1 averaged from 5 runs. Middle: Pass@3. Right: Pass@5. The
two priors are activated with the same 22! SWE-Agent SFT tokens (the second column in Figure .
After end-to-end RL, the RL prior slightly outperforms the SFT prior in all the Pass@1, Pass@3,
and Pass @5 settings, which agrees with their SWE-Agent SFT performance comparison in FigureEl

the RL prior. Taken together, the adapted model from the RL prior achieves the strongest overall
performance across both skills. It should be noted that our analysis of the reflection skill remains
coarse-grained, since the measured performance gains between the two checkpoints capture not only
agentic reflection and redo behaviors, but also the intermediate test-writing process performed by
the SWE-Agent. A more fine-grained evaluation that isolates the TestWriter skill prior is left for
future work. The prompt for SWE-Agent stage annotation, extended qualitative studies, as well as
additional discussions for skill transfer and generalization, are covered in Appendix [E]

End-to-end SWE-Agent RL for prior comparison. To further validate the effectiveness of the
priors baked by the Agentless training recipes, we employ end-to-end SWE-Agent RL
[2025) with the cold-started priors as the initial models. To maximally alleviate the effect from the
patterns of proprietary models within the SWE-Smith trajectories, we leverage the setting with 22
SWE-Agent SFT tokens, the second column in Figure[5] where a single step of gradient decent takes
place on top of each prior. Under the minimal cold-start setup, end-to-end RL reveals the potential
of each prior beyond taking the shortcut of imitation (Gudibande et al} 2024} [Chu et al.} [2023).

To run the end-to-end RL training for prior comparison, we use the SWE-Gym
and the SWE-bench-extra (Badertdinov et al [2024a) subsets as the training set. Similarly to the
Agentless RL recipe, we first use each initial model to filter out the problems with Pass@8 = 0.
For the model with the MT prior, 260 out of 6,202 problems remain; for the models with the SFT
prior and the RL prior, a total of 2,062 from the 6,202 problems are kept. In all end-to-end RL runs,
we use the outcome reward only, and the same policy gradient algorithm in Sec. 3.3 without KL or
entropy regularization for optimization, with batch size as 256. The results are shown as follows:

For the model with MT prior, the pass@ 1 performance quickly deteriorates to less than 2% after
10 end-to-end RL steps. The potential reason for this could be the lack of available problems to be
trained with, reflecting the inferiority of the prior. For the models with the SFT prior and the RL
prior, the RL runs last for 300 steps, and we plot the performance comparison in Figure[7] According
to Figure[7} the model with the RL prior demonstrates slightly higher scores of Pass@1, Pass@3,
and Pass @5 over the model with the SFT prior. While the phenomenon agrees with the performance
comparison under SWE-Agent SFT shown in Figure[5} we observe that the patterns in the interaction
trajectories of the models incentivized by end-to-end SWE-Agent RL significantly differ from the
patterns of the proprietary models (detailed in Appendix [E). These results reveal that the Agentless
training recipe curates strong priors for end-to-end learning under SWE-Agent frameworks with
the minimal supervision of proprietary end-to-end trajectories. We leave the exploration of more
advanced agentic RL techniques for further improvement as future work.

5 CONCLUSION AND FUTURE WORK

In this work, we reframed Agentless and agentic paradigms for automated software engineering as
complementary rather than competing. By introducing Kimi-Dev, we demonstrated that structured
Agentless training can induce transferable skill priors, including bug localization, code repair, and
self-reflection. As a result, Kimi-Dev not only achieves SoTA results on SWE-bench Verified among
the workflow-based approaches, but enables efficient SWE-Agent adaptation as well. These findings
establish a novel path toward building more generalizable coding agents through staged training.

10



Under review as a conference paper at ICLR 2026

ETHICS AND REPRODUCIBILITY STATEMENTS

This work obeys the Code of Ethics required by the ICLR conference. The study does not involve
human subjects or animal experimentation. The personally identifiable information from raw data
is excluded for privacy consideration (see the mid-training data recipe detailed in Appendix [A).

For all of the experiments, we have covered the detailed setups in the appendices: mid-training for
Agentless in Appendix [A] details of the used dockers in Appendix [B] Agentless RL in Appendix [C}
agent infrastructure in Appendix [D] and case studies in Appendix

REFERENCES

Mistral Al and All Hands AI.  Devstral-small-2507. |https://mistral.ai/news/
devstral-2507, July 2025.

Anthropic. Raising the bar on swe-bench verified with claude 3.5 sonnet. Online; Al model, Oct
2024. URL https://www.anthropic.com/engineering/swe—-bench-sonnet.

Anthropic. Claude 3.7 sonnet: Hybrid reasoning model. https://www.anthropic.com/
news/claude-3-7-sonnet, February 2025a.

Anthropic. Claude sonnet 4. https://www.anthropic.com/news/claude—4, May
2025b.

Ibragim Badertdinov, Maria Trofimova, Yuri Anapolskiy, Sergey Abramov, Karina Zainullina,
Alexander Golubev, Sergey Polezhaev, Daria Litvintseva, Simon Karasik, Filipp Fisin, et al. Scal-
ing data collection for training software engineering agents. Nebius blog, 2024a.

Ibragim Badertdinov, Maria Trofimova, Yury Anapolskiy, Sergey Abramov, Karina Zainullina,
Alexander Golubev, Sergey Polezhaev, Daria Litvintseva, Simon Karasik, Filipp Fisin, Sergey
Skvortsov, Maxim Nekrashevich, Anton Shevtsov, and Boris Yangel. Scaling data collection for
training software engineering agents. Nebius blog, 2024b.

Ibragim Badertdinov, Alexander Golubev, Maksim Nekrashevich, Anton Shevtsov, Simon Karasik,
Andrei Andriushchenko, Maria Trofimova, Daria Litvintseva, and Boris Yangel. Swe-rebench:
An automated pipeline for task collection and decontaminated evaluation of software engineering
agents, 2025. URL https://arxiv.org/abs/2505.20411l

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. Advances in Neural
Information Processing Systems, 33:1877-1901, 2020. URL https://arxiv.org/abs/
2005.14165.

Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes. Borg, Omega, and
Kubernetes. In Proceedings of the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI "16), pp. 285-301, 2016.

Shiyi Cao, Sumanth Hegde, Dacheng Li, Tyler Griggs, Shu Liu, Eric Tang, Jiayi Pan, Xingyao
Wang, Akshay Malik, Graham Neubig, Kourosh Hakhamaneshi, Richard Liaw, Philipp Moritz,
Matei Zaharia, Joseph E. Gonzalez, and Ion Stoica. Skyrl-v0: Train real-world long-horizon
agents via reinforcement learning, 2025.

Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan, Changqging Yu,
Chao Wang, Cheng Zhu, et al. Minimax-m1: Scaling test-time compute efficiently with lightning
attention. arXiv preprint arXiv:2506.13585, 2025a.

Mouxiang Chen, Binyuan Hui, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Jianling Sun, Junyang Lin,
and Zhongxin Liu. Parallel scaling law for language models. arXiv preprint arXiv:2505.10475,
2025b.

11


https://mistral.ai/news/devstral-2507
https://mistral.ai/news/devstral-2507
https://www.anthropic.com/engineering/swe-bench-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2505.20411
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165

Under review as a conference paper at ICLR 2026

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. SFT memorizes, RL generalizes: A comparative study of founda-
tion model post-training. In Forty-second International Conference on Machine Learning, 2025.
URLhttps://openreview.net/forum?id=dYur3yabMi.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126—1135. PMLR, 2017.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Xinran Gu, Kaifeng Lyu, Jiazheng Li, and Jingzhao Zhang. Data mixing can induce phase transitions
in knowledge acquisition. arXiv preprint arXiv:2505.18091, 2025.

Arnav Gudibande, Eric Wallace, Charlie Victor Snell, Xinyang Geng, Hao Liu, Pieter Abbeel,
Sergey Levine, and Dawn Song. The False Promise of Imitating Proprietary Language Mod-
els. In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=Kz3yckpCN5.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhenyu He, Qingping Yang, Wei Sheng, Xiaojian Zhong, Kechi Zhang, Chenxin An, Wenlei Shi,
Tianle Cai, Di He, Jiaze Chen, Jingjing Xu, and Mingxuan Wang. Swe-swiss: A multi-task
fine-tuning and rl recipe for high-performance issue resolution. Notion page, 2025.

Naman Jain, Jaskirat Singh, Manish Shetty, Liang Zheng, Koushik Sen, and Ion Stoica. R2e-gym:
Procedural environments and hybrid verifiers for scaling open-weights swe agents. arXiv preprint
arXiv:2504.07164, 2025.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Team Kimi, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Michael Luo, Naman Jain, Jaskirat Singh, Sijun Tan, Ameen Patel, Qingyang Wu, Alpay Ariyak,
Colin Cai, Shang Zhu Tarun Venkat, Ben Athiwaratkun, Manan Roongta, Ce Zhang, Li Erran Li,
Raluca Ada Popa, Koushik Sen, and Ion Stoica. DeepSWE: Training a State-of-the-Art Coding
Agent from Scratch by Scaling RL. Notion page, 2025. Notion Blog.

Yingwei Ma, Rongyu Cao, Yongchang Cao, Yue Zhang, Jue Chen, Yibo Liu, Yuchen Liu, Binhua Li,
Fei Huang, and Yongbin Li. Swe-gpt: A process-centric language model for automated software
improvement. Proc. ACM Softw. Eng., 2(ISSTA), June 2025a. doi: 10.1145/3728981. URL
https://doi.org/10.1145/3728981.

Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li, Fei Huang, and Yongbin Li. Alibaba ling-
maagent: Improving automated issue resolution via comprehensive repository exploration. In
Proceedings of the 33rd ACM International Conference on the Foundations of Software Engi-
neering, pp. 238-249, 2025b.

12


https://openreview.net/forum?id=dYur3yabMj
https://openreview.net/forum?id=Kz3yckpCN5
https://openreview.net/forum?id=Kz3yckpCN5
https://www.notion.so/SWE-Swiss-A-Multi-Task-Fine-Tuning-and-RL-Recipe-for-High-Performance-Issue-Resolution-21e174dedd4880ea829ed4c861c44f88
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://doi.org/10.1145/3728981

Under review as a conference paper at ICLR 2026

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the
gap between value and policy based reinforcement learning. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/facf9f743b083008a89%4eece’/baalbd69-Paper.pdf.

OpenAl. Openai ol system card. Technical report, OpenAl, 2024. URL https://arxiv.org/
abs/2412.16720. Includes ol and ol-mini models, safety and evaluation work.

OpenAl Introducing codex. https://openai.com/index/introducing-codex/, May
2025.

OpenAl. Openai 03 and openai 04-mini system card. Technical report, OpenAl, Apr 2025. URL
https://cdn.openai.com/pdf/2221¢c875-02dc-4789-800b—e7758£3722c1/
o3-and-o4-mini-system—-card.pdf.

OpenAl. Openai 03-mini system card. Technical report / system card, OpenAl, 2025a. URL
https://cdn.openai.com/o3-mini-system-card-febl0.pdf, Description of
03-mini model, its safety evaluations and reasoning benchmarks.

OpenAl gpt-o0ss-120b & gpt-0ss-20b model card, 2025b. URL https://arxiv.org/abs/
2508.10925.

OpenAl Gpt-5 system card. OpenAl website, Aug 2025c. URL https://cdn.openai.com/
gpt-5-system-card.pdf.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym. arXiv preprint
arXiv:2412.21139, 2024.

Jiayi Pan, Xiuyu Li, Long Lian, Charlie Victor Snell, Yifei Zhou, Adam Yala, Trevor Darrell, Kurt
Keutzer, and Alane Suhr. Learning adaptive parallel reasoning with language models. In Second
Conference on Language Modeling, 2025. URL https://openreview.net/forum?id=
YgwQ'/sXPXU.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2024.
URLhttps://arxiv.org/abs/2412.15115.

ByteDance Seed, Jiaze Chen, Tiantian Fan, Xin Liu, Lingjun Liu, Zhiqi Lin, Mingxuan Wang,
Chengyi Wang, Xiangpeng Wei, Wenyuan Xu, et al. Seedl. 5-thinking: Advancing superb rea-
soning models with reinforcement learning. arXiv preprint arXiv:2504.13914, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fugiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for Al soft-
ware developers as generalist agents. In The Thirteenth International Conference on Learning
Representations, 2025a. URL https://openreview.net/forum?id=0Jd3ayDDoF.

13


https://proceedings.neurips.cc/paper_files/paper/2017/file/facf9f743b083008a894eee7baa16469-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/facf9f743b083008a894eee7baa16469-Paper.pdf
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.16720
https://openai.com/index/introducing-codex/
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925
https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf
https://openreview.net/forum?id=YgwQ7sXPXU
https://openreview.net/forum?id=YgwQ7sXPXU
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=OJd3ayDDoF

Under review as a conference paper at ICLR 2026

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for Al soft-
ware developers as generalist agents. In The Thirteenth International Conference on Learning
Representations, 2025b. URL |https://openreview.net/forum?id=0Jd3ayDDoF.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-1l: Advancing llm reasoning via rein-
forcement learning on open software evolution. arXiv preprint arXiv:2502.18449, 2025.

Chungiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
Ilm-based software engineering agents. arXiv preprint arXiv:2407.01489, 2024.

Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai Lam, Difan Zou, and Kai Chen. SWE-fixer:
Training open-source LLMs for effective and efficient GitHub issue resolution. In Wanxiang
Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the
Association for Computational Linguistics: ACL 2025, pp. 1123-1139, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/
v1/2025 findings-acl.62. URL https://aclanthology.org/2025.findings-acl.
62/.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528-50652, 2024a.

John Yang, Kilian Leret, Carlos E Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents. arXiv preprint arXiv:2504.21798, 2025b.

John Yang, Kilian Lieret, Carlos E. Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents, 2025c. URL https://arxiv.org/abs/2504.21798.

Zonghan Yang, Peng Li, Ming Yan, Ji Zhang, Fei Huang, and Yang Liu. ReAct Meets ActRe:
Autonomous Annotation of Agent Trajectories for Contrastive Self-Training. In First Con-
ference on Language Modeling, 2024b. URL https://openreview.net/forum?id=
OVLBWQGWPAL

Liang Zeng, Yongcong Li, Yuzhen Xiao, Changshi Li, Chris Yuhao Liu, Rui Yan, Tianwen Wei,
Jujie He, Xuchen Song, Yang Liu, et al. Skywork-swe: Unveiling data scaling laws for software
engineering in llms. arXiv preprint arXiv:2506.19290, 2025.

Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang,
Maoquan Wang, Yufan Huang, Shengyu Fu, et al. Swe-bench goes live!  arXiv preprint
arXiv:2505.23419, 2025.

14


https://openreview.net/forum?id=OJd3ayDDoF
https://aclanthology.org/2025.findings-acl.62/
https://aclanthology.org/2025.findings-acl.62/
https://arxiv.org/abs/2504.21798
https://openreview.net/forum?id=0VLBwQGWpA
https://openreview.net/forum?id=0VLBwQGWpA

)

Under review as a conference paper at ICLR 2026

APPENDIX

A DETAILS OF MID-TRAINING

We curate a mid-training data recipe with a focus on enhancing SWE capabilities. Central to this
effort is the collection of pull request (PR) data from GitHub, which provides extensive coverage
of real-world bug fixes, feature requests, and code enhancements. To ensure data quality, we apply
two filters: (i) we only retain repositories that have accumulated at least five GitHub stars, thereby
excluding sparsely maintained projects with limited community engagement; and (ii) we remove any
repositories overlapping with the SWE-bench benchmark (Jimenez et al.,|2023) to prevent potential
data leakage. For each candidate repository, we query the GitHub API for all PRs with the state
MERGED, while discarding those abandoned, superseded, or left under review. To preserve more
context information, we also snapshot the entire codebase at the base commit before the first code
change in the PR.

After data crawling, we incorporate two complementary forms for the natural code change data:
(i) natural diff patches and (ii) PR commit packs. A natural diff patch consolidates all commits
in a PR into the final code difference, typically expressed as SEARCH-REPLACE blocks. This
format aligns with the Agentless paradigm, in which the model must directly output the final patch.
In contrast, a commit pack captures the sequence of human-authored commits within a PR, where
each commit message (textual reasoning) is paired with the corresponding code modification (ac-
tion). This structure closely parallels the SWE-Agent setting, where intermediate reasoning steps
are interleaved with actions. However, the distinction of the utilities for the two types of data is
not absolute: commit messages in a PR commit pack can still inform the model’s knowledge and
indirectly strengthen its reasoning ability in the Agentless setting.

Natural diff patches. The natural diff patches used in the mid-training data recipe are processed
with the following rules:

* Incorporate the agentless prompt template (see Prompts [I2[3ll4} These four prompt tem-
plates are also used in the later stages, including cold-start, RL, and test-time self-play),
and apply a loss mask to the prompt part. For the localization prompt, the response is set
as the files modified in the ground-truth diff patch.

» If a related issue to the PR exists, use its content of the related issue; otherwise, use the PR
title as the surrogate of the issue content.

o If a related issue to the PR exists, prepend the issue discussion at the beginning of the
output in the code edit response. We aim to strengthen the model’s capability of code edit
reasoning by leveraging the discussion contents.

* Discard PRs that include modifications to files other than {.py, .md, .rst}.

* For PRs containing {.md, .rst} file modifications, retain only the Python diffs and rewrite
them into SEARCH-REPLACE blocks.

