Under review as a conference paper at ICLR 2024

AUTOMATED SEARCH-SPACE GENERATION FOR SUB-
NETWORK SEARCH WITHIN DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

To search an optimal sub-network within a general deep neural network (DNN),
existing neural architecture search (NAS) methods typically rely on handcrafting a
search space beforehand. Such requirements make it challenging to extend them
onto general scenarios without significant human expertise and manual intervention.
To overcome the limitations, we propose Automated Search-Space Generation for
Sub-Network Search with DNNs (ASGSSD), perhaps the first automated system
to train and
produce high-performing sub-networks in the one shot manner. Technologically,
ASGSSD delivers three noticeable contributions to minimize human efforts: (i)
automated search space generation for general DNNS; (ii) a Hierarchical Half-
Space Projected Gradient (H2SPG) that leverages the hierarchy and dependency
within generated search space to ensure the network validity during optimization,
and reliably produces a solution with both high performance and hierarchical
group sparsity; and (iii) automated sub-network construction upon the H2SPG
solution. Numerically, we demonstrate the effectiveness of ASGSSD on a variety
of general DNNs, including RegNet, StackedUnets, SuperResNet, and DARTS,
over benchmark datasets such as CIFAR10, Fashion-MNIST, ImageNet, STL-10,
and SVNH. The sub-networks computed by ASGSSD achieve competitive even
superior performance compared to the starting full DNN’s and state-of-the-arts.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable success in various fields, Wh1ch success is
highly dependent on their sophisticated underlying architectures (,

,). To design effective DNN architectures, human expertise have handcrafted numerous
popular DNNs such as ResNet (R) and transformer (R). However,
such human efforts may not be scalable enough to meet the increasing demands for customizing
DNNss for diverse tasks. To address this issue, Neural Architecture Search (NAS) has emerged to
automate the network creations and reduce the need for human expertise (,).

In the realm of NAS studies, discovering the optimal sub-network within

stands as a pivotal topic. Gradient-based meth-
ods (s ; ; : s) are perhaps the most
popular for the discovery because of thelr efﬁ01ency Such methods parameterize operation candidates
via introducing auxiliary architecture variables with weight sharing, then search a (sub)optimal
sub-network via formulating and solving a multi-level optimization problem.

Despite the advancements in gradient-based NAS methods, their usage is still limited due to certain
inconvenience. In particular, their automation relies on manually determining the search space for
a pre-specified DNN beforehand, and requires the manual introduction of auxiliary architecture
variables onto the prescribed search space. To extend these methods onto other DNNs, the end-
users still need to manually construct the search pool, then incorporate the auxiliary architecture
variables along with building the whole complicated multi-level optimization training pipeline. The
whole process necessitates significant domain-knowledge and engineering efforts, thereby being
inconvenient and time-consuming for users. Therefore, it is natural to ask whether we could reach an

Objective. Given a general DNN, automatically generate its search space, train it once, and construct
a sub-network that achieves a dramatically compact architecture and high performance.

Under review as a conference paper at ICLR 2024

General DNN Automated Sea.rch H2SPG Automated Suhnetwork
Space Generation Construction

Figure 1: Overview of ASGSSD. Given a general DNN, ASGSSD first automatically generates a
search space, then employs H2SPG to identify redundant removal structures and train the important
counterparts to high-performance, finally constructs a compact and high-performing sub-network.

Achieving the objective is severely challenging in terms of both engineering developments and
algorithmic designs, consequently not achieved yet by the existing works to the best of our knowl-
edge. We now build automated search-space generation for sub-network search within deep neural
networks (ASGSSD) that first reaches the objective. Given a DNN that covers all operation and con-
nection candidates, ASGSSD automatically generates a search space, trains and identifies redundant
structures, then builds a sub-network that achieves both high performance and compactness, as shown
in Figure 1. The whole procedure can be automatically proceeded, dramatically reduce the human
efforts, and fit general DNN5s and applications. Our main contributions can be summarized as follows.

* Automated Search Space Generation and Sub-Network Construction. We propose a novel
graph algorithm to automatically exploit the architecture given a general DNN, then analyze the
hierarchy and dependency across different operators to form a search space. The established search
space consists of the structures that could be removed without interrupting the functionality of
the remaining DNN. We further propose a novel graph algorithm to automatically construct a
sub-network upon the starting DNN parameterized as the subsequent H2SPG solution.

 Hierarchical Half-Space Projected Gradient (H2SPG). We propose a novel H2SPG, perhaps the
first optimizer, that solves a hierarchical structured sparsity problem for general DNN applications.
H2SPG computes a solution of both high performance and desired sparsity level. Compared to
other sparse optimizers, H2SPG conducts a dedicated hierarchical search phase over the generated
search space to ensures the validness of the constructed sub-network.

* Experimental Results. We demonstrate the effectiveness of ASGSSD on extensive DNNs in-
cluding RegNet, StackedUnets, SuperResNet and DARTS, over benchmark datasets including
CIFARI10, Fashion-MNIST, ImageNet, STL-10, and SVNH. ASGSSD is the first framework that
could automatically deliver compact sub-networks upon general DNNss to the best of our knowledge.
Meanwhile the sub-networks exhibit competitive even superior performance to the full networks.

2 RELATED WORK

Automatic Search-Space Generation for Neural Archltecture Search (NAS) One main pain—
point of the existing NAS methods (s ; s ; ,

; ; s) is the
need of manually estabhshlng the search space The deﬁmtlon of search space is varying upon
different NAS scenarios. In our scenario, we aim to automatically discovering a high-performing
compact sub-network given a general DNN. The starting DNN is assumed to cover all operation
and connection candidates, and the resulting sub-network serves as its sub-computational-graph.
Therefore, the search space of our scenario is defined as a set of removal structures of the given DNN.
It is noteworthy that the automated search space generation for our target NAS scenario along with a
novel end-to-end automated pipeline is a crucial gap in the NAS realm that has seen rare exploration.

There exists orthogonal search-space (super-network) definitions, along wrth several works in au-
tomation. In the context of (;
, ,), the presence of operators in DNN s is preserved yet the1r
inherent hyperparameters such as channel, stride and depth for convolutional layers, are searchable.
Consequently, the inherent hyperparameters of the existing operators constitute their search space.
() defines the search space as the network that encompasses all candidate operations

Under review as a conference paper at ICLR 2024

and investigate methods to automatically generate high-quality super-networks that include optimal
sub-networks. Our approach stays complementary and distinct to these definitions and could operate
with them jointly to form the landscape of automated search-space generation.

Neural Architecture Optimization. Due to the need of a starting DNN for ASGSSD to search sub-
networks, another related realm is the optimization over pre-specified neural architecture. NAO (

s) encodes the DNN architecture into a latent representation, search over the latent space,
then decodes back to a revised architecture. NAT (,) performs operator transformation
upon the given DNN to produce more accurate network. These approaches transform and improve
the existing DNNSs, yet not search an optimal sub-network. As a result, their produced networks are
typically not significantly compact compared to the baseline models. Contrarily, our approach focuses
on automatically and effectively discovering compact sub-networks given pre-specified DNNs.

