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ABSTRACT

Large Language Models (LLMs) are increasingly applied to software engineering
(SWE), with SWE-bench as a key benchmark. Solutions are split into SWE-Agent
frameworks with multi-turn interactions and workflow-based Agentless methods
with single-turn verifiable steps. We argue these paradigms are not mutually ex-
clusive: reasoning-intensive Agentless training induces skill priors, including lo-
calization, code edit, and self-reflection that enable efficient and effective SWE-
Agent adaptation. In this work, we first curate the Agentless training recipe and
present Kimi-Dev, an open-source SWE LLM achieving 60.4% on SWE-bench
Verified, the best among workflow approaches. With additional SFT adaptation
on 5k publicly-available trajectories, Kimi-Dev powers SWE-Agents to 48.6%
pass@1, on par with that of Claude 3.5 Sonnet (241022 version). These results
show that structured skill priors from Agentless training can bridge workflow and
agentic frameworks for transferable coding agents.

1 INTRODUCTION

Recent days have witnessed the rapid development of Large Language Models (LLMs) automating
Software-Engineering (SWE) tasks (Jimenez et al., 2023; Yang et al., 2024a; Xia et al., 2024; An-
thropic, 2024; Pan et al., 2024; Wang et al., 2025a; Wei et al., 2025; Yang et al., 2025a; Kimi et al.,
2025; OpenAI, 2025c). Among the benchmarks that track the progress of LLM coding agents in
SWE scenarios, SWE-bench (Jimenez et al., 2023) stands out as one of the most representative ones:
Given an issue that reports a bug in a real-world GitHub repository, a model is required to produce
a patch that fixes the bug, the correctness of which is further judged by whether the corresponding
unit tests are passed after its application. The difficulty of the task (as of the date the benchmark was
proposed), the existence of the outcome reward with the provided auto-eval harness, as well as the
real-world economic value it reflects, have made the SWE-bench a focal point of the field.

Two lines of solutions have emerged for the SWE-bench task. Agent-based solutions like SWE-
Agent (Yang et al., 2024a) and OpenHands (Wang et al., 2025a) take an interactionist approach:
Instructed with the necessary task description, a predefined set of available tools, as well as the
specific problem statement, the agent is required to interact with an executable environment for
multiple turns, make change to the source codes, and determine when to stop autonomously. In
contrast, workflow-based solutions like Agentless (Xia et al., 2024) pre-define the solving progress
as a pipeline, which consists of steps like localization, bug repair, and test composition. Such task
decomposition transforms the agentic task into generating correct responses for a chain of single-
turn problems with verifiable rewards (Guo et al., 2025; Wei et al., 2025; He et al., 2025).

The two paradigms have been widely viewed as mutually exclusive. On the one hand, SWE-Agents
are born with higher potential and better adaptability, thanks to the higher degree of freedom of the
multi-turn interaction without the fixed routines. However, it has also proved more difficult to train
with such frameworks due to their end-to-end nature (Luo et al., 2025; Cao et al., 2025). On the other
hand, Agentless methods offer better modularity and the ease to train with Reinforcement Learning
with Verifiable Rewards (RLVR) techniques, but more limited exploration space and flexibility, and
difficulty in behavior monitoring as the erroneous patterns appear only in the single-turn long rea-
soning contents (Pan et al., 2024). However, we challenge the dichotomy from the perspective of
training recipe: We argue that Agentless training should not be viewed as the ultimate deliverable,
but rather as a way to induce skill priors – atomic capabilities such as the localization of buggy im-
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plementations and the update of erroneous code snippets, as well as self-reflection and verification,
all of which help scaffold the efficient adaptation of more capable and generalizable SWE-agents.

Guided by this perspective, we introduce Kimi-Dev, an open-source code LLM for SWE tasks.
Specifically, we first develop an Agentless training recipe, which includes mid-training, cold-start,
reinforcement learning, and test-time self-play. This results in 60.4% accuracy on SWE-bench Ver-
ified, the SoTA performance among the workflow-based solutions. Building on this, we show that
Agentless training induces skill priors: a minimal SFT cold-start from Kimi-Dev with 5k publicly-
available trajectories enables efficient SWE-agent adaptation and reaches 48.6% pass@1 score, sim-
ilar to that of Claude 3.5 Sonnet (the 20241022 version, Anthropic (2024)). We demonstrate that
these induced skills transfer from the non-agentic workflows to the agentic frameworks, and the
self-reflection in long Chain-of-Thoughts baked through Agentless training further enable the agen-
tic model to leverage more turns and succeed with a longer horizon. Finally, we also show that the
skills from Agentless training generalize beyond SWE-bench Verified to broader benchmarks like
SWE-bench-live (Zhang et al., 2025) and SWE-bench Multilingual (Yang et al., 2025c). Together,
these results reframe the relationship between Agentless and agentic frameworks: not mutually ex-
clusive, but as complementary stages in building transferable coding LLMs. This shift offers a prin-
cipled view that training with structural skill priors could scaffold autonomous agentic interaction.

The remainder of this paper is organized as follows. Section 2 reviews the background of the frame-
work dichotomy and outlines the challenges of training SWE-Agents. Section 3 presents our Agent-
less training recipe and the experimental results. Section 4 demonstrates how these Agentless-
induced skill priors enable efficient SWE-Agent adaptation, and evaluates the skill transfer and
generalization beyond SWE-bench Verified.

2 BACKGROUND

In this section, we first review the two dominant frameworks for SWE tasks and their dichotomy in
Section 2.1. We then summarize the progress and challenges of training SWE-Agents in Section 2.2.
The background introduction sets the stage for reinterpreting Agentless training as skill priors for
SWE-Agents, a central theme developed throughout the later sections.

2.1 FRAMEWORK DICHOTOMY

Two paradigms currently dominate the solutions for automating software engineering tasks. Agent-
less approaches decompose SWE tasks into modular workflows (Xia et al., 2024; Wei et al., 2025;
Ma et al., 2025a;b; Xie et al., 2025). Typical workflows consist of bug localization, bug repair, and
test generation. This design provides modularity and stability: each step could be optimized sepa-
rately as a single-turn problem with verifiable rewards (Wei et al., 2025; He et al., 2025). However,
such rigidity comes at the cost of flexibility. When encountering scenarios requiring multiple rounds
of incremental updates, the Agentless approaches struggle to adapt.

By contrast, SWE-agents adopt an end-to-end, multi-turn reasoning paradigm (Yang et al., 2024a;
Wang et al., 2025a). Rather than following a fixed workflow, they iteratively plan, act, and reflect,
resembling how human developers debug complex issues. This design enables greater adaptability,
but introduces significant difficulties: trajectories often extend over tens or even hundreds of steps,
context windows of the LLMs must span over the entire interaction history, and the model must
handle exploration, reasoning, and tool use simultaneously.

The dichotomy between fixed workflows (e.g., Agentless) and agentic frameworks (e.g., SWE-
Agent) has shaped much of the community’s perspective. The two paradigms are often regarded
as mutually exclusive: one trades off flexibility and performance ceiling for modularity and stabil-
ity, whereas the other makes the reverse compromise. Our work challenges this dichotomy, as we
demonstrate that Agentless training induces skill priors that make further SWE-agent training both
more stable and more efficient.

2.2 TRAINING SWE-AGENTS

Training SWE-agents relies on acquiring high-quality trajectories through interactions with exe-
cutable environments. Constructing such large-scale environments and collecting reliable trajecto-
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Figure 1: Agentless framework for Kimi-Dev: the duo of BugFixer and TestWriter.

ries, however, requires substantial human labor as well as costly calls to frontier models, making data
collection slow and resource-demanding (Pan et al., 2024; Badertdinov et al., 2024b). Recent studies
also attempt to scale environment construction by synthesizing bugs for the reverse construction of
executable runtime (Jain et al., 2025; Yang et al., 2025c). However, credit assignment across long
horizons still remains challenging, as outcome rewards are sparse and often only available when a
final patch passes its tests. Reinforcement learning techniques have been proposed, but frequently
suffer from instability or collapse when trajectories exceed dozens of steps (Luo et al., 2025; Cao
et al., 2025). SWE-agent training is also highly sensitive to initialization: starting from a generic
pre-trained model often leads to brittle behaviors, such as failing to use tools effectively or getting
stuck in infinite loops of specific action patterns (Pan et al., 2024; Yang et al., 2025c).

These limitations motivate our central hypothesis: instead of training SWE-agents entirely from
scratch, one can first induce skill priors through agentless training, enhancing the atomic capabilities
like localization, repair, test composition, and self-reflection. These priors lay a foundation that
makes subsequent agentic training both more efficient and more generalizable.

3 AGENTLESS TRAINING RECIPE

Instead of training SWE-agents from scratch, we leverage Agentless training to induce skill priors.
Skill priors enhanced by Agentless training include but are not limited to bug localization, patch gen-
eration, self-reflection and verification, which lay the foundation for end-to-end agentic interaction.
In this section, we elaborate our Agentless training recipe: the duo framework design of BugFixer
and TestWriter, mid-training and cold-start, reinforcement learning, and test-time self-play. Sec-
tions 3.1–3.4 detail these ingredients, and Section 3.5 presents the experimental results for each of
them. This training recipe results in Kimi-Dev, an open-source 72B model that achieves 60.4% on
SWE-bench Verified, the SoTA performance among the workflow-based solutions.

3.1 FRAMEWORK: THE DUO OF BUGFIXER AND TESTWRITER

In GitHub issue resolution, we conceptualize the process as the collaboration between two important
roles: the BugFixer, who produces patches that correctly address software bugs, and the TestWriter,
who creates reproducible unit tests that capture the reported bug. A resolution is considered suc-
cessful when the BugFixer’s patch passes the tests provided for the issue, while a high-quality test
from the TestWriter should fail on the pre-fix version of the code and pass once the fix is applied.

Each role relies on two core skills: (i) file localization, the ability to identify the specific files relevant
to the bug or test, and (ii) code edit, the ability to implement the necessary modifications. For Bug-
Fixer, effective code edits repair the defective program logic, whereas for TestWriter, they update
precise unit test functions that reproduce the issue into the test files. As illustrated in Figure 1, these
two skills constitute the fundamental abilities underlying GitHub issue resolution. Thus, we enhance
these skills through the following training recipes, including mid-training, cold-start, and RL.

3.2 MID-TRAINING & COLD START

To enhance the model’s prior as both a BugFixer and a TestWriter, we perform mid-training with
∼150B tokens in high-quality and real-world data. With the Qwen 2.5-72B-Base (Qwen et al.,
2024) model as a starting point, we collect millions of GitHub issues and PR commits to form its
mid-training dataset, which consists of (i) ∼50B tokens in the form of Agentless derived from the
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natural diff patch, (ii) ∼20B tokens of curated PR commit packs, and (iii) ∼20B tokens of synthetic
data with reasoning and agentic interaction patterns (upsampled by a factor of 4 during training).
The data recipe is carefully constructed to enable the model to learn how human developers reason
with GitHub issues, implement code fixes, and develop unit tests. We also performed strict data
decontamination to exclude any repository from the SWE-bench Verified test set. Mid-training
sufficiently enhances the knowledge in the model about practical bug fixes and unit tests, making it
a better starting point for later stages. The details of the recipe are covered in Appendix A.

To activate the model’s long Chain-of-Thought (CoT) capability, we also construct a cold-start
dataset with reasoning trajectories based on the SWE-Gym (Pan et al., 2024) and SWE-bench-extra
(Badertdinov et al., 2024a) datasets, generated by the DeepSeek R1 model (Luo et al. (2025), the
20250120 version). In this setup, R1 acts the roles of Bugfixer and Testwriter, producing out-
puts such as file localization and code edits. Through supervised finetuning as a cold start with
this dataset, we enable the model to acquire essential reasoning skills, including problem analysis,
method sketching, self-refinement, and exploration of alternative solutions.

3.3 REINFORCEMENT LEARNING

After mid-training and cold-start, the model demonstrates strong performance in localization.
Therefore, reinforcement learning (RL) focuses solely on the code edit stage. We construct a
training set specifically for this stage, where each prompt is equipped with an executable environ-
ment. We further employ multiple localization rollouts from the initial model to generate varied file
location predictions, which diversifies the prompts used in code-edit RL.

For the RL algorithm, we adopt the policy optimization method proposed by Kimi k1.5 (Team et al.,
2025), which has shown promising results on reasoning tasks in both math and coding. Unlike
GRPO (Shao et al., 2024) that eliminates the critic by using average rewards for advantage estima-
tion, Kimi k1.5 (Team et al., 2025) adopts a simpler policy gradient approach motivated by path
consistency (Nachum et al., 2017). The specific RL objective is provided in Appendix C.1.

When adapting the algorithm in our SWE-bench setting, we highlight the following 3 key desiderata:

1. Outcome-based reward only: We rely solely on the final execution outcome from the
environment as the raw reward (0 or 1), without incorporating any format- or process-
based signals. For BugFixer, a positive reward is given if the generated patch passes all
ground-truth unittests. For TestWriter, a positive reward is assigned when the predicted
test raises a failure in the absence of the ground-truth bugfix patch and, once the patch is
applied, the failure is resolved.

2. Adaptive prompt selection: Prompts with pass@16 = 0 are initially discarded as they do
not contribute to the batch loss, effectively enlarging the usable batch size. A curriculum
learning scheme is then applied: once the success rate on the current set exceeds a
threshold, previously excluded prompts (with initial pass@16 = 0 but improved under RL)
are reintroduced to gradually raise task difficulty.

3. Positive example reinforcement: As performance improvements begin to plateau in later
stages of training, we incorporate the positive samples from the recent RL iterations into
the training batch of the current iteration. This approach reinforces the model’s reliance on
successful patterns, thereby accelerating convergence in the final phase.

Robust sandbox infrastructure. We construct the docker environment with Kubernetes (Burns
et al., 2016), which provides a secure and scalable sandbox infrastructure and efficient training and
rollouts. The infra supports over 10,000 concurrent instances with robust performance, making it
ideal for competitive programming and software engineering tasks (see Appendix D).

3.4 TEST-TIME SELF-PLAY

After RL, the model masters the roles of both a BugFixer and a TestWriter. During test time,
it adopts a self-play mechanism to coordinate its bug-fixing and test-writing abilities. Following
Agentless (Xia et al., 2024), we leverage the model to generate 40 candidate patches and 40 tests
for each instance. Each patch generation involves independent runs of the localization and code edit
from BugFixer, where the first run uses greedy decoding (temperature 0), and the remaining 39 use
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Table 1: Performance comparison for models on SWE-bench Verified under Agentless-like frame-
works. All the performances are obtained under the standard 40 patch, 40 test setting (Xia et al.,
2024), except that Llama3-SWE-RL uses 500 patches and 30 tests.

