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ABSTRACT

In the field of cardiac electrophysiology (EP), effectively reducing noise in intra-
cardiac signals is crucial for the accurate diagnosis and treatment of arrhythmias
and cardiomyopathies. However, traditional noise reduction techniques fall short
in addressing the diverse noise patterns from various sources, often non-linear
and non-stationary, present in these signals. This work introduces a Variational
Autoencoder (VAE) model, aimed at improving the quality of intra-ventricular
monophasic action potential (MAP) signal recordings. By constructing represen-
tations of clean signals from a dataset of 5706 time series from 42 patients di-
agnosed with ischemic cardiomyopathy, our approach demonstrates superior de-
noising performance when compared to conventional filtering methods commonly
employed in clinical settings. We assess the effectiveness of our VAE model us-
ing various metrics, indicating its superior capability to denoise signals across
different noise types, including time-varying non-linear noise frequently found in
clinical settings. These results reveal that VAEs can eliminate diverse sources
of noise in single beats, outperforming state-of-the-art denoising techniques and
potentially improving treatment efficacy in cardiac EP.

1 INTRODUCTION

Arrhythmias and cardiomyopathies pose significant challenges in cardiac healthcare. These con-
ditions not only impact patient well-being but also complicate the clinical approach to treatment
(Benjamin et al., 2018; Gopinathannair et al., 2015). Ablation therapy, a key intervention for many
arrhythmias, heavily relies on the accurate interpretation of intracardiac signals (Huang & Miller,
2019). Additionally, cellular mechanisms reflected on these intracardiac recordings may reveal risk
for cardiomyopathies (Rogers et al., 2021). Nevertheless, the availability of databases containing
intracardiac signals for these conditions remains exceedingly scarce. Additionally, the complex-
ity of these signals and their sensitivity to noise present substantial obstacles, frequently hindering
effective treatment (Starreveld et al., 2020).

Common traditional denoising methods such as template matching (Houben et al., 2006), beat aver-
aging (Ng et al., 2006) and bandpass filtering (Venkatachalam et al., 2011), fall short when dealing

∗ First Author’s correspondence address: ETH Zürich, CAB G15.2, Universitätstrasse 6, 8092, Switzerland.
† Co-senior authors.

1



Accepted as a Workshop Paper at TS4H@ICLR2024

A. Raw MAP B. Noisy MAP

D. β -VAE-denoised MAP

C. Filtered MAP

Figure 1: Denoising Pipeline. A. Raw intracardiac MAP recording from a patient with ischemic cardiomy-
opathy. B. Noisy counterpart of (A), following the introduction of various sources of simulated noise and EP
noise. C. De-noised MAP time series obtained after applying the best-performing filter. D. Denoised MAP
time series using our proposed β-VAE method.

with the various noise sources (De Groot et al., 2022; Stevenson & Soejima, 2005). In particular,
electrophysiological (EP) noise, which arises from various factors like patient movement, electronic
interference from medical devices, and physiological variations, becomes especially challenging
due to its non-linear and non-stationary nature, rendering conventional denoising methods ineffec-
tive and demanding the use of an alternative approach (Starreveld et al., 2020). To address this
challenge, we propose the use of Variational Autoencoders (VAEs) (Kingma & Welling, 2013). We
hypothesize that VAEs have the potential to learn and interpret physiological morphologies of sig-
nals in this context, providing a novel solution to eliminate EP noise outperforming existing filtering
techniques.

We develop a model capable of identifying and mitigating EP noise effects in easily verifiable clin-
ically, yet challenging-to-obtain signal types. Our model, along with a unique dataset, presents a
versatile denoising method that can be applied to less clinically verifiable signals, potentially ad-
vancing cardiac care and improving the outcomes of ablation therapy.

2 METHODS

2.1 DENOISING VAE MODEL

Denoising Autoencoders (AEs) (Vincent et al., 2008) are a type of encoder-decoder neural network
that removes noise from corrupted or noisy data by learning to reconstruct the initial data x from its
noisy counterpart x̃. With g as the encoding function and h as the decoding counterpart, the primary
objective becomes LDAE = ∥x− hφ (gθ(x̃))∥2.

