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Abstract

Federated Learning (FL) enables collaborative
training of machine learning models across dis-
tributed clients without sharing raw data, ostensi-
bly preserving data privacy. Nevertheless, recent
studies have revealed critical vulnerabilities in FL,
showing that a malicious central server can manip-
ulate model updates to reconstruct clients’ private
training data. Existing data reconstruction attacks
have important limitations: they often rely on as-
sumptions about the clients’ data distribution or
their efficiency significantly degrades when batch
sizes exceed just a few tens of samples.
In this work, we introduce a novel data reconstruc-
tion attack that overcomes these limitations. Our
method leverages a new geometric perspective on
fully connected layers to craft malicious model pa-
rameters, enabling the perfect recovery of arbitrar-
ily large data batches in classification tasks with-
out any prior knowledge of clients’ data. Through
extensive experiments on both image and tabular
datasets, we demonstrate that our attack outper-
forms existing methods and achieves perfect recon-
struction of data batches two orders of magnitude
larger than the state of the art.

1 INTRODUCTION

Federated Learning (FL) enables collaborative machine
learning model training across distributed clients without
directly sharing data with a central server [McMahan et al.,
2017]. Although not sharing data ostensibly guarantees pri-
vacy, several attacks have revealed existing privacy vulnera-
bilities in FL. By inspecting the updates received and using
publicly available information, the central server can infer
training data membership [Melis et al., 2019, Nasr et al.,
2019, Choquette-Choo et al., 2021] or infer clients’ sensi-

tive attributes [Chen et al., 2024, Diana et al., 2025]. These
attacks only expose limited information, whereas more ad-
vanced data reconstruction attacks enable the server to fully
recover private training data points. These attacks have been
proposed in two primary settings: the honest-but-curious
setting, where the server passively observes updates [Zhu
et al., 2019, Zhao et al., 2020, Geiping et al., 2020, Yin et al.,
2021, Kariyappa et al., 2023, Dimitrov et al., 2022, 2024],
and the malicious setting [Fowl et al., 2022, Boenisch et al.,
2023, Zhang et al., 2023, Zhao et al., 2024, Wang et al.,
2024, Garov et al., 2024], where the server actively manip-
ulates model parameters. In the honest-but-curious setting,
existing methods struggle to perfectly recover the training
data for batch sizes of a few dozen data points [Dimitrov
et al., 2024]) or produce very noisy reconstructions for a
large portion of data points in batches exceeding 100 data
points [Kariyappa et al., 2023, Fig. 6]. In the malicious set-
ting, existing attacks [Wen et al., 2022, Fowl et al., 2022,
Boenisch et al., 2023, Zhang et al., 2023, Garov et al., 2024]
perform better but have not succeeded in perfectly recover-
ing a batch of 256 data points.

Furthermore, most previous work has focused on image
datasets, even though many real-world applications involve
tabular data—such as clinical and financial records—which
often contains highly sensitive information.

In this paper we focus on the malicious setting, in which
the server is able to craft the model parameters to improve
the attack’s effectiveness. We present a novel attack that
reconstructs client data by combining geometric search in
the feature space with precise control over each data point’s
contribution to the client’s updates. The core idea behind
our attack is to isolate individual data points within strips de-
fined by parallel hyperplanes and then iteratively reconstruct
the entire batch by leveraging the knowledge of per-data-
point gradient contributions.

This approach is effective for all classification tasks, in-
cluding those involving low-dimensional tabular data where
existing state-of-the-art attacks perform poorly, demonstrat-
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ing its robustness across diverse data modalities. Concretely,
our key contributions are the following:

• We derive an analytical upper bound on the accuracy
of existing data reconstruction attacks on random data.

• We show how a malicious server can control each data
point’s contribution to the client’s updates.

• We propose a perfect reconstruction algorithm for clas-
sification tasks that is agnostic to input dimensionality.
Hence, while most of the existing literature primarily
addresses image classification, our attack can recon-
struct both image and tabular data.

• Our method enables full recovery of all samples within
a batch and remains effective regardless of batch size,
provided that the number of training rounds is suffi-
ciently high.

• We validate our findings on both image and tabu-
lar datasets, achieving perfect reconstruction on large
batches of up to 4,096 data points, where our baseline
fails to recover batches of 64 inputs.

2 BACKGROUND

In federated learning, a set of users U , orchestrated by a cen-
tral server, cooperate to optimize a shared model θ, which
minimizes the weighted sum of clients’ empirical risks:

min
θ∈Rd

L(θ) =
∑
u∈U

puL(θ,Du), (1)

where Du = {(xu
i , y

u
i )}n

u

i=1 is the local dataset of client u,
Lu measures the loss of model θ on points inDu, and pu is a
positive weight quantifying the relative importance of client
u, s.t.

∑
u∈U pu = 1. Typical choices in FL are pu = 1/|U|

and pu ∝ nu.

Federated Learning typically involves iterative algorithms
that operate in multiple communication rounds between
clients and the central server. At each communication round,
clients receive the current global model from the server
and transmit updates computed on their local datasets. The
nature of the updates depends on the specific federated opti-
mization algorithm in use. For instance, in FedSGD [Chen
et al., 2016, McMahan et al., 2017], each client computes
and transmits a single gradient update ∇θL(θ,Du). In con-
trast, algorithms like FedAvg [McMahan et al., 2017] allow
clients to perform multiple local stochastic gradient descent
steps before sending their updated model parameters to the
server.

While FL preserves data locality, the transmitted updates—
whether gradients or model parameters—can leak sensitive
information about the clients’ datasets [Melis et al., 2019,
Diana et al., 2025, Fowl et al., 2022]. This vulnerability
exposes FL to adversarial attacks aimed at reconstructing
private data [Zhu et al., 2019, Fowl et al., 2022, Boenisch

et al., 2023, Dimitrov et al., 2024]. The success rate of such
attacks depends on the adversary’s capabilities. In what
follows, we consider the attacker to be the server.

Two adversarial settings are commonly considered in the
literature: the honest-but-curious setting [Zhu et al., 2019,
Dimitrov et al., 2024] and the malicious setting [Fowl et al.,
2022, Boenisch et al., 2023]. In the honest-but-curious set-
ting, the server passively observes updates without interfer-
ing with the training process [Paverd and Martin, 2014]. In
the malicious setting, the server actively manipulates the
training process by transmitting modified models designed
to induce privacy leakage. In both settings, two main cate-
gories of attacks have been proposed: optimization-based
attacks and analytical attacks.

2.1 OPTIMIZATION-BASED ATTACKS

In optimization-based attacks, the server attempts to recon-
struct the client’s data by minimizing the difference between
the actual update sent by the client to the server (e.g., the
gradient or updated model) and the update that would have
been computed by the client from the reconstructed data.
These attacks often begin with dummy inputs, which are
progressively refined through iterative steps.

Early works [Zhu et al., 2019, Zhao et al., 2020, Geiping
et al., 2020, Yin et al., 2021, Dimitrov et al., 2022] proposed
the recovery of image inputs within the honest-but-curious
setting, but were successful only on small (≤ 50) batch sizes
and, even then, produced noisy reconstructions. Kariyappa
et al. [2023] reformulated the reconstruction task as a blind
source separation problem, enabling recovery in presence
of secure aggregation [Bonawitz et al., 2017], however, they
still only obtained very noisy images on batches larger than
200 data points (see Figure 6 in their work).

Vero et al. [2023] introduced the first optimization-based
attack targeting tabular data and reported a 70% reconstruc-
tion success rate on a batch of 128 samples.