Model #Params Resolve Rate (%)

Llama3-SWE-RL (Wei et al., 2025) 70B 41.0
Seed1.5-Thinking (Seed et al., 2025) 200B 47.0
OpenAI-o1 (OpenAI, 2024) - 48.9
DeepSeek-R1-0120 (Guo et al., 2025) 671B 49.2
OpenAI-o3-mini-high (OpenAI, 2025a) - 49.3
Claude 3.5 Sonnet (241022) (Anthropic, 2024) - 50.8
MiniMax-M1 (Chen et al., 2025a) 456B 56.0
DeepSeek-R1-0528 (Guo et al., 2025) 671B 57.6
SWE-SWISS (He et al., 2025) 32B 58.2
Kimi-Dev (Ours) 72B 60.4

temperature 1 to ensure diversity. Similarly, 40 tests are generated independently from TestWriter.
For the test patch candidates, to guarantee their validity, we first filter out those failing to raise a
failure in the original repo without applying any BugFixer patch.

Denote the rest TestWriter patches as set T , and the BugFixer patches as set B. For each bi ∈ B
and tj ∈ T , we execute the test suite over the test file modified by tj for twice: first without bi,
and then with bi applied. From the execution log for the first run, we get the count of the failed and
the passed tests from tj , denoted as F(j) and P(j). Comparing the execution logs for the two test
suite runs, we get the count of the fail-to-pass and the pass-to-pass tests, denoted as FP(i, j) and
PP(i, j), respectively. We then calculate the score for each bi with

Si =

∑
j FP(i, j)∑

j F(j)
+

∑
j PP(i, j)∑

j P(j)
, (1)

where the first part reflects the performance of bi under reproduction tests, and the second part
could be viewed as the characterization of bi under regression tests (Xia et al., 2024). We select the
BugFixer patch bi with the highest Si score as the ultimate answer.

3.5 EXPERIMENTS

3.5.1 MAIN RESULTS

Figure 2: The performance on SWE-
bench Verified after mid-training with
different training token budgets.

We evaluate our approach on SWE-bench Verified
(Jimenez et al., 2023), which includes 500 GitHub issues
guaranteed to be solved by human programmers. Table
1 shows the overall results. Unlike SWE-RL (Wei et al.,
2025), which relies on text-based similarity to the ground-
truth patch, we use execution results as the reward signal,
reducing shortcuts and improving solution quality. Unlike
most Agentless approaches (Xia et al., 2024; Guo et al.,
2025; He et al., 2025), which place a single-file reproduc-
tion test at the root directory of the repository, we leverage
the two-stage TestWriter to better capture repository con-
text and align with human standard workflows (OpenAI,
2025). Kimi-Dev model achieves the state-of-the-art per-
formance among open-source models, resolving 60.4% of
the issues in SWE-bench Verified.

3.5.2 MID-TRAINING

In this section, we evaluate the relationship between the amount of data used during mid-training
and model performance. Specifically, we finetuned Qwen 2.5-72B-Base with the subset of mid-
training data of 50B, 100B, and approximately 150B tokens, and then lightly activated them using
the same 2,000 Bugfixer input-output pairs as cold start. We report BugFixer pass@1 without self-
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(a) 72B Joint RL, BugFixer (b) 72B Joint RL, TestWriter

Figure 3: Joint code-edit RL experiments on the model after mid-training and cold-start. The pass
rate for BugFixer and the reproduced rate for TestWriter are reported as pass@1 with tempera-
ture=1.0. The performance improves consistently as the output becomes increasingly longer.

play for simplicity of evaluation. Figure 2 shows that increasing the number of tokens in mid-training
consistently improves model performance, highlighting the effectiveness of this stage.

3.5.3 REINFORCEMENT LEARNING

Experimental setup We set the training step per RL iteration as 5 and sample 10 rollouts for
each of the 1,024 problems from the union of SWE-gym (Pan et al., 2024) and SWE-bench-extra
(Badertdinov et al., 2024b). We dynamically adjust the prompt set every 20 iterations to gradually
increase task difficulty. We fix the maximum training context length as 64k tokens, since the prompt
input contains the contents of the entire files localized by the initial model in advance.

Results Figure 3 shows the performance and response length curves on the test set during RL train-
ing. The pass rate and the reproduced rate are calculated from pass@1 and temperature=1. Specifi-
cally, we observe that both model performance and response length steadily increase, reflecting the
expected benefits of RL scaling. Similar RL scaling curves are also observed in our ablation ex-
periments run on Qwen2.5-14B-Instruct models, proving the effectiveness of the RL training recipe
across models of different sizes. The experimental details, as well as the ablation studies on positive
example reinforcement in Section 3.3, are listed in Appendix C.3). The lengthy outputs consist of
in-depth problem analysis and self-reflection patterns, similar to those in the math and code reason-
ing tasks (Team et al., 2025; Guo et al., 2025). We have also observed that for TestWriter, occasional
false-positive examples take place during RL training due to the lack of reproduction coverage. We
leave the case studies in Appendix F and further improvement for future work.

3.5.4 TEST-TIME SELF-PLAY

Figure 4: Test-time self-play on SWE-bench Verified.
Performance improves with more generated patches
and tests. Left: Execution-based self-play consis-
tently surpasses BugFixer majority voting. Right: Self-
play performances remain below pass@N where the
ground-truth test patch is used, suggesting the room ex-
ists for TestWriter to improve.

Following Section 3.4, we evaluate how
the final performance on the SWE-bench
Verified scales with the number of patches
and tests generated. The temperature is
fixed at 0 for the initial rollout and set
to 1.0 for the subsequent 39 rollouts. As
shown on the left of Figure 4, perfor-
mance improves from 48.0% to 60.4% as
the number of patch test pairs increases
from 1×1 to 40×40, and consistently out-
performs the results obtained from the ma-
jority vote of BugFixer patches. Specifi-
cally, the self-play result obtained from 3
patches and 3 tests for each instance has
already surpassed the performance with
majority voting from 40 BugFixer patches. This demonstrates the effectiveness of additional in-
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Table 2: Single-attempt performance of different models on SWE-bench Verified under end-to-end
agentic frameworks, categorized by proprietary or open-weight models, and size over or under 100B.
“Internal” denotes results achieved with their in-house agentic frameworks.

Model System #Params Pass Rate (%)

Proprietary

Gemini 2.5 Pro (Comanici et al., 2025) Internal - 60.3
OpenAI-o3 (OpenAI, 2025) Internal - 69.1
GPT-5 (OpenAI, 2025c) Internal - 74.9
Claude 3.5 Sonnet (241022) (Anthropic, 2024) SWE-Agent - 49.0
Claude 3.7 Sonnet (Anthropic, 2025a) SWE-Agent - 62.3
Claude 4.0 Sonnet (Anthropic, 2025b) SWE-Agent - 72.7

Open Weight, ≥ 100B

gpt-oss-120b (High) (OpenAI, 2025b) Internal 120B 62.4
DeepSeek-v3.1 (Guo et al., 2025) Internal 671B 66.0
Kimi-K2-0905 (Kimi et al., 2025) SWE-Agent 1T 69.2
Qwen3-Coder (Yang et al., 2025a) OpenHands 480B 69.6

Open Weight, < 100B

Openhands-LM (Wang et al., 2025b) OpenHands 32B 37.2
Skywork-SWE (Zeng et al., 2025) OpenHands 32B 38.0
SWE-agent-LM (Yang et al., 2025b) SWE-Agent 32B 40.2
DeepSWE (Luo et al., 2025) OpenHands 32B 42.2
Devstral-Small-2507 (AI & AI, 2025) OpenHands 24B 53.6
gpt-oss-20b (High) (OpenAI, 2025b) Internal 20B 60.7
Kimi-Dev (SFTed) SWE-Agent 72B 48.6

formation from test-time execution. The room for improvement of TestWriter, though, still exists
for more powerful self-play: Shown on Figure 4, self-play performances remain below pass@N,
where ground-truth test cases serve as the criterion for issue resolution. This finding aligns with An-
thropic (2024), which introduced a final edge-case checking phase to generate a more diverse set of
test cases, thereby strengthening the role of the “TestWriter” in their SWE-Agent framework. We
also report preliminary observations of a potential parallel scaling phenomenon, which requires no
additional training and may enable scalable performance improvements (see Appendix G).

4 INITIALIZING SWE-AGENTS FROM AGENTLESS TRAINING

End-to-end multi-turn frameworks, such as SWE-Agent (Yang et al., 2024a; Anthropic, 2024) and
OpenHands (Wang et al., 2025a), enable agents to leverage tools and interact with environments.
Specifically, the system prompt employed in the SWE-Agent framework (Anthropic, 2024) outlines
a five-stage workflow: (i) repo exploration, (ii) error reproduction via a test script, (iii) code edit
for bug repair, (iv) test re-execution for validation, and (v) edge-case generation and checks. Unlike
Agentless, the SWE-Agent framework doesn’t enforce a strict stage-wise workflow; the agent can
reflect, transition, and redo freely until it deems the task complete and submits.

The performance potential is therefore higher without a fixed routine; However, the training for
SWE-Agent is more challenging because of the sparsity of the outcome reward for long-horizon
credit assignment. Meanwhile, our Kimi-Dev model has undergone Agentless training, with its skills
of localization and code edit for BugFixer and TestWriter strengthened elaborately. In this section,
we investigate whether it can serve as an effective prior for multi-turn SWE-Agent scenarios.

4.1 PERFORMANCE AFTER SWE-AGENT FINE-TUNING

We use the publicly available SWE-Agent trajectories to finetune Kimi-Dev. The finetuning dataset
we used is released by SWE-smith (Yang et al., 2025b), consisting of 5,016 SWE-Agent trajectories
collected with Claude 3.7 Sonnet (Anthropic, 2025a) in the synthetic environments. We perform
supervised fine-tuning over Kimi-Dev, setting the maximum context length as 64K tokens during
training, and allowing up to 128K tokens and 100 turns during inference.
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Figure 5: Comparing the quality of the raw Base, the Agentless mid-trained (MT), the Agentless
mid-trained with reasoning-intensive cold-start (SFT), and the Kimi-Dev model after RL as the prior
for SWE-Agent adaptation. The tokens of the SWE-Agent SFT trajectories are swept over different
scales, and the SWE-Agent performances are reported up to pass@3 on SWE-bench Verified.

As shown in Table 2, without collecting more trajectory data over realistic environments, or con-
ducting additional multi-turn agentic RL, our finetuned model achieves a pass@1 score of 48.6%
on SWE-bench Verified under the agentic framework setup, without additional test-time scaling.
Using the same SFT data, our finetuned Kimi-Dev model outperforms the SWE-agent-LM (Yang
et al., 2025c), with the performance comparable to that of Claude 3.5 Sonnet (49% by the 241022
version). The pass@10 of our SWE-Agent adapted model is 74.0% and surpasses the pass@30 of
our model under Agentless (73.8%), proving the higher potential for the SWE-Agent framework.

4.2 SKILL TRANSFER AND GENERALIZATION

The results shown in Section 4.1 demonstrate that Kimi-Dev, a model with extensive Agentless
training, could be adapted to end-to-end SWE-Agents with lightweight supervised finetuning. As
the Agentless training recipe consists of mid-training, cold-start (SFT) and RL, we explore the con-
tribution of each part in the recipe to the SWE-Agent capability after adaptation.

To figure this out, we perform SWE-Agent SFT on the original Qwen2.5-72B (Base), the mid-
trained model (MT), the model then activated with Agentless-formatted long CoT data (SFT), and
the (Kimi-Dev) model after finishing RL training (RL). As we are treating the four models as the
prior for SWE-Agents1, and a good prior always demonstrates the ability of fast adaptation with a
few shots (Finn et al., 2017; Brown et al., 2020), we also sweep the amount of SWE-Agent SFT data
to measure the efficiency of each prior in SWE-Agent adaptation.

Specifically, we randomly shuffle the 5,016 SWE-Agent trajectories and construct nested subsets
of sizes 100, 200, 500, 1,000, and 2,000, where each smaller subset is contained within the larger
ones. In addition, we prepend two extreme baselines: (i) zero-shot, where the prior model is directly
evaluated under the SWE-Agent framework without finetuning, and (ii) one-step gradient descent,
where the model is updated with a single gradient step using the 100-trajectory subset. This yields a
range of SFT token budgets spanning {0, 221, 223, 224, 1.1× 225, 1.1× 226, 1.1× 227, 1.5× 228}.
After these lightweight SFT experiments, we evaluate performance in terms of pass@{1,2,3} under
the SWE-Agent framework, with evaluations for pass@1 conducted at temperature 0, and those for
pass@2 and pass@3 at temperature 1.0.

Figure 5 presents the SWE-Agent performances of each prior (Base, MT, SFT, RL) after being
fine-tuned with different amounts of agentic trajectories. We have the following observations:

1. The RL prior is outperformed by all the other models in nearly all the SWE-Agent SFT
settings. This demonstrates that the Agentless training recipe indeed strengthens the prior
in terms of SWE-Agent adaptation. For example, To achieve the top pass@1 performance

1We slightly abuse the term “prior” to refer to a model to be finetuned with SWE-Agent trajectories in the
following analysis.
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Figure 6: Left: Performance of the four priors under turn limits after SWE-Agent adaptation. Right:
The characterization of the BugFixer and the reflection skills for each prior by counting the resolved
cases of the 3 runs at Stage-3 cutoff moment, and comparing those with the final success cases.

of the Base prior, the RL prior needs only 223 SWE-Agent SFT tokens, whereas the Base
prior consumes 1.5× 228 tokens.

2. The MT prior is lagged behind the SFT and the RL ones in extremely data-scarce settings
(zero-shot (0) and one-step gradient descent (221) ), but quickly becomes on par with them
after 200 trajectories (224) are available for finetuning. This indicates that adaptation effi-
ciency remains comparable after the prior is strengthened through Agentless mid-training.

3. The performance of the SFT prior is mostly similar to the RL one except for two cases: (i)
The SFT prior outperforms the RL one under the zero-shot setting. This is reasonable, as
the RL prior might overfit to the Agentless input-output format, while the SFT prior suffers
less from this. (ii) The SFT prior exhibits a significant degradation with 200 SWE-Agent
trajectories (224). A potential reason could be that the 200 trajectories collapse onto a single
data mode, leading the SFT prior to overfit through memorization (Chu et al., 2025); the
RL prior instead embeds stronger transferable skills and thus generalizes better.

From long CoT to extended multi-turn interactions. We hypothesize that reflective behav-
iors cultivated through long chain-of-thought reasoning may transfer to settings requiring extended
multi-turn interactions. To examine this, we evaluate the four priors (Base, MT, SFT, and RL) by
finetuning on the 5,016 trajectories and test on SWE-bench Verified, under varying turn limits with
pass@3 as the metric (Figure 6, left). The distinct interaction-length profiles show supportive evi-
dence: the RL prior, after finetuning, continues to make progress beyond 70 turns, while the SFT,
mid-trained, and raw models show diminishing returns around 70, 60, and 50 turns, respectively.