* Remove PRs involving file additions or deletions.

* For the code edits with only line insertions or deletions, preserve the original Git diff hunks
as the SEARCH content in the SEARCH-REPLACE blocks.

* Ensure that no more than three Python files are modified per PR.

* Apply a filtering script to exclude PRs with non-{.py, .md, .rst} modifications, or PRs
modifying more than three Python files.

* Further exclude PRs containing more than five SEARCH-REPLACE blocks.

A total of ~50B tokens for natural diff patches are obtained after applying these filtering rules.

Please look through the following GitHub problem description and
Repository structure and provide a list of files that one would need
to edit to fix the problem.

#4## GitHub Problem Description ###
{related issue / PR title content}

15



ST o3-S

41

48
49
50
51
52
53

54

56

Under review as a conference paper at ICLR 2026

##4

##4#

ki

For

AURNRY

AURTRY

Repository Structure ###

least important and wrapped with

example:

filel.py
file2.py

{file structure induced by the repo snapshot}

AURTRY

Please only provide the full path and return at most 5 files.
The returned files should be separated by new lines ordered by most to

Listing 1: Agentless prompt template: Localization for BugFixer.

##4

##4

##4

For

AURNRY

AURTRY

Please look through the following GitHub problem description and

Repository structure and provide a list of test files that should be

run after applying the patch to fix the issue.

### GitHub Problem Description ###
{related issue / PR title content}

Repository Structure ###

least important and wrapped with

example:

filel.py
file2.py

{file structure induced by the repo snapshot}

AURTRY

Please only provide the full path and return at most 5 files.
The returned files should be separated by new lines ordered by most to

Listing 2: Agentless prompt template: Localization for TestWriter.

AURNRY

#H##

##4

Below are some code segments,

Here is the issue text:
BEGIN ISSUE —--—-—

{related issue / PR title content}

END ISSUE —-—-—

these files may contain bugs.
BEGIN FILE ——-

{filenamel}

{content of filenamel}

{filename2}

{content of filename2}

{oco

}

16

each from a relevant file.

We are currently solving the following issue within our repository.

One or more of




58
59
60
61

62

66

68
69

71
72

73

75

76
78
79
80
81

83

84

85

86
87
88
89
90
91

92
93
94
95

96

98

929
100
101
102
103
104
105

106
107
108

Under review as a conference paper at ICLR 2026

AURNRY

——— END FILE ———

Please first localize the bug based on the issue statement, and then
generate »SEARCH/REPLACEx edits to fix the issue.

Every *SEARCH/REPLACE* edit must use this format:

1. The file path

2. The start of search block: <<<<<<< SEARCH

3. A contiguous chunk of lines to search for in the existing source
code

4. The dividing line: =======

The lines to replace into the source code

6. The end of the replace block: >>>>>>> REPLACE

ual

Here is an example:
*Y'python

### mathweb/flask/app.py
<<<<<<< SEARCH

from flask import Flask

import math
from flask import Flask
>>>>>>> REPLACE

AURNRY

Please note that the *SEARCH/REPLACEx edit REQUIRES PROPER INDENTATION.
If you would like to add the line ' print (x)’, you must
fully write that out, with all those spaces before the code!

Wrap the »SEARCH/REPLACE* edit in blocks ‘‘‘python...‘‘‘.

Listing 3: Agentless prompt template: Code edit for BugFixer.

We are currently solving the following issue within our repository.
Here is the issue text:

——— BEGIN ISSUE ——-—

{related issue / PR title content}

-—— END ISSUE ---

Below are some code segments, each from a relevant test file. One or
more of these files may be added some new tests which can reproduce
the issue.

—-—— BEGIN FILE ——-

AURNRY

### {filenamel}
{content of filenamel}

### {filename2}
{content of filename2}

{...}

AURNRY

——— END FILE ———

Please first localize some possible locations in those test files
within the repo, and then generate *SEARCH/REPLACEx edit updates to
the xxtestxx files in the repo, so that the erroneous scenario
described in the problem is reproduced.

Every *SEARCH/REPLACE* edit must use this format:
1. The file path

17




109
110

138
139
140
141
142
143
144

Under review as a conference paper at ICLR 2026

2. The start of search block: <<<<<<< SEARCH

3. A contiguous chunk of lines to search for in the existing source
code

4. The dividing line: =======

The lines to replace into the source code

6. The end of the replace block: >>>>>>> REPLACE

ul

Here is an example:
‘Y'python

### mathweb/flask/app.py
<<<<<<< SEARCH

from flask import Flask

import math
from flask import Flask

def test_ _rules_ std_L060_raised() —-> None:
try:
sgl = "SELECT IFNULL (NULL, 100),
NVL (NULL, 100) ; "
result = lint(sgl, rules=["L060"])
assert len(result) ==

except:
print ("Other issues")
return
try:
assert result[0] ["description"] == "Use ’'COALESCE’ instead of '
IFNULL’ ."
assert result[l]["description"] == "Use ’'COALESCE’ instead of '
NVL” ."

print ("Issue resolved")
except AssertionError:

print ("Issue reproduced")

return

return
>>>>>>> REPLACE

VRN

Please note that the x*SEARCH/REPLACEx edit REQUIRES PROPER INDENTATION.
If you would like to add the line ' print (x)’, you must
fully write that out, with all those spaces before the code!

Wrap the *SEARCH/REPLACE* edit in blocks ‘‘‘python...‘‘‘.

Listing 4: Agentless prompt template: Code edit for TestWriter.

PR commit packs. The PR commit packs used in the mid-training data recipe are processed with
the following rules:
* Discard PRs that include modifications to files other than {.py, .md, .rst}.

 For {.md, .rst} file modifications, retain the “diff —git” signature but remove the actual
content changes.

 Ensure that each PR modifies at most five Python files (with at least one required). PRs
exceeding this limit are discarded.

* Apply a filtering script to exclude PRs containing non-{.py, .md, .rst} file modifications or
those modifying more than five Python files.

* Filter out all of the developer signatures and GitHub IDs for ethics considerations.

A total of ~20B tokens for PR commit packs are obtained after applying these filtering rules.

18



149

150

151

152

153

154

155

156

15

158
159

160

161

162

163
164

165

166

167

168

169
170

Under review as a conference paper at ICLR 2026

In addition, we incorporate synthetic data to further enhance both the reasoning and agentic capa-
bilities of the model. A key observation is that the ground-truth reward for the localization stage
in the Agentless setting can be derived directly from the diff patch, since the set of files requiring
modification is explicitly indicated.

Synthetic reasoning data. To improve reasoning quality, we perform a lightweight SFT of the
Qwen-2.5-72B-Instruct model on 2,000 R1 trajectories. The resulting model is then used to generate
large-scale rollouts for the localization stage of both BugFixer and TestWriter. We retain only the
rollouts that achieve exactly correct file localizations. This procedure yields approximately ~10B
tokens of reasoning-intensive data dedicated to Agentless localization in the mid-training recipe.

Synthetic agentic interactions. To strengthen agentic capabilities, we simulate agent—environment
interactions with a custom tool set designed to mimic file-system operations without execution. This
design is motivated by practical constraints: while repository snapshots from GitHub are available,
not all snapshots are equipped with an executable Docker environment. As a result, shell commands
are disabled. Instead, we introduce synthetic tools that allow the agent to view file contents and per-
form keyword-based search for localization, which effectively reproduces the first stage of Agentless
but in an agentic manner. The specification of this tool set is covered in the system prompt, which is
then used to elicit agentic interaction rollouts from the Qwen-2.5-72B-Instruct model. The complete
system prompt is provided in Prompt[5] We apply a loss mask only to the system prompt, and en-
able the model to simultaneously learn both actions and observations along the trajectory, inspired
by Yang et al.|(2024b)). This approach integrates both policy and world modeling into mid training.

Your job is to look through the given GitHub problem description and
Repository structure, and edit updates to the files in the repo to
resolve the problem.

The job is divided into two stages:

+ In Stage 1, you should localize the files the files that you would
need to edit to fix the problem.

+ In Stage 2, you should edit the updates to the repo.

Let’s begin from Stage 1 to localize the bugs:

In Stage 1, besides reading the provided Repository structure, you can
use the following skills for exploration. The skills are to be
called in an environment wrapped by <execute> and </execute>, listed

in the form of python functions as below:

open_file(path: str, is_all | None = False, line_number: int | None =

1, context_lines: int | None = 100) -> None:

Opens the file at the given path in the editor for exploration.

By default, only the first 100 lines of the file are displayed. To
open the entire file, set ‘is_all‘ to ‘True‘.

The ‘context_lines‘' parameter determines the maximum number of
lines to be displayed, with a cap of 100 lines. Use ‘scroll_up‘
and ‘scroll_down' to view more content up or down.

If a ‘line_number‘' is provided, the window will be moved to include

that line.

Note: When ‘is_all' is set to ‘True‘, the ‘line_number‘' and '
context_lines' parameters will not take effect, as the entire
file will be opened and displayed without any line-specific
focus or context limitation.

Args:

path: str: The path to the file to open. the full path of the
filename should be provided.

is_all: bool | None = False: If set to ‘True‘', the entire file will

be opened. Defaults to ‘False’.

line_number: int | None = 1: The line number to move to. Defaults
to 1.
context_lines: int | None = 100: Only shows this number of lines in

the context window (usually from line 1), with line_number as
the center (if possible). Defaults to 100.

goto_line(line_number: int) -> None:
Moves the window to show the specified line number.

19



171
173
174
175

176
177

178
179
180
181
182
183
184
185
186
187
188
189
190

191
192

193

194
195

196

197
198
199

200
201

202

203
204
205
206
207
208
209

216

217

Under review as a conference paper at ICLR 2026

Args:
line_number: int: The line number to move to.

goto_class_or_func(class_or_func_name: str) —-> None:
Moves the window to show the specified class or function in the
current open file.
Args:
class_or_func_name: str: The name of the given class, function, or
method in a class to move to.

scroll _down () —-> None:
Moves the window down by 100 lines.
Args:
None

scroll_up () —-> None:
Moves the window up by 100 lines.
Args:
None

search_dir (search_term: str, dir_path: str | None) -> None:

Searches for search_term in all files in dir. If dir is not
provided, searches in the entire repository. Filename, fine-
grained line number, and the relative class or function it is
located in (if applied) will be shown for each found position.

Args:

search_term: str: The term to search for.

dir_path: str: The path to the directory to search. Should be full
path filename.

search_file(search_term: str, file_path: str | None = None) —-> None:

Searches for search_term in file. If file is not provided, searches
in the current open file. Filename, fine-grained line number,
and the relative class or function it is located in (if applied)
will be shown for each found position.

Args:

search_term: str: The term to search for.

file _path: str | None: The path to the file to search. Should be
full path filename if provided.

find_file(file_name: str, dir_path: str | None) —-> None:
Finds all files with the given name in the specified directory. If
dir is not provided, find in the entire repository.
Args:
file_name: str: The name of the file to find.
dir_path: str: The path to the directory to search.

str_replace(path: str, old_str, new_str)
old_str=[the old content to be replaced]
new_str=[the new content after replacement]
—> None:

Replace the old content (old_str) in the file at the given path
with the new content (new_str). This is the skill that you will
be using to edit the updates.

Args:

path: str: The path to the file to be updated. The full path of the

filename should be provided.

old_str: str: The old content to be replaced. Note that this
argument should be written in a new line starting with "old_str
=", and the string content should not be quoted.

new_str: str: The new content after replacement. Note that this
argument should be written in a new line starting with "new_str
=", and the string content should not be quoted.

Example:

20




218
219
220
221
222
223
224
225

226

.
228

229

30

R}

31

RN}
I}

)
o
vy

236

237

239
240
241
242
243
244

254
255
256

258

259

260
261

262

Under review as a conference paper at ICLR 2026

Assuming a call is shown as follows:

AURNRY

str_replace("filename.py", old_str, new_str)

old_str= a
new_str= b
@
Then it will function as replacing the ' a\n’ string with the '/

b\nc ’ string in the ‘filename.py‘ file.

insert (path: str, insert_line: int, new_str)
new_str=[the new content to be inserted]
—> None:
Insert the new content (new_str) in the file at the given path.
When you want to add an entirely new class/function to the file,
it would be better to use this method.
Args:
path: str: The path to the file to be updated. The full path of the
filename should be provided.
insert_line: int: The Line number below which the new content is to
be added. This Line number should be within the range of lines
of the file: [0, Lines_of_the_File]. Specifically, when
insert_line = 0, the added content starts from the top of the
file.
new_str: str: The new content to be inserted. Note that this
argument should be written in a new line starting with "new_str
=", and the string content should not be quoted.

Example:
Assuming a call is shown as follows:

AURNRY

insert ("test_filename.py", 5, new_str)

new_str= def test_add(

|~ ~

assert add(l, 2) =3
Then it will function as inserting the string ’ def test_add() :\
n assert add(l, 2) == 3’ below the Line 5 of the '

test_filename.py' file.

stop () —> None:
Terminate the editing process.
Args:
None

NOTE:
Responses should be concise.
When exploring, you should attempt fewer things at a time: Include ONLY
ONE <execute> per response, and use a SINGLE skill listed above
within the <execute> environment. DO NOT use other python functions,
as the environment does not support them.
You should first reason in the verbal form, then use a skill with <
execute> and </execute>.
You should avoid apologies and thanks in the responses.

When you finish exploring and analyzing with the provided skills,
please return at most 3 files with the full path only. Each full
path should be placed in a single line, INSTEAD OF BROKEN WITH
MULTIPLE LINES.

The returned files should be separated by new lines ordered by most to
least important, wrapped with ‘'' and NOTHING ELSE.

An example for a full output:

AURNRY

full_path_to_filel.py

21




Under review as a conference paper at ICLR 2026

full _path_to_file2.py

AURNRY

Now Let’s start!

### GitHub Problem Description ###
{issue content}

### Repository Structure ###

{file structure}

ki

Listing 5: A non-execution set of tools empowering the simulation of agentic interaction trajectories.

After completing the initial localization stage, the agent is guided into the code-editing phase
through a follow-up instruction: “Now let’s move on to Stage 2 and edit the updates. Remem-
ber, you can still decide at any point whether a file actually requires modification.” We retain partial
rollouts from Stage 1, provided that the localization results include at least one correct file.

In Stage 2, we first simulate the agent’s interaction by allowing it to open incorrectly localized files,
and we artificially inject agentic reasoning patterns such as “I realize that I do not need to modify
this file” after inspecting the file content. This procedure is designed to strengthen the self-reflection
ability of the agent by exposing it to false-positive contexts regarding the issue to be solved.

Subsequently, we transcribe the ground-truth PR commit pack into trajectory form: each commit
message is treated as the agent’s reasoning step, and each code update is represented as the cor-
responding action, expressed through the “str_replace” or “insert” tools. These interactions are
appended to the trajectory, followed by a terminating “stop” call. Due to storage constraints on
repository snapshots, this trajectory simulation is applied to only a subset of PRs. Overall, this pro-
cess contributes approximately ~10B tokens of agentic interaction data to the mid-training recipe.
Future directions for scaling this component in the data recipe include leveraging the idea of envi-
ronment scaling (Yang et al., 2025c)).

Training. We perform mid-training using a standard next token prediction approach, initialized
from the Qwen2.5-72B-Base (Qwen et al.,|2024) model. We upsample the synthetic part of the data
by a factor of 4 during mid-training, inspired by the practice in |Grattafiori et al.|(2024); Qwen et al.
(2024);|Gu et al.|(2025)). A global batch size of 256 with a maximum sequence length of 32K tokens
is used, optimizing for long-context capabilities necessary for real-world software engineering tasks.
The learning rate is set to 2e-5, with a cosine decay schedule and a minimum learning rate of 2e-6.
The warm-up phase covers over approximately 3 billion tokens, followed by learning rate decay
until approximately 150 billion tokens are processed. The training was conducted on 256 NVIDIA
H100 GPUs and lasted for 213 hours.

B DOCKER ENVIRONMENTS

Table 3: The sources of the docker environments used in the development of Kimi-Deyv.

Dataset Name Dataset Link Number of Dockers
SWE-Gym (Pan et al. https://huggingface.co/ 2,356
(2024)) datasets/SWE-Gym/

SWE-Gym/
SWE-bench-extra https://huggingface.co/ 3,846

(Badertdinov et al.[(2024a)) |datasets/nebius/

SWE-bench-extra/
R2E-Gym-Lite (Jain et al. https://huggingface.co/ 3,671
(2025)) datasets/R2E-Gym/

R2E-Gym-Lite

22


https://huggingface.co/datasets/SWE-Gym/SWE-Gym/
https://huggingface.co/datasets/SWE-Gym/SWE-Gym/
https://huggingface.co/datasets/SWE-Gym/SWE-Gym/
https://huggingface.co/datasets/nebius/SWE-bench-extra/
https://huggingface.co/datasets/nebius/SWE-bench-extra/
https://huggingface.co/datasets/nebius/SWE-bench-extra/
https://huggingface.co/datasets/R2E-Gym/R2E-Gym-Lite
https://huggingface.co/datasets/R2E-Gym/R2E-Gym-Lite
https://huggingface.co/datasets/R2E-Gym/R2E-Gym-Lite

Under review as a conference paper at ICLR 2026

Docker environment construction. To validate non-ground-truth patches generated by model roll-
outs and expand our dataset, we required executable Docker environments. We combined publicly
available datasets with custom-configured Docker environments (see Table. [3). Among them, SWE-
Gym and R2E-Gym-Lite open-source their dockers that we can directly use. For datasets lacking
Docker support (SWE-Bench-Extra), we implemented an automated configuration method:

Initialize a Docker environment with fixed dependencies.
Select Python version based on commit year.