Overall, these attacks struggle with the challenge posed by
gradient aggregation, and do not scale effectively to large
batch sizes without requiring auxiliary data. To address these
shortcomings, alternative approaches consider a scenario
where the server is malicious. In this context, Wen et al.
[2022] proposed a fishing strategy that alters the weights of
the classification layer of a neural network to amplify the
gradient contribution of a single input within a batch, in-
creasing the success rate of the optimization step. However,
their approach relies on estimating the distribution of one
input feature, which the authors assume to follow a normal
distribution. While this assumption may hold true for image
data, it is often unrealistic for tabular datasets, where fea-
tures can be binary or categorical. Alternatively, Garov et al.
[2024] designed an encoder-decoder architecture to isolate
individual input gradients from the aggregated update in a



latent space using an encoder to reduce the detectability, and
subsequently reconstruct the original input with a decoder.
Nonetheless, their method depends on access to auxiliary
data for training the encoder-decoder network and struggles
to achieve high-quality recovery for approximately half of
the images in a batch of 512 samples.

2.2 ANALYTICAL ATTACKS

Unlike optimization-based attacks, analytical methods aim
to exactly recover input data by exploiting the properties
of fully connected layers in neural networks. Prior works
[Phong et al., 2017, Geiping et al., 2020] have shown that the
input to a biased linear layer followed by a ReLU activation
function can be exactly reconstructed from its gradients. In
what follows, we describe this technique, which forms the
core of our attack.

For simplicity, consider a client training a model where
the first layer is a fully connected (FC) layer with input
vector x ∈ Rd and output vector z ∈ RN . Let W ∈ RN×d

and b ∈ RN denote the weight matrix and the bias vector,
respectively. Let the output of the i-th neuron in the layer be
zi = ReLU(Wix+bi). Given a sample (xj , yj), let Lj and
zi,j denote the loss and the output of neuron i for this sample,
respectively. The gradient of the loss with respect to Wi

and bi can be computed as follows:1 ∂Lj

∂Wi
=

∂Lj

∂zi
∂zi
∂Wi

=
∂Lj

∂zi
xj1zi,j>0 and ∂Lj

∂bi
=

∂Lj

∂zi
∂zi
∂bi

=
∂Lj

∂zi
1zi,j>0, from

which it follows that ∂Lj

∂Wi
=

∂Lj

∂bi
xj . Consequently, as long

as ∂Lj

∂bi
̸= 0 (which requires that xj activates neuron i, i.e.,

Wixj + bi > 0), knowing the gradient of the model loss
enables exact reconstruction of the input:

xj =
∂Lj

∂Wi

(
∂Lj

∂bi

)−1

. (2)

However, in practice, gradients are computed on a batchB =
{(xj , yj)}nj=1 of size n, rather than on a single input. The
attacker can then only observe the gradient of the average
loss L = 1

n

∑n
j=1 Lj :

∂L
∂Wi

=
1

n

n∑
j=1

∂Lj

∂bi
xj (3)

∂L
∂bi

=
1

n

n∑
j=1

∂Lj

∂bi
. (4)

If ∂L
∂bi
̸= 0—implying that at least one input activates neu-

ron i—the attacker can reconstruct a combination gi of the
inputs from this gradient [Zhang et al., 2023, Theorem 1]:

1The expression ∂f
∂x

, where f : Rd → RN , can also be inter-
preted as the Jacobian of the function f , with the (less common)
convention that

(
∂f
∂x

)
i,j

=
∂fj
∂xi

.

gi =
∂L
∂Wi

·
(
∂L
∂bi

)−1

=

n∑
j=1

αjxj , (5)

αj =

∂Lj

∂bi∑n
k=1

∂Lk

∂bi

. (6)

Equations 5 and 6 are the starting points for different attacks.

2.2.1 Sparsity-Based Attacks

Several works, commonly referred to as sparsity-based at-
tacks, exploit the sparseness induced by the ReLU activation
to recover individual data points. In the honest-but-curious
setting, Dimitrov et al. [2024] proposed a method that lever-
ages the low-rank structure of gradients and exploits ReLU-
induced sparsity to efficiently guide a greedy search that
enables the recovery of the inputs. Their attack achieves
perfect recovery for batches with ≤ 25 data points but fails
to scale to larger batch sizes due to the exponential compu-
tational cost w.r.t. the number of samples.

Alternatively, some approaches introduced malicious model
modifications to enforce sparsity in the gradients and in-
crease the percentage of single inputs that activate a neuron.
Boenisch et al. [2023] presented a trap weights method,
where the FC layer’s weights are randomly initialized, with
one half having positive values and the other half larger neg-
ative values. The idea behind this approach is to maximize
the probability that a single input activates a given neuron
and can be reconstructed using (2). Zhang et al. [2023]
extended this attack to networks with sigmoid activation,
though their method requires additional data to fine-tune
the malicious weights effectively. Pasquini et al. [2022]
further leveraged ReLU-induced sparsity to bypass secure
aggregation [Bonawitz et al., 2017].

As we will demonstrate in Sec. 3, sparsity-based attacks are
significantly less effective on low-dimensional data, such as
tabular datasets.

2.2.2 Other Analytical Attacks

Some analytical attacks can recover input data without in-
ducing gradient sparsity. Fowl et al. [2022] assume prior
knowledge of the distribution of a linear combination of
client inputs and configure neuron biases such that the gra-
dients with respect to different neurons’ weights differ by
only a single input, which can be recovered using (3) and (4).
The first round of our parallel search method presented in
Sec. 4.4 is similar to their approach but there are two crucial
differences: (i) they require prior knowledge of a distribu-
tion, while we dynamically discover the appropriate biases,
and (ii) they do not propose any iterative procedure that en-
ables a bias search across multiple communication rounds,
as we do.



Zhao et al. [2024] adapted this method to break secure aggre-
gation, designing convolutional filters to isolate individual
client’s gradient contributions.

2.2.3 Extension to other architectures

Until now, we have discussed reconstruction attacks tar-
geting the first layer in the network. These attacks can be
directly extended when the attacked layer is preceded by
additional FC layers.

Several works have explored adapting these attacks to con-
volutional neural networks (CNNs). Boenisch et al. [2023]
proposed modifying the weights of convolutional layers to
act as identity mappings, allowing the attacker to recover the
original input from the reconstructed input of the first FC
layer. However, pooling layers and dropout can disrupt the
gradient structure, reducing the effectiveness of the recovery
process. An alternative approach, introduced by Kariyappa
et al. [2023] and Zhang et al. [2023], focuses on reconstruct-
ing the feature maps that serve as inputs to the first fully
connected layer. Once these feature maps are obtained, the
attacker solves an optimization problem to recover the origi-
nal input. Additionally, Wang et al. [2024] proposed specific
parameter modifications to facilitate analytical recovery in
CNNs, further broadening the applicability of these attacks.

Other works have specifically targeted transformer-based
models. Lu et al. [2022] demonstrated that analytical im-
age recovery is feasible even in attention-based networks;
however, their attack is restricted to a batch size of one.
Fowl et al. [2023] and Chu et al. [2023] extended their ear-
lier work [Fowl et al., 2022] to extract textual data from
clients; however, their methods do not extend to other data
modalities, such as images.

3 LIMITATIONS OF EXISTING
SPARSITY-BASED ATTACKS

The sparsity-based attacks proposed by Boenisch et al.
[2023], Zhang et al. [2023] attempt to modify the param-
eters of the FC layer so that each neuron in the layer is
activated only by a single input. Given the batch B =
{(x1, y1) . . . , (xn, yn)}, neuron i is activated only from
input xj if Wixj + bi > 0 and Wixk + bi < 0 for
k ∈ {1, . . . , n}\{j}. In this section we provide a geometric
interpretation of the problem and demonstrate that the accu-
racy of sparsity-based attacks is fundamentally constrained
by the dimensionality of the input they aim to reconstruct.

