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Abstract

In multivariate time series forecasting using the Transformer architecture,
capturing temporal dependencies and modeling inter-variable relationships
are crucial for improving performance. However, overemphasizing temporal
dependencies can destabilize the model, increasing its sensitivity to noise,
overfitting, and weakening its ability to capture inter-variable relationships.
We propose a new approach called the Temporal-Variable Decoupling Net-
work (TVDN) to address this challenge. This method decouples the mod-
eling of variable dependencies from temporal dependencies and further sep-
arates temporal dependencies into historical and predictive sequence de-
pendencies, allowing for a more effective capture of both. Specifically,
the simultaneous learning of time-related and variable-related patterns can
lead to harmful interference between the two. TVDN first extracts variable
dependencies from historical data through a permutation-invariant model
and then captures temporal dependencies using a permutation-equivariant
model. By decoupling variable and temporal dependencies and historical
and predictive sequence dependencies, this approach minimizes interference
and allows for complementary extraction of both. Our method provides a
concise and innovative approach to enhancing the utilization of temporal
features. Experiments on multiple real-world datasets demonstrate that
TVDN achieves state-of-the-art (SOTA) performance. The code is avail-
able at the repository https://anonymous.4open.science/r/TVDN-366F

1 Introduction
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Figure 1: The mean squared
error (MSE) of TVDN on var-
ious real-world datasets com-
pared with other SOTA meth-
ods.

As artificial intelligence technologies continue to advance, the
role of time series forecasting in critical sectors such as energy
management(Gao et al., 2023a), meteorology(Meenal et al.,
2022), finance(Lopez-Lira & Tang, 2023), and sensor net-
works(Mejia et al., 2020) has become increasingly important.
Long-term Time Series Forecasting (LTSF), involving projec-
tions far into the future, is crucial for strategic planning and
provides significant reference value.
The limitations of traditional statistical techniques in han-
dling complex time series forecasting tasks have sparked in-
creasing interest among data scientists in applying deep learn-
ing methodologies for forecasting. Over years of evolution
and competitive advancements, the Time-Series Forecasting
Transformer (TSFT), renowned for its superior sequence mod-
eling abilities and scalability, has become widely adopted for
long-term time series forecasting.
Nonetheless, TSFT models has faced skepticism from re-
searchers(Zeng et al., 2023). Previous studies (Zeng et al., 2023; Gao et al., 2023b) have
shown that TSFT’s effectiveness remains the same, mainly even when parts of the historical
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sequence are masked, leading to doubts about its ability to extract significant information
from these sequences.
Variable dependencies capture Multivariate time series often show both instanta-
neous(Gersch, 1985; Koutlis et al., 2019) and lagged effects(Lin et al., 2023), such as transient
correlations between heart rate and blood pressure or gradual temperature impacts on plant
growth. Specific TSFT models employing cross-variable transformers have made significant
progress in long-term forecasting (Liu et al., 2024; Gao et al., 2023b; Zhang & Yan, 2022).
These models notably enhance performance, especially in datasets characterized by multi-
variable interdependencies. Liu et al. (2024); Zeng et al. (2023) think that feed-forward
networks (FFN) favor extracting the series representations.

[hsgf]
Temporal dependencies capture However, some linear models and Cross-Variable Trans-
formers do not extract accurate temporal dependencies because they essentially map histor-
ical series as unordered sets to predicted series experiment 4.3. The reason for their better

[tVnS]performance may be that in some tasks, the time dependence of the historical sequence
does not contribute much to the prediction of the target sequence. To address the deficien-
cies of permutation-invariant models, we focus on temporal features, dividing them into the
temporal dependencies of the historical sequences and the temporal dependencies of the
prediction sequences.
Split Variable Dependencies Learning and Temporal Learning The vanilla Trans-
former model divides sequences along the temporal dimension. However, this approach
fails to focus on learning the correct patterns, resulting in performance comparable to or
even worse than simple linear baselines Zeng et al. (2023). In contrast, cross-variate Trans-

[hsgf]former models adopt a variable-oriented perspective, splitting sequences along the variable
dimension, which significantly improves prediction performance Liu et al. (2024); Gao et al.
(2023b). Crossformer (Zhang & Yan, 2022) attempts to capture temporal and variable
dependencies simultaneously but still shows room for improvement in prediction accuracy.
Our experiments observed that learning both patterns simultaneously leads to performance
degradation. Supporting studies have also demonstrated that cross-temporal self-attention
can result in bad local minima and make it harder to converge to true solutions. To address
this, optimization techniques have been proposed to guide the model toward a better gradi-
ent direction Ilbert et al. (2024). Inspired by these findings, we first leverage cross-variate
learning to obtain a better initialization point, followed by cross-temporal learning to guide
the model toward its true solution.