We further evaluate the efficacy of the Agentless skill priors (BugFixer and reflection) in the SWE-
Agent adapted model. For BugFixer, given that the SWE-Agent may autonomously reflect between
the five stages, we examine the moment in each trajectory when the bug fix of the third stage is
initially completed, and the test rerun of the fourth stage has not yet been entered. Heuristically,
when the SWE-Agent just completes the third stage, it has not yet obtained the execution feedback
from the fourth stage, and thus has not further reflected based on the execution information or refined
the bug fix. We therefore calculate the success rate of direct submission at this cutoff moment,
which reflects the capability of the BugFixer skill. Regarding reflection, we further compare the
performance at the cutoff point with the performance after full completion for each problem. The
increment in the number of successful problems is used to reflect the capability of the reflection skill.
We use Kimi-K2 to annotate the SWE-Agent stage each turn lies in along each trajectory. Figure 6
demonstrates that both skills are strengthened in the RL prior, leading to superior performance.

5 CONCLUSION AND FUTURE WORK

In this work, we reframed Agentless and agentic paradigms for automated software engineering as
complementary rather than competing. By introducing Kimi-Dev, we demonstrated that structured
Agentless training can induce transferable skill priors, including bug localization, code repair, and
self-reflection. As a result, Kimi-Dev not only achieves SoTA results on SWE-bench Verified among
the workflow-based approaches, but enables efficient SWE-Agent adaptation as well. These findings
establish a novel path toward building more generalizable coding agents through staged training.
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ETHICS AND REPRODUCIBILITY STATEMENTS

This work obeys the Code of Ethics required by the ICLR conference. The study does not involve
human subjects or animal experimentation. The personally identifiable information from raw data
is excluded for privacy consideration (see the mid-training data recipe detailed in Appendix A).

For all of the experiments, we have covered the detailed setups in the appendices: mid-training for
Agentless in Appendix A, details of the used dockers in Appendix B, Agentless RL in Appendix C,
agent infrastructure in Appendix D, and case studies in Appendix F.
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APPENDIX

A DETAILS OF MID-TRAINING

We curate a mid-training data recipe with a focus on enhancing SWE capabilities. Central to this
effort is the collection of pull request (PR) data from GitHub, which provides extensive coverage
of real-world bug fixes, feature requests, and code enhancements. To ensure data quality, we apply
two filters: (i) we only retain repositories that have accumulated at least five GitHub stars, thereby
excluding sparsely maintained projects with limited community engagement; and (ii) we remove any
repositories overlapping with the SWE-bench benchmark (Jimenez et al., 2023) to prevent potential
data leakage. For each candidate repository, we query the GitHub API for all PRs with the state
MERGED, while discarding those abandoned, superseded, or left under review. To preserve more
context information, we also snapshot the entire codebase at the base commit before the first code
change in the PR.

After data crawling, we incorporate two complementary forms for the natural code change data:
(i) natural diff patches and (ii) PR commit packs. A natural diff patch consolidates all commits
in a PR into the final code difference, typically expressed as SEARCH–REPLACE blocks. This
format aligns with the Agentless paradigm, in which the model must directly output the final patch.
In contrast, a commit pack captures the sequence of human-authored commits within a PR, where
each commit message (textual reasoning) is paired with the corresponding code modification (ac-
tion). This structure closely parallels the SWE-Agent setting, where intermediate reasoning steps
are interleaved with actions. However, the distinction of the utilities for the two types of data is
not absolute: commit messages in a PR commit pack can still inform the model’s knowledge and
indirectly strengthen its reasoning ability in the Agentless setting.

Natural diff patches. The natural diff patches used in the mid-training data recipe are processed
with the following rules:

• Incorporate the agentless prompt template (see Prompts 1,2,3,4; These four prompt tem-
plates are also used in the later stages, including cold-start, RL, and test-time self-play),
and apply a loss mask to the prompt part. For the localization prompt, the response is set
as the files modified in the ground-truth diff patch.

• If a related issue to the PR exists, use its content of the related issue; otherwise, use the PR
title as the surrogate of the issue content.

• If a related issue to the PR exists, prepend the issue discussion at the beginning of the
output in the code edit response. We aim to strengthen the model’s capability of code edit
reasoning by leveraging the discussion contents.

• Discard PRs that include modifications to files other than {.py, .md, .rst}.

• For PRs containing {.md, .rst} file modifications, retain only the Python diffs and rewrite
them into SEARCH–REPLACE blocks.

• Remove PRs involving file additions or deletions.

• For the code edits with only line insertions or deletions, preserve the original Git diff hunks
as the SEARCH content in the SEARCH–REPLACE blocks.

• Ensure that no more than three Python files are modified per PR.

• Apply a filtering script to exclude PRs with non-{.py, .md, .rst} modifications, or PRs
modifying more than three Python files.

• Further exclude PRs containing more than five SEARCH–REPLACE blocks.

A total of ∼50B tokens for natural diff patches are obtained after applying these filtering rules.

1 Please look through the following GitHub problem description and
Repository structure and provide a list of files that one would need
to edit to fix the problem.

2

3 ### GitHub Problem Description ###
4 {related issue / PR title content}
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5

6 ###
7

8 ### Repository Structure ###
9 {file structure induced by the repo snapshot}

10

11

12 ###
13

14 Please only provide the full path and return at most 5 files.
15 The returned files should be separated by new lines ordered by most to

least important and wrapped with ‘‘‘
16 For example:
17 ‘‘‘
18 file1.py
19 file2.py
20 ‘‘‘

Listing 1: Agentless prompt template: Localization for BugFixer.

21 Please look through the following GitHub problem description and
Repository structure and provide a list of test files that should be
run after applying the patch to fix the issue.

22

23 ### GitHub Problem Description ###
24 {related issue / PR title content}
25

26 ###
27

28 ### Repository Structure ###
29 {file structure induced by the repo snapshot}
30

31

32 ###
33

34 Please only provide the full path and return at most 5 files.
35 The returned files should be separated by new lines ordered by most to

least important and wrapped with ‘‘‘
36 For example:
37 ‘‘‘
38 file1.py
39 file2.py
40 ‘‘‘

Listing 2: Agentless prompt template: Localization for TestWriter.

41 We are currently solving the following issue within our repository.
Here is the issue text:

42 --- BEGIN ISSUE ---
43 {related issue / PR title content}
44 --- END ISSUE ---
45

46

47 Below are some code segments, each from a relevant file. One or more of
these files may contain bugs.

48

49 --- BEGIN FILE ---
50 ‘‘‘
51 ### {filename1}
52 {content of filename1}
53

54 ### {filename2}
55 {content of filename2}
56 {...}
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57

58 ‘‘‘
59 --- END FILE ---
60

61 Please first localize the bug based on the issue statement, and then
generate *SEARCH/REPLACE* edits to fix the issue.

62

63 Every *SEARCH/REPLACE* edit must use this format:
64 1. The file path
65 2. The start of search block: <<<<<<< SEARCH
66 3. A contiguous chunk of lines to search for in the existing source

code
67 4. The dividing line: =======
68 5. The lines to replace into the source code
69 6. The end of the replace block: >>>>>>> REPLACE
70

71 Here is an example:
72

73 ‘‘‘python
74 ### mathweb/flask/app.py
75 <<<<<<< SEARCH
76 from flask import Flask
77 =======
78 import math
79 from flask import Flask
80 >>>>>>> REPLACE
81 ‘‘‘
82

83 Please note that the *SEARCH/REPLACE* edit REQUIRES PROPER INDENTATION.
If you would like to add the line ’ print(x)’, you must

fully write that out, with all those spaces before the code!
84 Wrap the *SEARCH/REPLACE* edit in blocks ‘‘‘python...‘‘‘.

Listing 3: Agentless prompt template: Code edit for BugFixer.

85 We are currently solving the following issue within our repository.
Here is the issue text:

86 --- BEGIN ISSUE ---
87 {related issue / PR title content}
88 --- END ISSUE ---
89

90

91 Below are some code segments, each from a relevant test file. One or
more of these files may be added some new tests which can reproduce
the issue.

92

93 --- BEGIN FILE ---
94 ‘‘‘
95 ### {filename1}
96 {content of filename1}
97

98 ### {filename2}
99 {content of filename2}

100 {...}
101

102 ‘‘‘
103 --- END FILE ---
104

105 Please first localize some possible locations in those test files
within the repo, and then generate *SEARCH/REPLACE* edit updates to
the **test** files in the repo, so that the erroneous scenario
described in the problem is reproduced.

106

107 Every *SEARCH/REPLACE* edit must use this format:
108 1. The file path
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109 2. The start of search block: <<<<<<< SEARCH
110 3. A contiguous chunk of lines to search for in the existing source

code
111 4. The dividing line: =======
112 5. The lines to replace into the source code
113 6. The end of the replace block: >>>>>>> REPLACE
114

115 Here is an example:
116

117 ‘‘‘python
118 ### mathweb/flask/app.py
119 <<<<<<< SEARCH
120 from flask import Flask
121 =======
122 import math
123 from flask import Flask
124

125 def test__rules__std_L060_raised() -> None:
126 try:
127 sql = "SELECT IFNULL(NULL, 100),
128 NVL(NULL,100);"
129 result = lint(sql, rules=["L060"])
130 assert len(result) == 2
131 except:
132 print("Other issues")
133 return
134

135 try:
136 assert result[0]["description"] == "Use ’COALESCE’ instead of ’

IFNULL’."
137 assert result[1]["description"] == "Use ’COALESCE’ instead of ’

NVL’."
138 print("Issue resolved")
139 except AssertionError:
140 print("Issue reproduced")
141 return
142

143 return
144 >>>>>>> REPLACE
145 ‘‘‘
146

147 Please note that the *SEARCH/REPLACE* edit REQUIRES PROPER INDENTATION.
If you would like to add the line ’ print(x)’, you must

fully write that out, with all those spaces before the code!
148 Wrap the *SEARCH/REPLACE* edit in blocks ‘‘‘python...‘‘‘.

Listing 4: Agentless prompt template: Code edit for TestWriter.

PR commit packs. The PR commit packs used in the mid-training data recipe are processed with
the following rules:

• Discard PRs that include modifications to files other than {.py, .md, .rst}.

• For {.md, .rst} file modifications, retain the “diff –git” signature but remove the actual
content changes.

• Ensure that each PR modifies at most five Python files (with at least one required). PRs
exceeding this limit are discarded.

• Apply a filtering script to exclude PRs containing non-{.py, .md, .rst} file modifications or
those modifying more than five Python files.

• Filter out all of the developer signatures and GitHub IDs for ethics considerations.

A total of ∼20B tokens for PR commit packs are obtained after applying these filtering rules.
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In addition, we incorporate synthetic data to further enhance both the reasoning and agentic capa-
bilities of the model. A key observation is that the ground-truth reward for the localization stage
in the Agentless setting can be derived directly from the diff patch, since the set of files requiring
modification is explicitly indicated.

Synthetic reasoning data. To improve reasoning quality, we perform a lightweight SFT of the
Qwen-2.5-72B-Instruct model on 2,000 R1 trajectories. The resulting model is then used to generate
large-scale rollouts for the localization stage of both BugFixer and TestWriter. We retain only the
rollouts that achieve exactly correct file localizations. This procedure yields approximately ∼10B
tokens of reasoning-intensive data dedicated to Agentless localization in the mid-training recipe.

Synthetic agentic interactions. To strengthen agentic capabilities, we simulate agent–environment
interactions with a custom tool set designed to mimic file-system operations without execution. This
design is motivated by practical constraints: while repository snapshots from GitHub are available,
not all snapshots are equipped with an executable Docker environment. As a result, shell commands
are disabled. Instead, we introduce synthetic tools that allow the agent to view file contents and per-
form keyword-based search for localization, which effectively reproduces the first stage of Agentless
but in an agentic manner. The specification of this tool set is covered in the system prompt, which is
then used to elicit agentic interaction rollouts from the Qwen-2.5-72B-Instruct model. The complete
system prompt is provided in Prompt 5. We apply a loss mask only to the system prompt, and en-
able the model to simultaneously learn both actions and observations along the trajectory, inspired
by Yang et al. (2024b). This approach integrates both policy and world modeling into mid training.

149 Your job is to look through the given GitHub problem description and
Repository structure, and edit updates to the files in the repo to
resolve the problem.

150 The job is divided into two stages:
151 + In Stage 1, you should localize the files the files that you would

need to edit to fix the problem.
152 + In Stage 2, you should edit the updates to the repo.
153 Let’s begin from Stage 1 to localize the bugs:
154

155 In Stage 1, besides reading the provided Repository structure, you can
use the following skills for exploration. The skills are to be
called in an environment wrapped by <execute> and </execute>, listed
in the form of python functions as below:

156

157 open_file(path: str, is_all | None = False, line_number: int | None =
1, context_lines: int | None = 100) -> None:

158 Opens the file at the given path in the editor for exploration.
159 By default, only the first 100 lines of the file are displayed. To

open the entire file, set ‘is_all‘ to ‘True‘.
160 The ‘context_lines‘ parameter determines the maximum number of

lines to be displayed, with a cap of 100 lines. Use ‘scroll_up‘
and ‘scroll_down‘ to view more content up or down.

161 If a ‘line_number‘ is provided, the window will be moved to include
that line.

162 Note: When ‘is_all‘ is set to ‘True‘, the ‘line_number‘ and ‘
context_lines‘ parameters will not take effect, as the entire
file will be opened and displayed without any line-specific
focus or context limitation.

163 Args:
164 path: str: The path to the file to open. the full path of the

filename should be provided.
165 is_all: bool | None = False: If set to ‘True‘, the entire file will

be opened. Defaults to ‘False‘.
166 line_number: int | None = 1: The line number to move to. Defaults

to 1.
167 context_lines: int | None = 100: Only shows this number of lines in

the context window (usually from line 1), with line_number as
the center (if possible). Defaults to 100.

168

169 goto_line(line_number: int) -> None:
170 Moves the window to show the specified line number.
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171 Args:
172 line_number: int: The line number to move to.
173

174 goto_class_or_func(class_or_func_name: str) -> None:
175 Moves the window to show the specified class or function in the

current open file.
176 Args:
177 class_or_func_name: str: The name of the given class, function, or

method in a class to move to.
178

179 scroll_down() -> None:
180 Moves the window down by 100 lines.
181 Args:
182 None
183

184 scroll_up() -> None:
185 Moves the window up by 100 lines.
186 Args:
187 None
188

189 search_dir(search_term: str, dir_path: str | None) -> None:
190 Searches for search_term in all files in dir. If dir is not

provided, searches in the entire repository. Filename, fine-
grained line number, and the relative class or function it is
located in (if applied) will be shown for each found position.