Consider the set of inputs for which the activation value of
neuron i is equal to 0, i.e., {x ∈ Rd |Wix+ bi = 0}. This
set is a hyperplane in the Euclidean space Rd orthogonal
to the vector Wi. The attacks proposed by Boenisch et al.
[2023], Zhang et al. [2023] can be interpreted as identify-
ing hyperplanes orthogonal to random directions Wi that

separate a single input from the rest of the inputs in the
batch, which we denote by Bx = {x1,x2, . . . ,xn}. Given
a gradient computed on the batch B, the maximum number
of recoverable points is upper-bounded by the number of
points in Bx that are linearly separable from all the others,
i.e., the number of vertices on the convex hull of Bx. By
bounding the expected number of vertices, we derive the
following theorem (proof in App. A):

Theorem 3.1. Let the input features of the client’s local
dataset consist of n random points in Rd that are drawn

1. uniformly at random from the unit ball, or

2. uniformly at random from the unit hypercube, or

3. from a centered normal distribution with covariance
matrix Id.

Consider training a machine learning model through
FedSGD with full-batch updates. The expected number of
samples that can be reconstructed by any attack relying on
isolating individual inputs from the rest of the batch is:

1. O(n(d−1)/(d+1)),

2. O(logd−1 n),

3. O(log(d−1)/2 n),

respectively for the three distributions above.

Theorem 3.1 shows that, for a fixed input dimension d, the
expected fraction of reconstructed samples—i.e., the attack
success rate—approaches zero asymptotically as the batch
size n increases. This result explains the attack performance
degradation observed by Boenisch et al. [2023], Zhang
et al. [2023] when larger batch sizes are used. Furthermore,
the theorem highlights a fundamental limitation in low-
dimensional settings: the smaller the input dimension d, the
lower the success rate. This indicates that while such attacks
can succeed in high-dimensional regimes, their effectiveness
diminishes substantially when applied to low-dimensional
data. Moreover, high-dimensional data often lies on man-
ifolds of much lower intrinsic dimensionality [Narayanan
and Mitter, 2010, Pope et al., 2021, Brown et al., 2023],
potentially reducing the success rate of these attacks even
further than predicted by Theorem 3.1.

4 OUR ATTACK

In this section, we first present our threat model (Sec. 4.1)
and then introduce our attack assuming the attacker initially
exploits a single neuron in the linear layer (Sec. 4.2 and 4.3).
We subsequently demonstrate how the attacker can lever-
age all neurons in parallel to significantly accelerate the
reconstruction process (Sec. 4.4).



4.1 THREAT MODEL

In this work, we consider a malicious server whose intent is
to recover clients’ private data by altering model parameters,
consistent with the setting described in Wen et al. [2022],
Boenisch et al. [2023], Zhang et al. [2023], where clients
trust the server and have no control over the model param-
eters. We note that a third party capable of intercepting
communications between the client and server could also
act as an attacker.

Additionally, since the central server orchestrates the FL
protocol, we assume that it is responsible for selecting the
clients participating in each training round. Unlike previous
works [Fowl et al., 2022, Wen et al., 2022, Boenisch et al.,
2023, Zhang et al., 2023, Zhao et al., 2024], we assume the
server has no knowledge of the clients’ data distribution and
does not possess any auxiliary training data. The information
available to the server is limited to some bounds on the range
of the data after preprocessing. We suppose that clients
follow the FedSGD protocol and at each round compute a
full-batch gradient update.

4.2 LOCATE AND RECONSTRUCT THE INPUTS

Consider that the client under attack has dataset B with
corresponding inputs Bx. For simplicity, we assume that
the neural network consists solely of a FC input layer with
ReLU activations (with parameters W(1) ∈ RN×d and
b(1) ∈ RN ) and a FC classification layer (with parameters
W(2) ∈ RC×N and b(2) ∈ RC ). The output of the network
can be expressed as z(2) = W(2)z(1) + b(2) ∈ RC , where
z(1) = ReLU(W(1)x + b(1)) ∈ RN . The attack can be
extended to other architectures as described in other papers
(see discussion in Sec. 2.2.3).

The server selects a random hyperplane by sampling W
(1)
i

from an arbitrary random distribution. During different com-
munication rounds, it sends the client under attack a model
whose parameters are constant except for the bias value b(1)i .
Geometrically, changing b

(1)
i corresponds to translating the

hyperplane through the input space (see Fig. 1). The goal is
to find a sequence of scalars b̂(1)i,0 ≤ · · · ≤ b̂

(1)
i,n such that for

each consecutive pair of hyperplanes W(1)
i x+ b̂

(1)
i,k = 0 and

W
(1)
i x + b̂

(1)
i,k+1 = 0, exactly one input xj in the client’s

local dataset lies in-between them. Note that as the bias
transitions between consecutive values in the sequence, a
single additional input activates the neuron i.

We now explain how the server determines this sequence of
bias values and how it can reconstruct the isolated samples.
To facilitate the exposition, we introduce an assumption
here, which we justify in Sec. 4.3.

Assumption 4.1. For each input (xj , yj) ∈ B and each
value of b(1)i tested by the attacker, if neuron i is activated

by the input xj for a given value of b
(1)
i , the derivative

∂Lj/∂b
(1)
i remains independent of b(1)i .

According to (5), for a given bias value b
(1)
i,k , the server

observes the client’s aggregate gradient gk =
∑n

j=1 αj,kxj

Given hyperplanes W(1)
i x+b

(1)
i,k = 0 and W(1)

i x+b
(1)
i,k+1 =

0, the attacker can determine whether they enclose at least
one point by comparing gk and gk+1. Indeed, if there is
no input point between the two hyperplanes, the same set
of inputs activates neuron i and αi,k = αi,k+1 (because of
Assumption 4.1), then gk = gk+1. If gk ̸= gk+1, then the
server knows that there is at least one input in-between and,
by binary search, can progressively isolate the inputs as far
as their projections along the direction (W

(1)
i )⊺ differ by

more than a threshold ε (see App. D for its configuration
rule).

After isolating all the input points, the attacker can recon-
struct the inputs sequentially from x1 to xn, where we rela-
bel the inputs so that xj ∈ Bx is the input between the two
hyperplanes corresponding to b̂

(1)
i,j−1 and b̂

(1)
i,j . Input x1 can

be directly reconstructed using (2) with the client’s loss gra-
dient computed for b̂(1)i,1 . We note that the attacker also knows

∂L1/∂b
(1)
i for b(1) = b̂

(1)
i,1 , i.e., when x1 activates neuron i.

Suppose now that the attacker already reconstructed the first
k inputs x1, . . . ,xk and the corresponding partial deriva-
tives ∂L1/∂b

(1)
i , . . . , ∂Lk/∂b

(1)
i when the corresponding

inputs activate neuron i. Let hk denote the partial derivative
of the loss for b̂(1)i,k , i.e., hk = ∂L/∂b(1)i . Due to (4) and

Ass. 4.1, the attacker can reconstruct ∂Lk+1/∂b
(1)
i by

∂Lk+1

∂b
(1)
i

= n(hk+1 − hk). (7)

The attacker can then compute the set of coefficients αj,k+1

in the linear combination of gk+1 in (6) and reconstruct
xk+1 by

xk+1 =
gk+1 −

∑k
j=1 αj,k+1xj

αj,k+1
. (8)

While we have described the process in two consecutive
phases—first isolating the inputs with the hyperplanes and
then reconstructing the inputs—we note that these proce-
dures can be intertwined. In particular, inputs x1, . . . ,xk

can be reconstructed as soon as the corresponding bias val-
ues b̂(1)i,1 , . . . , b̂

(1)
i,k have been identified.

4.3 CONTROLLING THE GRADIENTS

Assumption 4.1 requires that the gradients ∂Lj/∂b
(1)
i are

constant across attack rounds (i.e., for different values
of b(1)i , as far as the corresponding input activates neuron i).



Figure 1: Illustration of our attack strategy, in which hy-
perplanes are positioned to isolate a single image within
the strip they define. The light-blue region represents the
half-space where W

(1)
i x+ b

(1)
1 > 0.