3 ASGSSD

ASGSSD is an automated one-shot system designed to train a general DNN and subsequently
construct a sub-network. The resulting sub-network is not only high-performing but also has
a remarkably compact architecture, making it well-suited for various deployment environments.
The entire process of ASGSSD significantly reduces the necessity for human intervention and is
compatible with a wide range of DNNs and applications. As outlined in Algorithm 1, ASGSSD takes
a starting DNN M, explores its trace graph, examines the inherent hierarchy, and autonomously
constructs a search space (Section 3.1). Based on the hierarchy presented within the search space,
corresponding trainable variables are segregated into a series of groups, adhering to structural
constraints. Subsequently, a hierarchical structured sparsity optimization problem is articulated
and addressed through a novel approach—Hierarchical Half-Space Projected Gradient (H2SPG)
(Section 3.2). H2SPG takes into account the hierarchy embedded within the generated search
space and calculates a solution that achieves both high performance and the desired sparsity level.
Ultimately, a compact sub-network M* is constructed by eliminating the structures associated with
identified redundant structures and their dependent modules (Section 3.3).

Algorithm 1 Outline of ASGSSD.

1: Input: A general DNN M to be trained and searched (no need to be pretrained).

2: Automated Search Space Generation. Analyze the trace graph of M, generate a search space,
and partition the trainable parameters into a set of groups obeying the hierarchy of search space.

3: Train by H2SPG. Seek a high-performing solution with hierarchical group sparsity.

4: Automated Sub-Network Construction. Construct a sub-network M* upon H2SPG solution.

5: Output: Constructed sub-network M*. (Post fine-tuning is optional).

3.1 AUTOMATED SEARCH SPACE GENERATION

The initial step of ASGSSD is to automatically generate a search space for a general DNN,
which definition is upon distinct NAS scenarios (see more in Section 2).

, i.e., being a valid DNN.
We refer to such structures as the removal structures of DNNs. Consequently, the generation of the
search space is formulated as the discovery of these removal structures. This process poses significant
challenges, encompassing both engineering developments and algorithmic designs. These challenges
arise due to the intricate architecture of DNNs, the distinct roles of operators, and a scarcity of
sufficient public APIs. To address these challenges and accomplish our goal, we have developed a
dedicated graph algorithm stated as Algorithm 2. The generation of search space involves two main
phases. The first phase explores the trace graph of the DNN M and establishes a segment graph
(Vs, Es). The second phase leverages the affiliations inside the segment graph to find out removal
structures, then partitions their trainable variables to a set of groups. For intuitive illustrations, we
elaborate the algorithm through a small but complex demo DNN depicted in Figure 2a.

Segment Graph Construction. Given a general DNN M, we first construct its
(V, &) displayed as Figure 2a (line 3 in Algorithm 2), which is a directed acyclic graph that tracks
the data flow of DNN forward pass, via Pytorch API (,), where V represents the set

Under review as a conference paper at ICLR 2024

MaxPool H Conv3 H BN3
AvePool H Conva H BN4

Conv2-BN2
MaxPool-Conv3-BN3 ’

Concat

Conv5-BN5

(b) Segment graph.

Ki mf Ko bavaf Ky bsvafs Ki bavafa Ks s l% Ki 7B Ks B Wi
C 00 e 0 ear i
100 0000 008 000 00 0 100 EEaE

G=0G.UG° G ={g.95- .95 G°={g1.9}

(c) Trainable variable partition.

Figure 2: Automated Search Space Generation. (a) The DemoNet to be trained and searched; (b) the
constructed segment graph; and (c) the trainable variable partition, where G, represents the variable

groups corresponding to removal structures. /C; and b; are the flatten filter matrix and bias vector for
Conv-1i, respectively. «; and 3; are the weight and bias vectors for BN—-1i. W; is the weight matrix

for Linear—1i. The columns of /Cg are marked in accordance to its incoming segments.

Algorithm 2 Automated Search Space Generation.

1: Input: A super-network M to be trained and searched.

2: Segment graph construction.

3: Construct the trace graph (V, £) of M.

4: Initialize an empty graph (Vs, &;).

5: Initialize queue Q < {S(v) : v € V is adjacent to the input of trace graph}.

6: while Q # () do

7: Dequeue the head segment S from Q.

8: Grow S in the depth-first manner till meet either joint vertex or multi-outgoing vertex 9.
9: Add segments into Vs and connections into &;.
10: Enqueue new segments into the tail of Q if © has outgoing vertices.

11: Discovery of removal structures.
12: Get the incoming vertices V for joint vertices in the (Vs,).
13: Group the trainable variables in the vertex v € V as g,,.

14: Form G, as the union of the above groups, i.e., Gs < {g, : v € 9}
15: Form QSC as the union of the trainable variables in the remaining vertices.
16: Return trainable variable partition G = G, U G¢ and segment graph (V;, £;).

of vertices (operations) and £ represents the connections among them. We particularly refer vertices
as

We then analyze the trace graph (V, &) to create a segment graph (Vs, &), wherein each vertex in Vg
serves as a potential removal structure candidate. To proceed, we use a queue container Q to track the
candidates (line 5 of Algorithm 2). The initial elements of this queue are the vertices that are directly
adjacent to the input of M, such as Conv1. We then traverse the graph in the breadth-first manner,
iteratively growing each element (segment) S in the queue until a valid removal structure candidate is
formed. The growth of each candidate follows the depth-first search to recursively expand S until

Under review as a conference paper at ICLR 2024

the current vertices are considered as endpoints. The endpoint vertex is determined by whether it
is a joint vertex or has multiple outgoing vertices, as indicated in line 8 of Algorithm 2. Intuitively,
a joint vertex has multiple inputs, which means that the DNN may be still valid after removing the
current segment. This suggests that the current segment may be removable. On the other hand, a
vertex with multiple outgoing neighbors implies that removing the current segment may cause some
of its children to miss the input tensor. For instance, removing Conv1-BN1 would cause Conv2,
MaxPool and AvgPool to become invalid due to the absence of input in Figure 2a. Therefore, it is
risky to remove such candidates. Once the segment S has been grown, new candidates are initialized
as the outgoing vertices of the endpoint and added into the container Q (line 10 in Algorithm 2). Such
procedure is repeated until the end of traversal and returns a segment graph (Vs, &) in Figure 2b.

Discovery of Removal Structures. We proceed to identify the removal structures in (Vs, &) to
generate the search space. The qualified instances are the vertices in Vs that have trainable variables
and all of their outgoing vertices are joint vertices. This is because a joint vertex has multiple inputs
and remains valid even after removing some of its incoming structures, as indicated in line 12 in
Algorithm 2. Consequently, their trainable variables are grouped together into G, (line 13-14 in
Algorithm 2 and Figure 2¢). The remaining vertices are considered as either unremovable or belonging
to a large removal structure, which trainable variables are grouped into the G& (the complementary
to Gs). As aresult, for the given DNN M, all its trainable variables are encompassed by the union
G = G,UGY, and the corresponding removal structures to the variable groups G, constitute the search
space of M. The next is to discover important removal structures to form an optimal sub-network.