VAEs (Kingma & Welling, 2013) are a class of generative models designed to learn a probabilistic
mapping between observed data and latent variables. Differing from traditional AEs, VAEs explic-
itly model the underlying data distribution using a generative model p(x, z), where z is the latent
representation of the input. The ultimate goal of VAEs is to maximize the marginal likelihood pθ(x),
which quantifies the model’s effectiveness in explaining the observed data. To implement the VAE
denoising model, we aim to maximize the tractable evidence lower bound (ELBO), decomposed in
the Kullback-Leibler (KL) divergence and the expected log-likelihood. The KL divergence quanti-
fies the loss of information when approximating a posterior distribution to a simpler prior, typically
a standard normal distribution. Additionally, it acts as a regularization term by encouraging simi-
larity between these distributions (Kingma & Welling (2013)). On the other hand, when assuming
a Gaussian likelihood with mean µ and variance σ2 , the expected log-likelihood reduces to the
expectation of the mean squared error (MSE) between x and µ(z) scaled up by a constant. We use
Monte Carlo sampling to approximate such expectation. Lastly, following Higgins et al. (2016), we
augment the original VAE framework with a β-weighting component to the KL term that modulates
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the learning constraints applied to the model. The ELBO becomes:

ELBO = Eqφ(z|x) [log pθ(x | z)]− β ·KL (qφ(z | x)∥pθ(z)) . (1)

For further details on the architecture of the VAE and its formulation, we refer to Appendices B.2
to B.4.

2.2 NOISE LIBRARY

Given the lack of ground truth clean MAP signals for noisy recordings, we conducted simulations to
replicate prevalent forms of interference present in intracardiac signals. These include white noise,
baseline wander, powerline interference, spike and truncation artifacts, as well as semi-synthetic EP
noise extracted from real physiological recordings. These interference patterns were later introduced
into the recognizable MAPs – see fig. 1.A.

We modeled Gaussian noise as a stationary and ergodic random process with zero mean and an
autocorrelation function solely dependent on time lag. For baseline wander we combined a set of
sinusoidal waves spanning a randomized range of low frequencies, from 0.01 to 0.3 Hz. To simulate
powerline interference, we employed a single sinusoidal time series at 50Hz, adjusting the ampli-
tude to mimic interference generated by various electrical devices and inadequate shielding. We
introduced spike artifacts as finite discrete Dirac δ-functions of varying amplitude, occurring within
the initial segment of the MAP morphology – before the upstroke. Additionally, we approximated
truncation artifacts as multiplicative noise, using a square function with values set to one over the
portion of the signal intended for retention while zeroing out the remainder.

The computation of EP noise involved extracting noise from clinical recordings, operating on the
premise that there is minimal variability in the true MAP morphology within a single patient. This
is based on the understanding that MAP signals deviating significantly from the average recorded
signal are likely to encompass noise stemming from diverse sources. As a result, we constructed a
library of physiological noise time series extracted from patients’ signals. These were subsequently
merged to generate distinctive additive EP noise time series – see an illustration in fig. 1.B.

3 EXPERIMENTAL SETTINGS

Subject Recruitment and Study Protocol The study involved 53 individuals with low ventricular
ejection fraction (≤ 40%) and coronary artery complications, undergoing ventricular stimulation.
After exclusions, 42 patients remained. Conscious sedation was administered, and MAP intracardiac
signals were recorded. Signals were pre-processed, resulting in 5706 individual MAP time series.
The analysis focused on voltage-time series of cardiac beats within 370 ms windows, following
post-alignment and artifact removal Alhusseini et al. (2020). Further details, including summarized
baseline characteristics for the patient population, are described in appendix B.1.

Baselines There is a notable lack of established benchmarks for denoising intracardiac signals,
particularly MAPs, in both laboratory and clinical settings. We have explored various classic signal
processing filtering techniques commonly used in clinical practice (Starreveld et al., 2020; De Groot
et al., 2022). Among these techniques, the 5th order Butterworth filter (Yusuf et al., 2020) is often
considered the standard choice (De Groot et al., 2022; Venkatachalam et al., 2011), providing a solid
baseline with potential efficacy in our specific dataset. The N-th order continuous-time Butterworth

filter is characterized by its transfer function H(s) =
∏N

k=1

(
1− s

pk

)−1

with poles pk located on

the negative half-plane on a circle of radius ωc, as described by pk ≜ ωce
j
π(2k+N−1)

2N .

