Under review as a conference paper at ICLR 2026

KIMI-DEV: AGENTLESS TRAINING AS SKILL PRIOR
FOR SWE-AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) are increasingly applied to software engineering
(SWE), with SWE-bench as a key benchmark. Solutions are split into SWE-Agent
frameworks with multi-turn interactions and workflow-based Agentless methods
with single-turn verifiable steps. We argue these paradigms are not mutually ex-
clusive: reasoning-intensive Agentless training induces skill priors, including lo-
calization, code edit, and self-reflection that enable efficient and effective SWE-
Agent adaptation. In this work, we first curate the Agentless training recipe and
present Kimi-Dev, an open-source SWE LLM achieving 60.4% on SWE-bench
Verified, the best among workflow approaches. With additional SFT adaptation
on 5k publicly-available trajectories, Kimi-Dev powers SWE-Agents to 48.6%
pass@1, on par with that of Claude 3.5 Sonnet (241022 version). These results
show that structured skill priors from Agentless training can bridge workflow and
agentic frameworks for transferable coding agents.

1 INTRODUCTION

Recent days have witnessed the rapid development of Large Language Models (LLMs) automating
Software-Engineering (SWE) tasks (Jimenez et al.| |2023} [Yang et al., [2024a; Xia et al.| 2024} |An-
thropic}, 2024} |Pan et al.| 2024; Wang et al., |2025a}; |Wei et al., 2025} |Yang et al., |2025a; |[Kimi et al.}
2025} |OpenAlL [2025¢c). Among the benchmarks that track the progress of LLM coding agents in
SWE scenarios, SWE-bench (Jimenez et al.,[2023)) stands out as one of the most representative ones:
Given an issue that reports a bug in a real-world GitHub repository, a model is required to produce
a patch that fixes the bug, the correctness of which is further judged by whether the corresponding
unit tests are passed after its application. The difficulty of the task (as of the date the benchmark was
proposed), the existence of the outcome reward with the provided auto-eval harness, as well as the
real-world economic value it reflects, have made the SWE-bench a focal point of the field.

Two lines of solutions have emerged for the SWE-bench task. Agent-based solutions like SWE-
Agent (Yang et all 2024a) and OpenHands (Wang et al., 2025a)) take an interactionist approach:
Instructed with the necessary task description, a predefined set of available tools, as well as the
specific problem statement, the agent is required to interact with an executable environment for
multiple turns, make change to the source codes, and determine when to stop autonomously. In
contrast, workflow-based solutions like Agentless (Xia et al.,[2024) pre-define the solving progress
as a pipeline, which consists of steps like localization, bug repair, and test composition. Such task
decomposition transforms the agentic task into generating correct responses for a chain of single-
turn problems with verifiable rewards (Guo et al., 2025 |Wei et al., 2025} [He et al., 2025)).

The two paradigms have been widely viewed as mutually exclusive. On the one hand, SWE-Agents
are born with higher potential and better adaptability, thanks to the higher degree of freedom of the
multi-turn interaction without the fixed routines. However, it has also proved more difficult to train
with such frameworks due to their end-to-end nature (Luo et al.,[2025;|Cao et al.,[2025). On the other
hand, Agentless methods offer better modularity and the ease to train with Reinforcement Learning
with Verifiable Rewards (RLVR) techniques, but more limited exploration space and flexibility, and
difficulty in behavior monitoring as the erroneous patterns appear only in the single-turn long rea-
soning contents (Pan et al 2024). However, we challenge the dichotomy from the perspective of
training recipe: We argue that Agentless training should not be viewed as the ultimate deliverable,
but rather as a way to induce skill priors — atomic capabilities such as the localization of buggy im-
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plementations and the update of erroneous code snippets, as well as self-reflection and verification,
all of which help scaffold the efficient adaptation of more capable and generalizable SWE-agents.

Guided by this perspective, we introduce Kimi-Dev, an open-source code LLM for SWE tasks.
Specifically, we first develop an Agentless training recipe, which includes mid-training, cold-start,
reinforcement learning, and test-time self-play. This results in 60.4% accuracy on SWE-bench Ver-
ified, the SoTA performance among the workflow-based solutions. Building on this, we show that
Agentless training induces skill priors: a minimal SFT cold-start from Kimi-Dev with 5k publicly-
available trajectories enables efficient SWE-agent adaptation and reaches 48.6% pass@ 1 score, sim-
ilar to that of Claude 3.5 Sonnet (the 20241022 version, |Anthropic| (2024)). We demonstrate that
these induced skills transfer from the non-agentic workflows to the agentic frameworks, and the
self-reflection in long Chain-of-Thoughts baked through Agentless training further enable the agen-
tic model to leverage more turns and succeed with a longer horizon. Finally, we also show that the
skills from Agentless training generalize beyond SWE-bench Verified to broader benchmarks like
SWE-bench-live (Zhang et al.l [2025) and SWE-bench Multilingual (Yang et al.l [2025c). Together,
these results reframe the relationship between Agentless and agentic frameworks: not mutually ex-
clusive, but as complementary stages in building transferable coding LLMs. This shift offers a prin-
cipled view that training with structural skill priors could scaffold autonomous agentic interaction.

The remainder of this paper is organized as follows. Section[2]reviews the background of the frame-
work dichotomy and outlines the challenges of training SWE-Agents. Section [3|presents our Agent-
less training recipe and the experimental results. Section [ demonstrates how these Agentless-
induced skill priors enable efficient SWE-Agent adaptation, and evaluates the skill transfer and
generalization beyond SWE-bench Verified.

2 BACKGROUND

In this section, we first review the two dominant frameworks for SWE tasks and their dichotomy in
Section[2.T} We then summarize the progress and challenges of training SWE-Agents in Section[2.2]
The background introduction sets the stage for reinterpreting Agentless training as skill priors for
SWE-Agents, a central theme developed throughout the later sections.

2.1 FRAMEWORK DICHOTOMY

Two paradigms currently dominate the solutions for automating software engineering tasks. Agent-
less approaches decompose SWE tasks into modular workflows (Xia et al.| 2024} [Wei et al.| 2025
Ma et al., [2025a3b; Xie et al., [2025). Typical workflows consist of bug localization, bug repair, and
test generation. This design provides modularity and stability: each step could be optimized sepa-
rately as a single-turn problem with verifiable rewards (Wei et al.| 2025 [He et al., [2025)). However,
such rigidity comes at the cost of flexibility. When encountering scenarios requiring multiple rounds
of incremental updates, the Agentless approaches struggle to adapt.

By contrast, SWE-agents adopt an end-to-end, multi-turn reasoning paradigm (Yang et al., |[2024a;
Wang et al.,|2025a). Rather than following a fixed workflow, they iteratively plan, act, and reflect,
resembling how human developers debug complex issues. This design enables greater adaptability,
but introduces significant difficulties: trajectories often extend over tens or even hundreds of steps,
context windows of the LLMs must span over the entire interaction history, and the model must
handle exploration, reasoning, and tool use simultaneously.

The dichotomy between fixed workflows (e.g., Agentless) and agentic frameworks (e.g., SWE-
Agent) has shaped much of the community’s perspective. The two paradigms are often regarded
as mutually exclusive: one trades off flexibility and performance ceiling for modularity and stabil-
ity, whereas the other makes the reverse compromise. Our work challenges this dichotomy, as we
demonstrate that Agentless training induces skill priors that make further SWE-agent training both
more stable and more efficient.

2.2 TRAINING SWE-AGENTS

Training SWE-agents relies on acquiring high-quality trajectories through interactions with exe-
cutable environments. Constructing such large-scale environments and collecting reliable trajecto-
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Figure 1: Agentless framework for Kimi-Dev: the duo of BugFixer and TestWriter.

ries, however, requires substantial human labor as well as costly calls to frontier models, making data
collection slow and resource-demanding (Pan et al.,|2024; Badertdinov et al.,2024b). Recent studies
also attempt to scale environment construction by synthesizing bugs for the reverse construction of
executable runtime (Jain et al., 2025} [Yang et al.| 2025c)). However, credit assignment across long
horizons still remains challenging, as outcome rewards are sparse and often only available when a
final patch passes its tests. Reinforcement learning techniques have been proposed, but frequently
suffer from instability or collapse when trajectories exceed dozens of steps (Luo et al., 2025} |Cao
et al., 2025). SWE-agent training is also highly sensitive to initialization: starting from a generic
pre-trained model often leads to brittle behaviors, such as failing to use tools effectively or getting
stuck in infinite loops of specific action patterns (Pan et al.l 2024} Yang et al.l 2025c¢).

These limitations motivate our central hypothesis: instead of training SWE-agents entirely from
scratch, one can first induce skill priors through agentless training, enhancing the atomic capabilities
like localization, repair, test composition, and self-reflection. These priors lay a foundation that
makes subsequent agentic training both more efficient and more generalizable.

3 AGENTLESS TRAINING RECIPE

Instead of training SWE-agents from scratch, we leverage Agentless training to induce skill priors.
Skill priors enhanced by Agentless training include but are not limited to bug localization, patch gen-
eration, self-reflection and verification, which lay the foundation for end-to-end agentic interaction.
In this section, we elaborate our Agentless training recipe: the duo framework design of BugFixer
and TestWriter, mid-training and cold-start, reinforcement learning, and test-time self-play. Sec-
tions [3.TH3.4] detail these ingredients, and Section [3.5] presents the experimental results for each of
them. This training recipe results in Kimi-Dev, an open-source 72B model that achieves 60.4% on
SWE-bench Verified, the SOTA performance among the workflow-based solutions.

3.1 FRAMEWORK: THE DUO OF BUGFIXER AND TESTWRITER

In GitHub issue resolution, we conceptualize the process as the collaboration between two important
roles: the BugFixer, who produces patches that correctly address software bugs, and the TestWriter,
who creates reproducible unit tests that capture the reported bug. A resolution is considered suc-
cessful when the BugFixer’s patch passes the tests provided for the issue, while a high-quality test
from the TestWriter should fail on the pre-fix version of the code and pass once the fix is applied.

Each role relies on two core skills: (i) file localization, the ability to identify the specific files relevant
to the bug or test, and (ii) code edit, the ability to implement the necessary modifications. For Bug-
Fixer, effective code edits repair the defective program logic, whereas for TestWriter, they update
precise unit test functions that reproduce the issue into the test files. As illustrated in Figure[T] these
two skills constitute the fundamental abilities underlying GitHub issue resolution. Thus, we enhance
these skills through the following training recipes, including mid-training, cold-start, and RL.

3.2 MID-TRAINING & COLD START

To enhance the model’s prior as both a BugFixer and a TestWriter, we perform mid-training with
~150B tokens in high-quality and real-world data. With the Qwen 2.5-72B-Base (Qwen et al.
2024) model as a starting point, we collect millions of GitHub issues and PR commits to form its
mid-training dataset, which consists of (i) ~50B tokens in the form of Agentless derived from the



Under review as a conference paper at ICLR 2026

natural diff patch, (ii) ~20B tokens of curated PR commit packs, and (iii) ~20B tokens of synthetic
data with reasoning and agentic interaction patterns (upsampled by a factor of 4 during training).
The data recipe is carefully constructed to enable the model to learn how human developers reason
with GitHub issues, implement code fixes, and develop unit tests. We also performed strict data
decontamination to exclude any repository from the SWE-bench Verified test set. Mid-training
sufficiently enhances the knowledge in the model about practical bug fixes and unit tests, making it
a better starting point for later stages. The details of the recipe are covered in Appendix [A]

To activate the model’s long Chain-of-Thought (CoT) capability, we also construct a cold-start
dataset with reasoning trajectories based on the SWE-Gym (Pan et al.,2024) and SWE-bench-extra
(Badertdinov et al., |2024a)) datasets, generated by the DeepSeek R1 model (Luo et al|(2025), the
20250120 version). In this setup, R1 acts the roles of Bugfixer and Testwriter, producing out-
puts such as file localization and code edits. Through supervised finetuning as a cold start with
this dataset, we enable the model to acquire essential reasoning skills, including problem analysis,
method sketching, self-refinement, and exploration of alternative solutions.

3.3 REINFORCEMENT LEARNING

After mid-training and cold-start, the model demonstrates strong performance in localization.
Therefore, reinforcement learning (RL) focuses solely on the code edit stage. We construct a
training set specifically for this stage, where each prompt is equipped with an executable environ-
ment. We further employ multiple localization rollouts from the initial model to generate varied file
location predictions, which diversifies the prompts used in code-edit RL.

For the RL algorithm, we adopt the policy optimization method proposed by Kimi k1.5 (Team et al.,
2025), which has shown promising results on reasoning tasks in both math and coding. Unlike
GRPO (Shao et al} 2024) that eliminates the critic by using average rewards for advantage estima-
tion, Kimi k1.5 (Team et al [2025) adopts a simpler policy gradient approach motivated by path
consistency (Nachum et al.,[2017). The specific RL objective is provided in Appendix [C.1]

When adapting the algorithm in our SWE-bench setting, we highlight the following 3 key desiderata:

1. Outcome-based reward only: We rely solely on the final execution outcome from the
environment as the raw reward (0 or 1), without incorporating any format- or process-
based signals. For BugFixer, a positive reward is given if the generated patch passes all
ground-truth unittests. For TestWriter, a positive reward is assigned when the predicted
test raises a failure in the absence of the ground-truth bugfix patch and, once the patch is
applied, the failure is resolved.

2. Adaptive prompt selection: Prompts with pass@ 16 = 0 are initially discarded as they do
not contribute to the batch loss, effectively enlarging the usable batch size. A curriculum
learning scheme is then applied: once the success rate on the current set exceeds a
threshold, previously excluded prompts (with initial pass@ 16 = 0 but improved under RL)
are reintroduced to gradually raise task difficulty.

3. Positive example reinforcement: As performance improvements begin to plateau in later
stages of training, we incorporate the positive samples from the recent RL iterations into
the training batch of the current iteration. This approach reinforces the model’s reliance on
successful patterns, thereby accelerating convergence in the final phase.