3.2 HIERARCHICAL HALF-SPACE PROJECTED GRADIENT (H2SPG)

Given a general DNN M and its variable group partition G = G, U G, the next is to jointly search
for a valid sub-network M* that exhibits the most significant performance and train it to high
performance. Searching a sub-network is equivalent to identifying the redundant groups of variables
in the removal variable groups G, to be further removed and ensures the remaining network still valid.
Training the sub-network becomes optimizing over the remaining important groups in G to achieve
high performance. We formulate a hierarchical structured sparsity problem to accomplish both tasks.

minimize f(z), s.t. Cardinality(G°) = K, and (V,/Vgo, & /Ego) is valid, (1)

xR

where f is the prescribed loss func-

tion, =0 = {g ¢ G.llx], = 0} is Algorithm 3 Hierarchical Half-Space Projected Gradient

the set of zero groups in G,, which 1: Input: initial variable , € R", initial learning rate
cardinality measures its size. K is the v, target group sparsity K, segment graph (Vs, &) and
target hierarchical group sparsity, in- group partition G = G, UGS

Hierarchical Search Phase.

Initialize redundant removal structures gﬁ — 0.
dundant. The trainable variables in Initialize remaining segment graph (V, &) + (Vs, &s).
redundant removal structures are pro- Calculate the saliency score via modular proxy for each
jected onto zero, while the trainable g € G, and sort them.

variables in important structures are for g € G, ordered by saliency scores ascendingly do
preserved as non-zero and optimized Find the vertex v, for g and the adjacent edges &,.
for high performance. A larger K dic- if (]7 /{vg}, g /&,) is valid and |G,| < K then

tates a higher sparsity level that pro- Update G, <+ G, U {g}.

duces a more compact sub-network sia 5 &
10: Updat .
with fewer FLOPs and parameters. pdate (V, &) = (V/{vy}, £/,)

(Vs/Vgo, Es/Ego) refers to the graph 11: Hybrid Training Phase.

removing vertices and edges corre- 1% fort =0,1,---, do . . .
sponding to zero groups G. It be- 13 Compute gradient estimate Vf(x;) or its variant.

ing valid requires the zero groups dis- 14~ Update [®i11]ge as [®: — e Vf (@1)]ge
tributed obeying the hierarchy of the 15 Perform Half-Space projection over [¢]g, .
segment graph to ensure the resulting 16: Return the final or the best iterate as ®{jqpg-
sub-network functions correctly.

dicating the number of removal struc-
tures that should be identified as re-

oL 3D

Problem (1) is difficult to solve due to the non-differential and non-convex sparsuy constraint and
the graph validity constraint. Existing optimizers such as HSPG (,)
and proximal methods (,) overlook the architecture evolutlon and hlerarchy
during the sparsity exploration, which is crucial to (1). In fact, they are mainly applied for orthogonal

Under review as a conference paper at ICLR 2024

; : 6
TNk ._“____“_“____“____“__
Convh-BN5

Figure 3: Check validness of redundant candidates. Target group sparsity K = 3. Conv7-BN7 has
smaller salience score than Conv2—-BN2. Dotted vertices are marked as redundant candidates.

Conv1-BN1

' 7’
~ -disconnected- ~

and distinct pruning tasks, where the connections and operations are preserved yet become slimmer.
Consequently, employing them onto (1) usually produces invalid sub-networks.

Outline of H2SPG. To effectively solve problem (1), we propose a novel H2SPG to consider the
hierarchy and ensure the validness of graph architecture after removing redundant vertices during the
optimization process. To the best of our knowledge, H2SPG is the first the optimizer that successfully
solves such hierarchical structured sparsity problem (1), which outline is stated in Algorithm 3.

H2SPG is a hybrid multi-phase optimizer, distinguished by its dedicated designs catering to the
hierarchical constraint, positioning it significantly apart from its non-hierarchical counterparts within
the HSPG sparse optimizer family (, ,). Initially, H2SPG cate-
gorizes groups of variables into important and potentlally redundant segments through a hierarchical
search phase. Subsequently, it applies specified updating mechanisms to different segments to achieve
a solution with both desired hierarchical group sparsity and high performance via a hybrid training
phase. The hierarchical search phase considers the topology of segment graph (Vs, &) to ensure the
validness of the resulting sub-network. Vanilla stochastic gradient descent (SGD) or its variant such
as Adam (,) optimizes the important segments to achieve the high performance.
Half-space gradient descent (,) identifies redundant segments among the candidates
and projects them onto zero without sacrificing the objective function to the largest extent.

Hierarchical Search Phase. To proceed, H2SPG first computes the saliency scores for each removal
structures in the generated search space (line 5 in Algorithm 3). The saliency score measures the
importance of each removal structures in the search space to form an optimal sub-network. It de-
sign and calculation are modular to varying proxies, e.g., gradient-based proxies or training-free
zero-shot proxies (; ; ,) upon the need of downstream
tasks. If fidelity is the main focus the score could measure from the optimization perspective. If
efficiency on hardware is the main focus, the score could favor more on hardware. We by default
proceed the gradient-based proxy due to its flexibility on general applications and DNNs. In particular,
we first warm up all variables by conducting SGD or its variants. During the warm-up, a saliance score
of each group g € G, is computed and exponentially averaged. Smaller salience score indicates the
group exhibits less prediction power, thus may be redundant. By default, we followed DHSPG (

,) to consider both the cosine similarity between negative gradient —[Vf ()], and the
projection direction —[x], as well as the average variable magnitude. The former one measures the
approximate degradation onto the objective function over the projection direction. Lower cosine
similarity implies the projection —[x], might dramatically regress the objective function thereby
current structure is more important. The latter one measures the distance to the origin.

The next is to form a set of redundant removal structure candidates G, and ensures the validity of
remaining DNN after erasing these candidates (line 6-10 in Algorithm 3). To proceed, we iterate
each group in G, in the ascending order of salience scores. A remaining graph (V, £) is constructed
by iteratively removing the vertex of each group along with the corresponding adjacent edges from
(Vs, Es). The sanity check verifies whether the graph (V &) is still connected after the erasion. If
so, the variable group for the current vertex is added into G,; otherwise, the subsequent group is
turned into considerations. As illustrated in Figure 3, though Conv7-BN7 has a smaller salience
score than Conv2-BN2, Conv2-BN2 is marked as potentially redundant but not Conv7-BN7
since there is no path connecting the input and the output of the graph after removing Conv7-BN7.
This mechanism largely guarantees that even if all redundant candidates are erased, the resulting
sub-network is still functioning as normal. The complementary groups with higher redundancy scores
are marked as important groups and form G := G /G,..

Under review as a conference paper at ICLR 2024

Conv7-BN7

e c AvgPool-Linearl

AvgPool-Conv4-BN4
Conv5-BN5
(a) Identified redundant structures.
R:z b2 72 B2 R::s bz v3 Bs R:G ’ts et ﬁs
I:I ‘>| Convl >| BN1 AvgPool |->| Conv4 |->| BN4 |->| Conv6‘
i i
g 9: g
: ’ 0 ¥ Linearl |4-| AvgPool |<-| BN7 |<-| Conv7

[Ziraspclsaugsugs

Convl1-BN1

(b) Redundant removal structures. (c) Constructed sub-network.