Evaluation Metrics We assessed the model’s effectiveness from diverse angles. This included
using Pearson’s Correlation Coefficient (PCC) to measure the linear relationship between the origi-
nal and denoised signals (Eq. 9); calculating the Root Mean Squared Error (RMSE) to assess time
domain alignment (Eq. 10); and measuring the Power Signal to Noise Ratio (PSNR) (Eq. 11)
to contrast signal power with noise power, as quantified by the Mean Squared Error (MSE) – see
appendix B.5.
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4 RESULTS

Table 1: De-noising Results to All Noise Types

Set Labels RMSE (x10-3) ↓ PCC ↑ PSNR ↑

Train Noisy 14.98 ± 0.40 0.867 ± 0.007 20.52 ± 0.13
Filtered 13.67 ± 0.31 0.883 ± 0.007 20.40 ± 0.08
Ours 2.68 ± 0.43 0.990 ± 0.001 27.79 ± 0.72

Test Noisy 15.41 ± 0.60 0.864 ± 0.024 20.33 ± 0.24
Filtered 14.45 ± 0.55 0.879 ± 0.022 20.21 ± 0.19
Ours 7.05 ± 0.89 0.967 ± 0.009 22.91 ± 0.51

Noise poses a challenge in un-
derstanding physiological time se-
ries and is not effectively removed
by current techniques in the clinic
De Groot et al. (2022); Starrev-
eld et al. (2020), commonly nega-
tively impacting treatment outcomes
in cardiomyopathies or arrhythmias
(de Bakker, 2019).

Our study leverages a VAE model to mitigate diverse sources of noise in physiological signals of the
highly prevalent ischemic cardiomyopathies.

A. Signal with Synthetic Noise B. Signal with Real Noise

Figure 2: Synthetic Noise Reliability. A. Shows a raw MAP
recording from an AF patient with added synthetic powerline in-
terference noise. B. Presents a noisy recording of an MAP from a
different patient, containing real powerline interference noise.

Table 2 (in Appendix A) provides an
overview of the evaluation metrics for
denoising all noise types except EP
noise, and table 1 includes EP noise
among the other types. These metrics
compare the denoised MAP signals
using our proposed β-VAE model,
the benchmark (filtered) signals, and
the noisy signals against the original
clean ones. We find that our model
successfully reduces different types
of noise in intracardiac signals. No-
tably, it is effective in reducing clin-
ical EP noise, which is usually dif-
ficult to filter out using traditional

methods (de Bakker, 2019; Starreveld et al., 2020). The model’s ability to lessen the impact of
EP noise is confirmed by comparing the denoising performance to all noise types but EP noise (see
supplementary table 2) against the denoising performance to all noise types, including EP noise (see
table 1), observing only a minor decrease in performance.

One innovative aspect of our β-VAE model is how it denoises medical time series by learning repre-
sentations of clean signals (and cellular processes) and uses this knowledge to identify and remove
variations caused by noise. In our study, we focus on using MAPs, which are easier to visually
verify by clinicians compared to other intracardiac signals (Franz, 1991). Compared to traditional
filtering methods, the β-VAE model exhibits better denoising performance, especially in handling
EP noise, which is challenging for standard filters given its non-linear and non-stationary nature.
Figure 1 illustrates an example of a clinically interpretable MAP signal, as recognized by experts,
alongside its noisy counterpart affected by various synthetic noise types. Figure 1.C-D illustrates the
effectiveness of the proposed model against the best-performing clinical filter, showing that the VAE-
reconstructed MAP signal not only removes synthetic noise but also eliminates non-physiological
features from the original recording, such as fractionated activation upstrokes. Additionally, our
study employed both synthetic and real noise in testing the model’s capabilities. The differentiation
between these two types of noise is crucial, as they present varying levels of complexity and realism
in the context of EP signal interference.

Looking ahead, our research highlights several areas for further exploration. Bridging the domain
gap between synthetic and real noise is important to explore further – yet, fig. 2 indicates a strong
visual resemblance between a synthetic noisy MAP and actual recordings with real noise. On the
ethical aspect, while our denoising method holds promise for improving diagnostic accuracy and
treatment outcomes, we must pay careful attention to potential risks and biases introduced. Devel-
oping clinical metrics to assess denoising effectiveness would be key in this regard. Additionally,
validating the effectiveness of such models across different conditions and patient groups may be key
for a broader applicability, especially in underserved communities. Moreover, exploring the latent
space of these models will offer deeper insights into their functioning and potential improvements.
Ultimately, our study sets the stage for crucial clinical validation in real-time settings, assessing the
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impact on patient outcomes and transitioning from theoretical models to practical medical solutions
centered on patients. However, the responsible integration of AI technologies into healthcare work-
flows necessitates ongoing evaluation and validation to ensure patient safety and equitable access to
care, something that will need to be taken into consideration moving forward.