191 Args:
192 search_term: str: The term to search for.
193 dir_path: str: The path to the directory to search. Should be full

path filename.
194

195 search_file(search_term: str, file_path: str | None = None) -> None:
196 Searches for search_term in file. If file is not provided, searches

in the current open file. Filename, fine-grained line number,
and the relative class or function it is located in (if applied)
will be shown for each found position.

197 Args:
198 search_term: str: The term to search for.
199 file_path: str | None: The path to the file to search. Should be

full path filename if provided.
200

201 find_file(file_name: str, dir_path: str | None) -> None:
202 Finds all files with the given name in the specified directory. If

dir is not provided, find in the entire repository.
203 Args:
204 file_name: str: The name of the file to find.
205 dir_path: str: The path to the directory to search.
206

207 str_replace(path: str, old_str, new_str)
208 old_str=[the old content to be replaced]
209 new_str=[the new content after replacement]
210 -> None:
211 Replace the old content (old_str) in the file at the given path

with the new content (new_str). This is the skill that you will
be using to edit the updates.

212 Args:
213 path: str: The path to the file to be updated. The full path of the

filename should be provided.
214 old_str: str: The old content to be replaced. Note that this

argument should be written in a new line starting with "old_str
=", and the string content should not be quoted.

215 new_str: str: The new content after replacement. Note that this
argument should be written in a new line starting with "new_str
=", and the string content should not be quoted.

216

217 Example:
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218 Assuming a call is shown as follows:
219 ‘‘‘
220 str_replace("filename.py", old_str, new_str)
221 old_str= a
222

223 new_str= b
224 c
225 ‘‘‘
226 Then it will function as replacing the ’ a\n’ string with the ’

b\nc ’ string in the ‘filename.py‘ file.
227

228 insert(path: str, insert_line: int, new_str)
229 new_str=[the new content to be inserted]
230 -> None:
231 Insert the new content (new_str) in the file at the given path.

When you want to add an entirely new class/function to the file,
it would be better to use this method.

232 Args:
233 path: str: The path to the file to be updated. The full path of the

filename should be provided.
234 insert_line: int: The Line number below which the new content is to

be added. This Line number should be within the range of lines
of the file: [0, Lines_of_the_File]. Specifically, when
insert_line = 0, the added content starts from the top of the
file.

235 new_str: str: The new content to be inserted. Note that this
argument should be written in a new line starting with "new_str
=", and the string content should not be quoted.

236

237 Example:
238 Assuming a call is shown as follows:
239 ‘‘‘
240 insert("test_filename.py", 5, new_str)
241 new_str= def test_add():
242 assert add(1, 2) == 3
243 ‘‘‘
244 Then it will function as inserting the string ’ def test_add():\

n assert add(1, 2) == 3’ below the Line 5 of the ‘
test_filename.py‘ file.

245

246 stop() -> None:
247 Terminate the editing process.
248 Args:
249 None
250

251 NOTE:
252 Responses should be concise.
253 When exploring, you should attempt fewer things at a time: Include ONLY

ONE <execute> per response, and use a SINGLE skill listed above
within the <execute> environment. DO NOT use other python functions,
as the environment does not support them.

254 You should first reason in the verbal form, then use a skill with <
execute> and </execute>.

255 You should avoid apologies and thanks in the responses.
256

257

258 When you finish exploring and analyzing with the provided skills,
please return at most 3 files with the full path only. Each full
path should be placed in a single line, INSTEAD OF BROKEN WITH
MULTIPLE LINES.

259 The returned files should be separated by new lines ordered by most to
least important, wrapped with ‘‘‘ and NOTHING ELSE.

260 An example for a full output:
261 ‘‘‘
262 full_path_to_file1.py
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263 full_path_to_file2.py
264 ‘‘‘
265

266 Now Let’s start!
267

268 ### GitHub Problem Description ###
269

270 {issue content}
271

272 ### Repository Structure ###
273

274 {file structure}
275

276 ###

Listing 5: A non-execution set of tools empowering the simulation of agentic interaction trajectories.

After completing the initial localization stage, the agent is guided into the code-editing phase
through a follow-up instruction: “Now let’s move on to Stage 2 and edit the updates. Remem-
ber, you can still decide at any point whether a file actually requires modification.” We retain partial
rollouts from Stage 1, provided that the localization results include at least one correct file.

In Stage 2, we first simulate the agent’s interaction by allowing it to open incorrectly localized files,
and we artificially inject agentic reasoning patterns such as “I realize that I do not need to modify
this file” after inspecting the file content. This procedure is designed to strengthen the self-reflection
ability of the agent by exposing it to false-positive contexts regarding the issue to be solved.

Subsequently, we transcribe the ground-truth PR commit pack into trajectory form: each commit
message is treated as the agent’s reasoning step, and each code update is represented as the cor-
responding action, expressed through the “str replace” or “insert” tools. These interactions are
appended to the trajectory, followed by a terminating “stop” call. Due to storage constraints on
repository snapshots, this trajectory simulation is applied to only a subset of PRs. Overall, this pro-
cess contributes approximately ∼10B tokens of agentic interaction data to the mid-training recipe.
Future directions for scaling this component in the data recipe include leveraging the idea of envi-
ronment scaling (Yang et al., 2025c).

Training. We perform mid-training using a standard next token prediction approach, initialized
from the Qwen2.5-72B-Base (Qwen et al., 2024) model. We upsample the synthetic part of the data
by a factor of 4 during mid-training, inspired by the practice in Grattafiori et al. (2024); Qwen et al.
(2024); Gu et al. (2025). A global batch size of 256 with a maximum sequence length of 32K tokens
is used, optimizing for long-context capabilities necessary for real-world software engineering tasks.
The learning rate is set to 2e-5, with a cosine decay schedule and a minimum learning rate of 2e-6.
The warm-up phase covers over approximately 3 billion tokens, followed by learning rate decay
until approximately 150 billion tokens are processed. The training was conducted on 256 NVIDIA
H100 GPUs and lasted for 213 hours.

B DOCKER ENVIRONMENTS

Table 3: The sources of the docker environments used in the development of Kimi-Dev.
Dataset Name Dataset Link Number of Dockers
SWE-Gym (Pan et al.
(2024))

https://huggingface.co/
datasets/SWE-Gym/
SWE-Gym/

2,356

SWE-bench-extra
(Badertdinov et al. (2024a))

https://huggingface.co/
datasets/nebius/
SWE-bench-extra/

3,846

R2E-Gym-Lite (Jain et al.
(2025))

https://huggingface.co/
datasets/R2E-Gym/
R2E-Gym-Lite

3,671
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Docker environment construction. To validate non-ground-truth patches generated by model roll-
outs and expand our dataset, we required executable Docker environments. We combined publicly
available datasets with custom-configured Docker environments (see Table. 3). Among them, SWE-
Gym and R2E-Gym-Lite open-source their dockers that we can directly use. For datasets lacking
Docker support (SWE-Bench-Extra), we implemented an automated configuration method:

1. Initialize a Docker environment with fixed dependencies.
2. Select Python version based on commit year.
3. Install dependencies via requirements.txt and “pip install -e .”.
4. Resolve ModuleNotFound errors during test execution.
5. Validate success if a FAIL TO PASS test transitions from failing (without gt patch) to

passing (with gt patch).

Out of 6.38k SWE-bench-extra instances, 3,846 environments are successfully constructed and sub-
sequently used for cold-start and RL training.

C MORE DETAILS OF RL TRAINING

C.1 RL TRAINING OBJECTIVE

For the RL algorithm, we adopt the policy optimization method proposed by Kimi k1.5 (Team et al.,
2025), which has shown promising results on reasoning tasks in both math and code. Unlike GRPO
(Shao et al., 2024), which eliminates the critic by using average rewards for advantage estimation,
Kimi k1.5 (Team et al., 2025) adopts a simpler policy gradient approach. Specifically, we optimize
the policy πθ using the following objective:

Jθ = Eq∼P (Q),{oi}G
i=1∼πθ(·|q)

{
G∑
i=1

[(
Ri(q, oi)−mean({Rj}Gj=1)− τ log

πθ(oi|q)
πθref (oi|q)

)2
]
,

}
(2)

where q is a prompt sampled from the prompt data distribution P (Q). {oi}Gi=1 are G responses
generated by the current policy πθ for prompt q. Ri(q, oi) is the reward for response oi. The
mean reward across the G responses is used as a baseline to center the reward (similar to advantage
estimation). The final term penalizes divergence from a reference policy πθref , with weight τ . This
formulation avoids the need for a critic or value model by using group-wise relative rewards, and
supports stable updates through KL regularization.

C.2 PROMPT SET SELECTION

Figure 7: Ablation of positive example
reinforcement during 72B Bugfixer RL.

In the main text, we introduce the adaptive prompt selec-
tion method for RL training. Specifically, we construct
an initial prompt set of 1,200 problems by selecting those
with pass@16 > 0 from SWE-Gym (Pan et al., 2024),
SWE-bench-extra (Badertdinov et al., 2025), and R2E-
gym (Jain et al., 2025). Then, every 100 training steps,
we expand the prompt set by adding 500 new problems.
These additional problems are randomly sampled from
the pool of problems for which the current model has
pass@16 = 0, thereby progressively increasing the dif-
ficulty.

C.3 RL EXPERIMENT ABLATION

Figure 8 shows the performance of the Qwen2.5-14B
model in RL experiments, where both the BugFixer and the TestWriter exhibit clear scaling law
behavior.

Furthermore, Figure 7 illustrates the effect of our proposed positive example reinforcement. We
incorporated this improvement in the later stage of training and found that the RL of BugFixer
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achieved better performance compared to not using this trick. The main reason is that positive
examples can reinforce the correct reasoning patterns, enabling the model to converge more quickly,
especially when its exploration ability diminishes in the later stages. It is noticed that a similar trick
was also applied in the development of the Seed1.5-thinking model (Seed et al., 2025).

(a) 14B BugFixer (b) 14B TestWriter

Figure 8: RL scaling experiments on Qwen2.5-14B model.

D AGENT INFRASTRUCTURE

We present a unified sandbox architecture designed for hybrid cloud cluster environments, lever-
aging Kubernetes orchestration to provide researchers with a flexible, secure, and highly scalable
code execution platform. The architecture is accessible through a Python SDK and implements an
ephemeral, use-and-destroy paradigm that ensures resource efficiency and security isolation. The
system demonstrates exceptional scalability, supporting over 10,000 concurrent sandbox instances
while maintaining performance stability. This infrastructure serves as a foundational platform for
diverse computational scenarios, including automated code evaluation and RL experiments.

The system employs a sidecar container pattern to efficiently orchestrate and manage a heteroge-
neous collection of over 25,000 docker images sourced from multiple datasets. This architectural
choice enables optimal resource utilization while maintaining isolation between different execution
environments. Additionally, we have developed a proprietary Software Engineering (SWE) image-
building pipeline that continuously expands the repository of supported images, thereby enhancing
the system’s adaptability to diverse computational workloads and research requirements.

E SKILL GENERALIZATION

In this section, we study whether the skills incentivized by Agentless training and SWE-Agent adap-
tation through SWE-Smith trajectories could transfer to other SWE tasks. We use SWE-bench-live
and SWE-bench Multilingual as our testbeds.

SWE-bench-live (Zhang et al., 2025) is a benchmark for real-world issue resolution, evaluating AI
systems on software engineering tasks. Using an automated curation pipeline, it is updated monthly
to ensure fresh tasks and rigorous, contamination-free evaluation. For our experiments, we selected
the default set of 300 tasks, with data collected between October 2024 and March 2025. Compared
to SWE-bench Verified, SWE-bench-live exhibits a higher degree of distributional shift.

SWE-bench Multilingual (Yang et al., 2025c) introduces 300 curated tasks from 42 GitHub repos-
itories across 9 programming languages, including Rust, Java, PHP, Ruby, JavaScript/TypeScript,
Go, and C/C++, covering domains such as web frameworks, data tools, core utilities, and libraries.
Compared to SWE-bench Verified, which focuses exclusively on Python, SWE-bench Multilingual
exhibits greater linguistic and domain diversity, posing additional challenges in cross-language gen-
eralization and transferability of software engineering capabilities.

Similar to previous experiments, we evaluated four model stages as the priors: the original Qwen2.5-
72B (Base), the mid-trained model (MT), the model activated with reasoning data through super-

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

vised finetuning (SFT), and the model after RL training (RL). We still use the open-source SWE-
smith trajectories to activate the agentic capabilities of each prior.

Figures 9 and 10 show the performance of the four priors on SWE-bench-Live and SWE-bench
Multilingual under varied amounts of agentic trajectories for adaptation (221 as one-step gradient
descent, 223, 1.1 × 227, and 1.5 × 228 as 100, 2,000, and 5,016 training trajectories). Each SWE-
Agent adaptation experiment is conducted throught lightweight supervised finetuning, the training
time of which ranges from several minutes to two hours at most.

Compared to the Base prior, those specifically enhanced with Agentless skills (SFT and RL) demon-
strate stronger task generalization, especially under the data-scarce settings. However, when more
SWE-Smith trajectories are used for adaptation, the performances of the Base and the MT priors
become closer to those of the SFT and the RL priors. This could be attributed to the gaps between
the different SWE tasks. The exploration for recipes that enable stronger out-of-distribution and
task-agnostic generalization is left for future work.

(a) #SFT = 221. (b) #SFT = 223. (c) #SFT = 1.1× 227. (d) #SFT = 1.5× 228.

Figure 9: Generalization analysis on SWE-bench-Live.

(a) #SFT = 221. (b) #SFT = 223. (c) #SFT = 1.1× 227. (d) #SFT = 1.5× 228.

Figure 10: Generalization analysis on SWE-bench Multilingual.

F CASE STUDY

F.1 BUGFIXER TRAJECTORIES

We provide a Bugfixer’s response trajectory during the code repair stage (see Listing 6).
From this, we can observe that the initial code given was return self[i, j - pos -
other.cols], but the model quickly realized its mistake and corrected it to return self[i,
j - other.cols]. Although some repetitive self-reflections followed, the increasing response
length indeed improved answer accuracy and robustness in our experiments.

277 ◁think▷
278 Okay, let’s tackle this problem. The user reported an issue where the

Matrix.col_insert() method isn’t working correctly. The example
given shows that after inserting a matrix V into M at position 3,
the resulting matrix has the inserted columns shifted incorrectly.
The expected result would have the inserted columns at positions 3
and 4, but the actual output shows them starting at position 3, but
the original matrix’s columns after the insert are shifted upwards
instead of remaining in their original positions.

279

280 First, I need to understand how col_insert works. Looking at the code
provided, especially in the MatrixShaping class in sympy/matrices/
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common.py, the _eval_col_insert method is responsible for inserting
columns. The current implementation shifts the existing columns to
the right by the number of columns inserted. However, the bug might
be in how the original matrix’s columns are being shifted.