Install dependencies via requirements.txt and “pip install -e
Resolve ModuleNotFound errors during test execution.

M

Validate success if a FAIL_TO_PASS test transitions from failing (without gt _patch) to
passing (with gt _patch).

Out of 6.38k SWE-bench-extra instances, 3,846 environments are successfully constructed and sub-
sequently used for cold-start and RL training.

C MORE DETAILS OF RL TRAINING

C.1 RL TRAINING OBJECTIVE

For the RL algorithm, we adopt the policy optimization method proposed by Kimi k1.5 (Team et al.,
2025)), which has shown promising results on reasoning tasks in both math and code. Unlike GRPO
(Shao et al., |2024)), which eliminates the critic by using average rewards for advantage estimation,
Kimi k1.5 (Team et al., [2025) adopts a simpler policy gradient approach. Specifically, we optimize
the policy mg using the following objective:

G

m9(04]q)
Jo = Equp(Q){0:}E  ~mo(-la) {; |:<Ri(Qa 0;) —mean({R;}§.;) — 7log Wﬂif(oi|Q)>:| }
(2)

where ¢ is a prompt sampled from the prompt data distribution P(Q). {0;}%., are G responses
generated by the current policy my for prompt q. R;(q,0;) is the reward for response o;. The
mean reward across the G responses is used as a baseline to center the reward (similar to advantage
estimation). The final term penalizes divergence from a reference policy 7, ., with weight 7. This
formulation avoids the need for a critic or value model by using group-wise relative rewards, and
supports stable updates through KL regularization.

C.2 PROMPT SET SELECTION

461 —— Bugfixer RL
—e— w/o Positive Reinforce

In the main text, we introduce the adaptive prompt selec- u
tion method for RL training. Specifically, we construct
an initial prompt set of 1,200 problems by selecting those
with pass@16 > 0 from SWE-Gym (Pan et al., 2024)),
SWE-bench-extra (Badertdinov et al., [2025), and R2E-
gym (Jain et al.| [2025). Then, every 100 training steps,
we expand the prompt set by adding 500 new problems.
These additional problems are randomly sampled from #

~
S

Pass Rate (%)
w o
g &

the pool of problems for which the current model has 0 50 100 150 200 250 300 350 400 450 500
. . . . RL Training Steps

pass@16 = 0, thereby progressively increasing the dif-

ficulty.

Figure 8: Ablation of positive example

reinforcement during 72B Bugfixer RL.
C.3 RL EXPERIMENT ABLATION

Figure [0] shows the performance of the Qwen2.5-14B
model in RL experiments, where both the BugFixer and the TestWriter exhibit clear scaling law
behavior.

Furthermore, Figure [§]illustrates the effect of our proposed positive example reinforcement. We
incorporated this improvement in the later stage of training and found that the RL of BugFixer

23



2717
278

279

280

281

282
283

Under review as a conference paper at ICLR 2026

achieved better performance compared to not using this trick. The main reason is that positive
examples can reinforce the correct reasoning patterns, enabling the model to converge more quickly,
especially when its exploration ability diminishes in the later stages. It is noticed that a similar trick
was also applied in the development of the Seed1.5-thinking model (Seed et al., [2025).

8500{ —=— Token Length 34 55001 Token Length )
—e— Pass Rate (%) —e— Reproduced Rate (%) 26
2 5000 S
= 8000 s 5 24 P
E’ < IS} 5]
) 30 9 5 4500 222
— 7500 IS — |5
g Y § g
e 283 % 4000 203
I} o o 20 8
& 7000 & B 5
26 3500 18 ©
6500
24 3000
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
RL Training Steps RL Training Steps
(a) 14B BugFixer (b) 14B TestWriter

Figure 9: RL scaling experiments on Qwen2.5-14B model.

D AGENT INFRASTRUCTURE

We present a unified sandbox architecture designed for hybrid cloud cluster environments, lever-
aging Kubernetes orchestration to provide researchers with a flexible, secure, and highly scalable
code execution platform. The architecture is accessible through a Python SDK and implements an
ephemeral, use-and-destroy paradigm that ensures resource efficiency and security isolation. The
system demonstrates exceptional scalability, supporting over 10,000 concurrent sandbox instances
while maintaining performance stability. This infrastructure serves as a foundational platform for
diverse computational scenarios, including automated code evaluation and RL experiments.

The system employs a sidecar container pattern to efficiently orchestrate and manage a heteroge-
neous collection of over 25,000 docker images sourced from multiple datasets. This architectural
choice enables optimal resource utilization while maintaining isolation between different execution
environments. Additionally, we have developed a proprietary Software Engineering (SWE) image-
building pipeline that continuously expands the repository of supported images, thereby enhancing
the system’s adaptability to diverse computational workloads and research requirements.

E ANALYSIS FOR SWE-AGENTS

E.1 STAGE ANNOTATION FOR SWE-AGENT TRAJECTORIES

In this section, we present how we use a frontier LLM to annotate the SWE-Agent stage to which
each interaction turn within the trajectory rollout belongs. While we have briefly introduced the
five stages suggested in the prompt of the SWE-Agent prompt in Section[d] we attach the excerpt in
Listing 6] for greater clarity:

Follow these steps to resolve the issue:

1. As a first step, it might be a good idea to find and read code
relevant to the <pr_description>

2. Create a script to reproduce the error and execute it with ‘python <
filename.py>"' using the bash tool, to confirm the error

3. Edit the source code of the repo to resolve the issue

Rerun your reproduce script and confirm that the error is fixed!

5. Think about edgecases and make sure your fix handles them as well

[IsN

24



204
295
296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

313

314

Under review as a conference paper at ICLR 2026

Listing 6: The excerpt of the five-stage declaration in the SWE-Agent prompt.

It should be noted that the agent could flexibly transit across the five stages during its working pro-
cess. For example, after Stage 4 when the agent rerun the test script, possibilities are that erroneous
information remains, and this is when the agent goes back to Stage 3 to refine its code repair with
reflection; Similar backtracing behavior could be observed from Stage 5 to Stage 3 as well, where
the initial code repair has proven correct under the initial test script the agent composes in Stage 2,
but fails some edge testcase the agent proposes in Stage 5.

To further analyze the BugFixer and the reflection skill prior, we need to realize which stage each
turn along the SWE-Agent trajectory belongs to. As no strict boundaries or special prompt notes
are set between each consecutive stage, we leverage an LLLM for annotation. The annotation system
prompt we set in kimi-k2-0711-preview is shown in Listing[7}

You are a professional inspector that can analyze the provided agentic
interaction trajectory.

The trajectory you are going to analyze is made by an agent that
interacts with a computer to solve tasks. This agent has access to
the following functions:

———— BEGIN FUNCTION #1: bash ———-
Description: Execute a bash command in the terminal.

Parameters:
(1) command (string, required): The bash command to execute. Can be
empty to view additional logs when previous exit code is ‘-1‘'. Can
be ‘ctrl+c' to interrupt the currently running process.
———— END FUNCTION #1 —-——-—

———— BEGIN FUNCTION #2: submit ----

Description: Finish the interaction when the task is complete OR if the
assistant cannot proceed further with the task.

No parameters are required for this function.

———— END FUNCTION #2 ————

———— BEGIN FUNCTION #3: str_replace_editor —--——-
Description: Custom editing tool for viewing, creating and editing
files
* State is persistent across command calls and discussions with the
user
* If ‘path' is a file, ‘view' displays the result of applying ‘cat -n‘.
If ‘path' is a directory, ‘view' lists non-hidden files and
directories up to 2 levels deep
+ The ‘create' command cannot be used if the specified ‘path‘ already
exists as a file
+ If a ‘command' generates a long output, it will be truncated and
marked with ‘<response clipped>‘
* The ‘undo_edit‘' command will revert the last edit made to the file at
‘path?

Notes for using the ‘str_replace' command:

* The ‘old_str' parameter should match EXACTLY one or more consecutive
lines from the original file. Be mindful of whitespaces!

* If the ‘old_str' parameter is not unique in the file, the replacement
will not be performed. Make sure to include enough context in
old_str' to make it unique

* The ‘new_str' parameter should contain the edited lines that should
replace the ‘old_str‘

Parameters:

25



323
324
325
326
327
328

329

330

341

344

Under review as a conference paper at ICLR 2026

(1) command (string, required): The commands to run. Allowed options
are: ‘view', ‘create', ‘str_replace', ‘insert', ‘undo_edit‘.
Allowed values: [‘view', ‘create‘, ‘str_replace‘, ‘insert‘, ‘undo_edit

(2) path (string, required): Absolute path to file or directory, e.g.
‘/repo/file.py"' or ‘/repo‘

(3) file_text (string, optional): Required parameter of ‘create’
command, with the content of the file to be created.

(4) old_str (string, optional): Required parameter of ‘str_replace’
command containing the string in ‘path' to replace.

(5) new_str (string, optional): Optional parameter of ‘str_replace’
command containing the new string (if not given, no string will be

added) . Required parameter of ‘insert‘ command containing the
string to insert.

(6) insert_line (integer, optional): Required parameter of ‘insert'®
command. The ‘new_str' will be inserted AFTER the line ‘
insert_line‘ of ‘path‘.

(7) view_range (array, optional): Optional parameter of ‘view'
command when ‘path‘ points to a file. If none is given, the full
file is shown. If provided, the file will be shown in the
indicated line number range, e.g. [11, 12] will show lines 11 and
12. Indexing at 1 to start. Setting ‘[start_line, -1]' shows all
lines from ‘start_line' to the end of the file.

———— END FUNCTION #3 ———-

The agent was instructed with the following:

A python code repository has been uploaded in the directory /testbed.

Implement the necessary changes to the repository so that the
requirements specified in the <pr_description> are met.

All changes to any of the test files described in the <pr_description
> have already been taken care of. This means no need to modify the
testing logic or any of the tests in any way.

Make the minimal changes to non-tests files in the /testbed directory

to ensure the <pr_description> is satisfied.

*

*

*

*

The agent was suggested to follow the following steps to resolve the
issue:

1. As a first step, it might be a good idea to find and read code
relevant to the <pr_description>

2. Create a script to reproduce the error and execute it with ‘python <
filename.py>"' using the bash tool, to confirm the error

3. Edit the source code of the repo to resolve the issue

4. Rerun your reproduce script and confirm that the error is fixed!

5. Think about edgecases and make sure your fix handles them as well

The agent was encouraged to think thoroughly, and it’s fine if it’s
very long.

You are going to inspect this agent’s interaction trajectory with a
computer to solve the given task in the <pr_description>. One turn
of interaction contains a pair of OBSERVATION and ACTION, where the
OBSERVATION comes from the computer, and the ACTION is taken by the
agent.

For each turn of interaction, determine which step (of the
aforementioned five) this turn belongs to. Output a single number
(175) ONLY in a separate line as your classification (DO NOT OUTPUT
ANY OTHER WORDS THAN THE DIGIT) .

You can think before make the inspection. When thinking, wrap your
thought with <think> and </think>. Don’t forget to output your final
inspection after thinking.

Listing 7: The annotation prompt for SWE-Agent stages.

26



345
346

348
349

350
351
352
353
354
355

356

361

362
363
364
365

366
367
368

Under review as a conference paper at ICLR 2026

To provide a clearer understanding of the trajectory, we incorporate most of the tool descriptions and
instructions from the SWE-Agent system prompt into the annotation system prompt. The annotation
is conducted in a multi-round manner, leveraging the agent’s previous actions and observations, as
well as the stage classifications of earlier turns, to better exploit contextual information. At the
i-th round of annotation, the observation—action pair from turn ¢ of the SWE-Agent trajectory is
appended as input, and the annotator is expected to output the corresponding stage classification.

E.2 COMPARATIVE STUDY

Based on the automatic stage annotation in the above section, we present a comparative study by
inspecting the performance on sympy__sympy—-20590 among the Kimi-Dev under Agentless, and
each of the Base, MT, SFT, and RL priors with SWE-Agent adaptation.

The problem statement of sympy__sympy-20590 is listed in Listing @

Symbol instances have __dict___ since 1.772
In version 1.6.2 Symbol instances had no ‘__dict__ ' attribute
‘Y 'python

>>> sympy.Symbol ("s’).__dict__

AttributeError Traceback (most recent call last)
<ipython-input-3-e2060d5eec73> in <module>
————> 1 sympy.Symbol (’s’).__dict___

AttributeError: ’Symbol’ object has no attribute ’__dict_ '
>>> sympy.Symbol ("s”).__slots___
(" name’ , )

AURNRY

This changes in 1.7 where ‘sympy.Symbol (’s’)._ _dict__ ‘' now exists (and
returns an empty dict)
I may misinterpret this, but given the purpose of ‘_ _slots__ ', I assume

this is a bug, introduced because some parent class accidentally
stopped defining ‘__slots__ ‘.

Listing 8: The problem statement of sympy__sympy-20590.

It is observed that the main difficulty in resolving the issue lies in the realization of the “some parent
class” referenced in the problem. In fact, the hints text of this problem, which reflects the discussion
of the developers under the original issue, reveals a much more in-depth investigation into the issue
(Listing 9):

It seems that Basic now inherits ‘DefaultPrinting‘ which I guess doesn’
t have slots. I'm not sure if it’s a good idea to add ‘__slots__‘' to
that class as it would then affect all subclasses.

Using slots can break multiple inheritance but only if the slots are
non-empty I guess. Maybe this means that any mixin should always
declare empty slots or it won’t work properly with subclasses that
have slots...

I see that ‘EvalfMixin' has ‘__slots__ = ().
I guess we should add empty slots to DefaultPrinting then.

Listing 9: The excerpted hints text of sympy__sympy-20590.

According to the discussion, it is clear that the code repair would be to “add empty slots to Default-
Printing”, which naturally leads to the navigation towards the file related to the implementation of

27



369
370
371
372
373
374
375
376
377

379
380
381
382
383
384
385

386
387

Under review as a conference paper at ICLR 2026

the printer (sympy/core/_print_helpers.py, which is also the file updated by the ground-
truth patch.) However, the hints_text information in the test set is not allowed to be used in the
problem-solving process, which challenges the reasoner or the agent to figure out “the parent class
that stopped defining ‘__slots__" " autonomously.

We first examine Kimi-Dev under Agentless. None of the 40 runs succeeded in producing the
correct file localization. In most cases, the updates are made to sympy/core/symbol.py,
which is a plausible choice since the reported problem is triggered by sympy.Symbol (’s’),
and symbol.py should contain the definition of the Symbo1l class. This line of reasoning, how-
ever, diverges from the correct solution. A small number of runs attempt alternative localizations,
such as sympy/core/{basic.py, expr.py},butthese are also incorrect.

The limitation of the Agentless framework becomes more obvious when the focus is shifted to the
inspection over the SWE-Agent trajectories. For all of the Base, MT, SFT, and RL priors with
SWE-Agent adaptation, the resulting trajectories always contain a test-reproducing phase (marked
as Stage “2” by the annotator), with the generated script reads like:

from sympy import Symbol

# Try to access __dict__ on a Symbol instance
s = Symbol(’'s’)
print ("Symbol.__slots__ :", s.__slots__ )
try:
print ("Symbol.__dict__:", s.__dict_ )

except AttributeError as e:
print ("Error:", e)

Listing 10: An exampled reproducing script in Stage 2 within the SWE-Agent trajectories in
sympy__sympy—-20590.

It is trivial for an agent to generate a reproducing script of this form, as it directly transcribes the
case described in the problem statement. Executing the script provides an unambiguous signal of
whether the issue is resolved: the attribute s.__dict__ should no longer exist, and the expected
Error: message should appear in the standard error output. Indeed, observing the initial comple-
tion of Stage 3 across all trajectories reveals that none of the agents succeeded on their first attempt.
However, the incomplete status is consistently exposed in Stage 4, when the script is rerun and
s._.dict__still persists. This progression highlights the advantage of the SWE-Agent framework
over the Agentless paradigm, as the agent is afforded additional opportunities for iterative refinement
rather than being limited to a single attempt.