Robust sandbox infrastructure. We construct the docker environment with Kubernetes (Burns
et al.| 2016), which provides a secure and scalable sandbox infrastructure and efficient training and
rollouts. The infra supports over 10,000 concurrent instances with robust performance, making it
ideal for competitive programming and software engineering tasks (see Appendix D).

3.4 TEST-TIME SELF-PLAY

After RL, the model masters the roles of both a BugFixer and a TestWriter. During test time,
it adopts a self-play mechanism to coordinate its bug-fixing and test-writing abilities. Following
Agentless (Xia et al.| 2024)), we leverage the model to generate 40 candidate patches and 40 tests
for each instance. Each patch generation involves independent runs of the localization and code edit
from BugFixer, where the first run uses greedy decoding (temperature 0), and the remaining 39 use
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Table 1: Performance comparison for models on SWE-bench Verified under Agentless-like frame-
works. All the performances are obtained under the standard 40 patch, 40 test setting (Xia et al.,
2024), except that Llama3-SWE-RL uses 500 patches and 30 tests.

Model #Params Resolve Rate (%)
Llama3-SWE-RL (Wei et al .| 2025)) 70B 41.0
Seed1.5-Thinking (Seed et al.|[2025) 200B 47.0
OpenAl-ol (OpenAl, |2024) - 48.9
DeepSeek-R1-0120 (Guo et al., 2025) 671B 49.2
OpenAl-03-mini-high (OpenAl,|2025a) - 49.3
Claude 3.5 Sonnet (241022) (Anthropic, [2024) - 50.8
MiniMax-M1 (Chen et al.,|[2025a) 456B 56.0
DeepSeek-R1-0528 (Guo et al.,[2025) 671B 57.6
SWE-SWISS (He et al.,|2025) 32B 58.2
Kimi-Dev (Ours) 72B 60.4

temperature 1 to ensure diversity. Similarly, 40 tests are generated independently from TestWriter.
For the test patch candidates, to guarantee their validity, we first filter out those failing to raise a
failure in the original repo without applying any BugFixer patch.

Denote the rest TestWriter patches as set 7, and the BugFixer patches as set 5. For each b; € B
and t; € T, we execute the test suite over the test file modified by ¢; for twice: first without b;,
and then with b; applied. From the execution log for the first run, we get the count of the failed and
the passed tests from ¢;, denoted as F(j) and P(j). Comparing the execution logs for the two test
suite runs, we get the count of the fail-to-pass and the pass-to-pass tests, denoted as FP (i, j) and
PP(i, j), respectively. We then calculate the score for each b; with

> FU) >.; P0)
where the first part reflects the performance of b; under reproduction tests, and the second part

could be viewed as the characterization of b; under regression tests (Xia et al.,[2024). We select the
BugFixer patch b; with the highest \S; score as the ultimate answer.

)

3.5 EXPERIMENTS
3.5.1 MAIN RESULTS

We evaluate our approach on SWE-bench Verified
(Jimenez et al.| |2023)), which includes 500 GitHub issues
guaranteed to be solved by human programmers. Table 36.6
[1] shows the overall results. Unlike SWE-RL (Wei et al.,
2025])), which relies on text-based similarity to the ground-
truth patch, we use execution results as the reward signal,
reducing shortcuts and improving solution quality. Unlike
most Agentless approaches (Xia et al., 2024; |Guo et al.|
2025 |He et al., |2025)), which place a single-file reproduc-
tion test at the root directory of the repository, we leverage 50B 100B 1508
the two-stage TestWriter to better capture repository con- Mid-training tokens

text and align with human standard workflows (OpenAl|
2025). Kimi-Dev model achieves the state-of-the-art per-
formance among open-source models, resolving 60.4% of
the issues in SWE-bench Verified.
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Figure 2: The performance on SWE-
bench Verified after mid-training with
different training token budgets.

3.5.2 MID-TRAINING

In this section, we evaluate the relationship between the amount of data used during mid-training
and model performance. Specifically, we finetuned Qwen 2.5-72B-Base with the subset of mid-
training data of 50B, 100B, and approximately 150B tokens, and then lightly activated them using
the same 2,000 Bugfixer input-output pairs as cold start. We report BugFixer pass@1 without self-
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Figure 3: Joint code-edit RL experiments on the model after mid-training and cold-start. The pass
rate for BugFixer and the reproduced rate for TestWriter are reported as pass@1 with tempera-
ture=1.0. The performance improves consistently as the output becomes increasingly longer.

play for simplicity of evaluation. Figure[2]shows that increasing the number of tokens in mid-training
consistently improves model performance, highlighting the effectiveness of this stage.

3.5.3 REINFORCEMENT LEARNING

Experimental setup We set the training step per RL iteration as 5 and sample 10 rollouts for
each of the 1,024 problems from the union of SWE-gym (Pan et al., |2024) and SWE-bench-extra
(Badertdinov et al.l |2024b). We dynamically adjust the prompt set every 20 iterations to gradually
increase task difficulty. We fix the maximum training context length as 64k tokens, since the prompt
input contains the contents of the entire files localized by the initial model in advance.

Results Figure[3|shows the performance and response length curves on the test set during RL train-
ing. The pass rate and the reproduced rate are calculated from pass@ 1 and temperature=1. Specifi-
cally, we observe that both model performance and response length steadily increase, reflecting the
expected benefits of RL scaling. Similar RL scaling curves are also observed in our ablation ex-
periments run on Qwen2.5-14B-Instruct models, proving the effectiveness of the RL training recipe
across models of different sizes. The experimental details, as well as the ablation studies on positive
example reinforcement in Section [3.3] are listed in Appendix [C.3). The lengthy outputs consist of
in-depth problem analysis and self-reflection patterns, similar to those in the math and code reason-
ing tasks (Team et al., 2025} |Guo et al.}[2025). We have also observed that for TestWriter, occasional
false-positive examples take place during RL training due to the lack of reproduction coverage. We
leave the case studies in Appendix [F|and further improvement for future work.

3.5.4 TEST-TIME SELF-PLAY

62.51 — self-play r —— Self-play
—— Majority Voting Pass@N

9
&

Following Section [3.4] we evaluate how
the final performance on the SWE-bench

3
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to 1.0 for the subsequent 39 rollouts. As Number of patches: BF x TW Number of patches: BF x TW
shown on the left of Figure [ perfor-

mance improves from 48.0% to 60.4% as Figure 4: Test-time self-play on SWE-bench Verified.
the number of patch test pairs increases Performance improves with more generated patches
from 1x1 to 40x40, and consistently out- and tests. Left: Execution-based self-play consis-
performs the results obtained from the ma-  tently surpasses BugFixer majority voting. Right: Self-
jority vote of BugFixer patches. Specifi- play performances remain below pass@N where the
cally, the self-play result obtained from 3 ground-truth test patch is used, suggesting the room ex-
patches and 3 tests for each instance has ists for TestWriter to improve.

already surpassed the performance with

majority voting from 40 BugFixer patches. This demonstrates the effectiveness of additional in-
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Table 2: Single-attempt performance of different models on SWE-bench Verified under end-to-end
agentic frameworks, categorized by proprietary or open-weight models, and size over or under 100B.
“Internal” denotes results achieved with their in-house agentic frameworks.

Model System #Params Pass Rate (%)
Proprietary
Gemini 2.5 Pro (Comanici et al., 2025) Internal - 60.3
OpenAl-03 (OpenAl, [2025) Internal - 69.1
GPT-5 (OpenAlL[2025c) Internal - 74.9
Claude 3.5 Sonnet (241022) (Anthropic} 2024) SWE-Agent - 49.0
Claude 3.7 Sonnet (Anthropic} [2025al) SWE-Agent - 62.3
Claude 4.0 Sonnet (Anthropicl [2025b)) SWE-Agent - 72.7
Open Weight, > 100B
gpt-o0ss-120b (High) (OpenAl, 2025b) Internal 120B 62.4
DeepSeek-v3.1 (Guo et al.| 2025) Internal 671B 66.0
Kimi-K2-0905 (Kimi et al.| [2025]) SWE-Agent 1T 69.2
Qwen3-Coder (Yang et al., [2025a) OpenHands 480B 69.6
Open Weight, < 100B
Openhands-LM (Wang et al.,|2025b) OpenHands 32B 37.2
Skywork-SWE (Zeng et al., 2025]) OpenHands 32B 38.0
SWE-agent-LM (Yang et al.,|2025b) SWE-Agent 32B 40.2
DeepSWE (Luo et al.,[2025) OpenHands 32B 42.2
Devstral-Small-2507 (Al & Al [2025) OpenHands 24B 53.6
gpt-0ss-20b (High) (OpenAl,[2025b) Internal 20B 60.7
Kimi-Dev (SFTed) SWE-Agent 72B 48.6

formation from test-time execution. The room for improvement of TestWriter, though, still exists
for more powerful self-play: Shown on Figure |4} self-play performances remain below pass@N,
where ground-truth test cases serve as the criterion for issue resolution. This finding aligns with|An-
thropic| (2024), which introduced a final edge-case checking phase to generate a more diverse set of
test cases, thereby strengthening the role of the “TestWriter” in their SWE-Agent framework. We
also report preliminary observations of a potential parallel scaling phenomenon, which requires no
additional training and may enable scalable performance improvements (see Appendix [G).

4 INITIALIZING SWE-AGENTS FROM AGENTLESS TRAINING

End-to-end multi-turn frameworks, such as SWE-Agent (Yang et al.| [2024a}; |Anthropic, 2024)) and
OpenHands (Wang et al., 2025a), enable agents to leverage tools and interact with environments.
Specifically, the system prompt employed in the SWE-Agent framework (Anthropic,2024) outlines
a five-stage workflow: (i) repo exploration, (ii) error reproduction via a test script, (iii) code edit
for bug repair, (iv) test re-execution for validation, and (v) edge-case generation and checks. Unlike
Agentless, the SWE-Agent framework doesn’t enforce a strict stage-wise workflow; the agent can
reflect, transition, and redo freely until it deems the task complete and submits.

The performance potential is therefore higher without a fixed routine; However, the training for
SWE-Agent is more challenging because of the sparsity of the outcome reward for long-horizon
credit assignment. Meanwhile, our Kimi-Dev model has undergone Agentless training, with its skills
of localization and code edit for BugFixer and TestWriter strengthened elaborately. In this section,
we investigate whether it can serve as an effective prior for multi-turn SWE-Agent scenarios.

4.1 PERFORMANCE AFTER SWE-AGENT FINE-TUNING

We use the publicly available SWE-Agent trajectories to finetune Kimi-Dev. The finetuning dataset
we used is released by SWE-smith (Yang et al., 2025b)), consisting of 5,016 SWE-Agent trajectories
collected with Claude 3.7 Sonnet (Anthropic), [2025a)) in the synthetic environments. We perform
supervised fine-tuning over Kimi-Deyv, setting the maximum context length as 64K tokens during
training, and allowing up to 128K tokens and 100 turns during inference.
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Figure 5: Comparing the quality of the raw Base, the Agentless mid-trained (MT), the Agentless
mid-trained with reasoning-intensive cold-start (SFT), and the Kimi-Dev model after RL as the prior
for SWE-Agent adaptation. The tokens of the SWE-Agent SFT trajectories are swept over different
scales, and the SWE-Agent performances are reported up to pass@3 on SWE-bench Verified.

As shown in Table [2] without collecting more trajectory data over realistic environments, or con-
ducting additional multi-turn agentic RL, our finetuned model achieves a pass@1 score of 48.6%
on SWE-bench Verified under the agentic framework setup, without additional test-time scaling.
Using the same SFT data, our finetuned Kimi-Dev model outperforms the SWE-agent-LM (Yang
et al.| 2025c), with the performance comparable to that of Claude 3.5 Sonnet (49% by the 241022
version). The pass@10 of our SWE-Agent adapted model is 74.0% and surpasses the pass@30 of
our model under Agentless (73.8%), proving the higher potential for the SWE-Agent framework.

4.2 SKILL TRANSFER AND GENERALIZATION

The results shown in Section demonstrate that Kimi-Dev, a model with extensive Agentless
training, could be adapted to end-to-end SWE-Agents with lightweight supervised finetuning. As
the Agentless training recipe consists of mid-training, cold-start (SFT) and RL, we explore the con-
tribution of each part in the recipe to the SWE-Agent capability after adaptation.

To figure this out, we perform SWE-Agent SFT on the original Qwen2.5-72B (Base), the mid-
trained model (MT), the model then activated with Agentless-formatted long CoT data (SFT), and
the (Kimi-Dev) model after finishing RL training (RL). As we are treating the four models as the
prior for SWE-Agentsﬂ and a good prior always demonstrates the ability of fast adaptation with a
few shots (Finn et al.,2017;Brown et al., | 2020), we also sweep the amount of SWE-Agent SFT data
to measure the efficiency of each prior in SWE-Agent adaptation.

Specifically, we randomly shuffle the 5,016 SWE-Agent trajectories and construct nested subsets
of sizes 100, 200, 500, 1,000, and 2,000, where each smaller subset is contained within the larger
ones. In addition, we prepend two extreme baselines: (i) zero-shot, where the prior model is directly
evaluated under the SWE-Agent framework without finetuning, and (ii) one-step gradient descent,
where the model is updated with a single gradient step using the 100-trajectory subset. This yields a
range of SFT token budgets spanning {0, 221, 223,224 1.1 x 225, 1.1 x 226, 1.1 x 227, 1.5 x 228},
After these lightweight SFT experiments, we evaluate performance in terms of pass@{1,2,3} under
the SWE-Agent framework, with evaluations for pass@1 conducted at temperature 0, and those for
pass@2 and pass@3 at temperature 1.0.