281

282 Let me look at the existing code for _eval_col_insert:
283

284 def _eval_col_insert(self, pos, other):
285 cols = self.cols
286

287 def entry(i, j):
288 if j < pos:
289 return self[i, j]
290 elif pos <= j < pos + other.cols:
291 return other[i, j - pos]
292 return self[i, j - pos - other.cols]
293

294 return self._new(self.rows, self.cols + other.cols,
295 lambda i, j: entry(i, j))
296

297 Wait, the problem here is in the last case. When j is greater than or
equal to pos + other.cols, the code subtracts (pos + other.cols)
from j. But that’s incorrect because the original columns after the
inserted ones should start at j = pos + other.cols. So for the
original matrix’s columns that come after the inserted ones, their
new positions should be j + other.cols. But in the current code,
when j is in the original matrix’s columns (after the inserted ones)
, the code is subtracting (pos + other.cols), which would
incorrectly shift them.

298

299 Wait, let’s think again. The original code for the entry function:
300

301 if j < pos:
302 return self[i, j] # original columns before pos
303 elif pos <= j < pos + other.cols:
304 return other[i, j - pos] # inserted columns
305 return self[i, j - pos - other.cols] # original columns after the

inserted ones
306

307 Wait, no. Let’s say the original matrix has cols = 6. We insert 2
columns at pos=3. The new total cols is 6 + 2 = 8. The original
columns after pos 3 (columns 3,4,5) should now be at positions
5,6,7. But according to the code, when j is >=3 +2=5 (since pos +
other.cols =3+2=5), then the code returns self[i, j -5 -2] = self[i,
j -7]. Wait, that’s not right. For example, if j=5 (the new column
5), then j - pos - other.cols =5 -3 -2=0. So the original column 0
would be mapped to the new column 5. That’s definitely wrong.

308

309 Ah, here’s the mistake. The code is subtracting (pos + other.cols) from
j, but that’s incorrect. The original columns after the inserted
ones should be shifted to the right by other.cols. So, the correct
calculation should be j - other.cols. For example, original column 3
becomes 3 +2=5, original column 4 becomes 6, etc.

310

311 So the line in the code:
312

313 return self[i, j - pos - other.cols]
314

315 should be:
316

317 return self[i, j - other.cols]
318

319 Because the inserted columns have taken up ’other.cols’ positions
starting at ’pos’, so the original columns after ’pos’ are shifted
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by ’other.cols’ to the right. Therefore, to get the correct original
column index, we subtract ’other.cols’ from the current j.

320

321 So the fix is to change the subtraction from (pos + other.cols) to
other.cols. Let me check:

322

323 Original code:
324

325 return self[i, j - pos - other.cols]
326

327 Corrected code:
328

329 return self[i, j - other.cols]
330

331 Wait, no. Wait, the original columns after the inserted block (which
starts at pos and has other.cols columns) would start at j = pos +
other.cols. So for those j values, the original column index would
be j - (pos + other.cols). Wait, no. Let’s think with numbers.

332

333 Original matrix has 6 columns. Insert 2 columns at position 3. The new
matrix has 8 columns. The original columns 0,1,2 remain in positions
0,1,2. The inserted 2 columns are at positions 3 and 4. The

original columns 3,4,5 now become 5,6,7.
334

335 So for j in 5,6,7 (original columns 3,4,5), the mapping is:
336

337 5 $\rightarrow$ 3
338

339 6 $\rightarrow$ 4
340

341 7 $\rightarrow$ 5
342

343 So the formula should be original_column = j - inserted_columns. In
this case, inserted_columns is other.cols. So the code should
subtract other.cols from j when accessing the original matrix’s
columns after the inserted block.

344

345 Therefore, the line:
346

347 return self[i, j - pos - other.cols]
348

349 should be:
350

351 return self[i, j - other.cols]
352

353 Because pos is where the insertion starts, but the original columns
after the inserted block are shifted by other.cols. Let’s verify
with the example:

354

355 pos =3, other.cols=2. For j=5 (new column 5), original column index is
5 -2=3, which is correct. For j=6, 6-2=4; j=7, 7-2=5. That’s correct
.

356

357 So the error in the original code was subtracting (pos + other.cols)
instead of other.cols. The pos is the starting position of the
insertion, but after inserting other.cols columns, the original
columns after the inserted block are shifted by other.cols.
Therefore, the correct subtraction is other.cols.

358

359 Thus, the fix is to change the line in the _eval_col_insert method from
:

360

361 return self[i, j - pos - other.cols]
362

363 to:
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364

365 return self[i, j - other.cols]
366

367 Now, looking back at the code in the _eval_col_insert function:
368

369 The code for the else clause is:
370

371 return self[i, j - pos - other.cols]
372

373 Which is incorrect. Changing that to j - other.cols should fix the
problem.

374

375 So the SEARCH block would look for the lines:
376

377 def _eval_col_insert(self, pos, other):
378 cols = self.cols
379

380 def entry(i, j):
381 if j < pos:
382 return self[i, j]
383 elif pos <= j < pos + other.cols:
384 return other[i, j - pos]
385 return self[i, j - pos - other.cols]
386

387 return self._new(self.rows, self.cols + other.cols,
388 lambda i, j: entry(i, j))
389

390 And the REPLACE block would change the last part to:
391

392 elif pos <= j < pos + other.cols:
393 return other[i, j - pos]
394 return self[i, j - other.cols]
395

396 So the correction is in the return statement of the entry function. The
original code subtracted (pos + other.cols) from j, but it should

subtract other.cols instead.
397

398 Therefore, the correct SEARCH/REPLACE block would be:
399

400 ### sympy/matrices/common.py
401 <<<<<<< SEARCH
402 def _eval_col_insert(self, pos, other):
403 cols = self.cols
404

405 def entry(i, j):
406 if j < pos:
407 return self[i, j]
408 elif pos <= j < pos + other.cols:
409 return other[i, j - pos]
410 return self[i, j - pos - other.cols]
411

412 return self._new(self.rows, self.cols + other.cols,
413 lambda i, j: entry(i, j))
414 =======
415 def _eval_col_insert(self, pos, other):
416 def entry(i, j):
417 if j < pos:
418 return self[i, j]
419 elif pos <= j < pos + other.cols:
420 return other[i, j - pos]
421 return self[i, j - other.cols]
422

423 return self._new(self.rows, self.cols + other.cols,
424 lambda i, j: entry(i, j))
425 >>>>>>> REPLACE
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426

427 This change corrects the column shifting calculation for the original
matrix’s columns after the inserted block. Instead of subtracting (
pos + other.cols), we subtract other.cols, which properly shifts the
original columns to the right by the number of inserted columns.

428 ◁/think▷
429

430 ‘‘‘python
431 ### sympy/matrices/common.py
432 <<<<<<< SEARCH
433 def _eval_col_insert(self, pos, other):
434 cols = self.cols
435

436 def entry(i, j):
437 if j < pos:
438 return self[i, j]
439 elif pos <= j < pos + other.cols:
440 return other[i, j - pos]
441 return self[i, j - pos - other.cols]
442

443 return self._new(self.rows, self.cols + other.cols,
444 lambda i, j: entry(i, j))
445 =======
446 def _eval_col_insert(self, pos, other):
447 def entry(i, j):
448 if j < pos:
449 return self[i, j]
450 elif pos <= j < pos + other.cols:
451 return other[i, j - pos]
452 return self[i, j - other.cols]
453

454 return self._new(self.rows, self.cols + other.cols,
455 lambda i, j: entry(i, j))
456 >>>>>>> REPLACE
457 ‘‘‘

Listing 6: Reasoning trajectory example for BugFixer.

F.2 TESTWRITER FALSE POSITIVE CASES

During the RL training process, we observed that the Testwriter component exhibits some false
positives, which can result in tests that contain certain gaps. This might cause the test patches
generated by the model to be mistakenly considered as correct. Consequently, the performance
improvement of Testwriter does not accurately reflect the actual performance. In this section, we
provide two intuitive examples to illustrate this phenomenon, and leave further enhancement for
TestWriter as future work.

Listing 7 shows the ground-truth test patch for instance django django-16877, with Listing 8
showing the test patch generated by theTestWriter. A detailed comparison reveals that the model-
generated test cases are not comprehensive: Two locations should have been tested, but only one
was checked, and the effect of mark safe was not considered. In practice, this allowed the model-
predicted patch to pass the TestWriter reward check, but result in a false positive.

The second example instance is sympy sympy-13974, with Listings 9 and 10 showing the ground-
truth and model-generated test patches. In this case, the coverage of the generated test is also
insufficient. The generated test does not account for the need to satisfy the associativity prop-
erty, e.g., assert tensor product simp(TP(A, B)**x) == TP(A**x, B**x). As
a consequence, it fails to serve as a reliable judge for BugFixer.

1 diff --git a/tests/template_tests/filter_tests/test_escapeseq.py b/
tests/template_tests/filter_tests/test_escapeseq.py

2 new file mode 100644
3 --- /dev/null
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4 +++ b/tests/template_tests/filter_tests/test_escapeseq.py
5 @@ -0,0 +1,59 @@
6 +from django.test import SimpleTestCase
7 +from django.utils.safestring import mark_safe
8 +
9 +from ..utils import setup

10 +
11 +
12 +class EscapeseqTests(SimpleTestCase):
13 + """
14 + The "escapeseq" filter works the same whether autoescape is on or

off,
15 + and has no effect on strings already marked as safe.
16 + """
17 +
18 + @setup(
19 + {
20 + "escapeseq_basic": (
21 + ’{{ a|escapeseq|join:", " }} -- {{ b|escapeseq|join:",

" }}’
22 + ),
23 + }
24 + )
25 + def test_basic(self):
26 + output = self.engine.render_to_string(
27 + "escapeseq_basic",
28 + {"a": ["x&y", "<p>"], "b": [mark_safe("x&y"), mark_safe("<

p>")]},
29 + )
30 + self.assertEqual(output, "x&amp;y, &lt;p&gt; -- x&y, <p>")
31 +
32 + @setup(
33 + {
34 + "escapeseq_autoescape_off": (
35 + ’{% autoescape off %}{{ a|escapeseq|join:", " }}’
36 + " -- "
37 + ’{{ b|escapeseq|join:", "}}{% endautoescape %}’
38 + )
39 + }
40 + )
41 + def test_autoescape_off(self):
42 + output = self.engine.render_to_string(
43 + "escapeseq_autoescape_off",
44 + {"a": ["x&y", "<p>"], "b": [mark_safe("x&y"), mark_safe("<

p>")]},
45 + )
46 + self.assertEqual(output, "x&amp;y, &lt;p&gt; -- x&y, <p>")
47 +
48 + @setup({"escapeseq_join": ’{{ a|escapeseq|join:"<br/>" }}’})
49 + def test_chain_join(self):
50 + output = self.engine.render_to_string("escapeseq_join", {"a":

["x&y", "<p>"]})
51 + self.assertEqual(output, "x&amp;y<br/>&lt;p&gt;")
52 +
53 + @setup(
54 + {
55 + "escapeseq_join_autoescape_off": (
56 + ’{% autoescape off %}{{ a|escapeseq|join:"<br/>" }}{%

endautoescape %}’
57 + ),
58 + }
59 + )
60 + def test_chain_join_autoescape_off(self):
61 + output = self.engine.render_to_string(
62 + "escapeseq_join_autoescape_off", {"a": ["x&y", "<p>"]}
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63 + )
64 + self.assertEqual(output, "x&amp;y<br/>&lt;p&gt;")

Listing 7: GT test patch of django django-16877.

1 diff --git a/tests/template_tests/filter_tests/test_safeseq.py b/tests/
template_tests/filter_tests/test_safeseq.py

2 --- a/tests/template_tests/filter_tests/test_safeseq.py
3 +++ b/tests/template_tests/filter_tests/test_safeseq.py
4 @@ -20,3 +20,20 @@
5 def test_safeseq02(self):
6 output = self.engine.render_to_string("safeseq02", {"a": ["&",

"<"]})
7 self.assertEqual(output, "&, < -- &, <")
8 +
9 + # New tests for escapeseq

10 + @setup({"escapeseq01": ’{{ a|escapeseq|join:", " }}’})
11 + def test_escapeseq01(self):
12 + output = self.engine.render_to_string("escapeseq01", {"a":

["&", "<"]})
13 + self.assertEqual(output, "&amp;, &lt;")
14 +
15 + @setup(
16 + {
17 + "escapeseq02": (
18 + ’{% autoescape off %}{{ a|escapeseq|join:", " }}{%

endautoescape %}’
19 + )
20 + }
21 + )
22 + def test_escapeseq02(self):
23 + output = self.engine.render_to_string("escapeseq02", {"a":

["&", "<"]})
24 + self.assertEqual(output, "&amp;, &lt;")

Listing 8: Model predicted test patch of django django-16877.

1 diff --git a/sympy/physics/quantum/tests/test_tensorproduct.py b/sympy/
physics/quantum/tests/test_tensorproduct.py

2 --- a/sympy/physics/quantum/tests/test_tensorproduct.py
3 +++ b/sympy/physics/quantum/tests/test_tensorproduct.py
4 @@ -10,7 +10,7 @@
5 from sympy.physics.quantum.density import Density
6 from sympy.core.trace import Tr
7

8 -A, B, C = symbols(’A,B,C’, commutative=False)
9 +A, B, C, D = symbols(’A,B,C,D’, commutative=False)

10 x = symbols(’x’)
11

12 mat1 = Matrix([[1, 2*I], [1 + I, 3]])
13 @@ -47,6 +47,11 @@ def test_tensor_product_commutator():
14

15 def test_tensor_product_simp():
16 assert tensor_product_simp(TP(A, B)*TP(B, C)) == TP(A*B, B*C)
17 + # tests for Pow-expressions
18 + assert tensor_product_simp(TP(A, B)**x) == TP(A**x, B**x)
19 + assert tensor_product_simp(x*TP(A, B)**2) == x*TP(A**2,B**2)
20 + assert tensor_product_simp(x*(TP(A, B)**2)*TP(C,D)) == x*TP(A**2*C

,B**2*D)
21 + assert tensor_product_simp(TP(A,B)-TP(C,D)**x) == TP(A,B)-TP(C**x,

D**x)
22

23

24 def test_issue_5923():
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Listing 9: GT test patch for sympy sympy-13974.