[hsgf]
In conclusion, based on the analysis above, we introduce a dual-phase deep learning network
architecture. The initial phase, the Cross-Variable Encoder (CVE), aims to identify inter-
variable dependencies, effectively extracting information from historical sequences. Once the
CVE stabilizes, the second phase shifts to temporal dependency learning. In this phase, the
Cross-Temporal Encoder (CTE) combines the original input with the output from the CVE,
focusing on learning cross-temporal dependencies. This approach addresses the limitations
of temporal dependency learning inherent in the first phase’s cross-variable feature learning
and clarifies the temporal relationships within predictive sequences.
By segregating cross-variable and cross-temporal learning, our model significantly reduces
the risk of overfitting and enhances the potential to discover better global solutions. Our
experimental results demonstrate that the proposed TVDN (Temporal-Variable Decoupling
Network) achieves state-of-the-art (SOTA) performance on real-world forecasting bench-
marks, as illustrated in Figure 1. Our contributions can be summarized in three key aspects:

• This study introduces the Temporal-Variable Decoupling Network (TVDN), which
combines permutation-invariant and permutation-equivariant models to decouple
variable and temporal dependencies, reducing interference between them and im-
proving temporal feature utilization.

• This study decouples learning into three sub-modes: variable dependency, histor-
ical sequence temporal learning, and predicted sequence temporal learning, then
integrates them to maximize effectiveness and overcome the limitations of feature
extraction in permutation-invariant and permutation-equivariant models.
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• TVDN significantly improves multivariate time series forecasting accuracy with min-
imal overhead, achieving comprehensive SOTA performance on real-world bench-
marks. It effectively captures both variable and temporal dependencies. Our analy-
sis of the two-phase architecture highlights its rationale and effectiveness, offering a
novel framework for developing more interpretable and accurate forecasting meth-
ods.