Figure 4: Redundant removal structures idenfitications and sub-network construction.

Hybrid Training Phase. H2SPG then engages into the hybrid training phase to produce desired group
sparsity over G, and optimize over G for pursuing excellent performance till the convergence. This
phase mainly follows (, ,), and is briefly described for completeness.
In general for the important groups of varlables in G¢, the vanilla SGD or its variant is employed to
minimize the objective function (line 13-14 in Algorlthm 3). For redundant group candidates in G,.,
a Half-Space projection step introduced in (,) is proceeded to progressively yield
sparsity without sacrificing the objective function to the largest extent. Finally, a high-performing
solution &yy,4pg With desired hierarchical sparsity is returned.

3.3 AUTOMATED SUB-NETWORK CONSTRUCTION.

We finally construct a sub-network M™ upon the given DNN M and the solution xjj,5p; by H2SPG.
The solution &jj,spg should attain desired target hierarchical group sparsity level and achieve high
performance. As illustrated in Figure 4, we first traverse the graph to remove the entire vertices
and the related edges from M corresponding to the redundant removal structures being zero, e.g.,
Conv2-BN2, MaxPool-Conv3-BN3 and Conv8-BN8 are removed due to [,5pGlgoUgsUgs =
0. Then, we traverse the graph in the second pass to remove the affiliated structures that are dependent
on the removed vertices to keep the remaining operations valid, e.g., the first and second columns
in ICg are erased since its incoming vertices Conv2-BN2 and MaxPool-Conv3-BN3 have been
removed (see Figure 4b). Next, we recursively erase unnecessary vertices and isolated vertices.
Isolated vertices refer to the vertices that have neither incoming nor outgoing vertices. Unnecessary
vertices refer to the skippable operations, e.g., Concat and Add (between Conv7 and AvgPool)
become unnecessary. Ultimately, a compact sub-network M* is constructed as shown in Figure 4c.
Fine-tuning the constructed sub-network M* is optional and often not necessary, particularly if
the removed structures additionally exhibit the zero-invariant property (,). More
experimental results and ablation studies are present in Appendix D.

4 NUMERICAL EXPERIMENTS

In this section, we employ ASGSSD to one-shot automatically train and search within general
DNNs to construct compact sub-networks with high performance. The numerical demonstrations

cover extensive DNNs including DemoNet shown in Section 3, RegNet (s),
StackedUnets (R), SuperResNet (; s), and
DARTS (,), and benchmark datasets, including CIFAR]O (,
), Fashion-MNIST (,), ImageNet (,), STL-10 (
) and SVNH (,). More implementation details of experiments and ASGSSD

library and limitations are provided in Appendix A.

DemoNet on Fashion-MNIST. We first experiment with the DemoNet presented as Figure 2a on
Fashion-MNIST. ASGSSD automatically establishes a search space of DemoNet and partitions its
trainable variables into a set of groups. H2SPG then trains DemoNet from scratch and computes a
solution of high performance and hierarchical group-sparsity over the generated search space, which

Under review as a conference paper at ICLR 2024

Table 1: ASGSSD on extensive super-networks and datasets.

Backend Dataset Method FLOPs (M) # of Params (M) Top-1 Acc. (%)
DemoNet Fashion-MNIST Baseline 209 0.82 84.9
DemoNet Fashion-MNIST ASGSSD 107 0.45 84.7
" StackedUnets =~ SVNH =~ Baseline 184 ~ ~ = 080 T T 953 T
StackedUnets SVNH ASGSSD 115 0.37 96.1

is further utilized to construct a compact sub-network as presented in Figure 4c. As shown in Table I,
compared to the super-network, the sub-network utilizes 54% of parameters and 51% of FLOPs to
achieve a Top-1 validation accuracy 84.7% which is negligibly lower than the super-network by 0.2%.

StackedUnets on SVNH. We then consider a StackedUnets over SVNH. The StackedUnets is
constructed by stacking two standard Unets (,) with different down-samplers
together, as depicted in Figure 5a in Appendix E. We employ ASGSSD to automatically build the
search space and train by H2SPG. H2SPG identifies and projects the redundant structures onto
zero and optimizes the remaining important ones to attain excellent performance. As displayed in
Figure 5c, the right-hand-side Unet is disabled due to node—72-node—-73-node-74-node-75
identified as redundant. The path regarding the deepest depth for the left-hand-side Unet, i.e.,
node-13-node-14-node-15-node-19, is marked as redundant as well. The results by AS-
GSSD indicate that the performance gain brought by either composing multiple Unets in parallel or
encompassing deeper scaling paths is not significant. ASGSSD also validates the human design since
a single Unet with properly selected depths have achieved remarkable success in numerous applica-
tions (,). Furthermore, as presented in Table 1, the sub-network
built by ASGSSD uses O 37M parameters and 115M FLOPs which is noticeably hghter than the full
StackedUnets meanwhile significantly outperforms it by 0.8% in validation accuracy.

Table 2: ASGSSD over SuperResNet on CIFARI10.

Architecture Type Search Space Top-1 Acc (%) # of Params (M) (S(e}a;[cjh dg;):)t
Zen-Score-2M (s) Zero-Shot ResNet Pool 97.5 2.0 0.5
TENAS () Zero-Shot DARTS 97.4 3.8 0.04
SANAS-DARTS (11 ,2022) Gradient DARTS 97.5 32 1.2
ISTA-NAS (s) Gradient DARTS 97.5 33 0.1
CDEP () Gradient DARTS 97.2 32 1.3f
DARTS (2nd order) (s) Gradient DARTS 97.2 3.1 1.0
PrDARTS (s) Gradient DARTS 97.6 34 0.2
P-DARTS (s) Gradient DARTS 97.5 3.6 0.3
PC-DARTS (s) Gradient DARTS 97.4 3.9 0.1
"ASGSSD " """ " "7 77" Gradient SuperResNet 975 20 0.1
The search cost is measured on an NVIDIA A100 GPU. T Numbers are approximately scaled based on ().
SuperResNet on CIFAR10. Later on, we switch to a ResNet search space inspired by ZenNAS (
,), referred to as SuperResNet. ZenNAS (,) uses a ResNet pool to populates

massive ResNet candidates and ranks them via zero-shot proxy. Contraily, we independently construct
SuperResNet by stacking several super-residual blocks with varying depths. Each super-residual
blocks contain multiple Conv candidates with kernel sizes as 3x3, 5x5 and 7x7 separately in
parallel (see Figure 7a). SuperResNet includes the optimal architecture derived from ZenNAS and
aims to discover the most suitable sub-networks using H2SPG over the automated generated search
space. The sub-network produced by ASGSSD could reach the benchmark over 97% validation
accuracy. Remark here that ASGSSD and ZenNAS use fewer parameters to achieve competitive
performance to the DARTS benchmarks. This is because of the extra data-augmentations such as
MixUp (,) by ZenNAS, so as ASGSSD to follow the same training settings.