We continue to analyze the behavior of the agents adapted from the Base, MT, and SFT priors. Due
to the difficulty of the issue, it is non-trivial to correctly localize the error through their agentic
reasoning: the interactions show that the agents were switching among several file candidates, but
failed to reach the correct one. The only exception comes from the agent adapted from the RL prior,
which marks its unique success on this instance through accurate agentic reasoning. We attach the
intermediate process from the initial Stage-3 moment to the Stage-3 revisit (refining the initial code
repair) within the successful trajectory, tagged by the stage annotator:

OBSERVATION:

Symbol.__slots__: ('name’,)

Symbol.__dict__: {}

ACTION:

Hmm, it seems like the issue is still there. Let’s check if there are
any other classes in the hierarchy that might be missing ‘__slots_

<function=bash>

<parameter=command>python -c "from sympy import Symbol; s = Symbol(’s’)
; for cls in type(s).__mro_ : print(cls._ _name_ , "has __ _slots__:’,

hasattr(cls, ’__slots_ ’))"</parameter>

28



389
390
391
392

393

394
395
396
397
398
399
400
401
402
403
404
405
406

408

425

426

428
429
430
431

433
434
435
436
437
438
439
440
441

442
443
444
445
446
447
448
449

Under review as a conference paper at ICLR 2026

</function>

OBSERVATION:
File "<string>", line 1
from sympy import Symbol; s = Symbol(’s’); for cls in type(s).
__mro__: print(cls._ _name__, "has __slots__:’, hasattr(cls,
__slots__ "))

SyntaxError: invalid syntax

ACTION:
Let’s try a different approach:

<function=str_replace_editor>
<parameter=command>create</parameter>
<parameter=path>/testbed/check_slots.py</parameter>
<parameter=file_text>

from sympy import Symbol

s = Symbol(’'s’)
for cls in type(s).__mro___

")
if hasattr(cls, ’'_ _slots_ ’):
print (£"{’ ’"x16}__slots__ value: {cls.__slots__}")
</parameter>
</function>

OBSERVATION:
File created successfully at: /testbed/check_slots.py

ACTION:

<function=bash>

<parameter=command>python /testbed/check_slots.py</parameter>
</function>

Now I see the issue! ‘Printable' doesn’t have ‘_ slots_ ' defined.
s check the ‘Printable‘ class:

<function=str_replace_editor>

<parameter=command>view</parameter>
<parameter=path>/testbed/sympy/core/_print_helpers.py</parameter>
<parameter=view_range>[1l, 30]</parameter>

</function>

OBSERVATION:

29

OBSERVATION:

Symbol has _ slots_ : True
__slots__ value: ('name’,)

AtomicExpr has _ slots_ : True
__slots__ wvalue: ()

Atom has _ _slots_ _: True
__slots__ value: ()

Expr has _ _slots_ _: True
__slots__ wvalue: ()

Boolean has _ _slots_ _: True
__slots__ value: ()

Basic has _ slots_ : True
__slots__ value: (’_mhash’, ’'_args’, ’'_assumptions’

Printable has _ slots_ : False

EvalfMixin has _ slots_ : True
__slots__ wvalue: ()

object has _ slots_ : False

ACTION:

’

print (f"{cls.__name__ :15} has __slots__: {hasattr(cls, ’'__slots__')

)

Let’




450

451

452

453
454
455
456
457
458
459
460
461
462

463

464

465
466
467

468
469
470

471
472
473
474

475
476
477
478
479
480

481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504

505

Under review as a conference paper at ICLR 2026

Here’s the result of running ‘cat -n' on /testbed/sympy/core/
_print_helpers.py:

1 nnn

\

2 Base class to provide str and repr hooks that ‘init_printing
can overwrite.

This is exposed publicly in the ‘printing.defaults‘ module,

3
4
5 Dbut cannot be defined there without causing circular imports.
6 mmww

7

8

class Printable:

9 nnn
10 The default implementation of printing for SymPy classes.
11
12 This implements a hack that allows us to print elements of
built-in
13 Python containers in a readable way. Natively Python uses
‘lrepr() '
14 even if ‘‘str() ‘' was explicitly requested. Mix in this
trait into
15 a class to get proper default printing.
16
17 This also adds support for LaTeX printing in jupyter
notebooks.
1 8 nmnn
19
20 # Note, we always use the default ordering (lex) in __str_
and __repr_ ,
21 # regardless of the global setting. See issue 5487.
22 def _ str_ (self):
23 from sympy.printing.str import sstr
24 return sstr(self, order=None)
25
26 __repr_ = __str___
27
28 def _repr_disabled(self):
2 9 nmn
30 No-op repr function used to disable jupyter display
hooks.
ACTION:
We need to add ‘__slots__ = ()" to the ‘Printable' class as well:

<function=str_replace_editor>
<parameter=command>str_replace</parameter>
<parameter=path>/testbed/sympy/core/_print_helpers.py</parameter>
<parameter=old_str>

class Printable:

The default implementation of printing for SymPy classes.

This implements a hack that allows us to print elements of built-in
Python containers in a readable way. Natively Python uses ‘‘repr()

even if ‘‘str() ‘' was explicitly requested. Mix in this trait into

a class to get proper default printing.

This also adds support for LaTeX printing in jupyter notebooks.
nmmwn

</parameter>

<parameter=new_str>

class Printable:

nun

The default implementation of printing for SymPy classes.

30




506
507

508
509
510
511
512
513
514
515
516
517
518

530
531

532

Under review as a conference paper at ICLR 2026

This implements a hack that allows us to print elements of built-in
Python containers in a readable way. Natively Python uses ‘‘repr()
even if ‘‘str() ‘' was explicitly requested. Mix in this trait into
a class to get proper default printing.

This also adds support for LaTeX printing in jupyter notebooks.

__slots__ = ()
</parameter>
</function>

Listing 11: The intermediate reflection process between the two Stage-3 moment of the successful
trajectory in sympy__sympy—-20590.

Listing [TT] shows the advanced reflection capability through slot checking along the entire class
hierarchy, which successfully leads to the observation of the erroneous Printable. The following
behavior from the agent includes the routine of test rerun, and the observation of passing the test
script (Listing [T0). This chain of actions recovers and resonates with the developer discussions in
hints_text (Listing[d), showing the superior reflection skill in the RL prior over other priors.

E.3 PATTERN COMPARISON BETWEEN SFT WITH EXPERT DATA AND END-TO-END RL

In this section, we compare the patterns of the interaction trajectories of the RL prior that undergoes
(i) 1.5 x 228 SWE-Agent expert SFT tokens (later referred as “heavy SFT”) and (ii) 22' SWE-Agent
expert SFT tokens + end-to-end SWE-Agent RL (later referred as “light SFT + end-to-end RL”) as
a qualitative study for Figure[7]

We select an instance solved by both methods, matplotlib_matplotlib-13989, as case
study. We attach the actions along the two interaction trajectories for comparison.

The action patterns of the heavy SFT model read as Listing [T2}

ACTION O:
I’11l help you implement the necessary changes to fix the issue where ‘
hist () ' doesn’t respect ‘range=...‘ when ‘density=True‘'. Let’s

follow the steps:
1. First, let’s find and read the relevant code:

<function=bash>

<parameter=command>find /testbed -type f -name "x.py" | grep -v "test_
"</parameter>

</function>

ACTION 1:

Let’s look for the histogram implementation since that’s what we need
to fix. The PR mentions that the bug is in the ‘hist () ' function
when ‘density=True‘' and ‘range=...‘ is specified.

<function=bash>

<parameter=command>grep -r "def hist" --include="x.py" /testbed | grep
-v "test_"</parameter>

</function>

ACTION 2:

The main histogram implementation appears to be in ‘/testbed/lib/
matplotlib/axes/_axes.py'. Let’s look at that file:

31



546

549
550
551
552

553

586

587
588
589
590
591
592
593
594
595

596

Under review as a conference paper at ICLR 2026

<function=str_replace_editor>

<parameter=command>view</parameter>
<parameter=path>/testbed/lib/matplotlib/axes/_axes.py</parameter>
</function>

ACTION 3:
Let me look at the histogram implementation specifically:

<function=str_replace_editor>

<parameter=command>view</parameter>
<parameter=path>/testbed/lib/matplotlib/axes/_axes.py</parameter>
<parameter=view_range>[6365, 6899]</parameter>

</function>

ACTION 4:
Let me also look at the ‘histogram_bin_edges' function since it’s used
in the code:

<function=str_replace_editor>

<parameter=command>view</parameter>
<parameter=path>/testbed/lib/matplotlib/axes/_axes.py</parameter>
<parameter=view_range>[40, 60]</parameter>

</function>

ACTION 5:
2. Let’s create a script to reproduce the error:

<function=str_replace_editor>
<parameter=command>create</parameter>
<parameter=path>/testbed/reproduce.py</parameter>

ACTION 6:
Let’s run it to confirm the issue:

<function=bash>
<parameter=command>python /testbed/reproduce.py</parameter>
</function>

ACTION 7:

The issue is confirmed: when ‘density=True' is specified, the ‘range
=(0, 1) parameter is not respected. The bins should start at 0 and
end at 1, but they don’t.

3. Let’s fix the issue. Looking at the code, the problem is in the '

hist" method and specifically around line 6689-6690:

‘Y 'python
if density and not stacked:
hist_kwargs = dict (density=density)

AURNRY

The issue is that when ‘density=True‘, the ‘range‘' parameter gets lost
because we’re not including it in the ‘hist_kwargs'‘. Let’s modify
the code to fix this:

<function=str_replace_editor>
<parameter=command>str_replace</parameter>
<parameter=path>/testbed/lib/matplotlib/axes/_axes.py</parameter>

ACTION 8:
4. Let’s run the reproduce script again to confirm the fix:

<function=bash>

32




597
598
599
600
601
602
603
604
605

606

607

608

609

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625

626

627

628

629

630
631

632

633
634

635

636
637
638
639

640
641
642

Under review as a conference paper at ICLR 2026

<parameter=command>python /testbed/reproduce.py</parameter>
</function>

ACTION 9:
Great! The fix works. Now the bins start at 0 and end at 1 as expected.

5. Let’s think about edge cases:

1. When ‘range=None' - This should use the min/max of the data, which
is already handled correctly by the existing code

2. When ‘range' is specified but ‘density=False‘' - The range should be
respected, which it already is

3. When ‘range‘ is specified and ‘density=True‘' - The range should be
respected, which our fix now ensures

4. When ‘bins' is a sequence - The range should be ignored, which is
already handled by the code

5. When ‘range‘ includes values outside the data range - The histogram

should include empty bins for the range outside the data, which is
already handled by numpy’s histogram function

Let me test some of these edge cases to be sure:

<function=str_replace_editor>
<parameter=command>str_replace</parameter>
<parameter=path>/testbed/reproduce.py</parameter>

ACTION 10:

<function=bash>

<parameter=command>python /testbed/reproduce.py</parameter>
</function>

ACTION 11:
All test cases look good:

1. When ‘range=(0, 1) and ‘density=True‘', the bins start at 0 and end

at 1
2. When ‘range=None‘ and ‘density=True‘, the bins use the min/max of
the data
3. When ‘range=(0, 1) and ‘density=False‘, the bins start at 0 and end
at 1

4. When ‘bins' is a sequence, the range parameter is ignored and the
sequence is used directly
5. When ‘range=(-0.5, 1.5)"', the bins start at -0.5 and end at 1.5

The fix looks good and handles all edge cases correctly. Let me submit
the changes:

<function=submit>
</function>

Listing 12: The interaction made by the RL prior with 1.5 x 228 SWE-Agent SFT tokens on
matplotlib_matplotlib-13989.

The action patterns of the light SFT + end-to-end RL model read as Listing [I3}

ACTION O:
Understood. Let’s tackle this problem step by step.

First, I need to find the relevant code in the /testbed directory. The
user mentioned that the code is in /testbed, so I’1ll start by
listing the files there.

<function=str_replace_editor>
<parameter=command>view</parameter>

33



643
644
645
646
647

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

664

665

666

667
668
669
670
671
672
673

674

675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

<parameter=path>/testbed</parameter>
</function>

ACTION 1:

Hmm, the /testbed directory has a lot of files, but I need to focus on
the code related to the hist function. The hist function is part of
matplotlib.pyplot, so I should look for the pyplot module in the /
testbed/lib/matplotlib directory.

<function=str_replace_editor>
<parameter=command>view</parameter>
<parameter=path>/testbed/lib/matplotlib/pyplot.py</parameter>
</function>

ACTION 2:
Okay, I’1ll look at the hist function in pyplot.py.

<function=str_replace_editor>
<parameter=command>view</parameter>
<parameter=path>/testbed/lib/matplotlib/pyplot.py</parameter>
<parameter=view_range>[2610, 2625]</parameter>

</function>

ACTION 3:
The hist function in pyplot.py simply calls the hist method of the
current axes. So the actual implementation is in the Axes class.

I’11 look for the Axes.hist method in the /testbed/lib/matplotlib/axes
directory.

<function=str_replace_editor>
<parameter=command>view</parameter>
<parameter=path>/testbed/lib/matplotlib/axes</parameter>
</function>

ACTION 4:
The Axes.hist method is likely in _axes.py, which is where most of the
plotting methods are defined.

<function=str_replace_editor>

<parameter=command>view</parameter>
<parameter=path>/testbed/lib/matplotlib/axes/_axes.py</parameter>
</function>

ACTION 5:
I’11 look at the hist method in _axes.py.

<function=str_replace_editor>

<parameter=command>view</parameter>
<parameter=path>/testbed/lib/matplotlib/axes/_axes.py</parameter>
<parameter=view_range>[6365, 6400]</parameter>

</function>

ACTION 6:
I’11 look at more of the hist method to see where the range is handled.

<function=str_replace_editor>

<parameter=command>view</parameter>
<parameter=path>/testbed/lib/matplotlib/axes/_axes.py</parameter>
<parameter=view_range>[6400, 6450]</parameter>

</function>

ACTION 7:
I’11 look at the code where the bins are calculated.

34




Under review as a conference paper at ICLR 2026

702 | <function=str_replace_editor>

703 | <parameter=command>view</parameter>

704 | <parameter=path>/testbed/lib/matplotlib/axes/_axes.py</parameter>
705 | <parameter=view_range>[6450, 6500]</parameter>

706 | </function>

703 | ACTION 8:
709 | I”711 look at the code where the bins are calculated.

1
1l | <function=str_replace_editor>
12 | <parameter=command>view</parameter>
13 | <parameter=path>/testbed/lib/matplotlib/axes/_axes.py</parameter>
714 | <parameter=view_range>[6500, 6550]</parameter>
15 | </function>

1

1

1

I

7 |ACTION 9:
8 |I"11 look at the code where the bins are calculated.

720 | <function=str_replace_editor>

721 | <parameter=command>view</parameter>

722 | <parameter=path>/testbed/lib/matplotlib/axes/_axes.py</parameter>
723 | <parameter=view_range>[6550, 6600]</parameter>

724 | </function>

726 |ACTION 10:
727 | I”11 look at the code where the bins are calculated.

729 | <function=str_replace_editor>

730 | <parameter=command>view</parameter>

731 | <parameter=path>/testbed/lib/matplotlib/axes/_axes.py</parameter>
732 | <parameter=view_range>[6600, 6650]</parameter>

733 | </function>

735 |ACTION 11:
736 | I711 look at the code where the bins are calculated.

738 | <function=str_replace_editor>

739 | <parameter=command>view</parameter>

740 | <parameter=path>/testbed/lib/matplotlib/axes/_axes.py</parameter>
741 | <parameter=view_range>[6650, 6700]</parameter>

742 | </function>

744 | ACTION 12:

745 |Ah, here’s the key part. The code calculates the bins using np.
histogram, and if the range is specified, it’s passed to
histogram _bin_edges. But when density is True, the code may be
overriding the range.

747 |Wait, in the code:

749 |1f not input_empty and len(x) > 1:

750 if weights is not None:

751 _w = np.concatenate (w)

752 else:

753 _w = None

754

755 bins = histogram_bin_edges (np.concatenate (x),
756 bins, bin_range, _w)
757 |else:

758 hist_kwargs[’range’] = bin_range

760 |But when density is True, the code may be using the default range of
the data, not the specified range.

762 |Wait, no. The code for calculating the bins is:

35




763
764
765
766
767
768
769
770

789
790
791
792
793
794
795
q()h
797
798
799
800
801
802
803
804
805
806
807
808
809

821

Under review as a conference paper at ICLR 2026

if bins is None:
bins = rcParams[’hist.bins’]

if bin_range is not None:
bin_range = self.convert_xunits (bin_range)

if bin_range is None:
xmin = np.inf
xmax = -np.inf
for xi in x:
if len(xi):

xmin = min(xmin, np.nanmin (xi))
Xmax = max (xmax, np.nanmax (xi))
if not np.isnan([xmin, xmax]).any() and not (xmin > xmax) :
bin_range = (xmin, xmax)

# If bins are not specified either explicitly or via range,
# we need to figure out the range required for all datasets,
# and supply that to np.histogram.
if not input_empty and len(x) > 1:
if weights is not None:
_w = np.concatenate (w)
else:
_w = None
bins = histogram_bin_edges (np.concatenate (x),
bins, bin_range, _w)
else:
hist_kwargs[’range’] = bin_range

density = bool (density) or bool (normed)
if density and not stacked:
hist_kwargs = dict (density=density)

# List to store all the top coordinates of the histograms
tops = []
mlast = None
# Loop through datasets
for i in range (nx):
# this will automatically overwrite bins,
# so that each histogram uses the same bins
m, bins = np.histogram(x[i], bins, weights=w[i], =*xhist_kwargs)
m = m.astype (float) # causes problems later if it’s an int
if mlast is None:

But when density is True, the code passes density=True to np.histogram.
However, when density is True, np.histogram normalizes the counts,
but the bin edges are still determined by the range.

Wait, but the problem is that when density=True, the range is not
respected. The user’s code is:

_, bins, = plt.hist (np.random.rand(10), "auto", range=(0, 1), density

=True)
print (bins)

and the output is:
[0.00331535 0.18930174 0.37528813 0.56127453 0.74726092 0.93324731]

which is not from 0 to 1. But when density=False, the range is
respected.

36




822

849
850

851

852

859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

Under review as a conference paper at ICLR 2026

This suggests that when density=True, the code is not using the
specified range for the bins.