2 Related Work

Traditional time series forecasting methods such as ARIMA(Anderson, 1976), Holt-
Winters(Hyndman & Athanasopoulos, 2018), and Exponential Smoothing(Brown, 1959)
assume that temporal variations follow fixed patterns. However, real-world time series data
often contain complexities that these methods fail to capture, limiting their effectiveness in
practical applications(Box et al., 2015; Chatfield & Xing, 2019).
To address the shortcomings of classical models, deep learning approaches have been devel-
oped for temporal modeling, including TCN, RNN-based, and MLP-based methods. MLP-
based models(Challu et al., 2023; Zeng et al., 2023) utilize MLPs along the temporal di-
mension to encode temporal dependencies into the fixed parameters of the MLP layers.
TCN-based methods capture temporal variations using convolutional kernels that slide along
the temporal dimension(Wu et al., 2022). RNN-based methods(Lai et al., 2018; Gu et al.,
2021) employ a recurrent structure to implicitly capture temporal variations through state
transitions over time.
The Transformer model, celebrated for its exceptional performance in diverse domains such
as natural language processing, speech recognition, and computer vision, has been adapted
for time series forecasting through various variants to enhance its self-attention mecha-
nism(Vaswani et al., 2017). These adaptations primarily focus on learning long-term depen-
dencies using cross-temporal attention mechanisms and optimizing computational efficiency.
LogTrans(Li et al., 2019) introduces a convolutional self-attention layer with a LogSparse de-
sign, adept at capturing local information while reducing spatial complexity. Other models,
such as Informer(Zhou et al., 2022a) and Autoformer(Wu et al., 2021), innovate by replacing
the traditional self-attention mechanism, lowering computational complexity to O(L log L).
Pyraformer(Liu et al., 2021) integrates pyramid attention modules that connect across and
within scales, achieving linear complexity.
Further advancements include models like Autoformer, FEDformer(Zhou et al., 2022b), and
ETSformer(Woo et al., 2022), which incorporate TSFT with seasonal trend decomposition
and signal processing techniques, such as Fourier analysis, within their attention frameworks.
This enhances the interpretability of these models and efficiently captures seasonal trends.
To address stability in predictions, especially in non-stationary contexts, some Transformer
models incorporate stabilization modules and De-stationary into the standard Transformer
framework(Liu et al., 2022; Kim et al., 2021). This helps stabilize predictions while avoiding
the pitfalls of excessive stabilization, which can lead to a loss of important data variability.
Recent developments in cross-variable Transformer models show significant promise. Mod-
els like iTransformer(Liu et al., 2024) and Client(Gao et al., 2023b) enhance performance
in long-term multivariate forecasting by using cross-variable Transformers instead of cross-
temporal ones. Additionally, Crossformer(Zhang & Yan, 2022) employs a two-stage at-
tention (TSA) layer to capture dependencies over time and across different dimensional
segments of the series. However, there is room for improvement in models like Crossformer
regarding their performance on various benchmark datasets.A recent work PatchTST (Nie
et al., 2022) studies using a vision transformer type model for long-term forecasting with
channel independent design. This work designs an encoder-decoder model utilizing a hier-
archy attention mechanism to leverage cross-dimension dependencies.
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Figure 2: Overview of the proposed method. (1) Cross-Variable Transformer. (2) Lin-
ear Model (3) Prediction Sequence Temporal Dependency Learning Module. (4) Historical
Sequence Temporal Dependency Learning Module (5) Feature Fusion. The TVDN archi-
tecture is strategically bifurcated into two key components. On the left, CVE leverages the
Cross-Variable Transformer to effectively delineate dependencies among variables. In con-
trast, on the right, CTE utilizes (3) to capture prediction sequences temporal dependencies
and (4) to capture historical sequences temporal dependencies.

3 Model Architecture

The architecture of TVDN is depicted in Figure 2. As previously discussed, we separate the
learning of variable dependency from that of temporal dependency. The process begins with
variable dependency learning (left), followed by temporal dependency learning(right), which
is further divided into two sub-modules: historical sequence dependency and predictive
sequence dependency.

3.1 Cross-Variable Encoder (CVE)

CVE is a permutation-invariant model used for modeling variable dependencies. CVE is
based on the Cross-Variable Transformer (Liu et al., 2024; Gao et al., 2023b), which treats
the input data as a sequence of variables to capture complex dependencies among them.
The hallmark of CVE lies in its novel approach to token partitioning. Unlike traditional
methods, CVE segments tokens along the variable dimension, with each token representing
different temporal instances of the same variable. This is achieved by transposing the input
data. The process is illustrated as follows:

V0 = Transpose(Xenc) (1)

V(m+1) = TransformerBlock(Vm), m ∈ {0, 1, . . . , M − 1} (2)

ZCVE = Projection(VM ) + weight × Projection(Xenc) (3)

[tVnS]
The operational sequence begins by transposing the input data Xenc to form V0, where V
is a matrix containing D embedded tokens, each with a dimension of S. D is equal to the
number of variables, S is the length of time series, and weight is a learnable parameter.

[tVnS]Here, V0 ∈ RD×S represents the initial embedded form of the input. The superscript in
V(m+1) indicates the layer index in the progression of transformations.
Each subsequent layer V(m+1) is generated by applying a TransformerBlock to the out-
put of the previous layer Vm. This process is repeated for m ∈ {0, 1, . . . , M − 1}. The
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TransformerBlock typically consists of self-attention mechanisms and a shared feed-forward
network (FFN), allowing the variable tokens within V to interact and be processed indepen-
dently at each layer. This iterative process enriches the data representation by capturing
complex dependencies and patterns.
Finally, the Projection operation transforms the output of the last Transformer layer VM

and the original input data Xenc into a common space, which is then added with a learnable
weight weight to obtain the final output ZCVE, where ZCVE ∈ RO×D and O represents
the prediction length. This output is then used as input to the next phase of learning, the

[tVnS]Cross-Temporal Encoder (CTE). To address the issue of distribution shift, CVE employs a
reversible instance normalization (RevIN) module (Kim et al., 2021). This module, charac-
terized by its symmetrical structure, can remove and restore the statistical information of
time series instances, thereby enhancing the model’s stability during the prediction process.
CVE channels the extracted features into a projection layer to generate first-stage predic-
tions, deliberately omitting a Transformer decoder. This approach stems from the decoder’s
inherent assumption of future sequence invisibility, which overlooks the constraining influ-
ence of future sequences on historical data. Additionally, the Transformer module within
CVE operates predominantly as a feature extractor rather than a sequence generator, given
the absence of temporal interrelations among different variables.