DARTS (14-Cells) on ImageNet. We now present the benchmark DARTS network stacked by 14
cells on ImageNet. We employ ASGSSD over it to automatically figure out the search space which
the code base required specified handcraftness in the past, train by H2SPG to figure out redundant
structures, and construct a sub-network as depicted in Figure 8d. Quantitatively, we observe that
the sub-network produced by ASGSSD achieves competitive top-1/5 accuracy compared to other
state-of-the-arts as presented in Table 3. Remark here that it is engineeringly difficult yet to inject
architecture variables and build a multi-level optimization upon a search space being automatically
constructed and globally searched. The single-level H2SPG does not leverage a validation set

Under review as a conference paper at ICLR 2024

Table 3: ASGSSD over DARTS on ImageNet and comparison with state-of-the-art methods.

Test Acc. (%)

Architecture “Top-T Tops # of Params (M) FLOPs (M) Search Method
DARTS (2nd order) (CIFAR10) (K) 733 91.3 4.7 574 Gradient
P-DARTS (CIFAR10) (,) 75.6 92.6 49 557 Gradient
PC-DARTS (CIFARI10) (s) 74.9 92.2 53 586 Gradient
SANAS (CIFAR10) (s) 75.2 91.7 - - Gradient

" ProxylessNAS (ImageNet) (Cai et al. ,2018) ~ T T T 751 925 7 AT 465 Gradient
PC-DARTSs (ImageNet) (N) 75.8 92.7 5.3 597 Gradient
ISTA-NAS (ImageNet) (,) 76.0 92.9 5.7 638 Gradient
MASNAS (ImageNet) (s) 74.7 - 2.6 - Multi-Agent
MixPath (ImageNet) (s) 77.2 93.5 5.1 - Gradient

" ASGSSD on DARTS (ImageNet) 759 928 @ ¢ 49 5527 T T Gradient

(CIFAR10) / (ImageNet) refer to using either CIFAR10 or ImageNet for searching architecture.

and specified auxiliary architecture variables as others to conduct multi-level optimization to favor
architecture search and search over the operations without trainable variables, e.g., skip connection.
Consequently, our achieved accuracy does not outperform PC-DARTS and ISTA-NAS. We leave
further improvement over automated multi-level optimization establishment as future work.

Ablation Study (RegNet on CIFAR10). We finally conduct ablation studies over RegNet (

,) on CIFAR10 to demonstrate the necessity and efficacy of hierarchical sparse
optimizer H2SPG compared to the existing non-hierarchical sparse optimizers, which is the key to the
success of ASGSSD. Without loss of generality, we employ ASGSSD over the RegNet-800M which
has accuracy 95.01% on CIFARI10, and compare with the latest variant of HSPG, i.e., DHSPG (

,). We evaluate them with varying target hierarchical group sparsity levels in problem (1)
across a range of {0.1,0.3,0.5,0.7,0.9}. As other experiments, ASGSSD automatically constructs
its search space, trains via H2SPG or DHSPG, and establishes the sub-networks without fine-tuning.
The results are from three independent tests under different random seeds, and reported in Table 4.

Table 4: ASGSSD on RegNet on CIFAR10.

Backend Method Optimizer S}.Er%?y # of Params (M) Top-1 Acc. (%) . ‘Jj“:‘/ i
0.1 5.56 £ 0.02 95.26 £ 0.13 o5 8% PG
03 (3.40, X, X) (95.01, X, X) I R
RegNet-800M ASGSSD DHSPG 0.5 X, X, X) X, X, X) Sl Wy
0.7 (X, X, X) (X, X, X) g T
0y K KX RegNet (2020) S oot
0.1 5.58+ 0.01 _ 95.304 0.10 & 931
0.3 354+ 0.15 95.08+ 0.14 &
RegNet-800M ASGSSD H2SPG 0.5 1.83+ 0.09 94.61+ 0.19 ol
0.7 1.16 £ 0.12 91.92+ 0.24 ! L L
0.9 0.82+ 0.17 87.91 4+ 0.32 8 ¢ 4 2 0

Params (M)

Sub-networks by ASGSSD versus Full Networks. The sub-networks under varying hierarchical
group sparsity levels computed by ASGSSD with H2SPG exhibits the Pareto frontier compar-
ing with the benchmark RegNets. Notably, the sub-networks under sparsity levels of 0.1 and 0.3
outperform the full RegNet-800M. Furthermore, the ones with 0.5 sparsity level outperforms the
RegNet(200M-600M), despite utilizes significantly fewer parameters while achieves higher accuracy.

H2SPG versus Other Sparse Optimizers. DHSPG often fails when confronts with reasonably large
target sparsity levels, denoted by the symbol X. The underlying reason lies in its design, which solely
treats problem (1) as an independent and disjoint structured sparsity problem. By disregarding the
hierarchy within the network, DHSPG easily generates invalid sub-networks. Conversely, H2SPG
takes into account the network hierarchy and successfully addresses problem (1). We also compare
with a proximal method equipping with our hiearchical search phase, i.e., ProxSG+. Its performance
is not competitive to H2SPG due to their ineffective sparse exploration ability (,).

5 CONCLUSION

We propose ASGSSD, which is the pioneering automated system to establish search spaces for
general DNNs and generates high-performing and compact sub-networks through a novel H2SPG.
Remarkably, H2SPG stands as the first optimizer to address hierarchical structured sparsity problems
for deep learning tasks. ASGSSD significantly minimizes the manual efforts associated with many
existing NAS works and pioneers a new trajectory. It also establishes benchmarks regarding automated
NAS over general DNNs, which currently requires extensive handcraftness to create search spaces.

Under review as a conference paper at ICLR 2024

REFERENCES

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one network
and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

David Calhas, Vasco M Manquinho, and Ines Lynce. Automatic generation of neural architecture
search spaces. In Combining Learning and Reasoning: Programming Languages, Formalisms,
and Representations, 2022.

Tianyi Chen, Guanyi Wang, Tianyu Ding, Bo Ji, Sheng Yi, and Zhihui Zhu. Half-space
proximal stochastic gradient method for group-sparsity regularized problem. arXiv preprint
arXiv:2009.12078, 2020.

Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin
Shi, Sheng Yi, and Xiao Tu. Only train once: A one-shot neural network training and pruning
framework. In Advances in Neural Information Processing Systems, 2021a.

Tianyi Chen, Luming Liang, DING Tianyu, Zhihui Zhu, and Ilya Zharkov. Otov2: Automatic,
generic, user-friendly. In The Eleventh International Conference on Learning Representations,
2023.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet in four
gpu hours: A theoretically inspired perspective. arXiv preprint arXiv:2102.11535, 2021b.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging
the depth gap between search and evaluation. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 1294-1303, 2019.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive darts: Bridging the optimization gap for nas
in the wild. International Journal of Computer Vision, 129:638-655, 2021c.

Xiangxiang Chu, Shun Lu, Xudong Li, and Bo Zhang. Mixpath: A unified approach for one-shot
neural architecture search. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 5972-5981, 2023.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelligence
and statistics, pp. 215-223. JMLR Workshop and Conference Proceedings, 2011.