Figure [5] presents the SWE-Agent performances of each prior (Base, MT, SFT, RL) after being
fine-tuned with different amounts of agentic trajectories. We have the following observations:

1. The RL prior is outperformed by all the other models in nearly all the SWE-Agent SFT
settings. This demonstrates that the Agentless training recipe indeed strengthens the prior
in terms of SWE-Agent adaptation. For example, To achieve the top pass@1 performance

"'We slightly abuse the term “prior” to refer to a model to be finetuned with SWE-Agent trajectories in the
following analysis.
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Figure 6: Left: Performance of the four priors under turn limits after SWE-Agent adaptation. Right:
The characterization of the BugFixer and the reflection skills for each prior by counting the resolved
cases of the 3 runs at Stage-3 cutoff moment, and comparing those with the final success cases.

of the Base prior, the RL prior needs only 22* SWE-Agent SFT tokens, whereas the Base
prior consumes 1.5 x 228 tokens.

2. The MT prior is lagged behind the SFT and the RL ones in extremely data-scarce settings
(zero-shot (0) and one-step gradient descent (221) ), but quickly becomes on par with them
after 200 trajectories (224) are available for finetuning. This indicates that adaptation effi-
ciency remains comparable after the prior is strengthened through Agentless mid-training.

3. The performance of the SFT prior is mostly similar to the RL one except for two cases: (i)
The SFT prior outperforms the RL one under the zero-shot setting. This is reasonable, as
the RL prior might overfit to the Agentless input-output format, while the SFT prior suffers
less from this. (ii) The SFT prior exhibits a significant degradation with 200 SWE-Agent
trajectories (224). A potential reason could be that the 200 trajectories collapse onto a single
data mode, leading the SFT prior to overfit through memorization (Chu et al., [2025); the
RL prior instead embeds stronger transferable skills and thus generalizes better.

From long CoT to extended multi-turn interactions. We hypothesize that reflective behav-
iors cultivated through long chain-of-thought reasoning may transfer to settings requiring extended
multi-turn interactions. To examine this, we evaluate the four priors (Base, MT, SFT, and RL) by
finetuning on the 5,016 trajectories and test on SWE-bench Verified, under varying turn limits with
pass@3 as the metric (Figure[d] left). The distinct interaction-length profiles show supportive evi-
dence: the RL prior, after finetuning, continues to make progress beyond 70 turns, while the SFT,
mid-trained, and raw models show diminishing returns around 70, 60, and 50 turns, respectively.

We further evaluate the efficacy of the Agentless skill priors (BugFixer and reflection) in the SWE-
Agent adapted model. For BugFixer, given that the SWE-Agent may autonomously reflect between
the five stages, we examine the moment in each trajectory when the bug fix of the third stage is
initially completed, and the test rerun of the fourth stage has not yet been entered. Heuristically,
when the SWE-Agent just completes the third stage, it has not yet obtained the execution feedback
from the fourth stage, and thus has not further reflected based on the execution information or refined
the bug fix. We therefore calculate the success rate of direct submission at this cutoff moment,
which reflects the capability of the BugFixer skill. Regarding reflection, we further compare the
performance at the cutoff point with the performance after full completion for each problem. The
increment in the number of successful problems is used to reflect the capability of the reflection skill.
We use Kimi-K2 to annotate the SWE-Agent stage each turn lies in along each trajectory. Figure [6]
demonstrates that both skills are strengthened in the RL prior, leading to superior performance.

5 CONCLUSION AND FUTURE WORK

In this work, we reframed Agentless and agentic paradigms for automated software engineering as
complementary rather than competing. By introducing Kimi-Dev, we demonstrated that structured
Agentless training can induce transferable skill priors, including bug localization, code repair, and
self-reflection. As a result, Kimi-Dev not only achieves SoTA results on SWE-bench Verified among
the workflow-based approaches, but enables efficient SWE-Agent adaptation as well. These findings
establish a novel path toward building more generalizable coding agents through staged training.
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ETHICS AND REPRODUCIBILITY STATEMENTS

This work obeys the Code of Ethics required by the ICLR conference. The study does not involve
human subjects or animal experimentation. The personally identifiable information from raw data
is excluded for privacy consideration (see the mid-training data recipe detailed in Appendix [A).

For all of the experiments, we have covered the detailed setups in the appendices: mid-training for
Agentless in Appendix [A] details of the used dockers in Appendix [B] Agentless RL in Appendix [C}
agent infrastructure in Appendix [D] and case studies in Appendix
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APPENDIX

A DETAILS OF MID-TRAINING

We curate a mid-training data recipe with a focus on enhancing SWE capabilities. Central to this
effort is the collection of pull request (PR) data from GitHub, which provides extensive coverage
of real-world bug fixes, feature requests, and code enhancements. To ensure data quality, we apply
two filters: (i) we only retain repositories that have accumulated at least five GitHub stars, thereby
excluding sparsely maintained projects with limited community engagement; and (ii) we remove any
repositories overlapping with the SWE-bench benchmark (Jimenez et al.,|2023) to prevent potential
data leakage. For each candidate repository, we query the GitHub API for all PRs with the state
MERGED, while discarding those abandoned, superseded, or left under review. To preserve more
context information, we also snapshot the entire codebase at the base commit before the first code
change in the PR.

After data crawling, we incorporate two complementary forms for the natural code change data:
(i) natural diff patches and (ii) PR commit packs. A natural diff patch consolidates all commits
in a PR into the final code difference, typically expressed as SEARCH-REPLACE blocks. This
format aligns with the Agentless paradigm, in which the model must directly output the final patch.
In contrast, a commit pack captures the sequence of human-authored commits within a PR, where
each commit message (textual reasoning) is paired with the corresponding code modification (ac-
tion). This structure closely parallels the SWE-Agent setting, where intermediate reasoning steps
are interleaved with actions. However, the distinction of the utilities for the two types of data is
not absolute: commit messages in a PR commit pack can still inform the model’s knowledge and
indirectly strengthen its reasoning ability in the Agentless setting.

Natural diff patches. The natural diff patches used in the mid-training data recipe are processed
with the following rules:

* Incorporate the agentless prompt template (see Prompts [I2[3ll4} These four prompt tem-
plates are also used in the later stages, including cold-start, RL, and test-time self-play),
and apply a loss mask to the prompt part. For the localization prompt, the response is set
as the files modified in the ground-truth diff patch.

» If a related issue to the PR exists, use its content of the related issue; otherwise, use the PR
title as the surrogate of the issue content.

o If a related issue to the PR exists, prepend the issue discussion at the beginning of the
output in the code edit response. We aim to strengthen the model’s capability of code edit
reasoning by leveraging the discussion contents.

* Discard PRs that include modifications to files other than {.py, .md, .rst}.

* For PRs containing {.md, .rst} file modifications, retain only the Python diffs and rewrite
them into SEARCH-REPLACE blocks.

* Remove PRs involving file additions or deletions.

* For the code edits with only line insertions or deletions, preserve the original Git diff hunks
as the SEARCH content in the SEARCH-REPLACE blocks.

* Ensure that no more than three Python files are modified per PR.

* Apply a filtering script to exclude PRs with non-{.py, .md, .rst} modifications, or PRs
modifying more than three Python files.

* Further exclude PRs containing more than five SEARCH-REPLACE blocks.

A total of ~50B tokens for natural diff patches are obtained after applying these filtering rules.

Please look through the following GitHub problem description and
Repository structure and provide a list of files that one would need
to edit to fix the problem.

#4## GitHub Problem Description ###
{related issue / PR title content}
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##4

##4

ki

For

AURNRY

AURTRY

Repository Structure ###

least important and wrapped with

example:

filel.py
file2.py

{file structure induced by the repo snapshot}

AURTRY

Please only provide the full path and return at most 5 files.
The returned files should be separated by new lines ordered by most to

Listing 1: Agentless prompt template: Localization for BugFixer.

##4

##4

##4

For

AURTRY

VRN

Please look through the following GitHub problem description and

Repository structure and provide a list of test files that should be

run after applying the patch to fix the issue.

### GitHub Problem Description ###
{related issue / PR title content}

Repository Structure ###

least important and wrapped with

example:

filel.py
file2.py

{file structure induced by the repo snapshot}

AURTRY

Please only provide the full path and return at most 5 files.
The returned files should be separated by new lines ordered by most to

Listing 2: Agentless prompt template: Localization for TestWriter.

AURTRY

#H##

##4

Below are some code segments,

Here is the issue text:
BEGIN ISSUE —--—-—

{related issue / PR title content}

END ISSUE ——-—

these files may contain bugs.
BEGIN FILE ——-

{filenamel}

{content of filenamel}

{filename2}

{content of filename2}

{oco

}

15

each from a relevant file.

We are currently solving the following issue within our repository.

One or more of
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AURNRY

——— END FILE ———

Please first localize the bug based on the issue statement, and then
generate »SEARCH/REPLACEx edits to fix the issue.

Every *SEARCH/REPLACE* edit must use this format:

1. The file path

2. The start of search block: <<<<<<< SEARCH

3. A contiguous chunk of lines to search for in the existing source
code

4. The dividing line: =======

The lines to replace into the source code

6. The end of the replace block: >>>>>>> REPLACE

ul

Here is an example:
*Y'python

### mathweb/flask/app.py
<<<<<<< SEARCH

from flask import Flask

import math
from flask import Flask
>>>>>>> REPLACE

AURNRY

Please note that the *SEARCH/REPLACEx edit REQUIRES PROPER INDENTATION.
If you would like to add the line ' print (x)’, you must
fully write that out, with all those spaces before the code!

Wrap the »SEARCH/REPLACE* edit in blocks ‘‘‘python...‘‘‘.

Listing 3: Agentless prompt template: Code edit for BugFixer.

We are currently solving the following issue within our repository.
Here is the issue text:

——— BEGIN ISSUE ——-

{related issue / PR title content}

-—— END ISSUE ---

Below are some code segments, each from a relevant test file. One or
more of these files may be added some new tests which can reproduce
the issue.

—-—— BEGIN FILE ——-

AURTRY

### {filenamel}
{content of filenamel}

### {filename2}
{content of filename2}

{...}

AN

——— END FILE ——-—

Please first localize some possible locations in those test files
within the repo, and then generate *SEARCH/REPLACEx edit updates to
the xxtestxx files in the repo, so that the erroneous scenario
described in the problem is reproduced.

Every *SEARCH/REPLACE* edit must use this format:
1. The file path
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2. The start of search block: <<<<<<< SEARCH

3. A contiguous chunk of lines to search for in the existing source
code

4. The dividing line: =======

The lines to replace into the source code

6. The end of the replace block: >>>>>>> REPLACE

ul

Here is an example:
‘Y'python

### mathweb/flask/app.py
<<<<<<< SEARCH

from flask import Flask

import math
from flask import Flask

def test_ _rules_ std_LO060_raised() —-> None:
try:
sgl = "SELECT IFNULL (NULL, 100),
NVL (NULL, 100) ; "
result = lint(sgl, rules=["L060"])
assert len(result) ==

except:
print ("Other issues")
return
try:
assert result[0] ["description"] == "Use ’'COALESCE’ instead of '
IFNULL’ ."
assert result[l]["description"] == "Use ’'COALESCE’ instead of '
NVL” ."

print ("Issue resolved")
except AssertionError:

print ("Issue reproduced")

return

return
>>>>>>> REPLACE

AURTRY

Please note that the *SEARCH/REPLACEx edit REQUIRES PROPER INDENTATION.
If you would like to add the line ' print (x)’, you must
fully write that out, with all those spaces before the code!

Wrap the *SEARCH/REPLACE* edit in blocks ‘‘‘python...‘‘‘.

Listing 4: Agentless prompt template: Code edit for TestWriter.

PR commit packs. The PR commit packs used in the mid-training data recipe are processed with
the following rules:
* Discard PRs that include modifications to files other than {.py, .md, .rst}.

 For {.md, .rst} file modifications, retain the “diff —git” signature but remove the actual
content changes.

 Ensure that each PR modifies at most five Python files (with at least one required). PRs
exceeding this limit are discarded.

* Apply a filtering script to exclude PRs containing non-{.py, .md, .rst} file modifications or
those modifying more than five Python files.

* Filter out all of the developer signatures and GitHub IDs for ethics considerations.

A total of ~20B tokens for PR commit packs are obtained after applying these filtering rules.
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In addition, we incorporate synthetic data to further enhance both the reasoning and agentic capa-
bilities of the model. A key observation is that the ground-truth reward for the localization stage
in the Agentless setting can be derived directly from the diff patch, since the set of files requiring
modification is explicitly indicated.

Synthetic reasoning data. To improve reasoning quality, we perform a lightweight SFT of the
Qwen-2.5-72B-Instruct model on 2,000 R1 trajectories. The resulting model is then used to generate
large-scale rollouts for the localization stage of both BugFixer and TestWriter. We retain only the
rollouts that achieve exactly correct file localizations. This procedure yields approximately ~10B
tokens of reasoning-intensive data dedicated to Agentless localization in the mid-training recipe.

Synthetic agentic interactions. To strengthen agentic capabilities, we simulate agent—environment
interactions with a custom tool set designed to mimic file-system operations without execution. This
design is motivated by practical constraints: while repository snapshots from GitHub are available,
not all snapshots are equipped with an executable Docker environment. As a result, shell commands
are disabled. Instead, we introduce synthetic tools that allow the agent to view file contents and per-
form keyword-based search for localization, which effectively reproduces the first stage of Agentless
but in an agentic manner. The specification of this tool set is covered in the system prompt, which is
then used to elicit agentic interaction rollouts from the Qwen-2.5-72B-Instruct model. The complete
system prompt is provided in Prompt[5] We apply a loss mask only to the system prompt, and en-
able the model to simultaneously learn both actions and observations along the trajectory, inspired
by Yang et al.|(2024b)). This approach integrates both policy and world modeling into mid training.

Your job is to look through the given GitHub problem description and
Repository structure, and edit updates to the files in the repo to
resolve the problem.

The job is divided into two stages:

+ In Stage 1, you should localize the files the files that you would
need to edit to fix the problem.

+ In Stage 2, you should edit the updates to the repo.