3.2 Cross-Temporal Encoder (CTE)

The CTE plays a crucial role in modeling the temporal dependencies. CTE divides time
series dependence into two parts: historical sequences dependence and predictive sequences
dependence. It processes inputs that include the outputs of the original historical sequences
combined with the results from the CVE. This combination of data allows the CTE to effec-
tively capture the temporal dependencies of the history sequences and prediction sequences,
overcoming the CVE stage’s limitations in recognizing dynamic temporal characteristics.
The output of the CTE is then combined with the output of the CVE through an additive
fusion process to optimize the residual between the CTE and the predictive sequence. The
CTE is simply expressed as:

Zh = HSTDBlock(V0) (4)

T0 = Zh ⊕ ZCVE (5)

Tn+1 = FDS(PSTDBlock(Tn)), for n ∈ {0, 1, . . . , N − 1} (6)

Y = ZCVE ⊕ Projection(TN ) (7)

where T0 denotes the initial input state, formed by the addition of Zh and ZCVE, where
T0 resides in the space RO×D. This signifies that T0 contains O embedded tokens, each of
dimension D, capturing the combined information from the projected target sequence and
the output of CVE. n indicates the layer index in the sequence of transformations, iterating
from 0 to N − 1. FDS and the CrossTimeBlock interactively refine the temporal features
in each layer. Finally, the cumulative output of this sequential operation, TN , is combined
with the CVE’s output.
Prediction Sequence Temporal Dependency (PSTD) The role of PSTD is to model
the time dependence of prediction sequences. The PSTD block consists of a convolutional
layer and employs a concatenation operation to ensure that no information is lost from the
input. To avoid performance degradation and the risk of overfitting due to an excess of
features, we employ point-wise convolutions to construct a Feature Down-Sample (FDS)
module, which halves the input features.
Historical Sequence Temporal Dependency (HSTD) The role of HSTD is to model
the time dependence of historical sequences. The HSTD block consists of a convolutional
layer and employs a residual connection to ensure that important historical information is
retained and to prevent performance degradation as the network deepens.
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Figure 3: Overview of the training process

Feature Down-Sample (FDS). The input data and encoding process generate many
redundant features. FDS is used to suppress these redundant features generated during the
encoding process while eliminating the performance overhead caused by channel expansion.

3.3 Training process

As shown in Figure3, first, during the variable dependence learning phase, the permutation-
invariant CVE completely disregards the temporal dependence of the sequence and only
extracts cross-features between variables, generating an initial prediction sequence. At the
same time, the CTE remains frozen at this stage. Next, HSTD extracts the temporal features
of the historical sequences, while PSTD extracts the temporal features of the prediction
sequences. The outputs of HSTD and PSTD are then fused to correct the initial prediction
from the variable dependence learning phase (residual fitting). At the same time, the CVE
and CTE model parameters are updated through backpropagation.

4 Experiments

Datasets In this study, we evaluate the performance of TVDN using eight popular datasets
from various fields, including electricity(Trindade, 2015), traffic(pem), weather(Max-Planck-
Institut für Biogeochemie), four ETT (Electricity Transformer Temperature, including
ETTh1, ETTh2, ETTm1, and ETTm2)(Zhou et al., 2021), and exchange(Lai et al., 2018).