1 diff --git a/sympy/physics/quantum/tests/test_tensorproduct.py b/sympy/
physics/quantum/tests/test_tensorproduct.py

2 --- a/sympy/physics/quantum/tests/test_tensorproduct.py
3 +++ b/sympy/physics/quantum/tests/test_tensorproduct.py
4 @@ -47,6 +47,27 @@
5

6 def test_tensor_product_simp():
7 assert tensor_product_simp(TP(A, B)*TP(B, C)) == TP(A*B, B*C)
8 +
9 + # Test tensor product powers

10 + a = symbols(’a’, commutative=False)
11 + t1 = TP(1, 1) * TP(1, 1)
12 + t1_simp = tensor_product_simp(t1)
13 + assert t1_simp == TP(1, 1), f"Expected 1x1, got {t1_simp}"
14 +
15 + # Test with Pauli matrices
16 + from sympy.physics.paulialgebra import Pauli
17 + t2 = TP(1, Pauli(3)) * TP(1, Pauli(3))
18 + t2_simp = tensor_product_simp(t2)
19 + assert t2_simp == TP(1, 1), f"Expected 1x1, got {t2_simp}"
20 +
21 + # Test substitution cases from issue
22 + expr1 = TP(1, 1) * TP(1, a)
23 + result1 = expr1.subs(a, 1)
24 + assert tensor_product_simp(result1) == TP(1, 1), f"Substitution 1

failed: {result1}"
25 +
26 + expr2 = TP(1, Pauli(3)) * TP(1, a)
27 + result2 = expr2.subs(a, Pauli(3))
28 + assert tensor_product_simp(result2) == TP(1, 1), f"Substitution 2

failed: {result2}"
29

30

31 def test_issue_5923():

Listing 10: Model predicted test patch of sympy sympy-13974.

G EMERGENT PARALLEL SCALING

Figure 11: Emergent parallel scaling re-
sults on SWE-bench Verified.

Compared to the self-play method that leverages execu-
tion during test time, parallel scaling (Chen et al., 2025b;
Pan et al., 2025) is a recently-introduced test-time scal-
ing method that aggregates multiple independent rollouts
for additional improvement. While previous works in-
centivize the ability of parallel scaling through training,
or train a separate reward model (Pan et al., 2024; Jain
et al., 2025) for patch selection, we observe that the par-
allel scaling effect emerges in our model without any spe-
cific training. Specifically, patch candidates from parallel
rollouts of BugFixer are used to prompt the model to sum-
marize their differences and compose a new bugfix patch.
Listing 11 is the prompt template of parallel scaling. In
the emplate, promblem statement is the GitHub is-
sue, and trajs content represents the content of multiple patch candidates.

458 We are currently solving the following issue within our repository.
Here is the issue text:

459 --- BEGIN ISSUE ---
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460 {problem_statement}
461 --- END ISSUE ---
462

463 Below are some thinking trajectories, each from llm reasoning model.
Only one trajetory is right.

464 --- BEGIN FILE ---
465 ‘‘‘
466 {trajs_content}
467 ‘‘‘
468 --- END FILE ---
469

470 Please first summary and analyze the key differences between the
trajectories, and then generate *SEARCH/REPLACE* edits to fix the
issue.

471

472 Every *SEARCH/REPLACE* edit must use this format:
473 1. The file path
474 2. The start of search block: <<<<<<< SEARCH
475 3. A contiguous chunk of lines to search for in the existing source

code
476 4. The dividing line: =======
477 5. The lines to replace into the source code
478 6. The end of the replace block: >>>>>>> REPLACE
479

480 Here is an example:
481

482 ‘‘‘python
483 ### mathweb/flask/app.py
484 <<<<<<< SEARCH
485 from flask import Flask
486 =======
487 import math
488 from flask import Flask
489 >>>>>>> REPLACE
490 ‘‘‘
491

492 Please note that the *SEARCH/REPLACE* edit REQUIRES PROPER INDENTATION.
If you would like to add the line ’ print(x)’, you must

fully write that out, with all those spaces before the code!
493 Wrap the *SEARCH/REPLACE* edit in blocks ‘‘‘python...‘‘‘.
494 The summary of the key differences between the trajectories should be

in the thinking part.

Listing 11: The prompt template for parallel scaling.

The results in Figure 11 show that the performance of the parallel aggregation improves as the
number of patch candidates in the prompt increases. The advantage of this scaling paradigm over
majority voting lies in its ability to leverage the model’s own capacity to analyze multiple candidate
patches, thereby surpassing the simplistic approach of weighting answers merely by their frequency
of occurrence: Listing 12 covers a full example with 14 different input patch candidates, and how the
model successfully recognizes the correct one and generates a novel patch with additional reasoning.

495 Prompt:
496 We are currently solving the following issue within our repository.

Here is the issue text:
497 --- BEGIN ISSUE ---
498 Data <@filename isn’t relative to the YAML file
499 The [docs say](https://gabbi.readthedocs.io/en/latest/format.html#data)

:
500

501 > If the value is a string that begins with <@ then the rest of the
string is treated as the name of a file to be loaded from the same
directory as the YAML file.

502
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503 But I haven’t found it works like this unless I cd into the directory
containing the yaml file.

504

505 ‘_load_data_file‘ says:
506 ‘‘‘python
507 path = os.path.join(self.test_directory, os.path.basename(filename))
508 ‘‘‘
509 this does a few things:
510 - makes the path begin with ‘self.test_directory‘ (defaults to ‘.‘, the

current working directory)
511 - disguards any folders in the <@ ‘filename‘ path
512 - appends ‘filename‘
513

514 This means, if I’m in ‘/‘, and I have a test that says ‘data: <@cake.
jpg‘, I cannot run my tests as advised in the docs:

515 ‘gabbi-run -- /my/test.yaml /my/other.yaml‘
516

517 ‘FileNotFoundError: [Errno 2] No such file or directory: ’./cake.jpg’‘
518

519 So in our test running script, we have to start with ‘cd tests/‘.
520

521 My preference, would be to make the path relative to the location of
the yaml file. That way, I can run my tests from whatever directory.

522

523 Obviously this isn’t possible when redirecting with ‘<‘ as the filename
is never seen by gabbi. So I’m happy is discuss other ideas.

524

525 ---
526

527 Furthermore I can’t keep my test data in a child directory, unless I cd
into that directory like:

528 ‘‘‘shell
529 cd yaml_tests/test_data
530 gabbi-run -- ../test_things.yaml
531 ‘‘‘
532

533 So for that reason, I’d like to allow directories like ‘<@test_data/
filename.txt‘ to be included in the path.

534

535 ---
536

537 Happy to write the patch, if we come up with an approach here.
538 --- END ISSUE ---
539

540

541 Below are some thinking trajectories, each from llm reasoning model.
542

543 --- BEGIN FILE ---
544 ‘‘‘
545 Answer 1:
546 ‘‘‘python
547 ### gabbi/runner.py
548 <<<<<<< SEARCH
549 import argparse
550 from importlib import import_module
551 import sys
552 import unittest
553 =======
554 import argparse
555 from importlib import import_module
556 import os
557 import sys
558 import unittest
559 >>>>>>> REPLACE
560 ‘‘‘
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561 ‘‘‘python
562 ### gabbi/runner.py
563 <<<<<<< SEARCH
564 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
565 failfast=False):
566 """Run the tests from the YAML in handle."""
567 data = utils.load_yaml(handle)
568 if force_ssl:
569 if ’defaults’ in data:
570 data[’defaults’][’ssl’] = True
571 else:
572 data[’defaults’] = {’ssl’: True}
573

574 loader = unittest.defaultTestLoader
575 test_suite = suitemaker.test_suite_from_dict(
576 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
577 handlers=handler_objects)
578

579 result = ConciseTestRunner(
580 verbosity=2, failfast=failfast).run(test_suite)
581 return result.wasSuccessful()
582 =======
583 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
584 failfast=False, test_directory=’.’):
585 """Run the tests from the YAML in handle."""
586 data = utils.load_yaml(handle)
587 if force_ssl:
588 if ’defaults’ in data:
589 data[’defaults’][’ssl’] = True
590 else:
591 data[’defaults’] = {’ssl’: True}
592

593 loader = unittest.defaultTestLoader
594 test_suite = suitemaker.test_suite_from_dict(
595 loader, ’input’, data, test_directory, host, port, None, None,
596 prefix=prefix, handlers=handler_objects)
597

598 result = ConciseTestRunner(
599 verbosity=2, failfast=failfast).run(test_suite)
600 return result.wasSuccessful()
601 >>>>>>> REPLACE
602 ‘‘‘
603 ‘‘‘python
604 ### gabbi/runner.py
605 <<<<<<< SEARCH
606 else:
607 for input_file in input_files:
608 with open(input_file, ’r’) as fh:
609 success = run_suite(fh, handler_objects, host, port,
610 prefix, force_ssl, failfast)
611 =======
612 else:
613 for input_file in input_files:
614 test_directory = os.path.dirname(input_file) or ’.’
615 with open(input_file, ’r’) as fh:
616 success = run_suite(fh, handler_objects, host, port,
617 prefix, force_ssl, failfast,
618 test_directory=test_directory)
619 >>>>>>> REPLACE
620 ‘‘‘
621

622 Answer 2:
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623 ‘‘‘python
624 ### gabbi/runner.py
625 <<<<<<< SEARCH
626 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
627 failfast=False):
628 =======
629 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
630 failfast=False, test_directory=’.’):
631 >>>>>>> REPLACE
632 ‘‘‘
633 ‘‘‘python
634 ### gabbi/runner.py
635 <<<<<<< SEARCH
636 test_suite = suitemaker.test_suite_from_dict(
637 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
638 handlers=handler_objects)
639 =======
640 test_suite = suitemaker.test_suite_from_dict(
641 loader, ’input’, data, test_directory, host, port, None, None,

prefix=prefix,
642 handlers=handler_objects)
643 >>>>>>> REPLACE
644 ‘‘‘
645 ‘‘‘python
646 ### gabbi/runner.py
647 <<<<<<< SEARCH
648 success = run_suite(fh, handler_objects, host, port,
649 prefix, force_ssl, failfast)
650 =======
651 test_directory = os.path.dirname(input_file) or ’.’
652 success = run_suite(fh, handler_objects, host, port,
653 prefix, force_ssl, failfast,

test_directory=test_directory)
654 >>>>>>> REPLACE
655 ‘‘‘
656

657 Answer 3:
658 ‘‘‘python
659 ### gabbi/runner.py
660 <<<<<<< SEARCH
661 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
662 failfast=False):
663 """Run the tests from the YAML in handle."""
664 data = utils.load_yaml(handle)
665 if force_ssl:
666 if ’defaults’ in data:
667 data[’defaults’][’ssl’] = True
668 else:
669 data[’defaults’] = {’ssl’: True}
670

671 loader = unittest.defaultTestLoader
672 test_suite = suitemaker.test_suite_from_dict(
673 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
674 handlers=handler_objects)
675

676 result = ConciseTestRunner(
677 verbosity=2, failfast=failfast).run(test_suite)
678 return result.wasSuccessful()
679 =======
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680 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=
False,

681 failfast=False, test_directory=’.’):
682 """Run the tests from the YAML in handle."""
683 data = utils.load_yaml(handle)
684 if force_ssl:
685 if ’defaults’ in data:
686 data[’defaults’][’ssl’] = True
687 else:
688 data[’defaults’] = {’ssl’: True}
689

690 loader = unittest.defaultTestLoader
691 test_suite = suitemaker.test_suite_from_dict(
692 loader, ’input’, data, test_directory, host, port, None, None,
693 prefix=prefix, handlers=handler_objects)
694

695 result = ConciseTestRunner(
696 verbosity=2, failfast=failfast).run(test_suite)
697 return result.wasSuccessful()
698 >>>>>>> REPLACE
699 ‘‘‘
700 ‘‘‘python
701 ### gabbi/runner.py
702 <<<<<<< SEARCH
703 for input_file in input_files:
704 with open(input_file, ’r’) as fh:
705 success = run_suite(fh, handler_objects, host, port,
706 prefix, force_ssl, failfast)
707 if not failure: # once failed, this is considered

immutable
708 failure = not success
709 if failure and failfast:
710 break
711 =======
712 for input_file in input_files:
713 test_directory = os.path.dirname(input_file)
714 with open(input_file, ’r’) as fh:
715 success = run_suite(
716 fh, handler_objects, host, port, prefix, force_ssl,
717 failfast, test_directory=test_directory)
718 if not failure: # once failed, this is considered

immutable
719 failure = not success
720 if failure and failfast:
721 break
722 >>>>>>> REPLACE
723 ‘‘‘
724

725 Answer 4:
726 ‘‘‘python
727 ### gabbi/runner.py
728 <<<<<<< SEARCH
729 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
730 failfast=False):
731 =======
732 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
733 failfast=False, test_directory=’.’):
734 >>>>>>> REPLACE
735 ‘‘‘
736 ‘‘‘python
737 ### gabbi/runner.py
738 <<<<<<< SEARCH
739 test_suite = suitemaker.test_suite_from_dict(
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740 loader, ’input’, data, ’.’, host, port, None, None, prefix=
prefix,

741 handlers=handler_objects)
742 =======
743 test_suite = suitemaker.test_suite_from_dict(
744 loader, ’input’, data, test_directory, host, port, None, None,
745 prefix=prefix, handlers=handler_objects)
746 >>>>>>> REPLACE
747 ‘‘‘
748 ‘‘‘python
749 ### gabbi/runner.py
750 <<<<<<< SEARCH
751 for input_file in input_files:
752 with open(input_file, ’r’) as fh:
753 success = run_suite(fh, handler_objects, host, port,
754 prefix, force_ssl, failfast)
755 =======
756 for input_file in input_files:
757 # Determine test directory based on input file’s location
758 test_directory = os.path.dirname(os.path.abspath(input_file))

or ’.’
759 with open(input_file, ’r’) as fh:
760 success = run_suite(fh, handler_objects, host, port,
761 prefix, force_ssl, failfast,
762 test_directory=test_directory)
763 >>>>>>> REPLACE
764 ‘‘‘
765

766 Answer 5:
767 ‘‘‘python
768 ### gabbi/runner.py
769 <<<<<<< SEARCH
770 import sys
771 import unittest
772 =======
773 import os
774 import sys
775 import unittest
776 >>>>>>> REPLACE
777 ‘‘‘
778 ‘‘‘python
779 ### gabbi/runner.py
780 <<<<<<< SEARCH
781 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
782 failfast=False):
783 =======
784 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
785 failfast=False, test_directory=’.’):
786 >>>>>>> REPLACE
787 ‘‘‘
788 ‘‘‘python
789 ### gabbi/runner.py
790 <<<<<<< SEARCH
791 test_suite = suitemaker.test_suite_from_dict(
792 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
793 handlers=handler_objects)
794 =======
795 test_suite = suitemaker.test_suite_from_dict(
796 loader, ’input’, data, test_directory, host, port, None, None,
797 prefix=prefix, handlers=handler_objects)
798 >>>>>>> REPLACE
799 ‘‘‘
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800 ‘‘‘python
801 ### gabbi/runner.py
802 <<<<<<< SEARCH
803 for input_file in input_files:
804 with open(input_file, ’r’) as fh:
805 success = run_suite(fh, handler_objects, host, port,
806 prefix, force_ssl, failfast)
807 =======
808 for input_file in input_files:
809 test_directory = os.path.dirname(input_file) or ’.’
810 with open(input_file, ’r’) as fh:
811 success = run_suite(fh, handler_objects, host, port,
812 prefix, force_ssl, failfast,
813 test_directory=test_directory)
814 >>>>>>> REPLACE
815 ‘‘‘
816