Here we show how we can satisfy this assumption for any
classification task over the set of classes C. Consider a model
that employs a standard cross-entropy loss function. Given
a sample (xj , yj), we have

Lj = − log

(
exp (z

(2)
yj )∑

c∈C exp (z
(2)
c )

)
.

Simple calculations (App. B) show that if image j activates
neuron i, then

∂Lj

∂b
(1)
i

= −w(2)
yj ,i

+
∑
k∈C

w
(2)
k,i

exp (z
(2)
k )∑

c∈C exp (z
(2)
c )

, (9)

where z
(2)
k = W

(2)
k (ReLU(W(1)xj + b(1))) + b

(2)
k . If we

now set large enough bias values in the second layer, we

obtain exp (z
(2)
k )∑

c∈C exp (z
(2)
c )
≈ 1

|C| , and then

∂Lj

∂b
(1)
i

≈ −w(2)
yj ,i

+
∑
k∈C

w
(2)
k,i

1

|C|
. (10)

In this way, the partial derivatives become independent
of b

(1)
i and αj can be artificially set to a non-negligible

value without knowledge of the yj .While this reasoning
holds for any choice of the matrix W(2), we require
∂Lj/∂b

(1)
i ̸= 0 for the input xj to have a non-zero co-

efficient in the aggregate gradient. Furthermore, for the effi-
cient parallel search described in the next section, we want
∂Lj/∂b

(1)
i1

= ∂Lj/∂b
(1)
i2

across all neurons, which requires
the columns of W(2) to be identical. These constraints are
easily satisfied since the attacker has control over all model
parameters.

Algorithm 1 Parallel attack
Input: [l1, u1] initial search space of bias values, the set of
attack rounds T = {1, ..., T}

1: G ← {}
2: I ← {[l1, u1]}
3: Draw a vector w ∈ Rd and a vector v ∈ RC , set each

row of W(1) to w and each column of W(2) to v
4: Set all entries of b(2) to the same large value
5: for t ∈ {1, ..., T} do
6: b(1) ← UpdateHyperplanes(I)
7: server sends malicious parameters θ to the client
8: server receives gradient updates ∂L

∂W(1) and ∂L
∂b(1)

9: server computes gi using (5), ∀i ∈ {1, ..., N}
10: G ← G ∪ {(gi,

∂L
∂b

(1)
i

, b
(1)
i ),∀i = {1, ..., N}}

11: G, I ← UpdateSearchState(G)
12: Reconstruct the inputs from G using (8)

4.4 PARALLEL SEARCH

We now present the complete version of our attack. So far,
we have described a method in which the attacker tests a
different bias value for neuron i in different rounds. This
approach can be parallelized across all the N neurons in the
layer, significantly reducing the number of required commu-
nication rounds. The procedure is described in Algorithm 1.

The initial search space for the bias values, [l1, u1], is deter-
mined based on the range of possible input feature values.
In the first communication round, this interval is divided
into N equal-length subintervals. The procedure Update-
SearchState in Algorithm 2 identifies which subintervals
require further exploration. Subintervals containing no in-
puts, as well as those whose size becomes smaller than the
threshold ε, are discarded.

At each round, I represents the set of remaining subin-
tervals. The attacker tests N new bias values within these
subintervals, distributing the values roughly evenly among
them. More precisely, if N cannot be evenly divided among
the subintervals, the extra bias values are assigned to the
longer intervals. This procedure, called UpdateHyperplanes,
is detailed in Algorithm. 3.

Algorithm 2 UpdateSearchState
Input: The set of strips G.

1: I ← {}, Gnew ← {}
2: sort G by ascending value of the bias values
3: for i = 2, . . . , |G| do
4: if gi ̸= gi−1 and bi − bi−1 ≥ ε then

5: Gnew ← Gnew ∪ {
(
gi,

∂L
∂b

(1)
i

, b
(1)
i

)
}

6: I ← I ∪ {[b(1)i−1, b
(1)
i ]}

7: Return Gnew, I



Algorithm 3 UpdateHyperplanes
Input: set of search intervals I =
{[l1, u1], [l2, u2], . . . , [lk, uk], . . .}

1: M = |I|
2: if M = 1 then
3: b(1) ←

{
l1 + iu1−l1

N+1 |i = 1, . . . , N
}

4: else
5: sort I by descending length (uk − lk)
6: r ← N mod M, q ← ⌊N/M⌋, j ← 0
7: for k = 1, ...,M do
8: if k < r then
9: b

(1)
j:j+q ← {lk + iuk−lk

q+2 |i = 1, . . . , q + 1}
10: j ← j + q + 1
11: else
12: b

(1)
j:j+q−1 ← {lk + iuk−lk

q+1 |i = 1, . . . , q}
13: j ← j + q
14: Return b(1)

4.5 COMPLEXITY ANALYSIS

To evaluate the time complexity of the attack (Alg. 1), we
decompose the operations performed by the server during
each attack round, and subsequently analyze the total com-
putational cost.

At each round, the server first prepares the malicious hy-
perplanes for the targeted client (line 6). This procedure
requires O(n log n) operations, primarily due to the sort-
ing operation on the set of subintervals I of size at most
n (line 5 in Alg. 3).2 After receiving the gradients from
clients, the server then computes N observations gi of size
d, which requires O(Nd) operations, and adds them to the
current set of strips G (lines 9 and 10). After this step, the
size of G becomes at most n+N . To prepare the next-round
attack (Alg. 2), the server updates the search space over the
strips, which involves sorting the set G and iterating over
it to compare vectors gi. This step incurs a computational
cost of O(max((N + n) log(n+N), (n+N)d)).

We then analyze the number of rounds T required to iso-
late all inputs (i.e., achieve full batch recovery) with high
probability. Assuming that the hyperplane w is drawn from
a standard normal distribution and that N ≥ n, we show
that T is O(log n

N ) when the threshold ϵ is set to O(1/n2)
(Appendix. D).

The final reconstruction step requires an additional O(nd)
operations (line 12). With hardware optimized for paral-
lel computation, the dimensional dependency on d in the
above steps can be effectively mitigated, resulting in a total
complexity of O

(
log n

N ((N + n) log(n+N))
)
.

2As we can see from Alg. 2, I and Gnew consist of non-
overlapping intervals, each containing at least one point. Therefore,
given a batch size of n, we have |I| ≤ n and |Gnew| ≤ n.

5 EXPERIMENTS

We conduct experiments to demonstrate the efficacy of our
proposed attack on both image and tabular data 3. Our eval-
uation encompasses two distinct datasets, each representing
a different data modality. For image classification tasks,
we use the ImageNet ILSVRC 2012 dataset [Russakovsky
et al., 2015], that comprises a total of 1000 classes. As pre-
processing steps, all images are rescaled to the [0, 1] range
and resized to 224 × 224 pixels. To evaluate performance
on tabular data, we test the Human Activity Recognition
Using Smartphones dataset [Anguita et al., 2013] (HARUS),
which includes recordings of 30 subjects performing vari-
ous activities while carrying a waist-mounted smartphone
equipped with embedded sensors. The dataset comprises 561
features and 6 classification labels, representing the activity
performed by each user. All features are scaled between −1
and 1. Each client trains an FC-NN with two layers. Un-
less stated otherwise, the first layer consists of N = 1000
neurons. For all the experiments, we assume that training
is performed using FedSGD with full-batch updates. An
image is considered reconstructed if it has SSIM ≥ 0.99 rel-
ative to the true image (Figures 9 and 10 provide examples
of reconstructed images). For tabular data, we consider an
input to be perfectly reconstructed if the L2-norm difference
between the true and recovered data point is < 0.1.

We compare our method to the Curious Abandon Honesty
(CAH) attack [Boenisch et al., 2023], allowing, for a fair
evaluation, their attack to be performed across multiple
communication rounds. Each experiment is repeated three
times with different random seeds to ensure consistency and
reliability of the results. Details on the configuration of both
attacks can be found in App. E.