Let’s begin from Stage 1 to localize the bugs:

In Stage 1, besides reading the provided Repository structure, you can
use the following skills for exploration. The skills are to be
called in an environment wrapped by <execute> and </execute>, listed

in the form of python functions as below:

open_file(path: str, is_all | None = False, line_number: int | None =

1, context_lines: int | None = 100) -> None:

Opens the file at the given path in the editor for exploration.

By default, only the first 100 lines of the file are displayed. To
open the entire file, set ‘is_all‘ to ‘True‘.

The ‘context_lines‘' parameter determines the maximum number of
lines to be displayed, with a cap of 100 lines. Use ‘scroll_up‘
and ‘scroll_down' to view more content up or down.

If a ‘line_number' is provided, the window will be moved to include

that line.

Note: When ‘is_all' is set to ‘True‘, the ‘line_number‘' and ‘'
context_lines' parameters will not take effect, as the entire
file will be opened and displayed without any line-specific
focus or context limitation.

Args:

path: str: The path to the file to open. the full path of the
filename should be provided.

is_all: bool | None = False: If set to ‘True‘', the entire file will

be opened. Defaults to ‘False’.

line_number: int | None = 1: The line number to move to. Defaults
to 1.
context_lines: int | None = 100: Only shows this number of lines in

the context window (usually from line 1), with line_number as
the center (if possible). Defaults to 100.

goto_line(line_number: int) -> None:
Moves the window to show the specified line number.
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Args:
line_number: int: The line number to move to.

goto_class_or_func(class_or_func_name: str) —-> None:
Moves the window to show the specified class or function in the
current open file.
Args:
class_or_func_name: str: The name of the given class, function, or
method in a class to move to.

scroll _down () —-> None:
Moves the window down by 100 lines.
Args:
None

scroll_up () —-> None:
Moves the window up by 100 lines.
Args:
None

search_dir (search_term: str, dir_path: str | None) -> None:

Searches for search_term in all files in dir. If dir is not
provided, searches in the entire repository. Filename, fine-
grained line number, and the relative class or function it is
located in (if applied) will be shown for each found position.

Args:

search_term: str: The term to search for.

dir_path: str: The path to the directory to search. Should be full
path filename.

search_file(search_term: str, file_path: str | None = None) —-> None:

Searches for search_term in file. If file is not provided, searches
in the current open file. Filename, fine-grained line number,
and the relative class or function it is located in (if applied)
will be shown for each found position.

Args:

search_term: str: The term to search for.

file_path: str | None: The path to the file to search. Should be
full path filename if provided.

find_file(file_name: str, dir_path: str | None) —-> None:
Finds all files with the given name in the specified directory. If
dir is not provided, find in the entire repository.
Args:
file_name: str: The name of the file to find.
dir_path: str: The path to the directory to search.

str_replace (path: str, old_str, new_str)
old_str=[the old content to be replaced]
new_str=[the new content after replacement]
—> None:

Replace the old content (old_str) in the file at the given path
with the new content (new_str). This is the skill that you will
be using to edit the updates.

Args:

path: str: The path to the file to be updated. The full path of the

filename should be provided.

old_str: str: The old content to be replaced. Note that this
argument should be written in a new line starting with "old_str
=", and the string content should not be quoted.

new_str: str: The new content after replacement. Note that this
argument should be written in a new line starting with "new_str
=", and the string content should not be quoted.

Example:
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Assuming a call is shown as follows:

AURNRY

str_replace("filename.py", old_str, new_str)

old_str= a
new_str= b
@
Then it will function as replacing the ' a\n’ string with the '/

b\nc ’ string in the ‘filename.py‘ file.

insert (path: str, insert_line: int, new_str)
new_str=[the new content to be inserted]
—> None:
Insert the new content (new_str) in the file at the given path.
When you want to add an entirely new class/function to the file,
it would be better to use this method.
Args:
path: str: The path to the file to be updated. The full path of the
filename should be provided.
insert_line: int: The Line number below which the new content is to
be added. This Line number should be within the range of lines
of the file: [0, Lines_of_the_File]. Specifically, when
insert_line = 0, the added content starts from the top of the
file.
new_str: str: The new content to be inserted. Note that this
argument should be written in a new line starting with "new_str
=", and the string content should not be quoted.

Example:
Assuming a call is shown as follows:

AURNRY

insert ("test_filename.py", 5, new_str)

new_str= def test_add(

|~ ~

assert add(l, 2) =3
Then it will function as inserting the string ’ def test_add() :\
n assert add(l, 2) == 3’ below the Line 5 of the '

test_filename.py' file.

stop () —> None:
Terminate the editing process.
Args:
None

NOTE:
Responses should be concise.
When exploring, you should attempt fewer things at a time: Include ONLY
ONE <execute> per response, and use a SINGLE skill listed above
within the <execute> environment. DO NOT use other python functions,
as the environment does not support them.
You should first reason in the verbal form, then use a skill with <
execute> and </execute>.
You should avoid apologies and thanks in the responses.

When you finish exploring and analyzing with the provided skills,
please return at most 3 files with the full path only. Each full
path should be placed in a single line, INSTEAD OF BROKEN WITH
MULTIPLE LINES.

The returned files should be separated by new lines ordered by most to
least important, wrapped with ‘'' and NOTHING ELSE.

An example for a full output:

AURNRY

full_path_to_filel.py

20
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full path_to_file2.py

AURNRY

Now Let’s start!

### GitHub Problem Description ###
{issue content}

### Repository Structure ###

{file structure}

ki

Listing 5: A non-execution set of tools empowering the simulation of agentic interaction trajectories.

After completing the initial localization stage, the agent is guided into the code-editing phase
through a follow-up instruction: “Now let’s move on to Stage 2 and edit the updates. Remem-
ber, you can still decide at any point whether a file actually requires modification.” We retain partial
rollouts from Stage 1, provided that the localization results include at least one correct file.

In Stage 2, we first simulate the agent’s interaction by allowing it to open incorrectly localized files,
and we artificially inject agentic reasoning patterns such as “I realize that I do not need to modify
this file” after inspecting the file content. This procedure is designed to strengthen the self-reflection
ability of the agent by exposing it to false-positive contexts regarding the issue to be solved.

Subsequently, we transcribe the ground-truth PR commit pack into trajectory form: each commit
message is treated as the agent’s reasoning step, and each code update is represented as the cor-
responding action, expressed through the “str_replace” or “insert” tools. These interactions are
appended to the trajectory, followed by a terminating “stop” call. Due to storage constraints on
repository snapshots, this trajectory simulation is applied to only a subset of PRs. Overall, this pro-
cess contributes approximately ~10B tokens of agentic interaction data to the mid-training recipe.
Future directions for scaling this component in the data recipe include leveraging the idea of envi-
ronment scaling (Yang et al., 2025c)).

Training. We perform mid-training using a standard next token prediction approach, initialized
from the Qwen2.5-72B-Base (Qwen et al.,|2024) model. We upsample the synthetic part of the data
by a factor of 4 during mid-training, inspired by the practice in |Grattafiori et al.|(2024); Qwen et al.
(2024);|Gu et al.|(2025)). A global batch size of 256 with a maximum sequence length of 32K tokens
is used, optimizing for long-context capabilities necessary for real-world software engineering tasks.
The learning rate is set to 2e-5, with a cosine decay schedule and a minimum learning rate of 2e-6.
The warm-up phase covers over approximately 3 billion tokens, followed by learning rate decay
until approximately 150 billion tokens are processed. The training was conducted on 256 NVIDIA
H100 GPUs and lasted for 213 hours.

B DOCKER ENVIRONMENTS

Table 3: The sources of the docker environments used in the development of Kimi-Deyv.

Dataset Name Dataset Link Number of Dockers
SWE-Gym (Pan et al. https://huggingface.co/ 2,356
(2024)) datasets/SWE-Gym/

SWE-Gym/
SWE-bench-extra https://huggingface.co/ 3,846

(Badertdinov et al.[(2024a)) |datasets/nebius/

SWE-bench-extra/
R2E-Gym-Lite (Jain et al. https://huggingface.co/ 3,671
(2025)) datasets/R2E-Gym/

R2E-Gym-Lite
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Docker environment construction. To validate non-ground-truth patches generated by model roll-
outs and expand our dataset, we required executable Docker environments. We combined publicly
available datasets with custom-configured Docker environments (see Table. [3). Among them, SWE-
Gym and R2E-Gym-Lite open-source their dockers that we can directly use. For datasets lacking
Docker support (SWE-Bench-Extra), we implemented an automated configuration method:

Initialize a Docker environment with fixed dependencies.
Select Python version based on commit year.

Install dependencies via requirements.txt and “pip install -e
Resolve ModuleNotFound errors during test execution.

M.

Validate success if a FAIL_TO_PASS test transitions from failing (without gt _patch) to
passing (with gt _patch).

Out of 6.38k SWE-bench-extra instances, 3,846 environments are successfully constructed and sub-
sequently used for cold-start and RL training.

C MORE DETAILS OF RL TRAINING

C.1 RL TRAINING OBJECTIVE

For the RL algorithm, we adopt the policy optimization method proposed by Kimi k1.5 (Team et al.,
2025)), which has shown promising results on reasoning tasks in both math and code. Unlike GRPO
(Shao et al., |2024)), which eliminates the critic by using average rewards for advantage estimation,
Kimi k1.5 (Team et al., [2025) adopts a simpler policy gradient approach. Specifically, we optimize
the policy mg using the following objective:

e 2
T\ 0i|q
Jo = EyP(Q).{0:1}E ,~mo(-1a) {Z <Ri(Q70i) — mean({R;}$_,) — rlog o (old) i(mll)) ] ,}
(2

i=1
where ¢ is a prompt sampled from the prompt data distribution P(Q). {0;}%., are G responses
generated by the current policy my for prompt q. R;(q,0;) is the reward for response o;. The
mean reward across the G responses is used as a baseline to center the reward (similar to advantage
estimation). The final term penalizes divergence from a reference policy 7, ., with weight 7. This
formulation avoids the need for a critic or value model by using group-wise relative rewards, and
supports stable updates through KL regularization.

C.2 PROMPT SET SELECTION

461 —— Bugfixer RL
—e— w/o Positive Reinforce

In the main text, we introduce the adaptive prompt selec- u
tion method for RL training. Specifically, we construct
an initial prompt set of 1,200 problems by selecting those
with pass@16 > 0 from SWE-Gym (Pan et al., 2024)),
SWE-bench-extra (Badertdinov et al., [2025), and R2E-
gym (Jain et al.| [2025). Then, every 100 training steps,
we expand the prompt set by adding 500 new problems.
These additional problems are randomly sampled from #

~
S

Pass Rate (%)
w o
g &

the pool of problems for which the current model has 0 50 100 150 200 250 300 350 400 450 500
. . . . RL Training Steps

pass@16 = 0, thereby progressively increasing the dif-

ficulty.

Figure 7: Ablation of positive example

reinforcement during 72B Bugfixer RL.
C.3 RL EXPERIMENT ABLATION

Figure [§] shows the performance of the Qwen2.5-14B
model in RL experiments, where both the BugFixer and the TestWriter exhibit clear scaling law
behavior.

Furthermore, Figure [/] illustrates the effect of our proposed positive example reinforcement. We
incorporated this improvement in the later stage of training and found that the RL of BugFixer
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achieved better performance compared to not using this trick. The main reason is that positive
examples can reinforce the correct reasoning patterns, enabling the model to converge more quickly,
especially when its exploration ability diminishes in the later stages. It is noticed that a similar trick
was also applied in the development of the Seed1.5-thinking model (Seed et al., [2025).

85001 —=— Token Length 34 55001~ Token Length
—e— Pass Rate (%) —e— Reproduced Rate (%) 26
2 000 S
5 ~
5 8000 S 8 2 g
=S 0y 2 &
g g D 4500 25
— 7500 < — 3
g P g
i/ 283 i 4000 0B
o © o 208
& 7000 A F g
26 3500 18 o
6500
24 3000
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
RL Training Steps RL Training Steps
(a) 14B BugFixer (b) 14B TestWriter

Figure 8: RL scaling experiments on Qwen2.5-14B model.

D AGENT INFRASTRUCTURE

We present a unified sandbox architecture designed for hybrid cloud cluster environments, lever-
aging Kubernetes orchestration to provide researchers with a flexible, secure, and highly scalable
code execution platform. The architecture is accessible through a Python SDK and implements an
ephemeral, use-and-destroy paradigm that ensures resource efficiency and security isolation. The
system demonstrates exceptional scalability, supporting over 10,000 concurrent sandbox instances
while maintaining performance stability. This infrastructure serves as a foundational platform for
diverse computational scenarios, including automated code evaluation and RL experiments.

The system employs a sidecar container pattern to efficiently orchestrate and manage a heteroge-
neous collection of over 25,000 docker images sourced from multiple datasets. This architectural
choice enables optimal resource utilization while maintaining isolation between different execution
environments. Additionally, we have developed a proprietary Software Engineering (SWE) image-
building pipeline that continuously expands the repository of supported images, thereby enhancing
the system’s adaptability to diverse computational workloads and research requirements.

E SKILL GENERALIZATION

In this section, we study whether the skills incentivized by Agentless training and SWE-Agent adap-
tation through SWE-Smith trajectories could transfer to other SWE tasks. We use SWE-bench-live
and SWE-bench Multilingual as our testbeds.

SWE-bench-live (Zhang et al.| [2025)) is a benchmark for real-world issue resolution, evaluating Al
systems on software engineering tasks. Using an automated curation pipeline, it is updated monthly
to ensure fresh tasks and rigorous, contamination-free evaluation. For our experiments, we selected
the default set of 300 tasks, with data collected between October 2024 and March 2025. Compared
to SWE-bench Verified, SWE-bench-live exhibits a higher degree of distributional shift.

SWE-bench Multilingual (Yang et al., 2025c¢)) introduces 300 curated tasks from 42 GitHub repos-
itories across 9 programming languages, including Rust, Java, PHP, Ruby, JavaScript/TypeScript,
Go, and C/C++, covering domains such as web frameworks, data tools, core utilities, and libraries.
Compared to SWE-bench Verified, which focuses exclusively on Python, SWE-bench Multilingual
exhibits greater linguistic and domain diversity, posing additional challenges in cross-language gen-
eralization and transferability of software engineering capabilities.