817 Answer 6:
818 ‘‘‘python
819 ### gabbi/driver.py
820 <<<<<<< SEARCH
821 file_suite = suitemaker.test_suite_from_dict(
822 loader, test_base_name, suite_dict, path, host, port,
823 fixture_module, intercept, prefix=prefix,
824 test_loader_name=test_loader_name, handlers=handler_objects

,
825 inner_fixtures=inner_fixtures)
826 =======
827 test_file_dir = os.path.dirname(test_file)
828 file_suite = suitemaker.test_suite_from_dict(
829 loader, test_base_name, suite_dict, test_file_dir, host,

port,
830 fixture_module, intercept, prefix=prefix,
831 test_loader_name=test_loader_name, handlers=handler_objects

,
832 inner_fixtures=inner_fixtures)
833 >>>>>>> REPLACE
834 ‘‘‘
835 ‘‘‘python
836 ### gabbi/runner.py
837 <<<<<<< SEARCH
838 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
839 failfast=False):
840 =======
841 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
842 failfast=False, test_directory=’.’):
843 >>>>>>> REPLACE
844 ‘‘‘
845 ‘‘‘python
846 ### gabbi/runner.py
847 <<<<<<< SEARCH
848 test_suite = suitemaker.test_suite_from_dict(
849 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
850 handlers=handler_objects)
851 =======
852 test_suite = suitemaker.test_suite_from_dict(
853 loader, ’input’, data, test_directory, host, port, None, None,
854 prefix=prefix, handlers=handler_objects)
855 >>>>>>> REPLACE
856 ‘‘‘
857 ‘‘‘python
858 ### gabbi/runner.py
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859 <<<<<<< SEARCH
860 success = run_suite(fh, handler_objects, host, port,
861 prefix, force_ssl, failfast)
862 =======
863 test_directory = os.path.dirname(input_file)
864 success = run_suite(fh, handler_objects, host, port,
865 prefix, force_ssl, failfast,

test_directory)
866 >>>>>>> REPLACE
867 ‘‘‘
868

869 Answer 7:
870 ‘‘‘python
871 ### gabbi/runner.py
872 <<<<<<< SEARCH
873 import argparse
874 from importlib import import_module
875 import sys
876 import unittest
877 =======
878 import argparse
879 from importlib import import_module
880 import os
881 import sys
882 import unittest
883 >>>>>>> REPLACE
884 ‘‘‘
885 ‘‘‘python
886 ### gabbi/runner.py
887 <<<<<<< SEARCH
888 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
889 failfast=False):
890 """Run the tests from the YAML in handle."""
891 data = utils.load_yaml(handle)
892 if force_ssl:
893 if ’defaults’ in data:
894 data[’defaults’][’ssl’] = True
895 else:
896 data[’defaults’] = {’ssl’: True}
897

898 loader = unittest.defaultTestLoader
899 test_suite = suitemaker.test_suite_from_dict(
900 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
901 handlers=handler_objects)
902 =======
903 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
904 failfast=False, test_directory=’.’):
905 """Run the tests from the YAML in handle."""
906 data = utils.load_yaml(handle)
907 if force_ssl:
908 if ’defaults’ in data:
909 data[’defaults’][’ssl’] = True
910 else:
911 data[’defaults’] = {’ssl’: True}
912

913 loader = unittest.defaultTestLoader
914 test_suite = suitemaker.test_suite_from_dict(
915 loader, ’input’, data, test_directory, host, port, None, None,
916 prefix=prefix, handlers=handler_objects)
917 >>>>>>> REPLACE
918 ‘‘‘
919 ‘‘‘python
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920 ### gabbi/runner.py
921 <<<<<<< SEARCH
922 with open(input_file, ’r’) as fh:
923 success = run_suite(fh, handler_objects, host, port,
924 prefix, force_ssl, failfast)
925 if not failure: # once failed, this is considered

immutable
926 failure = not success
927 if failure and failfast:
928 break
929 =======
930 test_dir = os.path.dirname(os.path.abspath(input_file))
931 with open(input_file, ’r’) as fh:
932 success = run_suite(fh, handler_objects, host, port,
933 prefix, force_ssl, failfast,

test_directory=test_dir)
934 if not failure: # once failed, this is considered

immutable
935 failure = not success
936 if failure and failfast:
937 break
938 >>>>>>> REPLACE
939 ‘‘‘
940

941 Answer 8:
942 ‘‘‘python
943 ### gabbi/runner.py
944 <<<<<<< SEARCH
945 data = utils.load_yaml(handle)
946 if force_ssl:
947 if ’defaults’ in data:
948 data[’defaults’][’ssl’] = True
949 else:
950 data[’defaults’] = {’ssl’: True}
951

952 loader = unittest.defaultTestLoader
953 test_suite = suitemaker.test_suite_from_dict(
954 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
955 handlers=handler_objects)
956 =======
957 data = utils.load_yaml(handle)
958 if force_ssl:
959 if ’defaults’ in data:
960 data[’defaults’][’ssl’] = True
961 else:
962 data[’defaults’] = {’ssl’: True}
963

964 # Determine test directory based on input handle
965 if hasattr(handle, ’name’):
966 test_directory = os.path.dirname(os.path.abspath(handle.name))
967 else:
968 test_directory = ’.’
969

970 loader = unittest.defaultTestLoader
971 test_suite = suitemaker.test_suite_from_dict(
972 loader, ’input’, data, test_directory, host, port, None, None,
973 prefix=prefix, handlers=handler_objects)
974 >>>>>>> REPLACE
975 ‘‘‘
976

977 Answer 9:
978 ‘‘‘python
979 ### gabbi/driver.py
980 <<<<<<< SEARCH
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981 for test_file in glob.iglob(’%s/*.yaml’ % path):
982 if ’_’ in os.path.basename(test_file):
983 warnings.warn(exception.GabbiSyntaxWarning(
984 "’_’ in test filename %s. This can break suite grouping

."
985 % test_file))
986 if intercept:
987 host = str(uuid.uuid4())
988 suite_dict = utils.load_yaml(yaml_file=test_file)
989 test_base_name = os.path.splitext(os.path.basename(test_file))

[0]
990 if all_test_base_name:
991 test_base_name = ’%s_%s’ % (all_test_base_name,

test_base_name)
992

993 if require_ssl:
994 if ’defaults’ in suite_dict:
995 suite_dict[’defaults’][’ssl’] = True
996 else:
997 suite_dict[’defaults’] = {’ssl’: True}
998

999 file_suite = suitemaker.test_suite_from_dict(
1000 loader, test_base_name, suite_dict, path, host, port,
1001 fixture_module, intercept, prefix=prefix,
1002 test_loader_name=test_loader_name, handlers=handler_objects

,
1003 inner_fixtures=inner_fixtures)
1004 =======
1005 for test_file in glob.iglob(’%s/*.yaml’ % path):
1006 if ’_’ in os.path.basename(test_file):
1007 warnings.warn(exception.GabbiSyntaxWarning(
1008 "’_’ in test filename %s. This can break suite grouping

."
1009 % test_file))
1010 if intercept:
1011 host = str(uuid.uuid4())
1012 suite_dict = utils.load_yaml(yaml_file=test_file)
1013 test_base_name = os.path.splitext(os.path.basename(test_file))

[0]
1014 if all_test_base_name:
1015 test_base_name = ’%s_%s’ % (all_test_base_name,

test_base_name)
1016

1017 if require_ssl:
1018 if ’defaults’ in suite_dict:
1019 suite_dict[’defaults’][’ssl’] = True
1020 else:
1021 suite_dict[’defaults’] = {’ssl’: True}
1022

1023 # Use absolute path of the YAML file’s directory
1024 test_file_dir = os.path.dirname(os.path.abspath(test_file))
1025 file_suite = suitemaker.test_suite_from_dict(
1026 loader, test_base_name, suite_dict, test_file_dir, host,

port,
1027 fixture_module, intercept, prefix=prefix,
1028 test_loader_name=test_loader_name, handlers=handler_objects

,
1029 inner_fixtures=inner_fixtures)
1030 >>>>>>> REPLACE
1031 ‘‘‘
1032

1033 Answer 10:
1034 ‘‘‘python
1035 ### gabbi/runner.py
1036 <<<<<<< SEARCH
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1037 import argparse
1038 from importlib import import_module
1039 import sys
1040 import unittest
1041 =======
1042 import argparse
1043 from importlib import import_module
1044 import os
1045 import sys
1046 import unittest
1047 >>>>>>> REPLACE
1048 ‘‘‘
1049 ‘‘‘python
1050 ### gabbi/runner.py
1051 <<<<<<< SEARCH
1052 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
1053 failfast=False):
1054 =======
1055 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
1056 failfast=False, test_directory=’.’):
1057 >>>>>>> REPLACE
1058 ‘‘‘
1059 ‘‘‘python
1060 ### gabbi/runner.py
1061 <<<<<<< SEARCH
1062 test_suite = suitemaker.test_suite_from_dict(
1063 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
1064 force_ssl=force_ssl, failfast=failfast,
1065 handlers=handler_objects)
1066 =======
1067 test_suite = suitemaker.test_suite_from_dict(
1068 loader, ’input’, data, test_directory, host, port, None, None,
1069 prefix=prefix, force_ssl=force_ssl, failfast=failfast,
1070 handlers=handler_objects)
1071 >>>>>>> REPLACE
1072 ‘‘‘
1073 ‘‘‘python
1074 ### gabbi/runner.py
1075 <<<<<<< SEARCH
1076 success = run_suite(fh, handler_objects, host, port,
1077 prefix, force_ssl, failfast)
1078 =======
1079 test_dir = os.path.dirname(input_file)
1080 success = run_suite(fh, handler_objects, host, port,
1081 prefix, force_ssl, failfast,
1082 test_directory=test_dir)
1083 >>>>>>> REPLACE
1084 ‘‘‘
1085 ‘‘‘python
1086 ### gabbi/case.py
1087 <<<<<<< SEARCH
1088 path = os.path.join(self.test_directory, os.path.basename(filename)

)
1089 =======
1090 path = os.path.join(self.test_directory, filename)
1091 >>>>>>> REPLACE
1092 ‘‘‘
1093

1094 Answer 11:
1095 ‘‘‘python
1096 ### gabbi/runner.py
1097 <<<<<<< SEARCH
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1098 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=
False,

1099 failfast=False):
1100 """Run the tests from the YAML in handle."""
1101 data = utils.load_yaml(handle)
1102 if force_ssl:
1103 if ’defaults’ in data:
1104 data[’defaults’][’ssl’] = True
1105 else:
1106 data[’defaults’] = {’ssl’: True}
1107

1108 loader = unittest.defaultTestLoader
1109 test_suite = suitemaker.test_suite_from_dict(
1110 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
1111 handlers=handler_objects)
1112 =======
1113 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
1114 failfast=False, test_directory=’.’):
1115 """Run the tests from the YAML in handle."""
1116 data = utils.load_yaml(handle)
1117 if force_ssl:
1118 if ’defaults’ in data:
1119 data[’defaults’][’ssl’] = True
1120 else:
1121 data[’defaults’] = {’ssl’: True}
1122

1123 loader = unittest.defaultTestLoader
1124 test_suite = suitemaker.test_suite_from_dict(
1125 loader, ’input’, data, test_directory, host, port,
1126 None, None, prefix=prefix, handlers=handler_objects)
1127 >>>>>>> REPLACE
1128 ‘‘‘
1129 ‘‘‘python
1130 ### gabbi/runner.py
1131 <<<<<<< SEARCH
1132 success = run_suite(fh, handler_objects, host, port,
1133 prefix, force_ssl, failfast)
1134 =======
1135 test_dir = os.path.dirname(input_file)
1136 success = run_suite(fh, handler_objects, host, port,
1137 prefix, force_ssl, failfast,
1138 test_directory=test_dir)
1139 >>>>>>> REPLACE
1140 ‘‘‘
1141

1142 Answer 12:
1143 ‘‘‘python
1144 ### gabbi/runner.py
1145 <<<<<<< SEARCH
1146 import argparse
1147 from importlib import import_module
1148 import sys
1149 import unittest
1150 =======
1151 import argparse
1152 from importlib import import_module
1153 import os
1154 import sys
1155 import unittest
1156 >>>>>>> REPLACE
1157 ‘‘‘
1158 ‘‘‘python
1159 ### gabbi/runner.py
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1160 <<<<<<< SEARCH
1161 else:
1162 for input_file in input_files:
1163 with open(input_file, ’r’) as fh:
1164 success = run_suite(fh, handler_objects, host, port,
1165 prefix, force_ssl, failfast)
1166 =======
1167 else:
1168 for input_file in input_files:
1169 test_dir = os.path.dirname(os.path.abspath(input_file))
1170 with open(input_file, ’r’) as fh:
1171 success = run_suite(fh, handler_objects, host, port,
1172 prefix, force_ssl, failfast,
1173 test_directory=test_dir)
1174 >>>>>>> REPLACE
1175 ‘‘‘
1176 ‘‘‘python
1177 ### gabbi/runner.py
1178 <<<<<<< SEARCH
1179 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
1180 failfast=False):
1181 """Run the tests from the YAML in handle."""
1182 data = utils.load_yaml(handle)
1183 if force_ssl:
1184 if ’defaults’ in data:
1185 data[’defaults’][’ssl’] = True
1186 else:
1187 data[’defaults’] = {’ssl’: True}
1188

1189 loader = unittest.defaultTestLoader
1190 test_suite = suitemaker.test_suite_from_dict(
1191 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
1192 handlers=handler_objects)
1193 =======
1194 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
1195 failfast=False, test_directory=’.’):
1196 """Run the tests from the YAML in handle."""
1197 data = utils.load_yaml(handle)
1198 if force_ssl:
1199 if ’defaults’ in data:
1200 data[’defaults’][’ssl’] = True
1201 else:
1202 data[’defaults’] = {’ssl’: True}
1203

1204 loader = unittest.defaultTestLoader
1205 test_suite = suitemaker.test_suite_from_dict(
1206 loader, ’input’, data, test_directory, host, port, None, None,
1207 prefix=prefix, handlers=handler_objects)
1208 >>>>>>> REPLACE
1209 ‘‘‘
1210