5.1 EXPERIMENTAL RESULTS

The experimental results demonstrate the superior perfor-
mance of our attack over the baseline across both ImageNet
and HARUS datasets. On ImageNet, after 10 communica-
tion rounds, our attack consistently outperforms the baseline
across all tested batch sizes, successfully recovering the en-
tire batch in every scenario, see Figure 2a. Similarly, on
HARUS, our attack achieves significant improvements, re-
covering 4,096 data points after 50 rounds, see Figure 2b. On
both datasets, we observe a decrease in the fraction of sam-
ples reconstructed by CAH as the batch size increases. This
demonstrates the baseline’s limitations in recovering large
batches when the input dimension is held constant, which is
in accordance with our theoretical findings in Sec. 3.

Figures 2c and 2d further highlight the advantages of our
attack and its parallel search strategy. Initially, the percent-
age of recovered inputs remains below 2% of the full batch

3Code: https://github.com/francescodiana99/
cutting-through-privacy

https://github.com/francescodiana99/cutting-through-privacy
https://github.com/francescodiana99/cutting-through-privacy


(a) ImageNet (b) HARUS

(c) ImageNet (d) HARUS

Figure 2: The percentage of perfectly reconstructed inputs on ImageNet and HARUS for a two-layer FC NN with N = 1000
neurons in the first layer. In 2a the reconstruction is evaluated after 10 communication rounds, while in 2b it is measured
after 50 rounds. Figure 2c illustrates the impact of the number of communication rounds for batch size n = 1024, and 2d for
n = 4096.

Figure 3: Difference in the percentage of correctly recon-
structed inputs rate between our attack and the CAH attack
on the HARUS dataset.

for both the attacks but, as the number of communication
rounds increases, the success rate of our method improves
significantly. In contrast, the baseline shows only marginal
gains, as it relies on a randomized search approach.

Figure 3 illustrates the performance difference between our
attack and CAH on the HARUS dataset. Two key trends
emerge from our results. First, the performance gap in-
creases with both the number of communication rounds
and the batch size. This is clearly visible in the figure, with

the largest performance difference (97.75 percentage points)
observed at 50 rounds and a batch size of 4096. Second, dif-
ferent regions of the heatmap reveal the relative strengths
of each approach. The top-left region (small batches, many
rounds) suggests CAH’s effectiveness on smaller batches;
the bottom row highlights its advantage in one-shot attacks.
However, this advantage relies on their trap weights ini-
tialization, which requires the attacker to have access to
some representative data to tune some hyperparameters (see
App. E). This relative advantage disappears as the batch size
increases. The top-right region (large batches, many rounds)
highlights our attack’s ability to scale, demonstrating its
potential for larger batches. This supports our claim that a
sufficient number of rounds enables recovery for arbitrary
large batches.

We also evaluate the effect of the number of neurons N in
the fully connected attack layer and its relationship with
attack accuracy, see Table 1. While we observe that the
percentage of reconstructed data increases with a larger
number of neurons for both attacks, our attack outperforms
the baseline in all but one combination of rounds and neuron
counts. In many cases, our attack reconstructs nearly 100
times more inputs than CAH. We highlight a key distinction:
the baseline reconstructs around 3.6% of the input after 50
rounds with 2000 neurons, i.e., using 100 000 different ran-
dom hyperplanes. On the other hand, our attack manages to
reconstruct 38% of the batch after only 10 rounds with only
500 neurons, i.e., using only 5000 different hyperplanes. In
comparison, our attack reconstructs more than 10 times as



Table 1: Effect of number of neurons N in the reconstruction layer. Each value indicates the percentage of data exactly
recovered in attacks on HARUS dataset, when n = 4096.

# Rounds # Neurons
100 200 500 1000 1500 2000

1
Ours 0.00±0.00 0.2±0.03 0.05±0.02 0.15±0.06 0.15±0.10 0.21±0.09

CAH 0.01±0.03 0.02±0.01 0.04±0.01 0.07± 0.04 0.13±0.02 0.15±0.05

5
Ours 1.11±0.31 2.82±0.37 9.33±4.66 31.93±1.80 49.60±0.80 64.80±2.08

CAH 0.07±0.03 0.08±0.01 0.20±0.04 0.33±0.06 0.50±0.03 0.66±0.09

10
Ours 3.11±0.88 8.33±2.70 38.02±1.54 70.87±1.44 86.54±0.44 93.17±0.19

CAH 0.08±0.06 0.15±0.03 0.31±0.07 0.62±0.01 0.81±0.09 1.06±0.08

30
Ours 21.10±1.44 51.64±1.57 88.38±0.58 99.06±0.29 99.85±0.10 99.98±0.03

CAH 0.25±0.07 0.37±0.09 0.78±0.09 1.38±0.08 1.85±0.13 2.46±0.20

50
Ours 42.52±2.07 75.36±1.68 97.84±0.21 99.98±0.03 100.00±0.00 100.00±0.00

CAH 0.37±0.07 0.53±0.12 1.24±0.24 2.23±0.10 2.70±0.12 3.62±0.47

many input points using 20 times fewer hyperplanes than
the baseline, thanks to its efficient search procedure for
correctly positioning the hyperplanes that isolate the inputs.

In terms of computational overhead, we evaluate our attack
on the most computationally demanding setting—ImageNet
with n = 1024. In this case, the attack requires less than two
seconds per round (primarily for lines 9 and 11 in Alg. 1) and
under four seconds for the final image reconstruction phase
(line 12), using an NVIDIA GeForce RTX 2080 Ti GPU.
Since attacks are carried out across consecutive rounds,
this additional overhead of approximately two seconds per
round is negligible compared to the tens of seconds typically
required to transmit the model in a single communication
round.

We provide additional experimental results on HARUS, Ima-
geNet, and CIFAR-10 [Krizhevsky, 2009] in App. F, includ-
ing tests on a CNN architecture and extension to the multiple
local steps setting, relaxing the assumption of full-batch up-
dates. We also evaluate the effect of data heterogeneity and
the effect of noise. These results confirm the same qualita-
tive trends observed in our main results, further validating
our conclusions.

6 DISCUSSION

Secure aggregation [Bonawitz et al., 2017] is often proposed
as a defense mechanism against privacy attacks, as it ag-
gregates updates from multiple clients without revealing
individual client updates to the server. However, the server
still obtains the average of the gradients computed over the
entire union of client datasets. With a sufficient number of
communication rounds, our attack could still recover all
underlying data, though not necessarily associate it with a
specific client.

Therefore, the only robust defense against our attack that we
are aware of would involve implementing local differential
privacy (LDP) [Dwork, 2006, Bhowmick et al., 2019] on

the client side. By adding noise to updates, LDP alters the
coefficients associated to each input in (3), thus hindering
precise localization and subsequent reconstruction of the
data points, at the cost of decreased model utility. We con-
ducted a preliminary evaluation of our attack’s performance
when clients add Gaussian noise to their updates. Results in
App. F show that noise perturbation decreases the proportion
of inputs that our attack can perfectly recover. Nevertheless,
our method remains effective: even when clients add noise,
data reconstruction is still feasible and we consistently out-
perform the baseline in terms of reconstruction accuracy.

7 FUTURE WORKS AND CONCLUSION

In this work, we proposed a novel data reconstruction attack
in Federated Learning for classification tasks, demonstrating
that a malicious server can manipulate model parameters to
perfectly recover clients’ input data, regardless of the batch
size.

Exploring the applicability of our attack to other machine
learning tasks and architectures remains a promising di-
rection for future work. Although our current approach is
broadly applicable—by first recovering embeddings from
the first fully connected layer and then applying a model
inversion attack, following the methodology of Kariyappa
et al. [2023] and Zhang et al. [2023]—the resulting recon-
structions would still not be perfect. Therefore, developing
analytical attacks that enable accurate, end-to-end recon-
struction from more complex architectures and from dif-
ferent tasks remains an important and promising topic for
future research.