Yutong Dai, Tianyi Chen, Guanyi Wang, and Daniel Robinson. An adaptive half-space projection
method for stochastic optimization problems with group sparse regularization. Transactions on
Machine Learning Research, 2023.

Tristan Deleu and Yoshua Bengio. Structured sparsity inducing adaptive optimizers for deep learning.
arXiv preprint arXiv:2102.03869, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Teee, 2009.

Tianyu Ding, Luming Liang, Zhihui Zhu, Tianyi Chen, and Ilya Zharkov. Sparsity-guided network
design for frame interpolation. arXiv preprint arXiv:2209.04551, 2022.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture
search via lamarckian evolution. arXiv preprint arXiv:1804.09081, 2018.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. arXiv preprint arXiv:2301.12900, 2023.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

10

Under review as a conference paper at ICLR 2024

Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Jian Chen, Peilin Zhao, and Junzhou Huang. Nat:
Neural architecture transformer for accurate and compact architectures. Advances in Neural
Information Processing Systems, 32, 2019.

Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Milenas: Efficient neural architecture search
via mixed-level reformulation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 11993-12002, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
2016.

Ramtin Hosseini and Pengtao Xie. Saliency-aware neural architecture search. Advances in Neural
Information Processing Systems, 35:14743-14757, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s thesis,
Department of Computer Science, University of Toronto, 2009.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436-444,
2015.

Guihong Li, Yuedong Yang, Kartikeya Bhardwaj, and Radu Marculescu. Zico: Zero-shot nas via
inverse coefficient of variation on gradients. arXiv preprint arXiv:2301.11300, 2023.

Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and Rong Jin.
Zen-nas: A zero-shot nas for high-performance deep image recognition. In 2021 IEEE/CVF
International Conference on Computer Vision, ICCV 2021, 2021.

Shaohui Lin, Rongrong Ji, Yuchao Li, Cheng Deng, and Xuelong Li. Toward compact convnets via
structure-sparsity regularized filter pruning. IEEE transactions on neural networks and learning
systems, 31(2):574-588, 2019.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Vasco Lopes, Fabio Maria Carlucci, Pedro M Esperanca, Marco Singh, Antoine Yang, Victor Gabillon,
Hang Xu, Zewei Chen, and Jun Wang. Manas: Multi-agent neural architecture search. Machine
Learning, pp. 1-24, 2023.

Rengian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
Advances in neural information processing systems, 31, 2018.

Juan Pablo Munoz, Nikolay Lyalyushkin, Chaunte Willetta Lacewell, Anastasia Senina, Daniel
Cummings, Anthony Sarah, Alexander Kozlov, and Nilesh Jain. Automated super-network
generation for scalable neural architecture search. In International Conference on Automated
Machine Learning, pp. 5—-1. PMLR, 2022.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32. 2019.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In International conference on machine learning, pp. 4095—4104. PMLR,
2018.

11

Under review as a conference paper at ICLR 2024

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollar. Designing
network design spaces. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10428-10436, 2020.

Laura Rieger, Chandan Singh, William Murdoch, and Bin Yu. Interpretations are useful: penalizing
explanations to align neural networks with prior knowledge. In International conference on
machine learning, pp. 8116-8126. PMLR, 2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234-241. Springer, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

Yu Weng, Tianbao Zhou, Yujie Li, and Xiaoyu Qiu. Nas-unet: Neural architecture search for medical
image segmentation. /IEEE access, 7:44247-44257, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduction.
SIAM Journal on Optimization, 24(4):2057-2075, 2014.

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.
Pc-darts: Partial channel connections for memory-efficient architecture search. arXiv preprint
arXiv:1907.05737, 2019.

Yibo Yang, Hongyang Li, Shan You, Fei Wang, Chen Qian, and Zhouchen Lin. Ista-nas: Efficient and
consistent neural architecture search by sparse coding. Advances in Neural Information Processing
Systems, 33:10503-10513, 2020.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Peng Zhao, Guilherme Rocha, and Bin Yu. The composite absolute penalties family for grouped and
hierarchical variable selection. 2009.

Daquan Zhou, Xiaojie Jin, Xiaochen Lian, Linjie Yang, Yujing Xue, Qibin Hou, and Jiashi Feng.
Autospace: Neural architecture search with less human interference. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 337-346, 2021.

Pan Zhou, Caiming Xiong, Richard Socher, and Steven Chu Hong Hoi. Theory-inspired path-
regularized differential network architecture search. Advances in Neural Information Processing
Systems, 33:8296-8307, 2020.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697-8710, 2018.

12

Under review as a conference paper at ICLR 2024

A IMPLEMENTATION DETAILS

We provide more implementation details of ASGSSD library and experiments. The official library
along with documentations and tutorials will be released to the public after review process.

A.1 LIBRARY IMPLEMENTATIONS

Overview. Up to the present, the implementation of ASGSSD depends on PyTorch and ONNX
(https://onnx.ai). ONNX is used to obtain the trace graph and the sub-network by modifying
the given DNN in ONNX format. H2SPG is developed as an instance of the PyTorch optimizer class.
As a fundamental Al infrastructure, ASGSSD makes a significant breakthrough in AutoML to first
enable the search of sub-networks from training general DNNs. Further progress and contributions
from both our team and the wider community are necessary to sustain its continued success.

Limitations. The current version of the library relies on ONNX, which means that the DNNs
need to be convertible into the ONNX format. Meanwhile, if the given DNN contains unsupported
operators, the library may not function normally. To address this, we are committed to maintaining
and adding new operators to the library, and leverage contributions from the open-source community
in this regard. Additionally, we are actively working on reducing the dependency on ONNX to
broaden the library’s coverage and compatibility.

Furthermore, for generality, we avoid requiring users to manually introduce auxiliary architecture
variables, as seen in the existing gradient-based NAS methods. To search without architecture
variables, the current ASGSSD library formulates a single-level hierarchical structured sparsity
optimization to identify redundant removal structures based on sparse optimization. We currently
require the removal structures to have trainable variables. Consequently, the operations without
trainable variables such as skip connection are not removal for the current version of ASGSSD
yet. Identifying and removing operations without trainable variables is an aspect that we consider as
future work and plan to address in subsequent updates.

A.2 EXPERIMENT IMPLEMENTATIONS

All experiments were conducted on an NVIDIA A100 GPU. The search cost of ASGSSD was
calculated as the runtime of the hierarchical search phase in Algorithm 3, since it is during this phase
that the redundant group candidates are constructed. In our experiments, H2SPG follows the existing
NAS works (,) by performing 50 epochs for architecture search and evolving the
learning rate using a cosine annealing scheduler.

For the SuperResNet experiments, we adopt the data augmentation technique of MixUp, following
the training settings of ZenNAS (,), and employ a multiple-period cosine annealing
scheduler. The maximum number of epochs for the DemoNet and StackedUnets is set to 300. In the
case of DARTS on ImageNet, we expedite the training process by constructing a sub-network once
the desired sparsity level is reached. We then train this sub-network until convergence. All other
experiments are carried out in the one-shot manner.