4.1 Main Results

Baselines We compared the latest TSFT methods(iTransformer(Liu et al., 2024),
Client(Gao et al., 2023b), LightTS(Zhang et al., 2022), FEDformer(Zhou et al., 2022b), Aut-
oformer(Wu et al., 2021), ETSformer(Woo et al., 2022), (Zhou et al., 2022a), Pyraformer(Liu
et al., 2021)), CNN-based TimesNet (Wu et al., 2022), and linear model Dlinear(Zeng et al.,
2023).
Experimental Settings The look-back window size for all datasets is uniformly set at 96,
and the number of training epochs is fixed at 10 for each. We assess the performance using
four different prediction lengths {96, 192, 336, 720}. Following the evaluation procedure used
in previous studies, we compute the Mean Squared Error (MSE) and Mean Absolute Error
(MAE) for data normalized with z-score normalization.
Results The long-term sequence forecasting results are presented in Table 1, Table 3, Table
4 and Figure 9. We maintained consistency in the look-back window and training epochs to
ensure the most equitable comparison.
Both iTransformer and Client use a cross-variable Transformer architecture, ranking just
below TVDN. It shows that models ignoring temporal ordering can capture cross-variable
relationships more effectively, partly supporting the hypothesis that learning temporal de-
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pendencies may interfere with variable dependencies. DLinear excelled on the Exchange
dataset, which has fewer variables, indicating its strength in forecasting scenarios focused
on single variables. FEDformer leverages frequency domain analysis and performed well on
the ETTh1 dataset, highlighting the importance of frequency domain features. TimesNet,
which transforms time series into two-dimensional tensors to capture both intra-periodic
and inter-periodic patterns, showed strong performance on ETTh1 and ETTm2, aligning
with the emphasis on periodicity and locality in sequences.
TVDN surpasses all SOTA models, achieving the best performance on several popular
datasets. Overall, it achieved first place in 70 (Second best model is 12) categories, and
it leads other advanced models by a significant margin in both the average and median
numbers of first places in MSE and MAE.
TVDN, through its CVE, thoroughly mines variable dependencies from historical sequences
and, through its CTE, fully learns the temporal dependencies of the prediction and historical
sequence. (1) By separating and training cross-variable and cross-time learning, we avoided
mixing the two learning modes, enhancing the prediction results. (2) The motivation for
incorporating the temporal dependence of the prediction series into the model is: Based on
our experiments F, we identified that the bottleneck of the traditional Transformer model
lies in the ineffective utilization of historical sequence information. Its primary benefit is
learning the temporal dependency patterns of the prediction sequence.

Table 1: Multivariate forecasting results with prediction lengths (96, 192, 336, 720). Results
are averaged from all prediction lengths. Avg means further averaged by subsets. Me means
the mean of the results. The best results and second-best results are highlighted in red and
blue, respectively. Full results are listed in Appendix 3

Models TVDN iTransformer Client DLinear TimesNet FEDformer ETSformer LightTS Autoformer Pyraformer Informer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Electricity Avg 0.158 0.256 0.178 0.270 0.171 0.264 0.212 0.300 0.192 0.295 0.214 0.327 0.208 0.323 0.229 0.329 0.227 0.338 0.379 0.445 0.311 0.397
Me 0.158 0.257 0.170 0.261 0.167 0.261 0.203 0.293 0.191 0.295 0.208 0.322 0.206 0.322 0.222 0.325 0.227 0.336 0.377 0.444 0.298 0.390

Traffic Avg 0.433 0.265 0.428 0.282 0.465 0.304 0.625 0.383 0.620 0.336 0.610 0.376 0.621 0.396 0.622 0.392 0.628 0.379 0.878 0.469 0.764 0.416
Me 0.432 0.265 0.425 0.280 0.462 0.302 0.625 0.384 0.623 0.336 0.613 0.378 0.622 0.396 0.614 0.389 0.619 0.385 0.875 0.469 0.748 0.406

Weather Avg 0.234 0.276 0.258 0.279 0.249 0.275 0.265 0.317 0.259 0.287 0.309 0.360 0.271 0.334 0.261 0.312 0.338 0.382 0.946 0.717 0.634 0.548
Me 0.230 0.277 0.250 0.275 0.243 0.274 0.260 0.316 0.250 0.284 0.308 0.358 0.268 0.333 0.255 0.311 0.333 0.381 0.872 0.689 0.588 0.534

ETTh1 Avg 0.445 0.437 0.454 0.447 0.452 0.445 0.456 0.452 0.458 0.450 0.440 0.460 0.542 0.510 0.491 0.479 0.496 0.487 0.827 0.703 1.040 0.795
Me 0.458 0.441 0.464 0.447 0.464 0.446 0.459 0.446 0.464 0.449 0.440 0.457 0.550 0.513 0.497 0.475 0.507 0.489 0.841 0.710 1.058 0.801