Extending this attack to settings where clients perform mul-
tiple local epochs presents also an interesting challenge. In
App. F, we carried out a preliminary evaluation by con-
sidering a scenario with one local epoch using minibatch
stochastic gradient descent. However, effectively handling
cumulative minibatch updates over multiple local epochs
remains an open question.
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A PROOF OF THEOREM 3.1

Proof. By definition of the attack method, a point can only be reconstructed using (2) if it is linearly separated by injecting
malicious weights. Thus, the number of recovered points is upper-bounded by the number of linearly separable points in the
batch Bx, which corresponds to the number of vertices on its convex hull. This value is bounded by:

1. O(n(d−1)/(d+1)) if Bx is sampled uniformly at random from a unit ball [Raynaud, 1970], or

2. O(logd−1 n) if Bx is sampled uniformly at random from the unit hypercube [Bentley et al., 1978], or

3. O(log(d−1)/2 n) if Bx is sampled from a normal distribution with covariance matrix Id [Raynaud, 1970].

B PARTIAL DERIVATIVE WITH RESPECT TO THE BIAS

By application of the chain rule, the gradient ∂Lj

∂z
(1)
i

can be computed as

∂Lj

∂b
(1)
i

=
∂Lj

∂z
(1)
i

=
∂Lj

∂z(2)
∂z(2)

∂z
(1)
i

. (11)

Considering the k-th element in z(2), the first term in (11) is

∂Lj

∂z
(2)
k

=


−1 + exp (z
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, if k ̸= yj

, (12)

and the second term in (11) is
∂z

(2)
k

∂z
(1)
i

= w
(2)
k,i . (13)

By substituting (12) and (13) into (11), we obtain:
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.
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Table 2: Effect of the number of hidden layers. Each value indicates the percentage of data exactly recovered on attacks on
ImageNet, when n = 512.

# Rounds # Hidden Layers
1 2 3 4

1 0.20±0.00 0.20±0.00 0.20±0.00 0.20±0.00

2 35.61±3.12 35.16±3.32 35.29±3.33 35.29±3.33

3 78.38±2.79 77.99±2.93 78.26±2.66 78.19±2.74

5 97.14±0.98 97.01±1.19 97.14±0.98 97.14±0.98

7 99.74±0.45 99.74±0.45 99.74±0.45 99.74±0.45

10 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

C MODIFICATIONS FOR NEURAL NETWORKS WITH MULTIPLE LAYERS

Our method can be easily adapted to any fully-connected neural network with L layers with ReLU activation function. In
the following, to simplify the notation we will omit the ReLU activation, assuming that the input is propagated through each
layer only if the corresponding output is positive.

Let us start by considering the case of a network with two hidden layers, such that

z(1) = ReLU(W(1)xj + b(1)),

z(2) = ReLU(W(2)z(1) + b(2))

z(3) = W(3)z(2) + b(3),

where W(3) ∈ RC×m, W(2) ∈ Rm×N , and W(1) ∈ RN×d. For a fixed neuron i, we want to compute the gradient ∂Lj

∂b
(1)
i

.

Using the chain rule, we can express it as:
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Now, substituting the result from (14) into this expression, we get:
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where 1k=yj
indicates that the term is 1 only when k = yj , (i.e., when the class index matches the true label yj). To extend

this derivation to a network with L layers, we can recursively apply the chain rule and obtain:

∂Lj

∂b
(1)
i

=
∑
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...
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wml,ml−1
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where γ
(L)
k =

exp (z
(L)
k )∑

c∈C exp (z
(L)
c )

, and m1, ...,mL indicate the number of rows in W(L).

Therefore, by assigning identical random values to each column of the hidden layers W(2)...W(L−1), we can ensure
identical inputs for all classification neurons, reducing potential errors due to varying gradient contributions ∂Lj

∂b
(1)
i

.

To validate our claim, we conduct experiments on ImageNet using models with 1, 2, 3, and 4 hidden layers. The first layer
has N = 1000, while each subsequent layer consists of 100 neurons. We set the malicious parameters of the input and
classification layers as described in App. E, and generate the columns of each additional hidden layer fromN (0, 10−6). The
corresponding bias terms are also scaled by a 10−3 factor. Table 2 demonstrates that, regardless of the number of hidden
layers, the reconstruction accuracy of the attack exhibits only minor fluctuations, confirming that the number of layers does
not significantly affect the performance of our attack.



D BOUND ON THE NUMBER OF ROUNDS

Assume that the number of neurons is at least the number of input points that we want to recover, i.e., N ≥ n. In the first
step we cut the initial interval of width W into intervals of width W

N . In any later step, we cut each interval at least
⌊
N
n

⌋
times and hence, the intervals in the next round have a width that is reduced by a factor of at least

⌊
N
n

⌋
+ 1. We stop when

the interval width reaches ε. Hence, the number of steps is bounded by⌈
log⌊N

n ⌋+1

(
W

N · ε

)⌉
+ 1 ≤

⌈
log2

(
W

N · ε

)⌉
+ 1. (18)

It is easy to show that this analysis is tight by an example where each interval initially contains a single image.

Finally, we show how to select the value for ε. Let Bx = {x1, . . . ,xn} be the set of samples that the attacker wants to
reconstruct. Assume that inputs have a minimum distance

∆ = min
i,j
i ̸=j

∥xi − xj∥. (19)

Draw a random direction vector v ∼ N (0, Id×d). The distance of two projections along v of points in Bx will be the
random variable

pv(xi,xj) = ⟨xi − xj ,v⟩ ∼ N (0, ∥xi − xj∥). (20)

Therefore, we can compute:
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2

π
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∆
, (23)

where q ∼ N (0, 1). Here, the last inequality uses the fact that the Gaussian pdf is maximized at 0 and our integration
interval is symmetric around 0. Then, applying the union bound, we get:

P (∃ i, j ∧ i ̸= j : |pv(xi,xj) < ε|) = P
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π
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∆
. (26)

Hence, by selecting ε =
√
2π ∆

n2 δ, all the projections will be at least ε-distant with high probability. After substituting the
value of ε in (18), the number of rounds becomes:⌈

log⌊N
n ⌋+1

(
Wn2

√
2πN∆δ

)⌉
+ 1 ≤

⌈
log2

(
Wn2

√
2πN∆δ

)⌉
+ 1, (27)

with probability at least 1− δ.

E ATTACKS CONFIGURATION

In our attacks, we used the same initialization strategies for ImageNet and HARUS. Each row of the input weights W(1)

is initialized with identical values drawn from a normal distribution W
(1)
i ∼ N (0, 10−2), while classification weights’



column values are drawn from W
(2)
i ∼ N (0, 10−2). However, the choice of the distribution does not represent a limiting

factor, and different distribution can be employed. The classification bias values b(2)
i are set to 1025. We chose a large value

for the classification bias according to (10). We did not select a specific value for ε, instead, we iteratively selected as many
bias values as were compatible with the number of communication rounds T available to the attacker. Consequently, a total
of NT bias values were selected following Alg. 3.

To test the CAH attack, we draw the weights W(1) ∼ N (0, 1
2 ) and set the scaling factor s = 0.99 for ImageNet experiments,

following the setup described in [Boenisch et al., 2023]. For experiments on HARUS, we draw the input weights from a
normal distribution W(1) ∼ N (0, 1) and select s = 0.97 after a tuning process.