Similar to previous experiments, we evaluated four model stages as the priors: the original Qwen2.5-
72B (Base), the mid-trained model (MT), the model activated with reasoning data through super-
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vised finetuning (SFT), and the model after RL training (RL). We still use the open-source SWE-
smith trajectories to activate the agentic capabilities of each prior.

Figures [9] and [T0] show the performance of the four priors on SWE-bench-Live and SWE-bench
Multilingual under varied amounts of agentic trajectories for adaptation (22! as one-step gradient
descent, 223, 1.1 x 227, and 1.5 x 228 as 100, 2,000, and 5,016 training trajectories). Each SWE-
Agent adaptation experiment is conducted throught lightweight supervised finetuning, the training
time of which ranges from several minutes to two hours at most.

Compared to the Base prior, those specifically enhanced with Agentless skills (SFT and RL) demon-
strate stronger task generalization, especially under the data-scarce settings. However, when more
SWE-Smith trajectories are used for adaptation, the performances of the Base and the MT priors
become closer to those of the SFT and the RL priors. This could be attributed to the gaps between
the different SWE tasks. The exploration for recipes that enable stronger out-of-distribution and
task-agnostic generalization is left for future work.

12,5 —— RL 12.5 __— 17.5 17.5
:\;10.0 i ;FTT :\;10.0 ——
g 5.0 g 5.0 //+ ;{;
2.5 :7:7/‘1‘ 2.5 i ;’gfse
0.0 i i 3 0.0 i i 3 5.0 i i 3 5.0 i i 3
(a) #SFT = 221 (b) #SFT = 223. (c) #SFT = 1.1 x 277, (d) #SFT = 1.5 x 228,

Figure 9: Generalization analysis on SWE-bench-Live.
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Figure 10: Generalization analysis on SWE-bench Multilingual.

F CASE STUDY
F.1 BUGFIXER TRAJECTORIES

We provide a Bugfixer’s response trajectory during the code repair stage (see Listing [6).
From this, we can observe that the initial code given was return self[i, Jj - pos -
other.cols], but the model quickly realized its mistake and corrected it to return self[i,
j - other.cols]. Although some repetitive self-reflections followed, the increasing response
length indeed improved answer accuracy and robustness in our experiments.

<think>

Okay, let’s tackle this problem. The user reported an issue where the
Matrix.col_insert () method isn’t working correctly. The example
given shows that after inserting a matrix V into M at position 3,
the resulting matrix has the inserted columns shifted incorrectly.
The expected result would have the inserted columns at positions 3
and 4, but the actual output shows them starting at position 3, but
the original matrix’s columns after the insert are shifted upwards
instead of remaining in their original positions.

First, I need to understand how col_insert works. Looking at the code
provided, especially in the MatrixShaping class in sympy/matrices/
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common.py, the _eval_col_insert method is responsible for inserting
columns. The current implementation shifts the existing columns to

the right by the number of columns inserted. However, the bug might
be in how the original matrix’s columns are being shifted.

Let me look at the existing code for _eval_col_insert:

def _eval_col_insert (self, pos, other):
cols = self.cols

def entry (i, 3J):
if j < pos:
return self[i, 7J]
elif pos <= j < pos + other.cols:
return other([i, J - pos]
return self[i, j - pos - other.cols]

return self._new(self.rows, self.cols + other.cols,
lambda i, j: entry (i, 3J))

Wait, the problem here is in the last case. When j is greater than or
equal to pos + other.cols, the code subtracts (pos + other.cols)
from j. But that’s incorrect because the original columns after the
inserted ones should start at j = pos + other.cols. So for the
original matrix’s columns that come after the inserted ones, their
new positions should be j + other.cols. But in the current code,
when j is in the original matrix’s columns (after the inserted ones)
, the code is subtracting (pos + other.cols), which would
incorrectly shift them.

Wait, let’s think again. The original code for the entry function:

if j < pos:

return self[i, j] # original columns before pos
elif pos <= j < pos + other.cols:
return other[i, J - pos] # inserted columns
return self[i, j - pos - other.cols] # original columns after the

inserted ones

Wait, no. Let’s say the original matrix has cols = 6. We insert 2
columns at pos=3. The new total cols is 6 + 2 = 8. The original
columns after pos 3 (columns 3,4,5) should now be at positions
5,6,7. But according to the code, when j is >=3 +2=5 (since pos +
other.cols =3+2=5), then the code returns self[i, j -5 -2] = selfl[i,

j =7]1. Wait, that’s not right. For example, if j=5 (the new column
5), then j - pos - other.cols =5 -3 -2=0. So the original column 0
would be mapped to the new column 5. That’s definitely wrong.

Ah, here’s the mistake. The code is subtracting (pos + other.cols) from
J, but that’s incorrect. The original columns after the inserted
ones should be shifted to the right by other.cols. So, the correct
calculation should be j - other.cols. For example, original column 3
becomes 3 +2=5, original column 4 becomes 6, etc.

So the line in the code:

return self[i, j - pos - other.cols]
should be:
return self[i, Jj - other.cols]

Because the inserted columns have taken up ’'other.cols’ positions
starting at ’pos’, so the original columns after ’"pos’ are shifted
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by ’"other.cols’ to the right. Therefore, to get the correct original
column index, we subtract ’other.cols’ from the current j.

So the fix is to change the subtraction from (pos + other.cols) to
other.cols. Let me check:

Original code:

return self[i, j - pos - other.cols]
Corrected code:

return self[i, j - other.cols]

Wait, no. Wait, the original columns after the inserted block (which

starts at pos and has other.cols columns) would start at j = pos +
other.cols. So for those j values, the original column index would
be j - (pos + other.cols). Wait, no. Let’s think with numbers.

Original matrix has 6 columns. Insert 2 columns at position 3. The new

matrix has 8 columns. The original columns 0,1,2 remain in positions
0,1,2. The inserted 2 columns are at positions 3 and 4. The

original columns 3,4,5 now become 5,6,7.

So for j in 5,6,7 (original columns 3,4,5), the mapping is:

5 $\rightarrow$ 3

6 $\rightarrow$ 4

7 $\rightarrow$ 5

So the formula should be original_column = j - inserted_columns. In
this case, inserted_columns is other.cols. So the code should
subtract other.cols from j when accessing the original matrix’s

columns after the inserted block.

Therefore, the line:

return self[i, j - pos - other.cols]
should be:
return self[i, j - other.cols]

Because pos is where the insertion starts, but the original columns
after the inserted block are shifted by other.cols. Let’s verify
with the example:

pos =3, other.cols=2. For j=5 (new column 5), original column index is
5 -2=3, which is correct. For j=6, 6-2=4; 1j=7, 7-2=5. That’s correct

So the error in the original code was subtracting (pos + other.cols)
instead of other.cols. The pos is the starting position of the
insertion, but after inserting other.cols columns, the original
columns after the inserted block are shifted by other.cols.
Therefore, the correct subtraction is other.cols.

Thus, the fix is to change the line in the _eval_col_insert method from

return self[i, Jj - pos - other.cols]

to:
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return self[i, Jj - other.cols]

Now, looking back at the code in the _eval_col_insert function:
The code for the else clause is:

return self[i, Jj - pos - other.cols]

Which is incorrect. Changing that to j - other.cols should fix the
problem.

So the SEARCH block would look for the lines:

def _eval col_insert (self, pos, other):
cols = self.cols

def entry (i, 7j):
if j < pos:
return self[i, 7]
elif pos <= j < pos + other.cols:
return other[i, J - pos]
return self[i, j - pos - other.cols]

return self._new(self.rows, self.cols + other.cols,
lambda i, j: entry (i, 3Jj))

And the REPLACE block would change the last part to:

elif pos <= j < pos + other.cols:
return other[i, J - pos]
return self[i, Jj - other.cols]

So the correction is in the return statement of the entry function. The
original code subtracted (pos + other.cols) from j, but it should
subtract other.cols instead.

Therefore, the correct SEARCH/REPLACE block would be:

#4## sympy/matrices/common.py
<<<<<<< SEARCH
def _eval col_insert (self, pos, other):
cols = self.cols

def entry (i, 7j):
if j < pos:
return self[i, 7]
elif pos <= j < pos + other.cols:
return other[i, J - pos]
return self[i, j - pos — other.cols]

return self._new(self.rows, self.cols + other.cols,
lambda i, j: entry (i, 3J))

def _eval_col_insert (self, pos, other):
def entry (i, 3J):
if j < pos:
return self[i, 7J]
elif pos <= j < pos + other.cols:
return other([i, j - pos]
return self[i, Jj - other.cols]

return self._new(self.rows, self.cols + other.cols,
lambda i, j: entry(i, 3J))
>>>>>>> REPLACE
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This change corrects the column shifting calculation for the original
matrix’s columns after the inserted block. Instead of subtracting (
pos + other.cols), we subtract other.cols, which properly shifts the

original columns to the right by the number of inserted columns.
</think>

‘Y'python

### sympy/matrices/common.py

<<<<<<< SEARCH
def _eval col_insert (self, pos, other):

cols = self.cols

def entry (i, 7j):
if j < pos:
return self[i, 7]
elif pos <= j < pos + other.cols:
return other[i, J - pos]
return self[i, j - pos - other.cols]

return self._new(self.rows, self.cols + other.cols,
lambda i, j: entry(i, 3j))

def _eval_col_insert (self, pos, other):
def entry (i, j):
if j < pos:
return self[i, 7]
elif pos <= j < pos + other.cols:
return other[i, J - pos]
return self[i, Jj - other.cols]

return self._new(self.rows, self.cols + other.cols,
lambda i, j: entry(i, 3j))
>>>>>>> REPLACE

AURNRY

Listing 6: Reasoning trajectory example for BugFixer.

F.2 TESTWRITER FALSE POSITIVE CASES

During the RL training process, we observed that the Testwriter component exhibits some false
positives, which can result in tests that contain certain gaps. This might cause the test patches
generated by the model to be mistakenly considered as correct. Consequently, the performance
improvement of Testwriter does not accurately reflect the actual performance. In this section, we
provide two intuitive examples to illustrate this phenomenon, and leave further enhancement for
TestWriter as future work.

Listing [7] shows the ground-truth test patch for instance django__django-16877, with Listing [§]
showing the test patch generated by theTestWriter. A detailed comparison reveals that the model-
generated test cases are not comprehensive: Two locations should have been tested, but only one
was checked, and the effect of mark_safe was not considered. In practice, this allowed the model-
predicted patch to pass the TestWriter reward check, but result in a false positive.

The second example instance is sympy__sympy-13974, with Listings [0 and [I0]showing the ground-
truth and model-generated test patches. In this case, the coverage of the generated test is also
insufficient. The generated test does not account for the need to satisfy the associativity prop-
erty, e.g2., assert tensor_product_simp (TP (A, B)x*x) == TP (A*x*x, B*xx). As
a consequence, it fails to serve as a reliable judge for BugFixer.

diff --git a/tests/template_tests/filter_tests/test_escapeseq.py b/
tests/template_tests/filter_tests/test_escapeseq.py

new file mode 100644

-—— /dev/null

28



Under review as a conference paper at ICLR 2026

4 |+++ b/tests/template_tests/filter_tests/test_escapeseq.py

5 |@@ -0,0 +1,59 @@

6 |+from django.test import SimpleTestCase

7 |+from django.utils.safestring import mark_safe

8 |+

9 |+from ..utils import setup

10 r

o+

12 |+class EscapeseqTests (SimpleTestCase) :

13 |+ UG

14 |+ The "escapeseq" filter works the same whether autoescape is on or
off,

15 [+ and has no effect on strings already marked as safe.

16 + nnw

17 |+

18 |+ @setup (

19 |+ {

20 |+ "escapeseq_basic": (

20 |+ "{{ alescapeseq|join:", " }} —— {{ bl|escapeseq]|join:",

n } }l

2 |+ ),

23 |+ }

1 |+ )

25 |+ def test_basic(self):

2% |+ output = self.engine.render_to_string(

27 |+ "escapeseq_basic",

28 |+ {"a": ["x&y", "<p>"], "b": [mark_safe("x&y"), mark_safe ("<
p>") 1},

29 | + )

30 |+ self.assertEqual (output, "x&amp;y, &lt;p&gt; —-- x&y, <p>")

30|+

32 |+ @setup (

33 ar {

34 |+ "escapeseq_autoescape_off": (

35 |+ "{% autoescape off %}{{ alescapeseq|join:", " }}’

36 + AL — mw

71+ "{{ blescapeseq|join:", "}}{% endautoescape %}’

38 | + )

39 |+ }

40 |+ )

a1 |+ def test_autoescape_off (self):

4 |+ output = self.engine.render_to_string(

43|+ "escapeseq_autoescape_off",

44 |+ {"a": ["x&y", "<p>"], "b": [mark_safe("x&y"), mark_safe ("<
p>")1},

45 |+ )

46 |+ self.assertEqual (output, "x&amp;y, &lt;pé&gt; —- x&y, <p>")

47 |+

48 |+ @setup ({"escapeseq_join": ’{{ alescapeseq|join:"<br/>" }}’'})

19 |+ def test_chain_join(self):

50 |+ output = self.engine.render_to_string("escapeseq_join", {"a":
["X&y", ll<p>"1})

51 |+ self.assertEqual (output, "x&amp;y<br/>&lt;p&gt;")

2 |+

s3 |+ @setup (

54 | + {

5|+ "escapeseq_join_autoescape_off": (

56 |+ " {% autoescape off %}{{ alescapeseq|join:"<br/>" }}{%
endautoescape %}’

57|+ ),

58 |+ }

59 |+ )

60 |+ def test_chain_join_autoescape_off (self):

61 |+ output = self.engine.render_to_string(

62 |+ "escapeseq_join_autoescape_off", {"a": ["x&y", "<p>"]}
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+ )
+ self.assertEqual (output, "x&amp;y<br/>&lt;p&gt;")