The initial learning rate is set to 0.1 for most experiments, except for the DARTS experiments where it
is set to 0.01. The lower initial learning rate in DARTS is due to the absence of auxiliary architecture
variables in our DARTS network, which compute a weighted sum of outputs. Additionally, operations
without trainable variables, such as skip connections, are preserved (refer to the limitations).
Consequently, the cosine annealing period is repeated twice for the DARTS experiments to account
for the smaller initial learning rate. The mini-batch sizes are selected as 64 for all tested datasets,
except for ImageNet, where it is set to 128. The target group sparsities are estimated in order to
achieve a comparable number of parameters to other benchmarks. This is accomplished by randomly
selecting a subset of removal structures to be zero and then calculating the parameter quantities in the
constructed remaining sub-networks.

B COMPLEXITY ANALYSIS

We analyze the time and space complexity in ASGSSD to automatically generate the search space
and the hierarchy consideration during H2SPG optimization.

13

https://onnx.ai

Under review as a conference paper at ICLR 2024

Search Space Construction. The automatic search space generation (Algorithm 2) is primarily a
customized graph algorithm designed to identify removal structures and partition trainable variables
into a set of hierarchical groups. It contains two main stages: (i) establishing the segment graph, and
(ii) constructing the variable partition. During the first stage, the algorithm traverses the trace graph
using a combination of depth-first and breadth-first approaches with specific operations. Consequently,
the worst-case time complexity is O(|V| + |€|) to visit every vertex and edge in the trace graph.
The worst-case space complexity equals to O(|V]) due to the queue container used in Algorithm 2
and the cache employed during the recursive depth-first search. In the second stage, the constructed
segment graph (Vs, &) is traversed in a depth-first manner to perform the variable partition. In the
worst case scenario, where (Vs, &) equals (V, £), the time and space complexities remain the same
as O(|V| + |€|) and O(|V]) respectively. In summary, the worst-case time complexity for both stages
combined is O(|V| + |€|), and the worst-case space complexity is O(|V|). Therefore, the search
space construction can be typically efficiently finished in practice.

Hierarchy Structured Sparsity Optimization. Compared to other non-hierarchical optimizers,
H2SPG takes into account of the hierarchy of the network during optimization to ensure the validity
of the generated sub-networks. This is achieved through a hierarchical search phase, which checks
if remove one vertex from the segment graph (Vs, &), determines whether the remaining DNN
remains connected from the input to the output. A depth-first search is performed for this purpose,
with a worst-case time complexity of O(|Vs| + |€5|) and a worst-case space complexity of O(|Vs)).
Throughout the optimization process, the hierarchy check is only triggered once iteratively over a
subset of removal structures (proportional to the target sparsity level). Consequently, the worst-case
overall time complexity for the hierarchy check is O(|Vs|? + |€| - |Vs|). The worst-case overall
space complexity remains O(|Vs]), since the cache used for the hierarchy check is cleaned up after
each vertex completes its own check.

It is important to note that although the worst-case time complexity is quadratic in the number of
vertices of the constructed segment graph, the hierarchy check can be efficiently executed in practice
because the number of vertices in the segment graph is typically reasonably limited. Additionally, the
hierarchy check only occurs once during the entire optimization process, consequently does not bring
significant computational overhead to the whole process.

C MORE RELATED WORKS

Hierarchical Structured Sparsity Optimization. We formulate the underlying optimization
problem of ASGSSD as a hierarchical structured sparsity problem. Its solution possesses high group
sparsity indicating redundant structures and obeys specified hierarchy. There exist deterministic
optimizers solving such problems via introducing latent variables (,), while are
impractical for stochastic DNN tasks. Meanwhile, stochastic optimizers rarely study such problem.
In fact, popular stochastic sparse optimizers such as HSPG (, ;), proximal
methods (s) and ADMM (R) overlook the hierarchy constraint.
Incorporating them into ASGSSD typically delivers invalid sub-networks. Therefore, we propose
H2SPG that considers the graph topology to ensure the validity of produced sub-networks.

D MORE EXPERIMENTAL RESULTS

DARTS (8-Cells) on STL-10. We next employ ASGSSD on DARTS over STL-10. DARTS is a
complicated network consisting of iteratively stacking multiple cells (,). Each cell
is constructed by spanning a graph wherein every two nodes are connected via multiple operation
candidates. STL-10 is an image dataset for the semi-supervising learning, where we conduct the
experiments by using its labeled samples. DARTS has been well explored in the recent years.
However, the existing NAS methods studied it based on a handcrafted search space beforehand to
locally pick up one or two important operations to connect every two nodes. We now employ ASGSSD
on an eight-cells DARTS to automatically establish its search space, then utilize H2SPG to one shot
train it and search important structures globally as depicted in Figure 6¢ of Appendix E. Afterwards,
a sub-network is automatically constructed as drawn in Figure 6d of Appendix E. Quantitatively, the
sub-network outperforms the full DARTS in terms of validation accuracy by 0.5% by using only
about 15%-20% of the parameters and the FLOPs of the original network (see Table 6).

14

Under review as a conference paper at ICLR 2024

Table 5: ASGSSD for DARTS on STL-10.

Backend Dataset Method FLOPs (M) # of Params (M) Top-1 Acc. (%)
DARTS (8 cells) STL-10 Baseline 614 4.05 74.6
DARTS (8 cells) STL-10 ASGSSD 127 0.64 75.1

OFA (,) on ImageNet. We further employ ASGSSD on a network ofa-pixell1-143
searched by OFA (,) on ImageNet. We found at target hierarchical sparsity as 10%, the

sub-network of ofa-pixell-143 could even outperform the full model by 0.1% with fewer number of
parameters and FLOPs.

Table 6: ASGSSD on network searched by OFA (s).
Backend Dataset Method FLOPs (M) # of Params (M) Top-1 Acc. (%)
ofa-pixell-143 ~ ImageNet Baseline 511 9.1 80.1
ofa-pixell-143 ~ ImageNet = ASGSSD 470 8.4 80.2

More Sensitivities Analysis. We study more sensitivity analysis regarding the hyper-parameters
for ASGSSD. Besides the random seed and target sparsity level analysis (RegNet on CIFAR10) in
Section 4, we present how the number of iterations affects the performance. Without loss of generality,
we continue the analysis over RegNet on CIFAR10 and conduct experiments with varying lengths of
hierarchical search phase by {10, 30, 50, 70,90} epochs under 50% target hierarchical sparsity. We
independently repeat each experiments 5 times under different random seeds. As shown in Table 8,

Table 7: ASGSSD on RegNet-800M CIFAR10 under different lengths of hierarchical search phase.

Number of Epochs
10 30 50 70 90
RegNet-800M CIFARI0O 93.88 +£0.60 94.24 £0.32 94.61 +0.19 94.72+0.15 94.71 +0.13

Backend Dataset

short hierarchical search phase would result in unreliable architecture with lower accuracy mean
and larger variance. It indicates that the architecture search phase requires sufficient information
to guide the search, while the benefits will disappear after collecting sufficient information, see the
comparison between 70 and 90 epochs.

Table 8: ASGSSD on RegNet-800M CIFAR10 under different learning rates.