But why?
Let me look at the code again.
When the code calculates the bins:

if not input_empty and len(x) > 1:
if weights is not None:
_w = np.concatenate (w)
else:
_w = None

bins = histogram_bin_edges (np.concatenate (x),
bins, bin_range, _w)
else:
hist_kwargs[’range’] = bin_range

But when len(x) is 1 (as in the user’s code), the code enters the else
clause and sets hist_kwargs[’range’] = bin_range.

Then, in the loop:

for i in range (nx) :
m, bins = np.histogram(x[i], bins, weights=w[i], =*xhist_kwargs)

But wait, if bins is None, then np.histogram will use the range. But if
bins is a string (like ’"auto’), then np.histogram will calculate
the bins based on the data and the range.

Wait, in the user’s code, bins is ’"auto’ and range is (0, 1). When
density=True, the code should calculate the bins based on the range
(0, 1).

But in the code, when len(x) is 1, the code sets hist_kwargs[’range’] =
bin_range. Then, in the loop, the code calls np.histogram(x[i],
bins, weights=w[i], xxhist_kwargs).

But if bins is a string (like ’'auto’), then np.histogram will calculate
the bins based on the data and the range. So the range should be
respected.

But in the user’s code, the bins are not from 0 to 1. This suggests
that the code is not passing the range to np.histogram when density=
True.

But why?

This is puzzling. Let me try to reproduce the error.

I’11 create a script in the /testbed directory.

<function=str_replace_editor>

<parameter=command>create</parameter>
<parameter=path>/testbed/reproduce_error.py</parameter>

ACTION 13:
I’11 run the script.

<function=bash>
<parameter=command>python /testbed/reproduce_error.py</parameter>
</function>

37




875
876

878
879

880
881
882

884
885
886
887
888

889
890

891
892
893
894
895
896

897
898

899
900

901
902
903
904
905
906
907
908
909

919
920
921
922
923
924

925

Under review as a conference paper at ICLR 2026

ACTION 14:
Hmm, the output is not from 0 to 1. This confirms the error.

Now, I need to find where in the code the range is not being passed
when density=True.

Let me look at the code again.

When len(x) is 1, the code sets hist_kwargs|[’range’] = bin_range. Then,
in the loop:

for i in range (nx):
m, bins = np.histogram(x[i], bins, weights=w[i], =*xhist_kwargs)

But if bins is a string (like ’"auto’), then np.histogram will calculate
the bins based on the data and the range. So the range should be
respected.

But in the user’s code, the bins are not from 0 to 1. This suggests
that the code is not passing the range to np.histogram when density=
True.

But why?

This is confusing. Let me look at the code for np.histogram.

The np.histogram function has a range parameter. If range is specified,
the bin edges are calculated based on that range. If the data is

outside the range, it is ignored.

In the user’s code, the data is between 0 and 1, so the range (0, 1)
should be respected.

But when density=True, the code is not respecting the range. This
suggests that the code is not passing the range to np.histogram when
density=True.

But why?

This is puzzling. Let me try to modify the code in _axes.py.

I’11 look for the line where hist_kwargs is set.

In the code:

density = bool (density) or bool (normed)

if density and not stacked:
hist_kwargs = dict (density=density)

This line is overwriting hist_kwargs, which may include the range.

Ah, here’s the problem. If density is True and stacked is False, the
code sets hist_kwargs to dict (density=density), which overwrites any

previous hist_kwargs, including the range.

This is the root of the problem. The code is overwriting hist_kwargs,
which includes the range, when density is True and stacked is False.

So, in the code:
density = bool (density) or bool (normed)

if density and not stacked:
hist_kwargs = dict (density=density)

38




Under review as a conference paper at ICLR 2026

926 | This line is overwriting hist_kwargs, which may include the range. So
the range is not passed to np.histogram.

98 |This is the cause of the problem. The solution is to add the range to
hist_kwargs in this case.

930 | So, the code should be:

932 |density = bool (density) or bool (normed)
933 |1f density and not stacked:
934 hist_kwargs.setdefault (‘density’, density)

936 |But wait, hist_kwargs may already have the range. So, the code should
not overwrite hist_kwargs, but add to it.

937
938 | The code is:
939
940 |density = bool (density) or bool (normed)
941 |1f density and not stacked:

942 hist_kwargs = dict (density=density)
943
944 | This line is overwriting hist_kwargs, which may include the range. So
the range is lost.

945
946 | The solution is to modify this code to add to hist_kwargs, not
overwrite it.

947
948 | So, the code should be:
949
950 | density = bool (density) or bool (normed)

951 |1if density and not stacked:

952 hist_kwargs.setdefault (‘density’, density)
953
954 |But wait, hist_kwargs may not exist. Let me look at the code.
955
956 | The code for hist_kwargs is:
957
958 |hist_kwargs = dict ()
959
90 |# 1if the bin_range is not given, compute without nan numpy
961 | # does not do this for us when guessing the range (but will
962 | # happily ignore nans when computing the histogram) .

93 |1f bin_range is None:

964 xmin = np.inf

965 xmax = -np.inf

966 for xi in x:

967 if len(xi):

968 xmin = min(xmin, np.nanmin (xi))

969 Xmax = max (xmax, np.nanmax (xi))

970 # make sure we have seen at least one non-nan and finite
971 # value before we reset the bin range

972 if not np.isnan([xmin, xmax]).any() and not (xmin > xmax) :
973 bin_range = (xmin, xmax)

974
975 | # If bins are not specified either explicitly or via range,
976 | # we need to figure out the range required for all datasets,
977 | # and supply that to np.histogram.

97 |1f not input_empty and len(x) > 1:

979 if weights is not None:

980 _w = np.concatenate (w)

981 else:

982 _w = None

983

984 bins = histogram _bin_edges (np.concatenate (x),
985 bins, bin_range, _w)

39




986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004

1005
1006

1007
1008

1009

1029
1030
1031
1032
1033
1034

1035

Under review as a conference paper at ICLR 2026

else:
hist_kwargs[’range’] = bin_range

density = bool (density) or bool (normed)
if density and not stacked:
hist_kwargs = dict (density=density)

# List to store all the top coordinates of the histograms
tops = []
mlast = None
# Loop through datasets
for 1 in range (nx) :
# this will automatically overwrite bins,
# so that each histogram uses the same bins
m, bins = np.histogram(x[i], bins, weights=w[i], **hist_kwargs)
m = m.astype (float) # causes problems later if it’s an int
if mlast is None:

Ah, here’s the problem. The code sets hist_kwargs = dict (density=
density), which overwrites any previous hist_kwargs, including the
range.

So, if density is True and stacked is False, the code overwrites
hist_kwargs with dict (density=density), which does not include the

range. So the range is not passed to np.histogram.

This is the cause of the problem. The solution is to modify this code
to add to hist_kwargs, not overwrite it.

So, the code should be:
density = bool (density) or bool (normed)
if density and not stacked:
hist_kwargs.setdefault ('density’, density)
But hist_kwargs may not exist. Wait, hist_kwargs is initialized as:
hist_kwargs = dict ()
So, the code can be:
density = bool (density) or bool (normed)
if density and not stacked:
hist_kwargs[’density’] = density
This way, hist_kwargs includes the density and the range.
This would fix the problem. Let me test this.
I’11 modify the code in _axes.py.
<function=str_replace_editor>

<parameter=command>str_replace</parameter>
<parameter=path>/testbed/lib/matplotlib/axes/_axes.py</parameter>

ACTION 14:
I’11 run the reproduce_error.py script again.

<function=bash>
<parameter=command>python /testbed/reproduce_error.py</parameter>
</function>

ACTION 15:
Great, the fix works. The bins are now from 0 to 1.

40




1046
1047
1048
1049
1050

Under review as a conference paper at ICLR 2026

Now, I can submit the changes.

<function=submit>
</function>

Listing 13: The interaction made by the RL prior with 22! SWE-Agent SFT tokens and end-to-end
SWE-Agent RL on matplotlib_matplotlib-13989.

It can be seen that the two types of patterns are significantly different from each other:

* The patterns of the heavy SFT model appear to be more regulated, with explicitly labeled
steps 1 to 5 along the intermediate reasoning process. The reasoning content is generally
short as well. This reflects the behavior of the model shaped by the heavy SFT data from
the proprietary models.

* The patterns of the light SFT + end-to-end RL model, in contrast, are much more under-
regulated. More turns of interaction are spent at repo exploration, and a significantly larger
amount of tokens are generated at the code edit steps before the action is made. This is the
reflection of behavior shaped by end-to-end RL (and less effect from expert data), as the
sign of reasoning-intensive skill priors is retained in the agentic scenario.

E.4 GENERALIZATION TO OTHER TASKS

In this section, we study whether the skills incentivized by Agentless training and SWE-Agent adap-
tation through SWE-Smith trajectories could transfer to other SWE tasks. We use SWE-bench-live
and SWE-bench Multilingual as our testbeds.

SWE-bench-live (Zhang et al.l [2025)) is a benchmark for real-world issue resolution, evaluating Al
systems on software engineering tasks. Using an automated curation pipeline, it is updated monthly
to ensure fresh tasks and rigorous, contamination-free evaluation. For our experiments, we selected
the default set of 300 tasks, with data collected between October 2024 and March 2025. Compared
to SWE-bench Verified, SWE-bench-live exhibits a higher degree of distributional shift.

SWE-bench Multilingual (Yang et al., 2025c) introduces 300 curated tasks from 42 GitHub repos-
itories across 9 programming languages, including Rust, Java, PHP, Ruby, JavaScript/TypeScript,
Go, and C/C++, covering domains such as web frameworks, data tools, core utilities, and libraries.
Compared to SWE-bench Verified, which focuses exclusively on Python, SWE-bench Multilingual
exhibits greater linguistic and domain diversity, posing additional challenges in cross-language gen-
eralization and transferability of software engineering capabilities.

Similar to previous experiments, we evaluated four model stages as the priors: the original Qwen2.5-
72B (Base), the mid-trained model (MT), the model activated with reasoning data through super-
vised finetuning (SFT), and the model after RL training (RL). We still use the open-source SWE-
smith trajectories to activate the agentic capabilities of each prior.

Figures [I0] and [TT] show the performance of the four priors on SWE-bench-Live and SWE-bench
Multilingual under varied amounts of agentic trajectories for adaptation (22! as one-step gradient
descent, 222, 1.1 x 227, and 1.5 x 228 as 100, 2,000, and 5,016 training trajectories). Each SWE-
Agent adaptation experiment is conducted through lightweight supervised finetuning, the training
time of which ranges from several minutes to two hours at most.

Compared to the Base prior, those specifically enhanced with Agentless skills (SFT and RL) demon-
strate stronger task generalization, especially under the data-scarce settings. However, when more
SWE-Smith trajectories are used for adaptation, the performances of the Base and the MT priors
become closer to those of the SFT and the RL priors. This could be attributed to the gaps between
the different SWE tasks. The exploration for recipes that enable stronger out-of-distribution and
task-agnostic generalization is left for future work.

41



1051
1052

1053
1054

1055
1056
1057

1062
1063
1064
1065
1066
1067
1068

Under review as a conference paper at ICLR 2026

Pass@k (%

Pass@k (%)

12.5{ —— RL

SFT

ok

:77/4‘

10.0
7.5
5.0

2.5

0.0

12,5
< 10.0
7.5
5.0

Pass@k (%

2.5

0.0

17.5
$15.0
A
g12s
&
%10.0
-1

7.5

$15.0

%125
©

71
17}
@

a

17.5

%/
—e— RL
SFT
—e— MT
—e— Base

10.0
7.5

1 2 3
k

(a) #SFT = 2%,

5.0

(S

(b) #SFT = 223,

(c) #SFT = 1.1 x 277,

5.0 1 3

2
k

(d) #SFT = 1.5 x 228,

Figure 10: Generalization analysis on SWE-bench-Live.
—~— RL 35 35
20 AZU f/[}?* 30 30
15 = ‘S“;_r 215 y=-Bagg 225 225
10 —— MT %10 %20 — %20 —
TBase g g1s SFT | S15 SFT
5 5 —e— MT —e— MT
:jé: 10 —— Base 10 —— Base
0 0 5

1 3

2
k

(a) #SFT = 2%,

(b) #SFT = 223,

1 3

2
k

(c) #SFT = 1.1 x 277,

1 3

2
k

(d) #SFT = 1.5 x 228,

Figure 11: Generalization analysis on SWE-bench Multilingual.

F CASE STUDY UNDER AGENTLESS

F.

1 BUGFIXER TRAJECTORIES

We provide a Bugfixer’s response trajectory during the code repair stage (see Listing [T4).

From this, we can observe that the initial code given was return self[i, J

- pos -

other.cols], but the model quickly realized its mistake and corrected it to return self[i,
j — other.cols]. Although some repetitive self-reflections followed, the increasing response

length indeed improved answer accuracy and robustness in our experiments.

Let

def

<think>
Okay,

First,

let’s tackle this problem. The user reported an issue where the
Matrix.col_insert () method isn’t working correctly. The example
given shows that after inserting a matrix V into M at position 3,
the resulting matrix has the inserted columns shifted incorrectly.
The expected result would have the inserted columns at positions 3
and 4, but the actual output shows them starting at position 3, but
the original matrix’s columns after the insert are shifted upwards
instead of remaining in their original positions.

I need to understand how col_insert works.
provided,

Looking at the code
especially in the MatrixShaping class in sympy/matrices/
common.py, the _eval_col_insert method is responsible for inserting
columns. The current implementation shifts the existing columns to
the right by the number of columns inserted. However, the bug might
be in how the original matrix’s columns are being shifted.

me look at the existing code for _eval_col_insert:

_eval_col_insert (self,
cols = self.cols

pos, other):

def entry (i, 3j):
if j < pos:
return self[i, j]
elif pos <= j < pos + other.cols:
return other([i, J - pos]
return self[i, j - pos - other.cols]

return self._new(self.rows, self.cols + other.cols,

42



1069
1070
1071

1077
1078
1079

1080
1081

1082
1083

1084
1085

)

)
108
)87
)

)

1087
1088

&

1089
1090
1091
1092
1093

1094
1095

1096
1097
1098
1099
1100
1101
1102
1103
1104
1105

1106

Under review as a conference paper at ICLR 2026

lambda i, j: entry(i, 3Jj))

Wait, the problem here is in the last case. When j is greater than or
equal to pos + other.cols, the code subtracts (pos + other.cols)
from j. But that’s incorrect because the original columns after the
inserted ones should start at j = pos + other.cols. So for the
original matrix’s columns that come after the inserted ones, their
new positions should be j + other.cols. But in the current code,
when j is in the original matrix’s columns (after the inserted ones)
, the code is subtracting (pos + other.cols), which would
incorrectly shift them.

Wait, let’s think again. The original code for the entry function:

if j < pos:
return self[i, 7] # original columns before pos
elif pos <= j < pos + other.cols:
return other[i, J - pos] # inserted columns
return self[i, j - pos - other.cols] # original columns after the

inserted ones

Wait, no. Let’s say the original matrix has cols = 6. We insert 2
columns at pos=3. The new total cols is 6 + 2 = 8. The original
columns after pos 3 (columns 3,4,5) should now be at positions
5,6,7. But according to the code, when j is >=3 +2=5 (since pos +
other.cols =3+2=5), then the code returns self[i, Jj -5 -2] = selfli,

J —-7]. Wait, that’s not right. For example, if Jj=5 (the new column
5), then j - pos - other.cols =5 -3 -2=0. So the original column 0
would be mapped to the new column 5. That’s definitely wrong.

Ah, here’s the mistake. The code is subtracting (pos + other.cols) from
j, but that’s incorrect. The original columns after the inserted
ones should be shifted to the right by other.cols. So, the correct
calculation should be j - other.cols. For example, original column 3
becomes 3 +2=5, original column 4 becomes 6, etc.

So the line in the code:

return self[i, j - pos - other.cols]
should be:
return self[i, Jj - other.cols]

Because the inserted columns have taken up ’'other.cols’ positions
starting at ’"pos’, so the original columns after ’"pos’ are shifted
by ’other.cols’ to the right. Therefore, to get the correct original

column index, we subtract ’other.cols’” from the current j.

So the fix is to change the subtraction from (pos + other.cols) to
other.cols. Let me check:

Original code:

return self[i, j - pos - other.cols]
Corrected code:

return self[i, Jj - other.cols]

Wait, no. Wait, the original columns after the inserted block (which

starts at pos and has other.cols columns) would start at j = pos +
other.cols. So for those j values, the original column index would
be j - (pos + other.cols). Wait, no. Let’s think with numbers.

43




1107

1108
1109

1118
1119
1120
1121
1122
1123
1124
1125
1126

1127

1128
1129

1130
1131

1132

1133

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147

1148
1149
1150
1151
1152
1153
1154

1155

Under review as a conference paper at ICLR 2026

Original matrix has 6 columns. Insert 2 columns at position 3. The new

matrix has 8 columns. The original columns 0,1,2 remain in positions
0,1,2. The inserted 2 columns are at positions 3 and 4. The

original columns 3,4,5 now become 5,6,7.

So for j in 5,6,7 (original columns 3,4,5), the mapping is:

5 $\rightarrow$ 3

6 $\rightarrow$ 4

7 $\rightarrow$ 5

So the formula should be original_column = j - inserted_columns. In
this case, inserted_columns is other.cols. So the code should
subtract other.cols from j when accessing the original matrix’s

columns after the inserted block.