ETTh2 Avg 0.373 0.402 0.383 0.407 0.386 0.411 0.559 0.515 0.414 0.427 0.437 0.449 0.439 0.452 0.602 0.543 0.450 0.459 0.826 0.703 4.431 1.729
Me 0.386 0.409 0.404 0.416 0.403 0.423 0.536 0.509 0.427 0.433 0.446 0.457 0.458 0.459 0.573 0.532 0.469 0.469 0.848 0.715 4.238 1.730

ETTm1 Avg 0.388 0.395 0.407 0.410 0.399 0.401 0.403 0.407 0.400 0.406 0.448 0.452 0.429 0.425 0.435 0.437 0.588 0.517 0.691 0.607 0.961 0.734
Me 0.380 0.393 0.402 0.406 0.391 0.397 0.397 0.401 0.392 0.399 0.436 0.450 0.422 0.419 0.419 0.423 0.587 0.517 0.656 0.596 0.981 0.746

ETTm2 Avg 0.285 0.327 0.288 0.332 0.291 0.330 0.350 0.401 0.291 0.333 0.305 0.349 0.293 0.342 0.409 0.436 0.327 0.371 1.498 0.869 1.410 0.810
Me 0.276 0.323 0.281 0.329 0.283 0.326 0.327 0.395 0.285 0.330 0.297 0.347 0.284 0.338 0.377 0.424 0.310 0.356 0.966 0.759 0.948 0.725

Exchange Avg 0.345 0.405 0.360 0.403 0.355 0.403 0.354 0.414 0.416 0.443 0.519 0.500 0.410 0.427 0.385 0.447 0.613 0.539 1.913 1.159 1.550 0.998
Me 0.258 0.372 0.254 0.358 0.253 0.358 0.245 0.371 0.297 0.396 0.366 0.440 0.265 0.366 0.296 0.413 0.405 0.447 1.909 1.162 1.438 0.966

4.2 Influence Of Splitting Variable And Temporal Learning

In this section, we conducted ablation experiments on three datasets to verify the necessity
and effectiveness of treating the input sequence as a variable and then switching to a time
sequence in TVDN. The experiment results are shown in Figure 16, Figure 5 and Table 4.
Significantly decreases without CTE. This means that CTE fully complements the learning
of temporal dependent features.
Decoupling effect As shown in Table 4, the model’s performance deteriorates when trained
by CVE and CTE. This suggests that simultaneous cross-variable and cross-temporal learn-
ing can cause mutual interference. The process of temporal dependency learning is prone to
transmitting the effects of overfitting to variable dependency learning. However, performing
variable dependency learning first and switching to temporal dependency learning can ef-
fectively avoid these issues. This approach allows the model to gradually adapt to different
aspects of the data rather than trying to fit all complex relationships simultaneously. The
method of decoupling temporal features from variable features achieved 15 first-place counts
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in MSE and 14 first-place counts in MAE, demonstrating a significant advantage over the
CVE model, which only captures variable dependencies and non-decoupling methods.
Figure 4: Comparison of joint (TVDN-mix)
and decoupled (TVDN-split) training strate-
gies for CVE and CTE modules.

Method TVDN-mix TVDN-split CVE

Metric MSE MAE MSE MAE MSE MAE

ECL

96 0.140 0.236 0.132 0.226 0.142 0.238
192 0.161 0.254 0.153 0.250 0.160 0.252
336 0.175 0.269 0.164 0.264 0.173 0.267
720 0.212 0.300 0.186 0.284 0.204 0.296

AVG 0.172 0.265 0.158 0.256 0.170 0.263

Traffic

96 0.434 0.291 0.401 0.248 0.439 0.294
192 0.453 0.297 0.427 0.259 0.455 0.299
336 0.470 0.306 0.438 0.271 0.468 0.304
720 0.503 0.322 0.469 0.285 0.499 0.321

AVG 0.465 0.304 0.433 0.265 0.465 0.305

Weather

96 0.166 0.212 0.152 0.202 0.165 0.210
192 0.214 0.254 0.200 0.250 0.212 0.252
336 0.272 0.294 0.261 0.305 0.270 0.294
720 0.350 0.346 0.325 0.349 0.354 0.349

AVG 0.250 0.276 0.234 0.276 0.250 0.276
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Figure 5: (a) Comparison of MSE reduction
on the test Set between shifting to temporal
dependency learning and focusing on variable
dependency learning. (b) Trend illustration of
shifting to temporal dependency and focusing
on variable dependency on the validation and
test sets. This trend is observed across all the
datasets we tested.