Learning Rates
10~ 7 10~7 1077
RegNet-800M CIFAR10 94.61 + 0.19 94.34 + 0.25 93.90 + 0.41

Backend Dataset

We further evaluate the performance under different learning rates {107,102, 1073} and different
random seeds for the hierarchical search phase. For fair comparison, all experiments are conducted 50
epochs for the search phase. After 50 epochs, the learning rates reset to 10~! and decay by 0.1 every
75 epochs. We could see that given different initial iterates from scratch upon varying random seeds,
smaller learning rate yields larger variance and typically lower accuracy. This is because the search is
starting from scratch, which requires the searching phase utilizes a sufficiently large learning rate to
explore a relatively good region to construct a faithful sub-network. Small learning rate may lack the
capacity to find out such a region from scratch. However, if the starting DNN is pretrained, which is
already inhabiting nearby a local optima of high performance, searching by a small learning rate then
might be a reasonable choice. Finally, we note here that our framework is flexible to support search
and training a DNN from either scratch or a pretrained checkpoint.

E GRAPH VISUALIZATIONS

In this appendix, we present visualizations generated by the ASGSSD library to provide more intuitive
illustrations of the architectures tested in the paper. The visualizations include trace graphs, segment
graphs, identified redundant removal structures, and constructed sub-networks. To ensure clear
visibility, we highly recommend zooming in with an upscale ratio of at least 500% to observe finer
details and gain a better understanding of the proposed system.

15

Under review as a conference paper at ICLR 2024

(a) StackedUnets trace graph.

Figure 5: StackedUnets illustrations drawn by ASGSSD.

16

Under review as a conference paper at ICLR 2024

node-0-node-1-node-2-node-3 node-39-node-40-node-41

conv-batchnorm-relu-conv conv-batchnorm-relu

e

node-4-node-5-node-6-node-7-node-8-node-9

node-42-node-43-node-44

conv-conv-relu

maxpool-conv-relu-conv-relu-batchnorm

/ J

node-10-node-11-node-12 node-45-node-46-node-47-node-48-node-49

conv-relu-batchnorm-conv-conv

maxpool-conv-conv

/

node-50-node-51-node-52-node-56

conv-conv-conv-resize

node-20 node-57
add add
A y
node-24 node-61
resize resize
\ ‘
node-25 node-62
add add

J

node-26-node-27-node-28-node-29-node-33

conv-conv-batchnorm-relu-resize

node-34 node-71

add add

node-35-node-36-node-37-node-38 node-72-node-73-node-74-node-75

relu-conv-relu-batchnorm relu-conv-relu-batchnorm

node-76
add

node-77-node-79-node-81-node-82-dummy_output

global gepool-sq q linear-

(b) StackedUnets segment graph.

Figure 5: StackedUnets illustrations drawn by ASGSSD.

17

Under review as a conference paper at ICLR 2024

node-0-node-1-node-2-node-3

conv-batchnorm-relu-conv

node-39-node-40-node-41

conv-batchnorm-relu

e

node-4-node-5-node-6-node-7-node-8-node-9

maxpool-conv-relu-conv-relu-batchnorm

/

node-10-node-11-node-12

maxpool-conv-conv

node-42-node-43-node-44

conv-conv-relu

/

node-45-node-46-node-47-node-48-node-49

conv-relu-batchnorm-conv-conv

-
| node-50-node-51-node-52-node-56 !

I
I

conv-conv-conv-resize I

node-20 node-57
add add
A y
node-24 node-61
resize resize
\ ‘
node-25 node-62

node-26-node-27-node-28-node-29-node-33

conv-conv-batchnorm-relu-resize

node-35-node-36-node-37-node-38

relu-conv-relu-batchnorm

node-76
add

node-77-node-79-node-81-node-82-dummy_output

glol gepool-sq q linear-

(c) StackedUnets segment graph with identified redundant removal structures.

Figure 5: StackedUnets illustrations drawn by ASGSSD.

18

Under review as a conference paper at ICLR 2024

(d) Constructed sub-network upon StackedUnets.

Figure 5: StackedUnets illustrations drawn by ASGSSD.

19

Under review as a conference paper at ICLR 2024

(a) DARTS (8 cells) trace graph.

Figure 6: DARTS (8 cells) illustrations drawn by ASGSSD.

20

Under review as a conference paper at ICLR 2024

(b) DARTS (8 cells) segment graph.

Figure 6: DARTS (8 cells) illustrations drawn by ASGSSD.

21

Under review as a conference paper at ICLR 2024

(c) DARTS (8 cells) segment graph with identified redundant removal structures.

Figure 6: DARTS (8 cells) illustrations drawn by ASGSSD.

22

Under review as a conference paper at ICLR 2024

e

i

(d) Constructed sub-network upon DARTS (8 cells).

Figure 6: DARTS (8 cells) illustrations drawn by ASGSSD.

23

Under review as a conference paper at ICLR 2024

(a) SuperResNet trace graph.

Figure 7: SuperResNet illustrations drawn by ASGSSD.

24

Under review as a conference paper at ICLR 2024

(b) SuperResNet segment graph.

Figure 7: SuperResNet illustrations drawn by ASGSSD.

25

Under review as a conference paper at ICLR 2024

(c) SuperResNet segment graph with identified redundant removal structures

Figure 7: SuperResNet illustrations drawn by ASGSSD.

26

Under review as a conference paper at ICLR 2024

T

(d) Constructed sub-network upon SuperResNet.

Figure 7: SuperResNet illustrations drawn by ASGSSD.

27

Under review as a conference paper at ICLR 2024

(a) DARTS (14 cells) trace graph.

Figure 8: DARTS (14 cells) illustrations drawn by ASGSSD.

28

Under review as a conference paper at ICLR 2024

(b) DARTS (14 cells) segment graph.

Figure 8: DARTS (14 cells) illustrations drawn by ASGSSD.

29

Under review as a conference paper at ICLR 2024

(c) DARTS (14 cells) segment graph with identified redundant removal structures.

Figure 8: DARTS (14 cells) illustrations drawn by ASGSSD.

30

Under review as a conference paper at ICLR 2024

(d) Constructed sub-network upon DARTS (14 cells).

Figure 8: DARTS (14 cells) illustrations drawn by ASGSSD.

31

Under review as a conference paper at ICLR 2024

(a) RegNet trace graph.

Figure 9: RegNet illustrations drawn by ASGSSD.

32

Under review as a conference paper at ICLR 2024

(b) RegNet segment graph.

Figure 9: RegNet illustrations drawn by ASGSSD.

33

Under review as a conference paper at ICLR 2024

(c) RegNet segment graph with identified redundant removal structures.

Figure 9: RegNet illustrations drawn by ASGSSD.

34

Under review as a conference paper at ICLR 2024

(d) Constructed sub-network upon RegNet.

Figure 9: RegNet illustrations drawn by ASGSSD.
35

	Introduction
	Related Work
	ASGSSD
	Automated Search Space Generation
	Hierarchical Half-Space Projected Gradient (H2SPG)
	Automated Sub-Network Construction.

	Numerical Experiments
	Conclusion
	Implementation Details
	Library Implementations
	Experiment Implementations

	Complexity Analysis
	More Related Works
	More Experimental Results
	Graph Visualizations