Therefore, the line:

return self[i, j - pos - other.cols]
should be:
return self[i, j - other.cols]

Because pos is where the insertion starts, but the original columns
after the inserted block are shifted by other.cols. Let’s verify
with the example:

pos =3, other.cols=2. For j=5 (new column 5), original column index is
5 -2=3, which is correct. For j=6, 6-2=4; j=7, 7-2=5. That’s correct

So the error in the original code was subtracting (pos + other.cols)
instead of other.cols. The pos is the starting position of the
insertion, but after inserting other.cols columns, the original
columns after the inserted block are shifted by other.cols.
Therefore, the correct subtraction is other.cols.

Thus, the fix is to change the line in the _eval_col_insert method from

return self[i, j - pos - other.cols]
to:
return self[i, j - other.cols]

Now, looking back at the code in the _eval_col_insert function:
The code for the else clause is:
return self[i, j - pos — other.cols]

Which is incorrect. Changing that to j - other.cols should fix the
problem.

So the SEARCH block would look for the lines:

def _eval_col_insert (self, pos, other):
cols = self.cols

def entry (i, 3J):
if j < pos:

44




1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170

1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201

1202
1203
1204
1205
1206
1207
1208
1209

Under review as a conference paper at ICLR 2026

return self[i, 7J]

elif pos <= j < pos + other.cols:
return other([i, j - pos]

return self[i, Jj - pos - other.cols]

return self._new(self.rows, self.cols + other.cols,
lambda i, j: entry(i, 3J))

And the REPLACE block would change the last part to:

elif pos <= j < pos + other.cols:
return other[i, J - pos]
return self[i, j - other.cols]

So the correction is in the return statement of the entry function. The
original code subtracted (pos + other.cols) from j, but it should
subtract other.cols instead.

Therefore, the correct SEARCH/REPLACE block would be:

### sympy/matrices/common.py
<<<<<<< SEARCH
def _eval col_insert (self, pos, other):
cols = self.cols

def entry (i, j):
if j < pos:
return self[i, 7]
elif pos <= j < pos + other.cols:
return other[i, j - pos]
return self[i, Jj - pos - other.cols]

return self._new(self.rows, self.cols + other.cols,
lambda i, j: entry(i, 3j))

def _eval_col_insert (self, pos, other):
def entry (i, j):
if j < pos:
return self[i, 7]
elif pos <= j < pos + other.cols:
return other[i, J - pos]
return self[i, j - other.cols]

return self._new(self.rows, self.cols + other.cols,
lambda i, j: entry(i, 3j))
>>>>>>> REPLACE

This change corrects the column shifting calculation for the original
matrix’s columns after the inserted block. Instead of subtracting (
pos + other.cols), we subtract other.cols, which properly shifts the

original columns to the right by the number of inserted columns.
</thinkp>

‘Y 'python

### sympy/matrices/common.py

<<<<<<< SEARCH
def _eval_col_insert (self, pos, other):

cols = self.cols

def entry (i, 3J):
if j < pos:
return self[i, 7J]
elif pos <= j < pos + other.cols:
return other([i, j - pos]
return self[i, j - pos - other.cols]

45




Under review as a conference paper at ICLR 2026

return self._new(self.rows, self.cols + other.cols,
lambda i, j: entry(i, 3J))

def _eval col_insert (self, pos, other):
def entry (i, 7j):
if j < pos:
return self([i, 7]
elif pos <= j < pos + other.cols:
return other[i, J - pos]
return self[i, j - other.cols]

return self._new(self.rows, self.cols + other.cols,
lambda i, j: entry(i, 3Jj))
>>>>>>> REPLACE

AURNRY

Listing 14: Reasoning trajectory example for BugFixer.

F.2 TESTWRITER FALSE POSITIVE CASES

During the RL training process, we observed that the Testwriter component exhibits some false
positives, which can result in tests that contain certain gaps. This might cause the test patches
generated by the model to be mistakenly considered as correct. Consequently, the performance
improvement of Testwriter does not accurately reflect the actual performance. In this section, we
provide two intuitive examples to illustrate this phenomenon, and leave further enhancement for
TestWriter as future work.

Listing [T5] shows the ground-truth test patch for instance django__django-16877, with Listing [16]
showing the test patch generated by theTestWriter. A detailed comparison reveals that the model-
generated test cases are not comprehensive: Two locations should have been tested, but only one
was checked, and the effect of mark_safe was not considered. In practice, this allowed the model-
predicted patch to pass the TestWriter reward check, but result in a false positive.

The second example instance is sympy__sympy-13974, with Listings[I7)and [I8]showing the ground-
truth and model-generated test patches. In this case, the coverage of the generated test is also
insufficient. The generated test does not account for the need to satisfy the associativity prop-
erty, €.g2., assert tensor_product_simp (TP (A, B)x*x) == TP (A*xxx, B*xx). As
a consequence, it fails to serve as a reliable judge for BugFixer.

diff --git a/tests/template_tests/filter_tests/test_escapeseq.py b/
tests/template_tests/filter_tests/test_escapeseq.py

new file mode 100644

-—— /dev/null

+++ b/tests/template_tests/filter_tests/test_escapeseq.py

@@ -0,0 +1,59 @@

+from django.test import SimpleTestCase

+from django.utils.safestring import mark_safe

+

+from ..utils import setup

+

+

+class EscapeseqTests (SimpleTestCase) :

+ mnww

+ The "escapeseq" filter works the same whether autoescape is on or
off,

+ and has no effect on strings already marked as safe.

+ mwnw

+

+ @setup (

+ {

+ "escapeseq_basic": (

+ "{{ alescapeseq|join:", " }} -—- {{ bl|escapeseq]|join:",

n }}I

46



60

63

64

Under review as a conference paper at ICLR 2026

47

+ )
+ }
+ )
+ def test_basic(self):
+ output = self.engine.render_to_string(
+ "escapeseq_basic",
+ {"a": ["x&y", "<p>"], "b": [mark_safe("x&y"), mark_safe ("<
p>") 1},
+ )
+ self.assertEqual (output, "x&amp;y, &lt;p&gt; —- x&y, <p>")
+
+ @setup (
+ {
+ "escapeseq_autoescape_off": (
+ "{% autoescape off %$}{{ alescapeseq|join:", " }}’
+ AL —_ AL
+ "{{ blescapeseq|join:", "}}{% endautoescape %}’
+ )
+ }
+ )
+ def test_autoescape_off (self):
+ output = self.engine.render_to_string/(
+ "escapeseq_autoescape_off",
+ {"a": ["x&y", "<p>"], "b": [mark_safe("x&y"), mark_safe ("<
p>") 11,
+ )
+ self.assertEqual (output, "x&amp;y, &lt;p&gt; —-— x&y, <p>")
+
+ @setup ({"escapeseq_join": ’{{ alescapeseq|join:"<br/>" }}’})
+ def test_chain_join(self):
+ output = self.engine.render_to_string("escapeseq_join", {"a":
[IVX&YH, "<p>"}})
+ self.assertEqual (output, "x&amp;y<br/>&lt;p&gt;")
+
+ @setup (
+ {
+ "escapeseq_join_autoescape_off": (
+ "{% autoescape off %}{{ alescapeseq|join:"<br/>" }}{%
endautoescape %}’
+ )
+ }
+ )
+ def test_chain_join_autoescape_off (self):
+ output = self.engine.render_to_string(
i "escapeseq_join_autoescape_off", {"a": ["x&y", "<p>"]}
+ )
4 self.assertEqual (output, "x&amp;y<br/>&lt;p&gt;")
Listing 15: GT test patch of django__django-16877.
diff -—-git a/tests/template_tests/filter_tests/test_safeseq.py b/tests/
template_tests/filter_tests/test_safeseq.py
—-—— a/tests/template_tests/filter_tests/test_safeseq.py
+++ b/tests/template_tests/filter_tests/test_safeseq.py
@@ -20,3 +20,20 Q@
def test_safeseq02 (self):
output = self.engine.render_to_string("safeseqO2", {"a": ["&",
ELED)
self.assertEqual (output, "&, < —— &, <")
+
+ # New tests for escapeseq
+ @setup ({"escapeseq0l": ' {{ alescapeseq]|join:", " }}’})
+ def test_escapeseq0l (self):
+ output = self.engine.render_to_string("escapeseglOl", {"a":
[ll&ll, ll<ll]})




oW

0 oE W =

R = e e e e e e e e e
© o

PSR TCR g

9

Under review as a conference paper at ICLR 2026

+ self.assertEqual (output, "&amp;, &1t;")

+

+ @setup (

+ {

+ "escapeseq02": (

+ "{% autoescape off %}{{ alescapeseq]|join:", " }}{%
endautoescape %}’

+ )

+ }

+ )

+ def test_escapeseq02 (self):

+ output = self.engine.render_to_string("escapeseqg02", {"a":
[u&", LRAARED)

+ self.assertEqual (output, "&amp;, &lt;")

Listing 16: Model predicted test patch of django__django-16877.

diff --git a/sympy/physics/quantum/tests/test_tensorproduct.py b/sympy/
physics/quantum/tests/test_tensorproduct.py
-—-— a/sympy/physics/quantum/tests/test_tensorproduct.py
+++ b/sympy/physics/quantum/tests/test_tensorproduct.py
@@ -10,7 +10,7 @@
from sympy.physics.quantum.density import Density
from sympy.core.trace import Tr

-A, B, C = symbols(’A,B,C’, commutative=False)
+A, B, C, D = symbols(’A,B,C,D’, commutative=False)
x = symbols (’x")

matl = Matrix ([[1, 2«I], [1 + I, 311)
@@ -47,6 +47,11 @@ def test_tensor_product_commutator () :

def test_tensor_product_simp () :

assert tensor_product_simp (TP (A, B)*TP (B, C)) == TP (AxB, Bx*C)

+ # tests for Pow-expressions

+ assert tensor_product_simp (TP (A, B)*xxx) == TP (Ax*xX, Bxx*Xx)

ar assert tensor_product_simp (x*TP (A, B)*xx2) == x*xTP (Ax*2,Bx%x2)

+ assert tensor_product_simp (x* (TP (A, B)xx2)*TP(C,D)) == x*TP (Axx2xC
, Bx*x2%D)

+ assert tensor_product_simp (TP (A,B)-TP (C,D) x*xx) == TP (A,B)-TP (Cxx*Xx,
D#**Xx)

def test_issue_5923():

Listing 17: GT test patch for sympy__sympy-13974.

diff --git a/sympy/physics/quantum/tests/test_tensorproduct.py b/sympy/
physics/quantum/tests/test_tensorproduct.py

-—— a/sympy/physics/quantum/tests/test_tensorproduct.py

+++ b/sympy/physics/quantum/tests/test_tensorproduct.py

@@ -47,6 +47,27 @

def test_tensor_product_simp () :
assert tensor_product_simp (TP (A, B)*TP (B, C)) == TP (A%xB, BxC)

# Test tensor product powers

a = symbols(’a’, commutative=False)

tl = TP(1, 1) * TP(1, 1)

tl_simp = tensor_product_simp (tl)

assert tl_simp == TP(1l, 1), f"Expected 1x1, got {tl_simp}"

# Test with Pauli matrices
from sympy.physics.paulialgebra import Pauli

+ o+t

48




1238
1239
1240
1241
1242
1243

1244

1245
1246
1247
1248
1249

1250

Under review as a conference paper at ICLR 2026

t2 = TP (1, Pauli(3)) = TP (1, Pauli(3))
t2_simp = tensor_product_simp (t2)

# Test substitution cases from issue
exprl = TP (1, 1) %= TP (1, a)
resultl = exprl.subs(a, 1)

+ 4+ 4+ o+

failed: {resultl}"

expr2 = TP (1, Pauli(3)) * TP (1, a)
result2 = expr2.subs(a, Pauli(3))

+ 4+ + +

failed: {result2}"

def test_issue_5923():

assert t2_simp == TP(1l, 1), f"Expected

assert tensor_product_simp (resultl) ==

assert tensor_product_simp (result2) ==

1x1, got {t2_simp}"

TP (1, 1), f"Substitution 1

TP (1, 1), f"Substitution 2

Listing 18: Model predicted test patch of sympy__sympy-13974.

G EMERGENT PARALLEL SCALING

Compared to the self-play method that leverages execu-
tion during test time, parallel scaling (Chen et al., [2025b;
Pan et al., 2025) is a recently-introduced test-time scal-
ing method that aggregates multiple independent rollouts
for additional improvement. While previous works in-
centivize the ability of parallel scaling through training,
or train a separate reward model (Pan et al.| [2024; Jain
et al., 2025) for patch selection, we observe that the par-
allel scaling effect emerges in our model without any spe-
cific training. Specifically, patch candidates from parallel
rollouts of BugFixer are used to prompt the model to sum-
marize their differences and compose a new bugfix patch.
Listing [T9]is the prompt template of parallel scaling. In
the emplate, promblem_statement is the GitHub is-

5
@

S
)

o
Py

50.2

Pass Rate (%)
5 & 8
&
qi
Ri
N

N
=

1 5 10

Number of Patches

20

40

Figure 12: Emergent parallel scaling re-
sults on SWE-bench Verified.

sue, and tra js_content represents the content of multiple patch candidates.

Here is the issue text:
——— BEGIN ISSUE —-—-
{problem_statement}

-—— END ISSUE —--

Only one trajetory is right.
—-—— BEGIN FILE ——-

AURNRY

{trajs_content}

AURNRY

—-—— END FILE ——-—

issue.

1. The file path

code
4. The dividing line: =======

49

Every *SEARCH/REPLACE* edit must use this format:

2. The start of search block: <<<<<<< SEARCH
3. A contiguous chunk of lines to search for in the existing source

We are currently solving the following issue within our repository.

Below are some thinking trajectories, each from 1llm reasoning model.

Please first summary and analyze the key differences between the
trajectories, and then generate *SEARCH/REPLACEx edits to fix the




1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

1266

1267
1268

1269

1270

1271
1272

1273

1274
1275

1276

1277

1278
1279
1280
1281
1282
1283
1284

1285
1286
1287

1288

1289
1290
1291
1292
1293

1294

Under review as a conference paper at ICLR 2026

5. The lines to replace into the source code
6. The end of the replace block: >>>>>>> REPLACE

Here is an example:
‘Y'python

### mathweb/flask/app.py
<<<K<<<< SEARCH

from flask import Flask

import math
from flask import Flask
>>>>>>> REPLACE

AURNRY

Please note that the *SEARCH/REPLACEx edit REQUIRES PROPER INDENTATION.
If you would like to add the line ' print (x)’, you must
fully write that out, with all those spaces before the code!
Wrap the *SEARCH/REPLACE* edit in blocks ‘‘‘python...‘'‘.
The summary of the key differences between the trajectories should be
in the thinking part.

Listing 19: The prompt template for parallel scaling.

The results in Figure [T2] show that the performance of the parallel aggregation improves as the
number of patch candidates in the prompt increases. The advantage of this scaling paradigm over
majority voting lies in its ability to leverage the model’s own capacity to analyze multiple candidate
patches, thereby surpassing the simplistic approach of weighting answers merely by their frequency
of occurrence: Listing[20|covers a full example with 14 different input patch candidates, and how the
model successfully recognizes the correct one and generates a novel patch with additional reasoning.

Prompt:

We are currently solving the following issue within our repository.
Here is the issue text:

——— BEGIN ISSUE —-—-

Data <@filename isn’t relative to the YAML file

The [docs say] (https://gabbi.readthedocs.io/en/latest/format.htmlfdata)

> If the value is a string that begins with <@ then the rest of the
string is treated as the name of a file to be loaded from the same
directory as the YAML file.

But I haven’t found it works like this unless I cd into the directory
containing the yaml file.

‘_load_data_file' says:

*Y'python

path = os.path.join(self.test_directory, os.path.basename (filename))

this does a few things:

— makes the path begin with ‘self.test_directory' (defaults to '.%, the
current working directory)

— disguards any folders in the <@ ‘filename‘' path

- appends ‘filename®

This means, if I'm in '/, and I have a test that says ‘data: <Qcake.
jpg', I cannot run my tests as advised in the docs:
‘gabbi-run -- /my/test.yaml /my/other.yaml®

‘FileNotFoundError: [Errno 2] No such file or directory: ’./cake.jpg’’

So in our test running script, we have to start with ‘cd tests/‘.

50



1295

1296
1297

1298
1299
1300
1301

1302
1303
1304
1305
1306
1307

1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322

323
1324
1325
1326

327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338

1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350

1351
1352

1353

Under review as a conference paper at ICLR 2026

My preference, would be to make the path relative to the location of
the yaml file. That way, I can run my tests from whatever directory.

Obviously this isn’t possible when redirecting with ‘<‘ as the filename
is never seen by gabbi. So I’'m happy is discuss other ideas.

Furthermore I can’t keep my test data in a child directory, unless I cd
into that directory like:

‘Y'shell
cd yaml_tests/test_data
gabbi-run —-- ../test_things.yaml

AURNRY

So for that reason, I’'d like to allow directories like ‘<@test_data/
filename.txt' to be included in the path.

Happy to write the patch, if we come up with an approach here.
-—— END ISSUE --—-

Below are some thinking trajectories, each from 1llm reasoning model.