5 CONCLUSIONS

Our study presents a VAE model designed to denoise intracardiac MAP signals, tackling the draw-
backs of usual filtering methods used in the EP laboratory and clinical settings. This model, trained
on a complex and elusive dataset mimicking clinical diagnostic scenarios, displays superior per-
formance and resilience against different types of noise. Its skill in recreating important relevant
features suggests it could be a big step forward for integration in real-time heart care settings, mark-
ing a significant advancement in cardiac care and improving the outcomes of EP therapies.
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A SUPPLEMENTARY RESULTS

Additionally, Table 2 offers an overview of the evaluation metrics for denoising all noise types
except EP noise, complementing the information provided in Table 1.

Table 2: De-noising results to all noise sources but EP

Set Labels RMSE (x10-3) ↓ PCC ↑ PSNR ↑

Train β-VAE 2.18 ± 0.44 0.992 ± 0.001 28.61 ± 0.86
Filtered 11.76 ± 0.27 0.899 ± 0.005 21.09 ± 0.13
Noisy 12.88 ± 0.20 0.884 ± 0.006 21.34 ± 0.13

Test β-VAE 6.25 ± 0.86 0.970 ± 0.009 23.39 ± 0.59
Filtered 12.09 ± 0.63 0.899 ± 0.017 21.04 ± 0.21
Noisy 12.91 ± 0.80 0.885 ± 0.018 21.30 ± 0.29

This comparison allows for an assessment of the model’s generalizability in denoising EP noise.

In addition, Figure 2 illustrates the strong visual resemblance between a synthetically constructed
MAP signal with added synthetic noise, and a noisy signal as recorded directly from the device,
featuring real noise.

B SUPPLEMENTARY METHODS

B.1 EXPANDED SUBJECT RECRUITMENT AND STUDY PROTOCOL

The research study protocol was approved by the Ethics Committee of Stanford University. The
research protocol encompassed a cohort of 53 individuals who exhibited low ventricular ejection
fraction (≤40%) along with coronary artery complications, scheduled for ventricular stimulation.
Those individuals with a history of prolonged ventricular arrhythmias, sudden cardiac arrest, or
fewer than 50 reliable monophasic action potential (MAP) recordings due to technical inconve-
niences were excluded from the study, reducing the population to 42 patients. The study was con-
ducted under conscious sedation, utilizing midazolam and fentanyl. Specialized intracardiac signals
were recorded using a dedicated 7F MAP catheter from Boston Scientific, MA, in conjunction with
standard catheters. The high-fidelity MAP catheter was introduced either transvenously or through
the aorta into the ventricles, with signals recorded using a physiological recorder from Bard-Boston
Scientific in Marlborough, MA. These signals were filtered at various frequencies and digitized at
a rate of 1 kHz. In brief, the study employed a total of 5706 individual MAP EGM time series
exported at a 16-bit digital resolution. The analysis centered on voltage-time series of cardiac beats,
which were partitioned within 370 ms windows obtained following alignment and the removal of
artifactual deviations. Table 3 outlines the baseline characteristics of the entire patient population.

Table 3: Summary Baselines Characteristics of the Patient Population

Variable All Subjects (n=42)

Age, y 64.7 ± 13.0
LVEF a, % 27.0 ± 7.6
QRS Duration, ms 126 ± 33
Hypertension, % (n) 19.0 (8)
Diabetes Mellitus, % (n) 14.3 (6)
BNP b, pg/ml (median, IQR) 341 (157-999)

B.2 NETWORK ARCHITECTURE

The encoder module processes input data (batch size = 32, input dim = 370) through six 1D convo-
lutional layers, followed by flattening and two linear layers to produce mean and log variance of the
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latent distribution, with Leaky-ReLU activations after each layer. The decoder module takes a latent
representation (batch size = 32, latent size = 32) and reconstructs the original input using an initial
linear layer and a series of 1D transposed convolutional layers, mirroring the encoder’s architecture,
with similar post-layer activations.