To minimize reconstruction errors arising from numerical inaccuracy, the results in the main paper are obtained using double
precision. However, additional single precision experiments are presented in App. F.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 CIFAR-10

FC-NN We conduct additional experiments on the CIFAR-10 dataset Krizhevsky [2009], evaluating our attack on the
same two-layers neural network described in the main paper. For these experiments, our malicious model parameters are
initialized according to the setup used in the ImageNet experiments, described in App. E, while for CAH, we set s = 0.95,
according to the setup proposed in [Boenisch et al., 2023]. We perform the attack for batch size in {32, 64, 128, 256, 512,
1024, 2048} and evaluate after {1, 2, 5, 10, 20} rounds. Figure 4a illustrates the percentage of reconstructed images after
20 attack rounds. Our attack achieves perfect reconstruction for 2048 data points, while the baseline recovers less than
5% of the samples. Figure 4b shows the effect of the number communication rounds for n = 2048. Our attack reaches
perfect reconstruction after 20 rounds, while CAH’s performance remains below 5% of accuracy. Finally, Figure 5 provides
a comprehensive comparison of the accuracy difference between our attack and the baseline across various batch sizes and
communication rounds. CAH initially outperforms our method on image data after a single communication round. However,
our attack surpasses the baseline after just two rounds, achieving a remarkable 99% accuracy advantage for n = 2048 after
20 rounds and confirming the same trends observed on ImageNet and HARUS.

(a) (b)

Figure 4: a) Effect of batch size on CIFAR-10 after 20 communication rounds. b) Effect of the number of rounds on
CIFAR-10 on a batch containing 2048 images.

CNN To assess performance on a convolutional architecture, we test our attack on a VGG-style network. This network
comprised three convolutional layers followed by two dense layers, consistent with the model architecture detailed in
[Boenisch et al., 2023, Table 9]. The experiments are executed in single precision. Although we observe slight numerical
instability for the largest batch sizes that prevents us from fully recover the batch, we successfully reconstruct over 98% of a
512-data point batch, demonstrating the attack’s effectiveness even in a CNN setting.

Table 3 compares our attack and the baseline on CIFAR-10. While the baseline effectively recovers small batches, its
accuracy degrades significantly with larger batch sizes. In contrast, our attack consistently recovers over 98% of the batch,
even at larger sizes. Small reconstruction errors are likely due to numerical precision issues.



Table 3: Effect of of batch size and number of communication rounds. Each value indicates the percentage of data exactly
recovered by attacks on CIFAR-10 dataset.

# Rounds Batch size
32 64 128 256 512

1 Ours 32.29±11.83 13.54±3.93 5.47±1.56 2.86±1.13 0.65±0.30

CAH 66.67±6.51 56.77±5.02 45.31±5.12 23.57±0.45 6.71±1.57

2 Ours 95.83±7.22 91.15±2.39 85.42±1.80 69.27±3.13 46.88±2.82

CAH 70.83±4.77 64.58±3.61 53.12±4.88 34.11±3.03 11.00±2.14

5 Ours 100.00±0.00 100.00±0.00 100.00±0.00 98.31±2.29 98.50±0.98

CAH 80.21±1.80 70.83±2.39 60.68±3.25 44.40±3.61 20.38±2.36

10 Ours 100.00±0.00 100.00±0.00 100.00±0.00 98.31±2.29 98.50±0.98

CAH 83.33±1.80 75.00±2.71 65.89±2.26 51.82±0.81 27.34±2.49

20 Ours 100.00±0.00 100.00±0.00 100.00±0.00 98.31±2.29 98.50±0.98

CAH 87.50±3.13 78.65±2.39 71.09±2.07 57.42±1.35 34.77±2.17

Figure 5: Percentage difference in reconstructed inputs on CIFAR-10. Red indicates cases where our attack achieves better
reconstruction, while blue highlights instances where the baseline attack performs better.

Multiple Local Steps In Sec 5.1 we assumed updates based on full-batch gradient computations. Here, we extend our
attack to the setting in which clients perform K > 1 local gradient steps. As discussed in Sec. 7, performing multiple local
updates modifies the hyperplanes directions and positions, since W(1) and b(1) are updated at each step. This complicates
the precise isolation of individual data points in the local dataset of the attacked client. To mitigate this effect, we propose
a strategy that limits the influence of local updates. In particular, we aim to keep the gradients ∂L

∂W(1) and ∂L
∂b(1) small

compared to the magnitude of W(1) and b(1), thereby ensuring that parameter updates remain minimal over multiple steps.
We consider a two-layer fully connected neural network, as described in the main paper. From (10) we observe that we can
effectively limit the magnitude of the gradients by carefully designing the output weights. Specifically, by assigning a large
value β to half of the elements in W

(2)
i and a slightly smaller value β − η to the other half (with η being a small positive

constant), the resulting gradients with respect to the bias b(1)i and the input weights W(1)
i remain small—approximately

bounded by η and ηxj , respectively. In our implementation, we use a vector v ∈ RC , where the first half of its components
are set to 105, and the second half to 105 − η with η = 10−2. The vector is then repeated across all the columns in W(2).
To avoid gradient cancellation effects (i.e., ∂L

∂b(1) = 0) in case the training batch contains an equal number of samples from
each half of the classes, we add small Gaussian noise N (0, 10−4) to each component of v.

In parallel, we also aim to minimize updates to W(2) itself across local steps. By application of the chain rule, we have
∂Lj

∂W(2) =
∂Lj

∂z(2)
∂z(2)

∂W(2) , where the first term is given by (12), and the second term is z(1) = W(1)xj + b(1). As the loss



gradient ∂Lj
∂z(2) depends on classification prediction, and b(1) is modified to perform the binary search (Alg.3), we can only

directly control W(1). Assuming that adjacent pixels in images have similar values, we set weights with alternating signs to
drive the dot product W(1)

i xj to be close to zero. Specifically, we sample the even elements of W(1)
i from U(1, 2) and for

odd ones as W(1)
i ∼ U(−2,−1).

Due to the presence of local updates, it is no longer sufficient to determine whether two consecutive hyperplanes isolate a
point by directly comparing their corresponding observations for exact equality. Instead, we assess whether the observations
are sufficiently similar by projecting the observation associated with the larger bias value onto the other, and computing the
Euclidean norm of the resulting projection vector. If this value is smaller than 10−4, we conclude that the corresponding
hyperplanes do not separate any image.

In our experiment, we assume that the target client holds |S| = 1024 images—here, |S| denotes the dataset size of the client,
which differs from the training batch size n. We set the number of local steps to K = |S|/n, with n = {23, 24, ..., 210}, and
use a learning rate of 10−4, a standard choice for training on CIFAR10 to ensure convergence.

The results in Figure 6 demonstrate that increasing the number of local steps makes the attack more challenging; however,
our method is still able to recover up to 35% of the images even with local steps. In contrast, the baseline attack (CAH) fails
to recover more than 20% of the images under the same setting. It is also worth noting that in our setup we considered more
local steps K and larger dataset size than what considered in the baseline Boenisch et al. [2023],as their original setting
involves K = 5 local steps and a smaller dataset size (|S| = 200).

Figure 6: The percentage of perfectly reconstructed inputs for a two-layer FC NN with N = 1000 neurons in the first layer.
The reconstruction is evaluated after 50 communication rounds.

Robustness to Noise To assess the robustness of our attack, we conduct experiments in the presence of noise, which may
arise from imperfections in real-world communication channels or from defense mechanisms implemented by the client to
defend against privacy attacks, such as local differential privacy[Dwork, 2006].

To improve robustness, the server can design model weights similarly to the strategy proposed to adapt to multiple local
steps (check App. F.1), but with a different objective. In that case, the server modifies the classification weights W(2) to get
a small value for ∂L

∂W(1) and ∂L
∂b(1) , while here the objective is the opposite: the attacker needs to obtain gradients of large

magnitude, so that noise can be filtered out and will not have an impact on the reconstruction quality.

Hence, we define a vector v ∈ RC by setting the first half of its components to 105 and the second half to 105 − η, where
η = 103. This vector is then replicated across all columns of W(2).