Listing 7: GT test patch of django__django-16877.

diff -—-git a/tests/template_tests/filter_tests/test_safeseq.py b/tests/
template_tests/filter_tests/test_safeseq.py
—-—— a/tests/template_tests/filter_tests/test_safeseq.py
+++ b/tests/template_tests/filter_tests/test_safeseq.py
@@ -20,3 +20,20 Q@
def test_safeseq02 (self):

output = self.engine.render_to_string("safeseq02", {"a": ["&",
"<"J })
self.assertEqual (output, "&, < —— &, <")

+

+ # New tests for escapeseq

+ @setup ({"escapeseq0l": ’"{{ alescapeseqg]|join:", " }}’})

+ def test_escapeseqll (self):

+ output = self.engine.render_to_string("escapeseqg0l", {"a":
[ll&ll’ ll<ll]})

+ self.assertEqual (output, "&amp;, &1t;")

+

+ @setup (

+ {

+ "escapeseg02": (

+ "{% autoescape off %}{{ alescapeseq]|join:", " }}{%
endautoescape %}’

+ )

+ }

+ )

+ def test_escapeseql2 (self):

+ output = self.engine.render_to_string("escapeseg02", {"a":
[u&", "))

self.assertEqual (output, "&amp;, &lt;")

Listing 8: Model predicted test patch of django__django-16877.

diff --git a/sympy/physics/quantum/tests/test_tensorproduct.py b/sympy/
physics/quantum/tests/test_tensorproduct.py
—-—— a/sympy/physics/quantum/tests/test_tensorproduct.py
+++ b/sympy/physics/quantum/tests/test_tensorproduct.py
@@ -10,7 +10,7 @@
from sympy.physics.quantum.density import Density
from sympy.core.trace import Tr

-A, B, C = symbols(’A,B,C’, commutative=False)
+A, B, C, D = symbols(’A,B,C,D’, commutative=False)

x = symbols (’x’)

matl = Matrix([[1, 2%I], [1 + I, 3]11)
@@ -47,6 +47,11 QR def test_tensor_product_commutator () :

def test_tensor_product_simp () :

assert tensor_product_simp (TP (A, B)*TP (B, C)) == TP (AxB, Bx*C)

+ # tests for Pow-expressions

+ assert tensor_product_simp (TP (A, B)*xxx) == TP (Ax*xX, Bxx*Xx)

+ assert tensor_product_simp (x*xTP (A, B)*x2) == x*TP (A*x*2,Bxx2)

+ assert tensor_product_simp (x* (TP (A, B)xx2)*«TP (C,D)) == x*TP (Ax*x2xC
, Bxx2%D)

+ assert tensor_product_simp (TP (A,B)-TP(C,D) x*x) == TP (A,B)-TP (Cxx*xx,
D**Xx)

def test_issue_5923():
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Listing 9: GT test patch for sympy__sympy-13974.

I |diff —--git a/sympy/physics/quantum/tests/test_tensorproduct.py b/sympy/
physics/quantum/tests/test_tensorproduct.py

-—— a/sympy/physics/quantum/tests/test_tensorproduct.py

+++ b/sympy/physics/quantum/tests/test_tensorproduct.py

4 | @@ —-47,6 +47,27 @@

w o

6 def test_tensor_product_simp () :
7 assert tensor_product_simp (TP (A, B)*TP (B, C)) == TP (AxB, B=*C)

# Test tensor product powers

a = symbols(’a’, commutative=False)

tl = TP(1, 1)  TP(1, 1)

tl_simp = tensor_product_simp(tl)

assert tl_simp == TP (1, 1), f"Expected 1x1, got {tl_simp}"

# Test with Pauli matrices

from sympy.physics.paulialgebra import Pauli

t2 = TP (1, Pauli(3)) *= TP (1, Pauli(3))

t2_simp = tensor_product_simp (t2)

assert t2_simp == TP (1, 1), f"Expected 1x1, got {t2_simp}"

16

# Test substitution cases from issue

exprl = TP(1, 1) = TP (1, a)

resultl = exprl.subs(a, 1)

assert tensor_product_simp (resultl) == TP (1, 1), f"Substitution 1
failed: {resultl}"

e

expr2 = TP (1, Pauli(3)) = TP (1, a)

result2 = expr2.subs(a, Pauli(3))

assert tensor_product_simp (result2) == TP (1, 1), f"Substitution 2
failed: {result2}"

r
+ + + +

31 def test_issue_5923():

Listing 10: Model predicted test patch of sympy__sympy-13974.

G EMERGENT PARALLEL SCALING

Compared to the self-play method that leverages execu-
tion during test time, parallel scaling (Chen et al., 2025b;
Pan et al., 2025) is a recently-introduced test-time scal-
ing method that aggregates multiple independent rollouts
for additional improvement. While previous works in-
centivize the ability of parallel scaling through training,
or train a separate reward model (Pan et al., 2024} Jain
et al.| [2025) for patch selection, we observe that the par-
allel scaling effect emerges in our model without any spe-
cific training. Specifically, patch candidates from parallel 1 5 10 20 40
rollouts of BugFixer are used to prompt the model to sum- Number of Patches

marize their differences and compose a new bugfix patch. Figure 11: Emergent parallel scaling re-
Listing [IT]is the prompt template of parallel scaling. In sults on SWE-bench Verified.

the emplate, promblem_statement is the GitHub is-

sue, and trajs_content represents the content of multiple patch candidates.
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158 |We are currently solving the following issue within our repository.
Here is the issue text:
459 [ ——— BEGIN ISSUE ——-—
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{problem_statement}
-—— END ISSUE -—-

Below are some thinking trajectories, each from 1llm reasoning model.
Only one trajetory is right.
——— BEGIN FILE ———

AURNRY

{trajs_content}

AURTRY

—-—— END FILE ———

Please first summary and analyze the key differences between the
trajectories, and then generate xSEARCH/REPLACEx edits to fix the
issue.

Every *SEARCH/REPLACE* edit must use this format:

1. The file path

2. The start of search block: <<<<<<< SEARCH

3. A contiguous chunk of lines to search for in the existing source
code

4. The dividing line: =======

The lines to replace into the source code

6. The end of the replace block: >>>>>>> REPLACE

ul

Here is an example:
‘Y 'python

### mathweb/flask/app.py
<<<<<<< SEARCH

from flask import Flask

import math
from flask import Flask
>>>>>>> REPLACE

AURNRY

Please note that the *SEARCH/REPLACEx edit REQUIRES PROPER INDENTATION.
If you would like to add the line ' print (x)’, you must
fully write that out, with all those spaces before the code!
Wrap the »SEARCH/REPLACE* edit in blocks ‘‘‘python...‘‘‘.
The summary of the key differences between the trajectories should be
in the thinking part.

Listing 11: The prompt template for parallel scaling.

The results in Figure [T1] show that the performance of the parallel aggregation improves as the
number of patch candidates in the prompt increases. The advantage of this scaling paradigm over
majority voting lies in its ability to leverage the model’s own capacity to analyze multiple candidate
patches, thereby surpassing the simplistic approach of weighting answers merely by their frequency
of occurrence: Listing[I2]covers a full example with 14 different input patch candidates, and how the
model successfully recognizes the correct one and generates a novel patch with additional reasoning.

Prompt :

We are currently solving the following issue within our repository.
Here is the issue text:

——— BEGIN ISSUE —-—-—

Data <@filename isn’t relative to the YAML file

The [docs say] (https://gabbi.readthedocs.io/en/latest/format.html#data)

> If the value is a string that begins with <@ then the rest of the
string is treated as the name of a file to be loaded from the same
directory as the YAML file.
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But I haven’t found it works like this unless I cd into the directory
containing the yaml file.

‘_load_data_file' says:

‘Y 'python

path = os.path.join(self.test_directory, os.path.basename (filename))

this does a few things:

— makes the path begin with ‘self.test_directory' (defaults to ‘.‘, the
current working directory)

— disguards any folders in the <@ ‘filename‘ path

- appends ‘filename'

This means, if I'm in '/, and I have a test that says ‘data: <Qcake.
Jpg ', I cannot run my tests as advised in the docs:

‘gabbi-run -- /my/test.yaml /my/other.yaml®

‘FileNotFoundError: [Errno 2] No such file or directory: ’./cake.jpg’’

So in our test running script, we have to start with ‘cd tests/‘.

My preference, would be to make the path relative to the location of
the yaml file. That way, I can run my tests from whatever directory.

Obviously this isn’t possible when redirecting with ‘<‘ as the filename
is never seen by gabbi. So I'm happy is discuss other ideas.

Furthermore I can’t keep my test data in a child directory, unless I cd
into that directory like:

YY'shell
cd yaml_tests/test_data
gabbi-run -- ../test_things.yaml

AURNRY

So for that reason, I’d like to allow directories like ‘<Q@test_data/
filename.txt' to be included in the path.

Happy to write the patch, if we come up with an approach here.
-—— END ISSUE ———

Below are some thinking trajectories, each from 1llm reasoning model.

—-—— BEGIN FILE —-——

Answer 1:

‘Y 'python

### gabbi/runner.py

<<<<<<< SEARCH

import argparse

from importlib import import_module
import sys

import unittest

import argparse

from importlib import import_module
import os

import sys

import unittest

>>>>>>> REPLACE

AN
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‘Y 'python
### gabbi/runner.py
<<<<<<< SEARCH
def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False):
"""Run the tests from the YAML in handle."""
data = utils.load_yaml (handle)
if force_ssl:
if "defaults’ in data:
data[’defaults’][’'ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader

test_suite = suitemaker.test_suite_from_dict (
loader, ’'input’, data, ’.’, host, port, None, None, prefix=
prefix,

handlers=handler_objects)

result = ConciseTestRunner (
verbosity=2, failfast=failfast).run (test_suite)
return result.wasSuccessful ()

def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False, test_directory='."):
"""Run the tests from the YAML in handle."""
data = utils.load_yaml (handle)
if force_ssl:
if ’defaults’ in data:
data[’defaults’ ] ['ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader
test_suite = suitemaker.test_suite_from_dict (

prefix=prefix, handlers=handler_objects)

result = ConciseTestRunner (
verbosity=2, failfast=failfast).run(test_suite)
return result.wasSuccessful ()
>>>>>>> REPLACE
‘Y 'python
### gabbi/runner.py
<<<<<<< SEARCH
else:
for input_file in input_files:
with open (input_file, "r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast)

for input_file in input_files:
test_directory = os.path.dirname (input_file) or ’.’
with open (input_file, 'r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast,
test_directory=test_directory)
>>>>>>> REPLACE

AN

Answer 2:

34
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623 | Y 'python

624 | ### gabbi/runner.py

65 | <<<<<<< SEARCH

626 |def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,

627 failfast=False) :

628 | =======

629 |def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,

630 failfast=False, test_directory="."):

631 | >>>>>>> REPLACE

AURNRY

VRN

python

634 | ### gabbi/runner.py

635 | <<<<<<< SEARCH

636 test_suite = suitemaker.test_suite_from_dict (

637 loader, ’'input’, data, ’.’, host, port, None, None, prefix=
prefix,

638 handlers=handler_objects)

640 test_suite = suitemaker.test_suite_from_dict (

641 loader, ’input’, data, test_directory, host, port, None, None,
prefix=prefix,

642 handlers=handler_objects)

643 | >>>>>>> REPLACE

AURNRY

AURNRY

python
646 | ### gabbi/runner.py
647 | <<<<<<< SEARCH

648 success = run_suite (fh, handler_objects, host, port,
649 prefix, force_ssl, failfast)

650 S

651 test_directory = os.path.dirname (input_file) or ’.’
652 success = run_suite (fh, handler_objects, host, port,
653 prefix, force_ssl, failfast,

test_directory=test_directory)
654 | >>>>>>> REPLACE

AURTRY

657 | Answer 3:

*Y'‘python

659 | ### gabbi/runner.py

660 | <<<<<<< SEARCH

661 |def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,

662 failfast=False) :

663 """Run the tests from the YAML in handle."""

664 data = utils.load_yaml (handle)

665 if force_ssl:

666 if ’defaults’ in data:

667 data[’defaults’ ] ['ssl’] = True
668 else:

669 data[’defaults’] = {’ssl’: True}

670
671 loader = unittest.defaultTestLoader

672 test_suite = suiltemaker.test_suite_ from_dict (

673 loader, ’input’, data, ’.’, host, port, None, None, prefix=
prefix,

674 handlers=handler_objects)

675
676 result = ConciseTestRunner (

677 verbosity=2, failfast=failfast).run(test_suite)
678 return result.wasSuccessful ()

679 ===
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def run_suite (handle, handler_objects, host, port, prefix,
False,
failfast=False, test_directory="."):
"""Run the tests from the YAML in handle."""
data = utils.load_yaml (handle)
if force_ssl:
if ’'defaults’ in data:
data[’defaults’ ] ['ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader

test_suite = suiltemaker.test_suite_ from_dict (
loader, ’input’, data, test_directory, host, port,
prefix=prefix, handlers=handler_objects)

result = ConciseTestRunner (
verbosity=2, failfast=failfast).run (test_suite)
return result.wasSuccessful ()
>>>>>>> REPLACE
‘Y'python
### gabbi/runner.py
<<<<<<< SEARCH
for input_file in input_files:
with open (input_file, "r’) as fh:

for input_file in input_files:
test_directory = os.path.dirname (input_file)
with open (input_file, 'r’) as fh:
success = run_suite(

immutable
failure = not success
if failure and failfast:
break
>>>>>>> REPLACE

AURNRY

Answer 4:
‘Y 'python
### gabbi/runner.py
<<<<<<< SEARCH
def run_suite (handle, handler_objects, host, port, prefix,
False,
failfast=False):

def run_suite (handle, handler_objects, host, port, prefix,
False,
failfast=False, test_directory="."):
>>>>>>> REPLACE

AURNRY

AURNRY

python

### gabbi/runner.py

<<<<<<< SEARCH

test_suite = suitemaker.test_suite_from_dict (

36

force_ssl=

None, None,

success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast)
if not failure: # once failed, this is considered
immutable
failure = not success
if failure and failfast:
break

fh, handler_objects, host, port, prefix, force_ssl,
failfast, test_directory=test_directory)
if not failure: # once failed, this is considered

force_ssl=

force_ssl=
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740 loader, ’'input’, data, ’.’, host, port, None, None, prefix=
prefix,

741 handlers=handler_objects)

742 | =======

743 test_suite = suiltemaker.test_suite_ from_dict (

744 loader, ’input’, data, test_directory, host, port, None, None,

745 prefix=prefix, handlers=handler_objects)

746 | >>>>>>> REPLACE

AURTRY

AURNRY

python
749 | ### gabbi/runner.py
750 | <<<<K<K<< SEARCH

751 for input_file in input_files:

752 with open (input_file, ’"r’) as fh:

753 success = run_suite (fh, handler_objects, host, port,

754 prefix, force_ssl, failfast)

755 | =======

756 for input_file in input_files:

757 # Determine test directory based on input file’s location

758 test_directory = os.path.dirname (os.path.abspath (input_file))
or .’