B.3 DENOISING VAE METHOD

VAEs (Kingma & Welling (2013)) are a class of generative models designed to learn a probabilistic
mapping between observed data and latent variables. Differing from traditional AEs, VAEs explic-
itly model the underlying data distribution using a generative model p(x, z). The ultimate goal of
VAEs is to maximize the marginal likelihood pθ(x), which quantifies the model’s effectiveness in
explaining the observed data. To implement the VAE denoising model, we aim to maximize the
tractable evidence lower bound (ELBO), decomposed in the Kullback-Leibler (KL) divergence and
the expected log-likelihood. The KL divergence quantifies the loss of information when approximat-
ing a posterior distribution to a simpler prior, typically a standard normal distribution. Additionally,
it acts as a regularization term by encouraging similarity between these distributions (Kingma &
Welling (2013)). Assuming qφ

(
z | x(i)

)
= N

(
µ,diag

{
σ2
1 , . . . , σ

2
d

})
and a standard normal dis-

tribution for the prior, the KL divergence is derived as:

KL (qφ(z | x)∥pθ(z)) =
∑D

d=1

(
1− µ2

d + log
(
σd

2
)
− σ2

d

)
2

, (2)

see Appendix B.4 for further detail.

Assuming the likelihood is Gaussian with mean µ and variance σ2, the expected log-likelihood is
expressed as:

log pθ(x | z) = −
∥x− µ(z)∥2 + σ2D log

(
2πσ2

)
2σ2

, (3)

which reduces to the expectation of the mean squared error (MSE) between x and µ(x) scaled up
by a constant.

Using Monte Carlo sampling to approximate such expectation, sampling Λ latent variables z(λ)
from qφ(z | x), we find that:

Eqφ(z|x) [log pθ(x | z)] ≈
∑Λ

λ=1 log pθ
(
x | zλ

)
Λ

(4)

Lastly, following Higgins et al. (2016), we augment the original VAE framework with a β-weighting
component to the KL term that modulates the learning constraints applied to the model. Hence, we
define the objective as:

ELBO = Eqφ(z|x) [log pθ(x | z)]− β ·KL (qφ(z | x)∥pθ(z)) . (5)

B.4 KL DIVERGENCE BETWEEN TWO GAUSSIANS AND SPECIFICS FOR OUR PRIOR

Given two Gaussian distributions

qϕ(z|x(i)) = N
(
µ,diag

{
σ2
1 , . . . , σ

2
D

})
and

pθ(z) = N (0, I),

we want to compute the KL divergence between them.
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The general formula for the KL divergence between two Gaussian distributions N (µ1,Σ1) and
N (µ2,Σ2) is:

KL (N (µ1,Σ1) || N (µ2,Σ2)) =
1

2

(
Tr(Σ−1

2 Σ1) + (µ2 − µ1)
TΣ−1

2 (µ2 − µ1)

−D − log
detΣ1

detΣ2

)
(6)

For our specific case, we have µ1 = µ, Σ1 = diag{σ2
1 , . . . , σ

2
D}, µ2 = 0, and Σ2 = I.

Substituting these into the formula, we get:

KL
(
qϕ(z|x(i)) || pθ(z)

)
=

1

2

(
Tr(I−1 diag{σ2

1 , . . . , σ
2
D})

+ (0− µ)T I−1(0− µ)

−D − log
det diag{σ2

1 , . . . , σ
2
D}

det I

)
(7)

=
1

2

D∑
d=1

(
1 + log

(
(σd)

2
)
− (µd)

2 − (σd)
2
)

(8)

B.5 EVALUATION METRICS

The implementation of the evaluation metrics was performed as described by the equations below,
including PCC to measure the linear relationship between the original and denoised signals:

PCCs1,s2 =

∑n
i=1 (s1i − s1) (s2i − s2)√∑n

i=1 (s1i − s1)
2
√∑n

i=1 (s2i − s2)
2

(9)

where s1 and s2 represent the raw MAP and its denoised counterpart, n denotes the number of data
points in the signals, i refers to the sample number within the respective signals, and s1 and s2
represent the mean values of s1 and s2 respectively.

The RMSE allowed us to assess the time domain alignment and sample-wise similarity of both the
raw signal and denoised counterpart, implemented as:

RMSEs1,s2 =

√∑n
i=1 (s1i − s2i)

2

n
(10)

where s1 and s2 represent the signals being compared, n denotes the number of data points in the
signals, and s1i and s2i represent individual data points within the respective signals.

Lastly, the PSNR permitted contrasting signal power to noise power, the latter quantified by the
MSE:

PSNR = 20 · log10 (MAXs)− log10(MSE) (11)
where MAXs denotes the maximum possible pixel value of the signal (e.g., for images, this would
typically be 255 for 8-bit images).
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