Figure 7 illustrates the attack performance across different numbers of rounds and varying Gaussian noise variances. The
client holds 1024 images, trains using FedSGD with full-batch updates, and uses a learning rate of 10−4. As expected, the
attack accuracy decreases with increasing noise variance; however, our method remains substantially more effective than the
baseline (CAH). While our attack performance degrades gracefully as more noise is added on the client side, CAH is unable
to reconstruct any sample for both values of σ considered (the two corresponding curves overlap). As a consequence, our
attack consistently outperforms the baseline, recovering almost 40% more images.



Figure 7: The percentage of perfectly reconstructed inputs on for two-layer fully connected neural network with N = 1000
neurons in the first layer, under varying numbers of attack rounds and different noise variances σ.

F.2 HARUS

We investigate the effect of numerical precision by performing additional HARUS experiments in single precision. Table 4
shows the results of both our attack and the baseline. The performance of our attack are comparable with the ones presented
in the main paper, showing that the attack’s success does not depend on double precision. However, also in this case precision
errors can prevent us from recovering the full batch, as illustrated by the case of 1024 samples where extending the attack
from 20 to 50 rounds does not improve the reconstruction rate.

Table 4: Impact of batch size and number of communication rounds. Each value indicates the percentage of data exactly
recovered in attacks on HARUS dataset.

# Rounds Batch size
32 64 128 256 512 1024 2048 4096

1 Ours 33.33±22.17 13.54±6.31 5.47±2.34 1.69±0.81 1.24±0.96 0.72±0.91 0.29±0.27 0.15±0.06

CAH 51.04±4.77 23.96±1.80 10.16±0.78 4.30±1.41 1.69±0.41 0.55±0.06 0.20±0.08 0.07±0.04

2 Ours 97.92±3.61 95.83±4.77 86.20±4.71 71.09±4.75 48.96±6.88 25.72±6.31 9.47±1.50 2.90±0.60

CAH 73.96±9.55 39.06±3.13 17.19±3.91 7.29±2.35 3.45±0.92 1.11±0.30 0.42±0.15 0.12±0.02

5 Ours 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00 97.01±0.60 87.73±2.99 62.50±3.09 32.10±2.12

CAH 93.75±3.13 69.27±5.02 31.51±0.45 14.58±0.81 6.77±0.11 2.83±0.35 1.14±0.12 0.33±0.06

10 Ours 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00 99.87±0.23 99.41±0.34 92.95±0.79 70.61±2.26

CAH 96.88±0.00 82.81±2.71 45.31±1.56 22.66±2.17 10.81±1.08 4.13±0.50 1.71±0.13 0.62±0.01

20 Ours 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.87±0.23 99.93±0.11 99.87±0.06 94.48±0.59

CAH 100.00±0.00 94.27±0.90 60.94±2.07 32.81±1.95 16.15±2.29 6.87±1.41 2.99±0.31 1.04±0.05

30 Ours 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.87±0.23 99.93±0.11 99.93±0.06 99.04±0.14

CAH 100.00±0.00 96.88±1.56 69.79±0.45 39.84±1.41 20.51±1.19 9.15±1.48 4.04±0.10 1.38±0.08

50 Ours 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.87±0.23 99.93±0.11 99.93±0.05 99.90±0.13

CAH 100.00±0.00 97.92±2.39 79.43±3.16 50.78±2.03 28.52±1.19 13.41±1.94 6.01±0.42 2.23±0.10

F.3 IMAGENET

Figure 8 evaluates the difference in reconstruction accuracy between our proposed attack and the baseline across varying
batch sizes and communication rounds on ImageNet, confirming our attack’s superior performance over CAH in all
multi-round scenarios. The prevalence of red, especially in the upper rows and to the right, clearly demonstrates that our
attack generally outperforms the baseline in most settings. This highlights the effectiveness of our approach in leveraging
multiple communication rounds and larger batch sizes to improve reconstruction accuracy. The blue cells at the bottom of



Figure 8: Percentage difference in reconstructed inputs on ImageNet. Red indicates cases where our attack achieves better
reconstruction, while blue highlights instances where the baseline attack performs better.

the heatmap, corresponding to the first communication round, suggest that CAH might have an advantage in single-round
attacks, particularly for smaller batch sizes, where the baseline benefits from the multiple-directions initialization. Overall,
results confirm the same trends as those on HARUS in the main paper.

Non-IID setting We evaluated the performance of our attack under both IID and non-IID data distributions. Table 5 reports
results on the ImageNet dataset using a single full-batch update, across different batch sizes and numbers of attack rounds.

In the IID setting, each client samples images uniformly at random from all 1,000 available classes. To simulate a non-IID
scenario, we assign each client i a distinct subset of classes Ci such that Ci ∩ Cj = ∅, for any i ̸= j. The result is that the
local datasets of two clients do not share any common label. Each local dataset Si is constructed by sequentially sampling
50 images per class from Ci until the desired dataset size is reached. Our results indicate that the attack remains highly
effective in both settings. In particular, the attacker successfully reconstructs over 99% of the dataset within 5, 10, and 20
attack rounds for batch sizes of 256, 512, and 1024, respectively. While performance in the non-IID setting is occasionally
slightly worse than in the IID case, this difference is marginal. One possible explanation lies in the spatial distribution of the
data: the expected distance between two images randomly sampled from a subset of classes is smaller than the expected
distance between two images sampled from the full set of classes. As a result, from a geometrical perspective, it becomes
more challenging to position hyperplanes that isolate a single image, as ∆ in (27) will be smaller than in the IID case.

Table 5: Effect of client data distribution. Each value indicates the percentage of data exactly recovered in attacks on
ImageNet dataset.

# Rounds Batch size
32 64 128 256 512 1024

2
non-IID 93.75±6.25 90.63±1.56 82.29±1.97 63.80±3.16 37.43±2.85 16.34±1.64

IID 96.88±3.13 93.75±4.13 82.81±5.90 63.80±4.82 36.00±2.67 14.78±0.88

5
non-IID 100.00±0.00 100.00±0.00 100.00±0.00 99.74±0.45 95.38±1.30 81.64±2.71

IID 100.00±0.00 100.00±0.00 100.00±0.00 99.74±0.45 97.27±1.74 86.10±0.73

10
non-IID 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.48±0.23 94.95±0.45

IID 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.71±0.17

20
non-IID 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.87±0.23 99.32±0.10

IID 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.84±0.06

Single precision We also perform single-precision ImageNet experiments, see Table 6. Consistently with the HARUS
results, single precision does not significantly limit performance, and we achieve near-complete batch recovery in most
settings. Minor reconstruction errors can be attributed to numerical errors.



Figure 9: The recovered images from a batch containing 1024 samples from ImageNet. The first row shows the original
images, the second row the recovery of our attack after 10 rounds, and the last row shows that the baseline is not able to
recover most of the images.

Figure 10: The recovered images from a batch containing 1024 samples from ImageNet.



Table 6: Effect of batch size and number of communication rounds. Each value indicates the percentage of data exactly
recovered in attacks on ImageNet dataset.

# Rounds Batch size
32 64 128 256 512 1024

1
Ours 3.13±0.00 2.60±0.90 0.78±0.78 0.13±0.23 0.20±0.00 0.10±0.00

CAH 56.25±8.27 51.56±0.00 39.58±1.80 21.88±3.13 5.40±2.28 0.39±0.35

2
Ours 96.88±3.13 93.75±4.13 82.81±5.90 63.80±4.82 36.00±2.67 14.78±0.88

CAH 63.54±4.77 59.38±3.13 47.14±0.90 29.69±3.34 9.18±3.53 0.78±0.64

5
Ours 100.00±0.00 100.00±0.00 100.00±0.00 99.74±0.45 97.27±1.74 86.10±0.73

CAH 70.83±1.80 68.75±1.56 55.73±0.90 39.58±0.60 15.95±4.40 1.82±0.64

10
Ours 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.71±0.17

CAH 76.04±4.77 75.00±3.13 66.41±3.41 47.40±0.60 21.94±5.38 3.32±1.28
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