——— BEGIN FILE ——-—

Answer 1:

‘Y 'python

### gabbi/runner.py

<<<<<<< SEARCH

import argparse

from importlib import import_module
import sys

import unittest

import argparse

from importlib import import_module
import os

import sys

import unittest

>>>>>>> REPLACE

VRN

AURNRY

python
### gabbi/runner.py
<<<<<<< SEARCH
def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False) :
"""Run the tests from the YAML in handle."""
data = utils.load_yaml (handle)
if force_ssl:
if ’defaults’ in data:
data[’defaults’ ] ['ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader

test_suite = suiltemaker.test_suite_ from_dict (
loader, ’input’, data, ’.’, host, port, None, None, prefix=
prefix,

handlers=handler_objects)

result = ConciseTestRunner (

51




1354
1355
1356

1357

1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400

1401
1402
1403

1404
1405
1406
1407
1408
1409
1410
1411

141
1413
1414

S

Under review as a conference paper at ICLR 2026

verbosity=2, failfast=failfast).run(test_suite)
return result.wasSuccessful ()

def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False, test_directory="."):
"""Run the tests from the YAML in handle."""
data = utils.load_yaml (handle)
if force_ssl:
if "defaults’ in data:
data[’defaults’ ] [’'ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader

test_suite = suitemaker.test_suite_from_dict (
loader, ’'input’, data, test_directory, host, port, None, None,
prefix=prefix, handlers=handler_objects)

result = ConciseTestRunner (
verbosity=2, failfast=failfast).run(test_suite)
return result.wasSuccessful ()
>>>>>>> REPLACE

AN

AURNRY

python

### gabbi/runner.py

<<<<<<< SEARCH

else:

for input_file in input_files:
with open (input_file, "r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast)

for input_file in input_files:
test_directory = os.path.dirname (input_file) or ’.’
with open (input_file, "r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast,
test_directory=test_directory)
>>>>>>> REPLACE

AURTRY

Answer 2:
*Y'python
### gabbi/runner.py
<<<<<<< SEARCH
def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False) :

def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False, test_directory="."):
>>>>>>> REPLACE

VRN

AURNRY

python
### gabbi/runner.py
<<<<<<< SEARCH

test_suite = suiltemaker.test_suite_ from_dict (
loader, ’input’, data, ’.’, host, port, None, None, prefix=
prefix,

handlers=handler_objects)

test_suite = suitemaker.test_suite_from_dict (

52




14
1417
1418
1419
1420

6

1421
1422
1423
1424
1425
1426
1427

1428
1429
1430
1431
1432
1433
1434
1435

1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447

1448
1449
1450
1451
1452
1453
1454

1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474

Under review as a conference paper at ICLR 2026

loader, ’'input’, data, test_directory, host, port, None, None,
prefix=prefix,
handlers=handler_objects)
>>>>>>> REPLACE

AURTRY

AURNRY

python

### gabbi/runner.py

<<<<<<< SEARCH

success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast)

test_directory = os.path.dirname (input_file) or ’.’
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast,
test_directory=test_directory)
>>>>>>> REPLACE

AURTRY

Answer 3:
‘Y'python
### gabbi/runner.py
<<<<<<< SEARCH
def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False) :
"""Run the tests from the YAML in handle."""
data = utils.load_yaml (handle)
if force_ssl:
if ’defaults’ in data:
data[’defaults’ ] [’'ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader

test_suite = suitemaker.test_suite_from_dict (
loader, ’"input’, data, ’.’, host, port, None, None, prefix=
prefix,

handlers=handler_objects)

result = ConciseTestRunner (
verbosity=2, failfast=failfast).run (test_suite)
return result.wasSuccessful ()

def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False, test_directory="."):
"""Run the tests from the YAML in handle."""
data = utils.load_yaml (handle)
if force_ssl:
if ’defaults’ in data:
data[’defaults’ ] ['ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader

test_suite = suiltemaker.test_suite_ from_dict (
loader, ’input’, data, test_directory, host, port, None, None,
prefix=prefix, handlers=handler_objects)

result = ConciseTestRunner (
verbosity=2, failfast=failfast).run (test_suite)
return result.wasSuccessful ()
>>>>>>> REPLACE

NN

‘Y'python

53




1475
1476
1477
1478
1479
1480
1481

1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492

1493
1494
1495
1496
1497
1498
1499
1500
1501
1502

1503

1504
1505

1506

1507
1508
1509
1510

1
N

1
151
151
151
151

514

)
[

O

1

)

O

o

1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531

1532

533

Under review as a conference paper at ICLR 2026

### gabbi/runner.py
<<<<<<< SEARCH
for input_file in input_files:
with open (input_file, "r’) as fh:

success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast)
if not failure: # once failed, this is considered
immutable
failure = not success
if failure and failfast:
break

for input_file in input_files:
test_directory = os.path.dirname (input_file)
with open (input_file, 'r’) as fh:
success = run_suite(
fh, handler_objects, host, port, prefix, force_ssl,
failfast, test_directory=test_directory)
if not failure: # once failed, this is considered
immutable
failure = not success
if failure and failfast:
break
>>>>>>> REPLACE

AURNRY

Answer 4:
‘Y 'python
### gabbi/runner.py
<<<<<<< SEARCH
def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False) :

def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False, test_directory=’'."):
>>>>>>> REPLACE
‘Y 'python
### gabbi/runner.py
<<<<<<< SEARCH

test_suite = suitemaker.test_suite_from_dict (
loader, ’'input’, data, ’.’, host, port, None, None, prefix=
prefix,

handlers=handler_objects)

test_suite = suiltemaker.test_suite_ from_dict (
loader, ’input’, data, test_directory, host, port, None, None,
prefix=prefix, handlers=handler_objects)
>>>>>>> REPLACE

AURTRY

AURNRY

python
### gabbi/runner.py
<<<<<<< SEARCH
for input_file in input_files:
with open (input_file, ’"r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast)

for input_file in input_files:
# Determine test directory based on input file’s location
test_directory = os.path.dirname (os.path.abspath (input_file))
or .’
with open (input_file, ’"r’) as fh:

54




Under review as a conference paper at ICLR 2026

1534 success = run_suite (fh, handler_objects, host, port,
1535 prefix, force_ssl, failfast,
1536 test_directory=test_directory)

1537 | >>>>>>> REPLACE
1538 | Y

1539
1540 |Answer 5:

1541 | Y Y 'python

1542 | ### gabbi/runner.py
1543 | <<<<K<<< SEARCH

1544 | import sys

1545 | import unittest

1546 ===

1547 | import os

1548 | import sys

1549 | import unittest

1550 | >>>>>>> REPLACE

1551 Y
1552 | Y Y 'python

1553 | ### gabbi/runner.py

1554 | <<<<<<< SEARCH

1555 |def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,

1556 failfast=False):

1557 | =======

1558 |def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,

1559 failfast=False, test_directory="."):

1560 | >>>>>>> REPLACE

1561 M

e AR
1562

python
1563 | ### gabbi/runner.py

1564 <<<<L<L<< SEARCH

1565 test_suite = suiltemaker.test_suite_from_dict (

1566 loader, ’input’, data, ’.’, host, port, None, None, prefix=
prefix,

1567 handlers=handler_objects)

1568 [=======

1569 test_suite = suitemaker.test_suite_from_dict (

1570 loader, ’'input’, data, test_directory, host, port, None, None,

1571 prefix=prefix, handlers=handler_objects)

1572 | >>>>>>> REPLACE
IS—,; AR Y

1574 | Y Y ‘python

1575 | ### gabbi/runner.py

1576 | <<<<<<< SEARCH

1577 for input_file in input_files:

1578 with open (input_file, 'r’) as fh:

1579 success = run_suite (fh, handler_objects, host, port,
1580 prefix, force_ssl, failfast)

1581 | =======

1582 for input_file in input_files:

1583 test_directory = os.path.dirname (input_file) or ’.’

1584 with open (input_file, 'r’) as fh:

1585 success = run_suite (fh, handler_objects, host, port,
1586 prefix, force_ssl, failfast,

1587 test_directory=test_directory)

1588 | >>>>>>> REPLACE
1589 AR

1590
1591 |Answer 6:

1592 | Y 'python

1593 | ### gabbi/driver.py

1594 | <<<<<<< SEARCH

1595 file_suite = suitemaker.test_suite_from_dict (

55




1596
1597
1598

1599
1600
1601
1602
1603

1604
1605

1606
1607
1608
1609
1610
1611
1612

1613
1614

1615

1616
1617
1618
1619
1620
1621
1622

1623

1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639

1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652

1653

Under review as a conference paper at ICLR 2026

loader, test_base_name, suite_dict, path, host, port,
fixture_module, intercept, prefix=prefix,
test_loader_name=test_loader_name, handlers=handler_objects

14
inner_ fixtures=inner_ fixtures)

test_file dir = os.path.dirname (test_file)
file_suite = suitemaker.test_suite_from_dict (
loader, test_base_name, suite_dict, test_file_dir, host,
port,
fixture_module, intercept, prefix=prefix,
test_loader_name=test_loader_name, handlers=handler_objects
14
inner_fixtures=inner_fixtures)
>>>>>>> REPLACE

AN

AURTRY

python
### gabbi/runner.py
<<<<<<< SEARCH
def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False):

def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False, test_directory='."):
>>>>>>> REPLACE

AURNRY

AURTRY

python
### gabbi/runner.py
<<<<<<< SEARCH

test_suite = suiltemaker.test_suite_from_dict (
loader, ’"input’, data, ’.’, host, port, None, None, prefix=
prefix,

handlers=handler_objects)

test_suite = suitemaker.test_suite_from_dict (
loader, ’'input’, data, test_directory, host, port, None, None,
prefix=prefix, handlers=handler_objects)
>>>>>>> REPLACE
‘Y 'python
### gabbi/runner.py
<<<<<<< SEARCH
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast)

test_directory = os.path.dirname (input_file)
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast,
test_directory)
>>>>>>> REPLACE

AURNRY

Answer 7:

‘Y 'python

### gabbi/runner.py

<<<<<<< SEARCH

import argparse

from importlib import import_module
import sys

import unittest

import argparse
from importlib import import_module

56




1654
1655
1656
1657
1658
1659
1660
1661
1662

1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674

1675
1676
1677

1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699

1700
1701
1702
1703
1704
1705
1706
1707

1708

1709
1710
1711

1712

Under review as a conference paper at ICLR 2026

import os
import sys
import unittest
>>>>>>> REPLACE

AURTRY

AURNRY

python
### gabbi/runner.py
<<<<<<< SEARCH
def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False) :
"""Run the tests from the YAML in handle."""
data = utils.load_yaml (handle)
if force_ssl:
if ’'defaults’ in data:
data[’defaults’ ] ['ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader

test_suite = suitemaker.test_suite_from_dict (
loader, ’input’, data, ’.’, host, port, None, None, prefix=
prefix,

handlers=handler_objects)

def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False, test_directory="."):
"""Run the tests from the YAML in handle."""
data = utils.load_yaml (handle)
if force_ssl:
if "defaults’ in data:
data[’defaults’]["ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader
test_suite = suiltemaker.test_suite_ from_dict (
loader, ’"input’, data, test_directory, host, port, None, None,
prefix=prefix, handlers=handler_objects)
>>>>>>> REPLACE

AURTRY

AURNRY

python

### gabbi/runner.py

<<<<<<< SEARCH

with open (input_file, 'r’) as fh:

success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast)
if not failure: # once failed, this is considered
immutable
failure = not success
if failure and failfast:
break

test_dir = os.path.dirname (os.path.abspath (input_file))
with open (input_file, 'r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast,
test_directory=test_dir)
if not failure: # once failed, this is considered
immutable
failure = not success
if failure and failfast:
break
>>>>>>> REPLACE

57




1759
1760
1761
1762

1763

1764

1765

1766
1767
1768
1769
1770
1771
1772

73

Under review as a conference paper at ICLR 2026

Answer 8:
‘Y'python
### gabbi/runner.py
<<<<<<< SEARCH
data = utils.load_yaml (handle)
if force_ssl:
if ’defaults’ in data:
data[’defaults’ ] ['ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader

test_suite = suiltemaker.test_suite_ from_dict (
loader, ’input’, data, ’.’, host, port, None, None, prefix=
prefix,

handlers=handler_objects)

data = utils.load_yaml (handle)
if force_ssl:
if "defaults’ in data:
data[’defaults’]["ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

# Determine test directory based on input handle
if hasattr (handle, ’'name’):

test_directory = os.path.dirname (os.path.abspath (handle.name))
else:

test_directory = .’

loader = unittest.defaultTestLoader
test_suite = suiltemaker.test_suite_from_dict (
loader, ’"input’, data, test_directory, host, port, None, None,
prefix=prefix, handlers=handler_objects)
>>>>>>> REPLACE

VRN

Answer 9:
‘Y 'python
### gabbi/driver.py
<<<<<<< SEARCH
for test_file in glob.iglob(’%s/*.yaml’ % path):
if /_’ in os.path.basename (test_file):
warnings.warn (exception.GabbiSyntaxWarning (
"/’ in test filename %s. This can break suite grouping
mw
% test_file))
if intercept:
host = str (uuid.uuid4 ())
suite_dict = utils.load_yaml (yaml_file=test_file)
test_base_name = os.path.splitext (os.path.basename (test_file))
[0]
if all_test_base_name:
test_base_name = ’%s
test_base_name)

)

s’ % (all_test_base_name,

o\°

if require_ssl:
if "defaults’ 1in suilte_dict:

suite_dict[’defaults’][’ssl’] = True
else:
sulite_dict[’defaults’] = {’ssl’: True}
file_suite = suitemaker.test_suite_from_dict (

58




1774
1775
1776

1777
1778
1779
1780
1781
1782

1783
1784
1785
1786
1787

1788
1789

1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800

1801
1802

1803
1804
1805
1806
1807
1808
1809

1830

Under review as a conference paper at ICLR 2026

fixture_module, intercept, prefix=prefix,

14
inner_ fixtures=inner_ fixtures)

for test_file in glob.iglob(’%s/*.yaml’ % path):
if /_’ in os.path.basename (test_file):
warnings.warn (exception.GabbiSyntaxWarning (

"

% test_file))
if intercept:
host = str(uuid.uuid4 ())
suite_dict = utils.load_yaml (yaml_ file=test_file)

test_base_name)

if require_ssl:
if ’'defaults’ in suite_dict:
suite_dict[’defaults’][’"ssl’] = True
else:
suite_dict[’defaults’] = {’ssl’: True}

# Use absolute path of the YAML file’s directory
file suite = suitemaker.test_suite_from_dict (

port,
fixture_module, intercept, prefix=prefix,

’
inner_ fixtures=inner_ fixtures)
>>>>>>> REPLACE

VRN

Answer 10:

‘Y 'python

### gabbi/runner.py

<<<<<<< SEARCH

import argparse

from importlib import import_module
import sys

import unittest

import argparse

from importlib import import_module
import os

import sys

import unittest

>>>>>>> REPLACE

AURNRY

VRN

python
### gabbi/runner.py
<<<<<<< SEARCH
def run_suite (handle, handler_objects, host, port, prefix,
False,
failfast=False):

def run_suite (handle, handler_objects, host, port, prefix,
False,

failfast=False, test_directory='"."):

59

loader, test_base_name, suite_dict, path, host,

port,

test_loader_name=test_loader_name, handlers=handler_objects

"/’ in test filename %s. This can break suite grouping

test_base_name = os.path.splitext (os.path.basename (test_file))
[0]

if all_test_base_name:
test_base_name = "%$s_%s’ % (all_test_base_name,

test_file_dir = os.path.dirname (os.path.abspath(test_file))

loader, test_base_name, suite_dict, test_file_dir, host,

test_loader_name=test_loader_name, handlers=handler_objects

force_ssl=

force_ssl=




Under review as a conference paper at ICLR 2026

1831 | >>>>>>> REPLACE

IS;Z AN A

1833 | ‘Y ‘python

1834 | ### gabbi/runner.py
1835 | <<<<<<< SEARCH

1836 test_suite = suitemaker.test_suite_from_dict (

1837 loader, ’'input’, data, ’.’, host, port, None, None, prefix=
prefix,

1838 force_ssl=force_ssl, failfast=failfast,

1839 handlers=handler_objects)

1840 ===

1841 test_suite = suitemaker.test_suite_from_dict (

1842 loader, ’'input’, data, test_directory, host, port, None, None,

1843 prefix=prefix, force_ssl=force_ssl, failfast=failfast,

1844 handlers=handler_objects)

1845 | >>>>>>> REPLACE

1846 | YV

1847 | Y Y 'python

1848 | ### gabbi/runner.py
1849 | <<<<<<< SEARCH

1850 success = run_suite (fh, handler_objects, host, port,
1851 prefix, force_ssl, failfast)

1852 | =======

1853 test_dir = os.path.dirname (input_file)

1854 success = run_suite (fh, handler_objects, host, port,
1855 prefix, force_ssl, failfast,

1856 test_directory=test_dir)

1857 | >>>>>>> REPLACE
1858 | Y
1859 | Y 'python

1860 | ### gabbi/case.py
1861 | <<<<<<< SEARCH

1862 path = os.path.join(self.test_directory, os.path.basename (filename)

1863 | =======

1864 path = os.path.join(self.test_directory, filename)
1865 | >>>>>>> REPLACE

1866 | * 1
1867
1868 |Answer 11:

1869 | Y ‘python

1870 | ### gabbi/runner.py
1871 | <<<<<<< SEARCH

1872 |def run_suite (handle, handler_objects, host, port, prefix, force_ssl=

False,
1873 failfast=False) :
1874 """Run the tests from the YAML in handle."""
1875 data = utils.load_yaml (handle)
1876 if force_ssl:
1877 if ’defaults’ in data:
1878 data[’defaults’ ] ['ssl’] = True
1879 else:
1880 data[’defaults’] = {’ssl’: True}
1881
1882 loader = unittest.defaultTestLoader
1883 test_suite = suiltemaker.test_suite_ from_dict (
1884 loader, ’input’, data, ’.’, host, port, None, None, prefix=
prefix,
1885 handlers=handler_objects)