759 with open (input_file, 'r’) as fh:

760 success = run_suite (fh, handler_objects, host, port,

761 prefix, force_ssl, failfast,

762 test_directory=test_directory)

763 | >>>>>>> REPLACE

764 | MM

766 | Answer 5:

767 | Y Y ‘python

768 | ### gabbi/runner.py
769 | <<<<<<< SEARCH

770 | import sys

771 |import unittest

773 | import os

774 | import sys

775 | import unittest
776 | >>>>>>> REPLACE
~77 ANANAY
778 | Y Y 'python

779 | ### gabbi/runner.py

780 | <<<<<<< SEARCH

781 |def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,

782 failfast=False) :

783 | =======

784 |def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,

785 failfast=False, test_directory="."):

786 | >>>>>>> REPLACE

7Q7 ARATA
78

788 | Y 'python
780 | ### gabbi/runner.py

790 | K<< SEARCH

791 test_suite = suiltemaker.test_suite_ from_dict (

792 loader, ’input’, data, ’.’, host, port, None, None, prefix=
prefix,

793 handlers=handler_objects)

794 | =======

795 test_suite = suitemaker.test_suite_from_dict (

796 loader, ’'input’, data, test_directory, host, port, None, None,

797 prefix=prefix, handlers=handler_objects)

798 | >>>>>>> REPLACE

AN

799
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‘Y 'python
### gabbi/runner.py
<<<<<<< SEARCH
for input_file in input_files:
with open (input_file, 'r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast)

for input_file in input_files:
test_directory = os.path.dirname (input_file) or ’.’
with open (input_file, 'r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast,
test_directory=test_directory)
>>>>>>> REPLACE

AURNRY

Answer 6:

‘Y 'python

### gabbi/driver.py

<<<<<<< SEARCH

file_suite = suitemaker.test_suite_from_dict (

loader, test_base_name, suite_dict, path, host, port,
fixture_module, intercept, prefix=prefix,
test_loader_name=test_loader_name, handlers=handler_objects

14
inner_fixtures=inner_fixtures)

test_file_dir = os.path.dirname (test_file)

file suite = suitemaker.test_suite_from_dict (
loader, test_base_name, suite_dict, test_file_dir, host,
port,

fixture_module, intercept, prefix=prefix,
test_loader_name=test_loader_name, handlers=handler_objects
’
inner_ fixtures=inner_ fixtures)
>>>>>>> REPLACE

AURTRY

AURTRY

python
### gabbi/runner.py
<<<<<<< SEARCH
def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False) :

def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False, test_directory="."):
>>>>>>> REPLACE

AURNRY

AURNRY

python
### gabbi/runner.py
<<<<<<< SEARCH

test_suite = suiltemaker.test_suite_ from_dict (
loader, ’input’, data, ’.’, host, port, None, None, prefix=
prefix,

handlers=handler_objects)

test_suite = suitemaker.test_suite_from_dict (
loader, ’'input’, data, test_directory, host, port, None, None,
prefix=prefix, handlers=handler_objects)
>>>>>>> REPLACE

AN

AURNRY

python
### gabbi/runner.py
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859 | <<<<<<< SEARCH

860 success = run_suite (fh, handler_objects, host, port,
861 prefix, force_ssl, failfast)

36y | =======

863 test_directory = os.path.dirname (input_file)

864 success = run_suite (fh, handler_objects, host, port,
865 prefix, force_ssl, failfast,

test_directory)
866 | >>>>>>> REPLACE

867 | YV

868
869 | Answer 7:

870 | Y Y Ypython

871 | ### gabbi/runner.py

872 | <<<<<<< SEARCH

873 | import argparse

874 | from importlib import import_module

875 | import sys

876 | import unittest

8§77 | =======

878 | import argparse

879 | from importlib import import_module

880 | import os

881 | import sys

882 | import unittest

883 | >>>>>>> REPLACE

gs4 [ YV

885 | Y Y 'python

86 | ### gabbi/runner.py

887 | <<<<<<< SEARCH

sss |def run_suite (handle, handler_objects, host, port, prefix, force_ssl=

False,
889 failfast=False) :
890 """Run the tests from the YAML in handle."""
891 data = utils.load_yaml (handle)
892 if force_ssl:
893 if ’defaults’ in data:
894 data[’defaults’ ] [’'ssl’] = True
895 else:
896 data[’defaults’] = {’ssl’: True}
897
898 loader = unittest.defaultTestLoader
899 test_suite = suitemaker.test_suite_from_dict (
900 loader, ’'input’, data, ’.’, host, port, None, None, prefix=

prefix,

901 handlers=handler_objects)

902 | =======

903 |def run_suite (handle, handler_objects, host, port, prefix, force_ssl=

False,
904 failfast=False, test_directory="."):
905 """Run the tests from the YAML in handle."""
906 data = utils.load_yaml (handle)
907 if force_ssl:
908 if ’defaults’ in data:
909 data[’defaults’ ] ['ssl’] = True
910 else:
9 data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader

914 test_suite = suiltemaker.test_suite_ from_dict (

5 loader, ’input’, data, test_directory, host, port, None, None,
916 prefix=prefix, handlers=handler_objects)

917 | >>>>>>> REPLACE

AURNRY

919 | *Y'python
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### gabbi/runner.py
<<<<<<< SEARCH
with open (input_file, 'r’) as fh:

success = run_suite (fh, handler_ objects, host, port,
prefix, force_ssl, failfast)
if not failure: # once failed, this is considered
immutable
failure = not success
if failure and failfast:
break

test_dir = os.path.dirname (os.path.abspath (input_file))
with open (input_file, 'r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast,
test_directory=test_dir)
if not failure: # once failed, this is considered
immutable
failure = not success
if failure and failfast:
break
>>>>>>> REPLACE

AURTRY

Answer 8:
‘Y 'python
### gabbi/runner.py
<<<<<<< SEARCH
data = utils.load_yaml (handle)
if force_ssl:
if ’defaults’ in data:
data[’defaults’ ] ['ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader

test_suite = suitemaker.test_suite_from_dict (
loader, ’'input’, data, ’.’, host, port, None, None, prefix=
prefix,

handlers=handler_objects)

data = utils.load_yaml (handle)
if force_ssl:
if ’'defaults’ in data:
data[’defaults’][’ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

# Determine test directory based on input handle
if hasattr (handle, ’'name’):

test_directory = os.path.dirname (os.path.abspath (handle.name))
else:

test_directory = ’.’

loader = unittest.defaultTestLoader
test_suite = suiltemaker.test_suite_ from_dict (
loader, ’input’, data, test_directory, host, port, None, None,
prefix=prefix, handlers=handler_objects)
>>>>>>> REPLACE

AURTRY

Answer 9:

‘Y'python

### gabbi/driver.py
<<<<<<< SEARCH
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AURTRY

for

test_file in glob.iglob(’%s/*.yaml’ % path):
if /_’ in os.path.basename (test_file):
warnings.warn (exception.GabbiSyntaxWarning (
"/’ in test filename %s. This can break suite grouping
mw
% test_file))
if intercept:
host = str(uuid.uuid4 ())
suite_dict = utils.load_yaml (yaml_ file=test_file)

test_base_name = os.path.splitext (os.path.basename (test_file))
[0]

if all_test_base_name:
test_base_name = "%s_%s’ % (all_test_base_name,

test_base_name)

if require_ssl:
if ’'defaults’ in suite_dict:

suite_dict[’defaults’][’ssl’] = True
else:
suite_dict[’defaults’] = {’ssl’: True}
file_suite = suitemaker.test_suite_from_dict (

loader, test_base_name, suite_dict, path, host, port,
fixture_module, intercept, prefix=prefix,
test_loader_name=test_loader_name, handlers=handler_objects

14
inner_fixtures=inner_fixtures)

test_file in glob.iglob(’%s/*.yaml’ % path):
if /_’ in os.path.basename (test_file):
warnings.warn (exception.GabbiSyntaxWarning (
"/’ in test filename %s. This can break suite grouping
Al
% test_file))
if intercept:
host = str (uuid.uuid4 ())
suite_dict = utils.load_yaml (yaml_file=test_file)
test_base_name = os.path.splitext (os.path.basename (test_file))
[0]
if all_test_base_name:
test_base_name = ’%s
test_base_name)

o

s’ % (all_test_base_name,

o\

if require_ssl:
if "defaults’ in suite_dict:
suite_dict[’defaults’][’ssl’] = True
else:
suite_dict[’defaults’] = {’ssl’: True}

# Use absolute path of the YAML file’s directory
test_file_dir = os.path.dirname (os.path.abspath(test_file))

file suite = suitemaker.test_suite_from_dict (
loader, test_base_name, suite_dict, test_file_dir, host,
port,

fixture_module, intercept, prefix=prefix,
test_loader_name=test_loader_name, handlers=handler_objects

4
inner_ fixtures=inner_ fixtures)

>>>>>>> REPLACE

Answer 10:
‘Y'python

### gabbi/runner.py
<<<<<<< SEARCH
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import argparse

from importlib import import_module
import sys

import unittest

import argparse

from importlib import import_module
import os

import sys

import unittest

>>>>>>> REPLACE

AURNRY

VRN

python
### gabbi/runner.py
<<<<<<< SEARCH
def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False):

def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False, test_directory=’."):
>>>>>>> REPLACE

AURURY

AURNRY

python
### gabbi/runner.py
<<<<<<< SEARCH

test_suite = suiltemaker.test_suite_ from_dict (
loader, ’input’, data, ’.’, host, port, None, None, prefix=
prefix,

force_ssl=force_ssl, failfast=failfast,
handlers=handler_objects)

test_suite = suiltemaker.test_suite_from_dict (

loader, ’"input’, data, test_directory, host, port, None, None,
prefix=prefix, force_ssl=force_ssl, failfast=failfast,
handlers=handler_objects)

>>>>>>> REPLACE

‘Y 'python

### gabbi/runner.py

<<<<<<< SEARCH

success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast)

test_dir = os.path.dirname (input_file)
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast,
test_directory=test_dir)
>>>>>>> REPLACE

AURNRY

AURNRY

python

### gabbi/case.py

<<<<<<< SEARCH

path = os.path.join(self.test_directory, os.path.basename (filename)

path = os.path.join(self.test_directory, filename)
>>>>>>> REPLACE

AURTRY

Answer 11:
‘Y'python

### gabbi/runner.py
<<<<<<< SEARCH
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198 |def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,

1099 failfast=False) :

1100 """Run the tests from the YAML in handle."""

1101 data = utils.load_yaml (handle)

1102 if force_ssl:

1103 if ’'defaults’ in data:

1104 data[’defaults’ ] ['ssl’] = True

1105 else:

1106 data[’defaults’] = {’ssl’: True}

1107

1108 loader = unittest.defaultTestLoader

1109 test_suite = suiltemaker.test_suite_ from_dict (

1110 loader, ’input’, data, ’.’, host, port, None, None, prefix=
prefix,

1111 handlers=handler_objects)

1112 ===

1113 |def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,

1114 failfast=False, test_directory='"."):

1115 """Run the tests from the YAML in handle."""

1116 data = utils.load_yaml (handle)

1117 if force_ssl:

1118 if "defaults’ in data:

1119 data[’defaults’][’"ssl’] = True

1120 else:

1121 data[’defaults’] = {’ssl’: True}

1122

1123 loader = unittest.defaultTestLoader

1124 test_suite = suiltemaker.test_suite_ from_dict (

1125 loader, ’"input’, data, test_directory, host, port,
1126 None, None, prefix=prefix, handlers=handler_objects)

1127 | >>>>>>> REPLACE
128 | YV

AURNRY

1129 python

1130 | ### gabbi/runner.py

1131 | <<<<<<< SEARCH

1132 success = run_suite (fh, handler_objects, host, port,
1133 prefix, force_ssl, failfast)

1134 | =======

1135 test_dir = os.path.dirname (input_file)

1136 success = run_suite (fh, handler_objects, host, port,
1137 prefix, force_ssl, failfast,

1138 test_directory=test_dir)

1139 | >>>>>>> REPLACE
140 | M

1141
1142 |Answer 12:

1143 | Y 'python

1144 | ### gabbi/runner.py

1145 | <<<K<K<L<< SEARCH

1146 | import argparse

1147 | from importlib import import_module
1148 | import sys

1149 | import unittest

1150 =======

1151 | import argparse

1152 | from importlib import import_module
1153 | import os

1154 | import sys

1155 | import unittest

1156 | >>>>>>> REPLACE

1s7 | YWY

1sg | YV

python
1159 | ### gabbi/runner.py
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1160 | <<<<<<< SEARCH

1161 else:

1162 for input_file in input_files:

1163 with open (input_file, 'r’) as fh:

1164 success = run_suite (fh, handler_objects, host, port,
1165 prefix, force_ssl, failfast)

1166 ===

1167 else:

1168 for input_file in input_files:

1169 test_dir = os.path.dirname (os.path.abspath (input_file))
1170 with open (input_file, 'r’) as fh:

1171 success = run_suite (fh, handler_objects, host, port,
1172 prefix, force_ssl, failfast,

1173 test_directory=test_dir)
1174 | >>>>>>> REPLACE

1175 | YY1

1176 | Y ‘python

1177 | ### gabbi/runner.py
1178 | <<<<<<< SEARCH

1179 |def run_suite (handle, handler_objects, host, port, prefix, force_ssl=

False,
1180 failfast=False):
1181 """Run the tests from the YAML in handle."""
1182 data = utils.load_yaml (handle)
1183 if force_ssl:
1184 if "defaults’ in data:
1185 data[’defaults’][’"ssl’] = True
1186 else:
1187 data[’defaults’] = {’ssl’: True}
1188
1189 loader = unittest.defaultTestLoader
1190 test_suite = suiltemaker.test_suite_ from_dict (
1191 loader, ’input’, data, ’.’, host, port, None, None, prefix=
prefix,
1192 handlers=handler_objects)

1193 | =======
1194 | def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,

1195 failfast=False, test_directory='."):

1196 """Run the tests from the YAML in handle."""