1211 Answer 13:
1212 ‘‘‘python
1213 ### gabbi/runner.py
1214 <<<<<<< SEARCH
1215 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
1216 failfast=False):
1217 """Run the tests from the YAML in handle."""
1218 data = utils.load_yaml(handle)
1219 if force_ssl:
1220 if ’defaults’ in data:
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1221 data[’defaults’][’ssl’] = True
1222 else:
1223 data[’defaults’] = {’ssl’: True}
1224

1225 loader = unittest.defaultTestLoader
1226 test_suite = suitemaker.test_suite_from_dict(
1227 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
1228 handlers=handler_objects)
1229 =======
1230 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
1231 failfast=False, test_directory=’.’):
1232 """Run the tests from the YAML in handle."""
1233 data = utils.load_yaml(handle)
1234 if force_ssl:
1235 if ’defaults’ in data:
1236 data[’defaults’][’ssl’] = True
1237 else:
1238 data[’defaults’] = {’ssl’: True}
1239

1240 loader = unittest.defaultTestLoader
1241 test_suite = suitemaker.test_suite_from_dict(
1242 loader, ’input’, data, test_directory, host, port, None, None,
1243 prefix=prefix, handlers=handler_objects)
1244 >>>>>>> REPLACE
1245 ‘‘‘
1246 ‘‘‘python
1247 ### gabbi/runner.py
1248 <<<<<<< SEARCH
1249 for input_file in input_files:
1250 with open(input_file, ’r’) as fh:
1251 success = run_suite(fh, handler_objects, host, port,
1252 prefix, force_ssl, failfast)
1253 =======
1254 for input_file in input_files:
1255 test_dir = os.path.dirname(os.path.abspath(input_file))
1256 with open(input_file, ’r’) as fh:
1257 success = run_suite(fh, handler_objects, host, port,
1258 prefix, force_ssl, failfast,
1259 test_directory=test_dir)
1260 >>>>>>> REPLACE
1261 ‘‘‘
1262

1263 Answer 14:
1264 ‘‘‘python
1265 ### gabbi/runner.py
1266 <<<<<<< SEARCH
1267 for input_file in input_files:
1268 with open(input_file, ’r’) as fh:
1269 success = run_suite(fh, handler_objects, host, port,
1270 prefix, force_ssl, failfast)
1271 =======
1272 for input_file in input_files:
1273 with open(input_file, ’r’) as fh:
1274 success = run_suite(input_file, fh, handler_objects,

host, port,
1275 prefix, force_ssl, failfast)
1276 >>>>>>> REPLACE
1277 ‘‘‘
1278 ‘‘‘python
1279 ### gabbi/runner.py
1280 <<<<<<< SEARCH
1281 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
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1282 failfast=False):
1283 """Run the tests from the YAML in handle."""
1284 data = utils.load_yaml(handle)
1285 if force_ssl:
1286 if ’defaults’ in data:
1287 data[’defaults’][’ssl’] = True
1288 else:
1289 data[’defaults’] = {’ssl’: True}
1290

1291 loader = unittest.defaultTestLoader
1292 test_directory = ’.’
1293 test_suite = suitemaker.test_suite_from_dict(
1294 loader, ’input’, data, test_directory, host, port, None, None,

prefix=prefix,
1295 handlers=handler_objects)
1296 =======
1297 def run_suite(input_file, handle, handler_objects, host, port, prefix,

force_ssl=False,
1298 failfast=False):
1299 """Run the tests from the YAML in handle."""
1300 data = utils.load_yaml(handle)
1301 if force_ssl:
1302 if ’defaults’ in data:
1303 data[’defaults’][’ssl’] = True
1304 else:
1305 data[’defaults’] = {’ssl’: True}
1306

1307 loader = unittest.defaultTestLoader
1308 test_directory = os.path.dirname(input_file) if input_file else ’.’
1309 test_suite = suitemaker.test_suite_from_dict(
1310 loader, ’input’, data, test_directory, host, port, None, None,

prefix=prefix,
1311 handlers=handler_objects)
1312 >>>>>>> REPLACE
1313 ‘‘‘
1314 ‘‘‘python
1315 ### gabbi/runner.py
1316 <<<<<<< SEARCH
1317 if not input_files:
1318 success = run_suite(sys.stdin, handler_objects, host, port,
1319 prefix, force_ssl, failfast)
1320 =======
1321 if not input_files:
1322 success = run_suite(None, sys.stdin, handler_objects, host,

port,
1323 prefix, force_ssl, failfast)
1324 >>>>>>> REPLACE
1325 ‘‘‘
1326 ‘‘‘
1327 --- END FILE ---
1328

1329 Please first summary and analyze the key differences between the
trajectories, and then generate *SEARCH/REPLACE* edits to fix the
issue.

1330

1331 Every *SEARCH/REPLACE* edit must use this format:
1332 1. The file path
1333 2. The start of search block: <<<<<<< SEARCH
1334 3. A contiguous chunk of lines to search for in the existing source

code
1335 4. The dividing line: =======
1336 5. The lines to replace into the source code
1337 6. The end of the replace block: >>>>>>> REPLACE
1338

1339 Here is an example:
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1340

1341 ‘‘‘python
1342 ### mathweb/flask/app.py
1343 <<<<<<< SEARCH
1344 from flask import Flask
1345 =======
1346 import math
1347 from flask import Flask
1348 >>>>>>> REPLACE
1349 ‘‘‘
1350

1351 Please note that the *SEARCH/REPLACE* edit REQUIRES PROPER INDENTATION.
If you would like to add the line ’ print(x)’, you must

fully write that out, with all those spaces before the code!
1352 Wrap the *SEARCH/REPLACE* edit in blocks ‘‘‘python...‘‘‘.
1353 The summary of the key differences between the trajectories should be

in the thinking part.
1354 "
1355

1356 Response:
1357

1358 ◁think▷
1359 Okay, let’s tackle this problem. The user is having an issue where when

they specify a data file in their YAML test using the <@ syntax,
the path isn’t resolved relative to the YAML file’s location.
Instead, it’s using the current working directory. They want the
path to be relative to the YAML file so they can run tests from any
directory.

1360

1361 First, I need to understand how the current code is handling the data
file paths. The user mentioned that in _load_data_file, the code
uses os.path.join(self.test_directory, os.path.basename(filename)).
This takes the test_directory (which defaults to ’.’), discards any
directories in the filename, and appends the basename. That’s why if
the YAML is in /my/tests/test.yaml and the data is <@data.txt, it

looks for ./data.txt instead of /my/tests/data.txt.
1362

1363 The key here is to make sure that the test_directory is set to the
directory where the YAML file is located. Then, when joining with
the filename (without basename), it would correctly resolve the
relative path.

1364

1365 Looking at the provided code snippets, the main changes are in runner.
py where the test_directory is determined. The user’s proposed
solutions involve modifying the run_suite function to accept a
test_directory parameter, which is derived from the input file’s
directory.

1366

1367 In the original code, when running a suite from an input file, the
test_directory is hardcoded to ’.’. The various answers modify this
by passing the directory of the input file as test_directory. For
example, in Answer 10, they add the test_directory parameter to
run_suite and set it to os.path.dirname(input_file). Then, in case.
py, they change the path joining to use the filename directly
instead of basename.

1368

1369 Wait, the critical part is in case.py’s _load_data_file method. The
original code uses os.path.basename(filename), which strips any
directories from the filename. So if the YAML has <@test_data/file.
txt, the basename is file.txt, and it’s joined with test_directory.
But if test_directory is the YAML’s directory, then it should be
YAML_DIR/test_data/file.txt. However, the current code would do
test_directory + file.txt, which would be YAML_DIR/file.txt. That’s
incorrect. So the problem is that the code is taking the basename,
thus ignoring any subdirectories in the filename.
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1370

1371 Ah, so the fix here is to not take the basename. Instead, the filename
after <@ should be treated as a relative path from the YAML’s
directory. So in case.py’s _load_data_file, instead of using os.path
.basename(filename), we should use the filename as-is. Then, os.path
.join(self.test_directory, filename) would correctly resolve the
path relative to the YAML’s directory.

1372

1373 But wait, the filename could be an absolute path. For example, if the
YAML has <@/absolute/path/file.txt, then os.path.join would just use
the absolute path. However, the documentation says that the

filename is relative to the YAML file. So absolute paths might not
be intended. But the code should handle that.

1374

1375 So combining two changes: in runner.py, set test_directory to the YAML
file’s directory, and in case.py, stop using basename and use the
full filename.

1376

1377 Looking at Answer 10, there’s a change in case.py from os.path.basename
(filename) to filename. That’s exactly the fix needed. Then, in
runner.py, when running the suite, pass the test_directory as the
directory of the input file.

1378

1379 So the key files to modify are:
1380

1381 1. gabbi/runner.py: When calling run_suite, pass test_directory as the
directory of the input file. This involves modifying the run_suite
function to accept test_directory as a parameter and then passing it
when the input file is processed.

1382

1383 2. gabbi/case.py: Change the path construction from using os.path.
basename(filename) to using the filename directly. This allows
subdirectories in the filename to be included in the path.

1384

1385 Looking through the provided code snippets, the one that does both is
Answer 10. Let me check:

1386

1387 In Answer 10, the runner.py changes add the test_directory parameter
and set it to os.path.dirname(input_file). Then, in case.py, the
path is changed to os.path.join(self.test_directory, filename). That
would correctly resolve the path relative to the YAML’s directory,

including any subdirectories in the filename.
1388

1389 But wait, the original code in case.py uses os.path.basename(filename).
So changing that to filename means that if the input is ’test_data/

file.txt’, it’s joined as test_directory/test_data/file.txt. If
test_directory is the YAML’s directory, that’s correct.

1390

1391 -------------------- Omit some reasoning content ---------------------
1392

1393 But perhaps better to use os.path.abspath and then dirname to handle
relative paths correctly. But maybe the existing code already works.
For example, if the input_file is ’tests/test.yaml’, then os.path.

dirname would return ’tests’, which when joined with os.getcwd()
would be correct. Wait, no. os.path.dirname just gives the directory
part of the path. So if input_file is a relative path, like ’tests/

test.yaml’, then test_directory would be ’tests’, and when os.path.
join is called, it’s relative to the current working directory. But
the code in suitemaker.test_suite_from_dict might expect an absolute
path. However, the original code uses ’.’ as the test_directory,

which is relative. So perhaps using the directory of the input file
as test_directory is sufficient.

1394

1395 Another thing to consider: when the YAML is loaded from stdin (like via
redirect), the test_directory remains ’.’. That’s acceptable, as
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the documentation mentions that when using <, the filename isn’t
seen by Gabbi, so it’s not possible to resolve the path relative to
the YAML’s original location. So in that case, the test_directory
defaults to ’.’.

1396

1397 Now, in case.py:
1398

1399 Original line:
1400

1401 path = os.path.join(self.test_directory, os.path.basename(filename))
1402

1403 Modified line:
1404

1405 path = os.path.join(self.test_directory, filename)
1406

1407 So the SEARCH/REPLACE block for case.py:
1408

1409 ### gabbi/case.py
1410 <<<<<<< SEARCH
1411 path = os.path.join(self.test_directory, os.path.basename(filename)

)
1412 =======
1413 path = os.path.join(self.test_directory, filename)
1414 >>>>>>> REPLACE
1415

1416 Putting all these together, the final edits are:
1417

1418 1. Add import os in runner.py.
1419

1420 2. Modify run_suite to accept test_directory and pass it to
test_suite_from_dict.

1421

1422 3. In the loop over input_files, compute test_directory as the
directory of input_file and pass it to run_suite.

1423

1424 4. Modify case.py’s path construction.
1425

1426 So the final answer would include these four SEARCH/REPLACE blocks.
1427 ◁/think▷
1428

1429 ‘‘‘python
1430 ### gabbi/runner.py
1431 <<<<<<< SEARCH
1432 import argparse
1433 from importlib import import_module
1434 import sys
1435 import unittest
1436 =======
1437 import argparse
1438 from importlib import import_module
1439 import os
1440 import sys
1441 import unittest
1442 >>>>>>> REPLACE
1443 ‘‘‘
1444

1445 ‘‘‘python
1446 ### gabbi/runner.py
1447 <<<<<<< SEARCH
1448 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
1449 failfast=False):
1450 =======
1451 def run_suite(handle, handler_objects, host, port, prefix, force_ssl=

False,
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1452 failfast=False, test_directory=’.’):
1453 >>>>>>> REPLACE
1454 ‘‘‘
1455

1456 ‘‘‘python
1457 ### gabbi/runner.py
1458 <<<<<<< SEARCH
1459 test_suite = suitemaker.test_suite_from_dict(
1460 loader, ’input’, data, ’.’, host, port, None, None, prefix=

prefix,
1461 handlers=handler_objects)
1462 =======
1463 test_suite = suitemaker.test_suite_from_dict(
1464 loader, ’input’, data, test_directory, host, port, None, None,
1465 prefix=prefix, handlers=handler_objects)
1466 >>>>>>> REPLACE
1467 ‘‘‘
1468

1469 ‘‘‘python
1470 ### gabbi/runner.py
1471 <<<<<<< SEARCH
1472 else:
1473 for input_file in input_files:
1474 with open(input_file, ’r’) as fh:
1475 success = run_suite(fh, handler_objects, host, port,
1476 prefix, force_ssl, failfast)
1477 =======
1478 else:
1479 for input_file in input_files:
1480 test_directory = os.path.dirname(input_file) or ’.’
1481 with open(input_file, ’r’) as fh:
1482 success = run_suite(fh, handler_objects, host, port,
1483 prefix, force_ssl, failfast,

test_directory=test_directory)
1484 >>>>>>> REPLACE
1485 ‘‘‘
1486

1487 ‘‘‘python
1488 ### gabbi/case.py
1489 <<<<<<< SEARCH
1490 path = os.path.join(self.test_directory, os.path.basename(filename)

)
1491 =======
1492 path = os.path.join(self.test_directory, filename)
1493 >>>>>>> REPLACE
1494 ‘‘‘
1495

1496 These changes:
1497 1. Add ‘os‘ import needed for path handling
1498 2. Modify run_suite to accept a test_directory parameter
1499 3. Use the input file’s directory as the test_directory when processing

files
1500 4. Update data file path resolution to preserve directory structure

from YAML relative paths
1501 5. Remove basename handling that was stripping directory information

from data file paths
1502

1503 The net effect is that data files specified with ‘<@filename‘ in YAML
tests will now be resolved relative to their YAML file’s directory,
supporting both flat and nested directory structures for test data.
When tests are run from stdin (using ‘<‘), the default directory
remains the current working directory as before.

Listing 12: Example of emergent parallel scaling (cdent gabbi-191 in SWE-bench-extra).
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H USE OF LARGE LANGUAGE MODELS

The initial draft of this paper was written entirely by the authors. A large language model (gpt-
5) was used only to aid with polishing the language (e.g., grammar and clarity). All conceptual
contributions, experimental designs, analyses, and conclusions are the work of the authors.
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