1886 | =======
1887 |def run_suite (handle, handler_objects, host, port, prefix, force_ssl=

False,
1888 failfast=False, test_directory='"."):
1889 """Run the tests from the YAML in handle."""
1890 data = utils.load_yaml (handle)

60




1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952

1953

1954

Under review as a conference paper at ICLR 2026

if force_ssl:
if 'defaults’ in data:
data[’defaults’][’'ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader
test_suite = suitemaker.test_suite_from_dict (
loader, ’'input’, data, test_directory, host, port,
None, None, prefix=prefix, handlers=handler_objects)
>>>>>>> REPLACE

AURNRY

AURNRY

python

### gabbi/runner.py

<<<<<<< SEARCH

success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast)

test_dir = os.path.dirname (input_file)
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast,
test_directory=test_dir)
>>>>>>> REPLACE

AN

Answer 12:

‘Y 'python

### gabbi/runner.py

<<<<<<< SEARCH

import argparse

from importlib import import_module
import sys

import unittest

import argparse
from importlib import import_module
import os
import sys
import unittest
>>>>>>> REPLACE
‘Y 'python
### gabbi/runner.py
<<<<<<< SEARCH
else:
for input_file in input_files:
with open (input_file, "r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast)

for input_file in input_files:
test_dir = os.path.dirname (os.path.abspath (input_file))
with open (input_file, 'r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast,
test_directory=test_dir)
>>>>>>> REPLACE

AURNRY

AURTRY

python

### gabbi/runner.py

<<<<<<< SEARCH

def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,

failfast=False):

61




1955
1956
1957
1958
1959
1960
1961
1962
1963
1964

1965

1966
1967
1968

1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001

2002
2003
2004

Under review as a conference paper at ICLR 2026

AURNRY

##4#

def

"""Run the tests from the YAML in handle."""
data = utils.load_yaml (handle)
if force_ssl:
if "defaults’ in data:
data[’defaults’ ] [’'ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader
test_suite = suitemaker.test_suite_from_dict (
loader, ’'input’, data, ’.’, host, port, None, None, prefix=
prefix,
handlers=handler_objects)

run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False, test_directory='."):
"""Run the tests from the YAML in handle."""
data = utils.load_yaml (handle)
if force_ssl:
if ’'defaults’ in data:
data[’defaults’ ] ['ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader

test_suite = suitemaker.test_suite_from_dict (
loader, ’input’, data, test_directory, host, port, None, None,
prefix=prefix, handlers=handler_objects)

>>>>>>> REPLACE

Answer 13:
‘Y 'Ypython

gabbi/runner.py

<<<<<<< SEARCH

run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False) :
"""Run the tests from the YAML in handle."""
data = utils.load_yaml (handle)
if force_ssl:
if ’defaults’ in data:
data[’defaults’ ] [’'ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader

test_suite = suitemaker.test_suite_from_dict (
loader, ’'input’, data, ’.’, host, port, None, None, prefix=
prefix,

handlers=handler_objects)

run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False, test_directory='."):
"""Run the tests from the YAML in handle."""
data = utils.load_yaml (handle)
if force_ssl:
if ’'defaults’ in data:
data[’defaults’ ] ['ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader

62




2036
2037
2038
2039
2040
2041
2042
2043
2044

2059
2060
2061
2062
2063
2064
2065
2066
2067
2068

2069
2070
2071

2072
2073
2074

2075

Under review as a conference paper at ICLR 2026

test_suite = suiltemaker.test_suite_ from_dict (
loader, ’input’, data, test_directory, host, port, None, None,
prefix=prefix, handlers=handler_objects)
>>>>>>> REPLACE

AURTRY

AURNRY

python
### gabbi/runner.py
<<<<<<< SEARCH
for input_file in input_files:
with open (input_file, "r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast)

for input_file in input_files:
test_dir = os.path.dirname (os.path.abspath (input_file))
with open (input_file, "r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast,
test_directory=test_dir)
>>>>>>> REPLACE

AURTRY

Answer 14:

‘Y'python

### gabbi/runner.py

<<<<<<< SEARCH

for input_file in input_files:
with open (input_file, "r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast)

for input_file in input_files:
with open (input_file, 'r’) as fh:
success = run_suite (input_file, fh, handler_obijects,
host, port,
prefix, force_ssl, failfast)
>>>>>>> REPLACE

VRN

AURNRY

python
### gabbi/runner.py
<<<<<<< SEARCH
def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False) :
"""Run the tests from the YAML in handle."""
data = utils.load_yaml (handle)
if force_ssl:
if ’'defaults’ in data:
data[’defaults’ ] ['ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader
test_directory = ’.’
test_suite = suitemaker.test_suite_from_dict (
loader, ’'input’, data, test_directory, host, port, None, None,
prefix=prefix,
handlers=handler_objects)

def run_suite(input_file, handle, handler_objects, host, port, prefix,
force_ssl=False,
failfast=False) :
"""Run the tests from the YAML in handle."""
data = utils.load_yaml (handle)
if force_ssl:

63




2076
2077
2078
2079
2080
2081
2082
2083
2084

2085
2086

37

)
20:
2088
2089
2090
2091
2092
2093
2094
2095

2096

2097
2098
2099
2100
2101
2102

2103

2104
2105
2106
2107
2108

2109

2126

2127

2128
2129
2130
2131

2132

Under review as a conference paper at ICLR 2026

if ’'defaults’ in data:
data[’defaults’][’"ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader
test_directory = os.path.dirname (input_file) if input_file else ’.’
test_suite = suitemaker.test_suite_from_dict (
loader, ’'input’, data, test_directory, host, port, None, None,
prefix=prefix,
handlers=handler_objects)
>>>>>>> REPLACE

AURNRY

AURNRY

python
### gabbi/runner.py
<<<<<<< SEARCH
if not input_files:
success = run_suite(sys.stdin, handler_objects, host, port,
prefix, force_ssl, failfast)

if not input_files:
success = run_suite (None, sys.stdin, handler_objects, host,
port,
prefix, force_ssl, failfast)
>>>>>>> REPLACE

AURTRY

AURNRY

--— END FILE ---

Please first summary and analyze the key differences between the
trajectories, and then generate *SEARCH/REPLACEx edits to fix the
issue.

Every *SEARCH/REPLACE* edit must use this format:

1. The file path

2. The start of search block: <<<<<<< SEARCH

3. A contiguous chunk of lines to search for in the existing source
code

4. The dividing line: =======

The lines to replace into the source code

6. The end of the replace block: >>>>>>> REPLACE

ul

Here is an example:
*Y'python

### mathweb/flask/app.py
<<<<<<< SEARCH

from flask import Flask

import math
from flask import Flask
>>>>>>> REPLACE

AURNRY

Please note that the *SEARCH/REPLACEx edit REQUIRES PROPER INDENTATION.
If you would like to add the line ' print (x)’, you must
fully write that out, with all those spaces before the code!
Wrap the x*SEARCH/REPLACE* edit in blocks ‘‘‘python...‘'‘.
The summary of the key differences between the trajectories should be
in the thinking part.

"

Response:

<think>

64




)
)

2134

2135

2136

2137

2138

2139

2140
2141

2142
2143

2144
2145

2146
2147

2148

2149

2150

2151

Under review as a conference paper at ICLR 2026

Okay, let’s tackle this problem. The user is having an issue where when
they specify a data file in their YAML test using the <@ syntax,
the path isn’t resolved relative to the YAML file’s location.
Instead, it’s using the current working directory. They want the
path to be relative to the YAML file so they can run tests from any
directory.

First, I need to understand how the current code is handling the data
file paths. The user mentioned that in _load_data_file, the code
uses os.path.join(self.test_directory, os.path.basename (filename)) .
This takes the test_directory (which defaults to ’.’), discards any
directories in the filename, and appends the basename. That’s why if

the YAML is in /my/tests/test.yaml and the data is <@data.txt, it
looks for ./data.txt instead of /my/tests/data.txt.

The key here is to make sure that the test_directory is set to the
directory where the YAML file is located. Then, when joining with
the filename (without basename), it would correctly resolve the
relative path.

Looking at the provided code snippets, the main changes are in runner.
py where the test_directory is determined. The user’s proposed
solutions involve modifying the run_suite function to accept a
test_directory parameter, which is derived from the input file’s
directory.

In the original code, when running a suite from an input file, the
test_directory is hardcoded to ’.’. The various answers modify this
by passing the directory of the input file as test_directory. For
example, in Answer 10, they add the test_directory parameter to
run_suite and set it to os.path.dirname (input_file). Then, in case.
py, they change the path joining to use the filename directly
instead of basename.

Wait, the critical part is in case.py’s _load_data_file method. The
original code uses os.path.basename (filename), which strips any
directories from the filename. So if the YAML has <@test_data/file.
txt, the basename is file.txt, and it’s joined with test_directory.
But if test_directory is the YAML’s directory, then it should be
YAML_DIR/test_data/file.txt. However, the current code would do
test_directory + file.txt, which would be YAML_DIR/file.txt. That’s
incorrect. So the problem is that the code is taking the basename,
thus ignoring any subdirectories in the filename.

Ah, so the fix here is to not take the basename. Instead, the filename
after <@ should be treated as a relative path from the YAML’s
directory. So in case.py’s _load_data_file, instead of using os.path
.basename (filename), we should use the filename as-is. Then, os.path
.join(self.test_directory, filename) would correctly resolve the
path relative to the YAML’s directory.

But wait, the filename could be an absolute path. For example, if the
YAML has <@/absolute/path/file.txt, then os.path.join would just use
the absolute path. However, the documentation says that the
filename is relative to the YAML file. So absolute paths might not
be intended. But the code should handle that.

So combining two changes: in runner.py, set test_directory to the YAML
file’s directory, and in case.py, stop using basename and use the
full filename.

Looking at Answer 10, there’s a change in case.py from os.path.basename
(filename) to filename. That’s exactly the fix needed. Then, in
runner.py, when running the suite, pass the test_directory as the
directory of the input file.

65




2152
2153
2154

2155

2156

2157

2158

2159

2160
2161

2162

2163

2164
2165
2166

2167

2168
2169

170
171
172
173
174
175
176
177
178

79

180
181
182
183

RO N R RN NN RN NN N

184

2185

2186

Under review as a conference paper at ICLR 2026

So the key files to modify are:

1. gabbi/runner.py: When calling run_suite, pass test_directory as the
directory of the input file. This involves modifying the run_suite
function to accept test_directory as a parameter and then passing it

when the input file is processed.

2. gabbi/case.py: Change the path construction from using os.path.
basename (filename) to using the filename directly. This allows
subdirectories in the filename to be included in the path.

Looking through the provided code snippets, the one that does both is
Answer 10. Let me check:

In Answer 10, the runner.py changes add the test_directory parameter
and set it to os.path.dirname (input_file). Then, in case.py, the
path is changed to os.path.join(self.test_directory, filename). That

would correctly resolve the path relative to the YAML’s directory,
including any subdirectories in the filename.

But wait, the original code in case.py uses os.path.basename (filename) .
So changing that to filename means that if the input is ’test_data/
file.txt’, it’s Jjoined as test_directory/test_data/file.txt. If
test_directory is the YAML’s directory, that’s correct.

77777777777777777777 Omit some reasoning content --———-—-——--————————————

But perhaps better to use os.path.abspath and then dirname to handle
relative paths correctly. But maybe the existing code already works.
For example, if the input_file is ’tests/test.yaml’, then os.path.

dirname would return ’'tests’, which when joined with os.getcwd()
would be correct. Wait, no. os.path.dirname just gives the directory
part of the path. So if input_file is a relative path, like ’tests/
test.yaml’, then test_directory would be ’'tests’, and when os.path.
join is called, it’s relative to the current working directory. But
the code in suitemaker.test_suite_from _dict might expect an absolute
path. However, the original code uses ’.’ as the test_directory,
which is relative. So perhaps using the directory of the input file
as test_directory is sufficient.

Another thing to consider: when the YAML is loaded from stdin (like via
redirect), the test_directory remains ’.’. That’s acceptable, as

the documentation mentions that when using <, the filename isn’t
seen by Gabbi, so it’s not possible to resolve the path relative to
the YAML’s original location. So in that case, the test_directory
defaults to '.’.

Now, in case.py:

Original line:

path = os.path.join(self.test_directory, os.path.basename (filename))

Modified line:

path = os.path.join(self.test_directory, filename)

So the SEARCH/REPLACE block for case.py:

### gabbi/case.py

<<<<<<< SEARCH
path = os.path.join(self.test_directory, os.path.basename (filename)

66




Under review as a conference paper at ICLR 2026

2187 path = os.path.join(self.test_directory, filename)
2188 | >>>>>>> REPLACE

2189
2190 |Putting all these together, the final edits are:
2191
2192 | 1. Add import os in runner.py.
2193
2194 | 2. Modify run_suite to accept test_directory and pass it to
test_suite_ from_dict.

2195
2196 | 3. In the loop over input_files, compute test_directory as the
directory of input_file and pass it to run_suite.

2197
2198 |4. Modify case.py’s path construction.
2199
200 | So the final answer would include these four SEARCH/REPLACE blocks.
2201 |<I/think>

2202

AURTRY

2203 python

204 | ### gabbi/runner.py

2205 | <<<<<<< SEARCH

206 | import argparse

2207 | from importlib import import_module
2208 | import sys

209 |import unittest

010 | =======

211 | import argparse

212 | from importlib import import_module
2213 | import os

214 | import sys

215 | import unittest

216 | >>>>>>> REPLACE

217 | YY)
2218
219 | Y 'python

2220 | ### gabbi/runner.py

2221 | <<<<<<< SEARCH

222 |def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,

2223 failfast=False) :

2204 | =======

2225 |def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,

2226 failfast=False, test_directory="."):

2227 | >>>>>>> REPLACE

2228 | YV
2229
2230 | Y Y 'python
| | ### gabbi/runner.py
2230 | <<<<<<< SEARCH
3

273

2233 test_suite = suitemaker.test_suite_from_dict (

2234 loader, ’'input’, data, ’.’, host, port, None, None, prefix=
prefix,

2235 handlers=handler_objects)

2236 | =======

2037 test_suite = suiltemaker.test_suite_ from_dict (

2238 loader, ’input’, data, test_directory, host, port, None, None,

2239 prefix=prefix, handlers=handler_objects)

2040 | >>>>>>> REPLACE

AURTRY

AURTRY

python

»44 | ##4# gabbi/runner.py
2245 | <<<<<<< SEARCH

2246 else:

67




2247
2248
2249
2250
2251
2252
2253
2254
2255
2256

2257

2258
2259
2260
2261
2262
2263

2264

2265
2266
2267
2268
2269
2270
2271
2272

2273

2274

2275

2276

2277

Under review as a conference paper at ICLR 2026

for input_file in input_files:
with open (input_file, "r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast)

for input_file in input_files:
test_directory = os.path.dirname (input_file) or
with open (input_file, 'r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast,
test_directory=test_directory)

ror

>>>>>>> REPLACE

AURNRY

AURNRY

python

### gabbi/case.py

<<<<<<< SEARCH

path = os.path.Jjoin(self.test_directory, os.path.basename (filename)

path = os.path.join(self.test_directory, filename)
>>>>>>> REPLACE

AN

These changes:

1. Add ‘os' import needed for path handling

2. Modify run_suite to accept a test_directory parameter

3. Use the input file’s directory as the test_directory when processing
files

4. Update data file path resolution to preserve directory structure
from YAML relative paths

5. Remove basename handling that was stripping directory information
from data file paths

The net effect is that data files specified with ‘<@filename' in YAML
tests will now be resolved relative to their YAML file’s directory,
supporting both flat and nested directory structures for test data.
When tests are run from stdin (using ‘<'), the default directory
remains the current working directory as before.

Listing 20: Example of emergent parallel scaling (cdent__gabbi-191 in SWE-bench-extra).

H USE OF LARGE LANGUAGE MODELS

The initial draft of this paper was written entirely by the authors. A large language model (gpt-
5) was used only to aid with polishing the language (e.g., grammar and clarity). All conceptual
contributions, experimental designs, analyses, and conclusions are the work of the authors.

68



	Introduction
	Background
	Framework Dichotomy
	Training SWE-agents

	Agentless Training Recipe
	Framework: the Duo of Bugfixer and Testwriter
	Mid-Training & Cold Start
	Reinforcement Learning
	Test-Time Self-Play
	Experiments
	Main Results
	Mid-Training
	Reinforcement Learning
	Test-time Self-Play


	Initializing SWE-Agents from Agentless Training
	Performance after SWE-Agent Fine-tuning
	Skill Transfer and Generalization

	Conclusion and Future Work
	Details of Mid-training
	Docker environments
	More Details of RL training
	RL training objective
	Prompt set selection
	RL experiment ablation

	Agent Infrastructure
	Analysis for SWE-Agents
	Stage Annotation for SWE-Agent Trajectories
	Comparative Study
	Pattern Comparison between SFT with Expert Data and End-to-End RL
	Generalization to Other Tasks

	Case Study under Agentless
	Bugfixer Trajectories
	Testwriter False Positive Cases

	Emergent Parallel scaling
	Use of Large Language Models