1197 data = utils.load_yaml (handle)

1198 if force_ssl:

1199 if ’defaults’ in data:

1200 data[’defaults’ ] [’'ssl’] = True

1201 else:

1202 data[’defaults’] = {’ssl’: True}

1203

1204 loader = unittest.defaultTestLoader

1205 test_suite = suitemaker.test_suite_from_dict (

1206 loader, ’'input’, data, test_directory, host, port, None, None,
1207 prefix=prefix, handlers=handler_objects)

1208 | >>>>>>> REPLACE

1209 AR

1
211 |Answer 13:
1212 | Y 'python

1213 | ### gabbi/runner.py

1214 | <<<<<<< SEARCH

1215 |def run_suite (handle, handler_objects, host, port, prefix, force_ssl=

False,
1216 failfast=False):
1217 """Run the tests from the YAML in handle."""
1218 data = utils.load_yaml (handle)
1219 if force_ssl:
1220 if "defaults’ in data:
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data[’defaults’ ] [’'ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader

test_suite = suitemaker.test_suite_from_dict (
loader, ’'input’, data, ’.’, host, port, None, None, prefix=
prefix,

handlers=handler_objects)

def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False, test_directory='."):
"""Run the tests from the YAML in handle."""
data = utils.load_yaml (handle)
if force_ssl:
if 'defaults’ in data:
data[’defaults’ ] ['ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader
test_suite = suitemaker.test_suite_from_dict (
loader, ’input’, data, test_directory, host, port, None, None,
prefix=prefix, handlers=handler_objects)
>>>>>>> REPLACE
‘Y 'python
### gabbi/runner.py
<<<<<<< SEARCH
for input_file in input_files:
with open (input_file, "r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast)

for input_file in input_files:
test_dir = os.path.dirname (os.path.abspath (input_file))
with open (input_file, 'r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast,
test_directory=test_dir)
>>>>>>> REPLACE

AURNRY

Answer 14:

‘Y 'python

### gabbi/runner.py

<<<<<<< SEARCH

for input_file in input_files:
with open (input_file, 'r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast)

for input_file in input_files:
with open (input_file, "r’) as fh:
success = run_suite (input_file, fh, handler_objects,
host, port,
prefix, force_ssl, failfast)
>>>>>>> REPLACE

AURTRY

AURNRY

python

### gabbi/runner.py

<<<<<<< SEARCH

def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
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failfast=False) :
"""Run the tests from the YAML in handle."""
data = utils.load_yaml (handle)
if force_ssl:
if ’defaults’ in data:
data[’defaults’ ] ['ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader
test_directory = ’.’
test_suite = suitemaker.test_suite_from_dict (
loader, ’'input’, data, test_directory, host, port, None, None,
prefix=prefix,
handlers=handler_objects)

def run_suite(input_file, handle, handler_objects, host, port, prefix,
force_ssl=False,
failfast=False) :
"""Run the tests from the YAML in handle."""
data = utils.load_yaml (handle)
if force_ssl:
if ’'defaults’ in data:
data[’defaults’ ] ['ssl’] = True
else:
data[’defaults’] = {’ssl’: True}

loader = unittest.defaultTestLoader
test_directory = os.path.dirname (input_file) 1if input_file else ’.
test_suite = suiltemaker.test_suite_ from_dict (
loader, ’"input’, data, test_directory, host, port, None, None,
prefix=prefix,
handlers=handler_objects)
>>>>>>> REPLACE
‘Y 'python
### gabbi/runner.py
<<<<<<< SEARCH
if not input_files:
success = run_suite(sys.stdin, handler_objects, host, port,
prefix, force_ssl, failfast)

if not input_files:
success = run_suite (None, sys.stdin, handler_objects, host,
port,
prefix, force_ssl, failfast)
>>>>>>> REPLACE

AURTRY

AURNRY

-—— END FILE ---

Please first summary and analyze the key differences between the
trajectories, and then generate *SEARCH/REPLACEx edits to fix the
issue.

Every *SEARCH/REPLACE+* edit must use this format:

1. The file path

2. The start of search block: <<<<<<< SEARCH

3. A contiguous chunk of lines to search for in the existing source
code

4. The dividing line: =======

The lines to replace into the source code

6. The end of the replace block: >>>>>>> REPLACE

ul

Here is an example:
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AURNRY

python

### mathweb/flask/app.py
<<<K<<<< SEARCH

from flask import Flask

import math
from flask import Flask
>>>>>>> REPLACE

AURNRY

Please note that the *SEARCH/REPLACEx edit REQUIRES PROPER INDENTATION.
If you would like to add the line ' print (x)’, you must
fully write that out, with all those spaces before the code!
Wrap the *SEARCH/REPLACE* edit in blocks ‘‘‘python...‘'‘.
The summary of the key differences between the trajectories should be
in the thinking part.

"

Response:

<think>

Okay, let’s tackle this problem. The user is having an issue where when
they specify a data file in their YAML test using the <@ syntax,
the path isn’t resolved relative to the YAML file’s location.
Instead, it’s using the current working directory. They want the
path to be relative to the YAML file so they can run tests from any
directory.

First, I need to understand how the current code is handling the data
file paths. The user mentioned that in _load_data_file, the code
uses os.path.join(self.test_directory, os.path.basename (filename)) .
This takes the test_directory (which defaults to ’.’), discards any
directories in the filename, and appends the basename. That’s why if

the YAML is in /my/tests/test.yaml and the data is <@data.txt, it
looks for ./data.txt instead of /my/tests/data.txt.

The key here is to make sure that the test_directory is set to the
directory where the YAML file is located. Then, when joining with
the filename (without basename), it would correctly resolve the
relative path.

Looking at the provided code snippets, the main changes are in runner.
py where the test_directory is determined. The user’s proposed
solutions involve modifying the run_suite function to accept a
test_directory parameter, which is derived from the input file’s
directory.

In the original code, when running a suite from an input file, the
test_directory is hardcoded to ’.’. The various answers modify this
by passing the directory of the input file as test_directory. For
example, in Answer 10, they add the test_directory parameter to
run_suite and set it to os.path.dirname (input_file). Then, in case.
py, they change the path joining to use the filename directly
instead of basename.

Wait, the critical part is in case.py’s _load_data_file method. The
original code uses os.path.basename (filename), which strips any
directories from the filename. So if the YAML has <@test_data/file.
txt, the basename is file.txt, and it’s Jjoined with test_directory.
But if test_directory is the YAML’s directory, then it should be
YAML_DIR/test_data/file.txt. However, the current code would do
test_directory + file.txt, which would be YAML_DIR/file.txt. That’s
incorrect. So the problem is that the code is taking the basename,
thus ignoring any subdirectories in the filename.
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Ah, so the fix here is to not take the basename. Instead, the filename
after <@ should be treated as a relative path from the YAML’s
directory. So in case.py’s _load_data_file, instead of using os.path
.basename (filename), we should use the filename as-is. Then, os.path
.join(self.test_directory, filename) would correctly resolve the
path relative to the YAML’s directory.

But wait, the filename could be an absolute path. For example, if the
YAML has <@/absolute/path/file.txt, then os.path.join would just use
the absolute path. However, the documentation says that the
filename is relative to the YAML file. So absolute paths might not
be intended. But the code should handle that.

So combining two changes: in runner.py, set test_directory to the YAML
file’s directory, and in case.py, stop using basename and use the
full filename.

Looking at Answer 10, there’s a change in case.py from os.path.basename
(filename) to filename. That’s exactly the fix needed. Then, in
runner.py, when running the suite, pass the test_directory as the
directory of the input file.

So the key files to modify are:

1. gabbi/runner.py: When calling run_suite, pass test_directory as the
directory of the input file. This involves modifying the run_suite
function to accept test_directory as a parameter and then passing it

when the input file is processed.

2. gabbi/case.py: Change the path construction from using os.path.
basename (filename) to using the filename directly. This allows
subdirectories in the filename to be included in the path.

Looking through the provided code snippets, the one that does both is
Answer 10. Let me check:

In Answer 10, the runner.py changes add the test_directory parameter
and set it to os.path.dirname (input_file). Then, in case.py, the
path is changed to os.path.join(self.test_directory, filename). That

would correctly resolve the path relative to the YAML’s directory,
including any subdirectories in the filename.

But wait, the original code in case.py uses os.path.basename (filename) .
So changing that to filename means that if the input is ’test_data/
file.txt’, it’s Jjoined as test_directory/test_data/file.txt. If
test_directory is the YAML’s directory, that’s correct.

———————————————————— Omit some reasoning content -————-———————————————

But perhaps better to use os.path.abspath and then dirname to handle
relative paths correctly. But maybe the existing code already works.
For example, if the input_file is ’'tests/test.yaml’, then os.path.

dirname would return ’'tests’, which when joined with os.getcwd()
would be correct. Wait, no. os.path.dirname just gives the directory
part of the path. So if input_file is a relative path, like ’tests/
test.yaml’, then test_directory would be ’'tests’, and when os.path.
join is called, it’s relative to the current working directory. But
the code in suitemaker.test_suite_from dict might expect an absolute
path. However, the original code uses ’.’ as the test_directory,
which is relative. So perhaps using the directory of the input file
as test_directory is sufficient.

Another thing to consider: when the YAML is loaded from stdin (like via
redirect), the test_directory remains ’.’. That’s acceptable, as
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the documentation mentions that when using <, the filename isn’t
seen by Gabbi, so it’s not possible to resolve the path relative to
the YAML’s original location. So in that case, the test_directory
defaults to ".’.

Now, in case.py:

Original line:

path = os.path.join(self.test_directory, os.path.basename (filename))
Modified line:

path = os.path.join(self.test_directory, filename)

So the SEARCH/REPLACE block for case.py:

### gabbi/case.py
<<<<<<< SEARCH
path = os.path.join(self.test_directory, os.path.basename (filename)

path = os.path.join(self.test_directory, filename)
>>>>>>> REPLACE

Putting all these together, the final edits are:
1. Add import os in runner.py.

2. Modify run_suite to accept test_directory and pass it to
test_suite_from_dict.

3. In the loop over input_files, compute test_directory as the
directory of input_file and pass it to run_suite.

4. Modify case.py’s path construction.

So the final answer would include these four SEARCH/REPLACE blocks.
</think>

*Y'‘python

### gabbi/runner.py

<<<<<<< SEARCH

import argparse

from importlib import import_module
import sys

import unittest

import argparse

from importlib import import_module
import os

import sys

import unittest

>>>>>>> REPLACE

AURNRY

AURNRY

python
### gabbi/runner.py
<<<<<<< SEARCH
def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
failfast=False) :

def run_suite (handle, handler_objects, host, port, prefix, force_ssl=
False,
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failfast=False, test_directory="."):
>>>>>>> REPLACE

AURTRY

‘Y 'python
### gabbi/runner.py
<<<<<<< SEARCH

test_suite = suitemaker.test_suite_from_dict (
loader, ’'input’, data, ’.’, host, port, None, None, prefix=
prefix,

handlers=handler_objects)

test_suite = suiltemaker.test_suite_ from_dict (
loader, ’input’, data, test_directory, host, port, None, None,
prefix=prefix, handlers=handler_objects)
>>>>>>> REPLACE

AURTRY

AURNRY

python

### gabbi/runner.py

<<<<<<< SEARCH

else:

for input_file in input_files:
with open (input_file, "r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast)

for input_file in input_files:
test_directory = os.path.dirname (input_file) or ’.’
with open (input_file, "r’) as fh:
success = run_suite (fh, handler_objects, host, port,
prefix, force_ssl, failfast,
test_directory=test_directory)
>>>>>>> REPLACE

AURNRY

‘Y 'python
### gabbi/case.py
<<<<<<< SEARCH
path = os.path.join(self.test_directory, os.path.basename (filename)

path = os.path.join(self.test_directory, filename)
>>>>>>> REPLACE

AURTRY

These changes:

1. Add ‘os‘' import needed for path handling

2. Modify run_suite to accept a test_directory parameter

3. Use the input file’s directory as the test_directory when processing
files

4. Update data file path resolution to preserve directory structure
from YAML relative paths

5. Remove basename handling that was stripping directory information
from data file paths

The net effect is that data files specified with ‘<@filename‘ in YAML
tests will now be resolved relative to their YAML file’s directory,
supporting both flat and nested directory structures for test data.
When tests are run from stdin (using ‘<'), the default directory
remains the current working directory as before.

Listing 12: Example of emergent parallel scaling (cdent__gabbi-191 in SWE-bench-extra).
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H USE OF LARGE LANGUAGE MODELS

The initial draft of this paper was written entirely by the authors. A large language model (gpt-
5) was used only to aid with polishing the language (e.g., grammar and clarity). All conceptual
contributions, experimental designs, analyses, and conclusions are the work of the authors.
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