The analysis in Figure 16 illustrates how shifting from cross-variable learning to temporal
dependency learning approaches improves the model’s ability to capture both amplitude and
trend characteristics. This phenomenon is observed across multiple datasets, suggesting the
robustness of the proposed method. The results highlight the significance of designing a
learning strategy that aligns with the temporal and variable dependencies in the data.
Switching from variable learning to temporal learning As shown in Figure 5, contin-
uing to learn dependencies among variables results in a minimal decrease in MSE and can
even lead to an increase in MSE, making overfitting more likely. However, after switching
to temporal dependency learning, the MSE exhibits a secondary decline trend, significantly
reducing MSE. As shown in Figure 16, the separated training method has significant advan-
tages in predicting the sequence’s amplitude and overall trend. These indicate that TVDN
can help the optimization algorithm avoid suboptimal local minima. By shifting the focus of
learning, the model may explore a broader parameter space, thereby finding a better global
solution.
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Figure 6: The relative change in MSE and MAE after randomly shuffling historical sequences
(Electricity dataset, sequence length=96). TVDN shows the highest increase in errors,
indicating it benefits the most from temporal features, while maintaining the lowest absolute
MSE/MAE values, suggesting temporal disruption does not impair its cross-variable learning
capability.

4.3 Influence Of Temporal Features

To investigate the contribution of temporal features, we designed an experiment on the
ECL dataset with input length 96 and prediction length 96, where the time series order
was randomized entirely, removing all temporal information. We then observed the change
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in performance metrics before and after the randomization to assess the model’s reliance
on temporal features. The more MSE and MSE grow, the more capable the model is of
extracting and utilizing temporal information.
Results The results are shown in the Figure 6. After randomly adjusting the time order,
the TVDN model has the largest rate of performance degradation, which indicates its strong
dependence on the time sequence, and its full extraction of the time sequence features, when
the time sequence features are artificially eliminated, he model has the largest performance
degradation.
The permutation-invariant Cross-Variable Transformer and Dlinear models remained un-
affected, indicating they did not rely on temporal features from historical sequences. In
contrast, other permutation-equivariant models (Informer and Autoformer) showed mini-
mal changes in MSE, suggesting a lesser dependence on temporal features. While they did
utilize some temporal information, it was insufficient for optimal performance.

4.4 Model Analysis

Robustness As show in Fig. 7 and Appendix E, the robustness of TVDN is tested on the
ECL dataset with different levels of Gaussian noise and missing rate levels. The performance
of TVDN decreases as the noise level increases, but the decrease is small and stable, which
indicates that it is more resistant to noise and has good performance at different noise levels.

[Jesy]
Efficiency Figure 8 and Table 8 demonstrate that TVDN achieves superior prediction
performance with high efficiency. It requires only 0.46G FLOPs, 1.44M parameters, and
50.25MB peak memory, significantly reducing computational and memory overhead com-
pared to models like iTransformer and TimesNet. TVDN’s inference speed is comparable
to lightweight models like Client and much faster than TimesNet. Although DLinear has
lower costs, it performs worse in prediction accuracy. These results confirm TVDN’s balance
between efficiency and accuracy.

[Jesy]
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Figure 7: The robustness tests of models on
the ECL dataset include performance under
varying levels of Gaussian noise (left) and dif-
ferent missing rate levels (right). The Gaus-
sian noise level σ indicates that 68% of the
noise falls within ±σ of the standardized data.
The missing ratio m indicates that (m×100)%
of the input data points are randomly masked
as missing values (set to zero).
5 Conclusion

Figure 8: Performance and computational
cost comparison among different models.
The x-axis represents computational com-
plexity in FLOPs, and the y-axis shows
MSE. The size of each bubble indicates
the number of model parameters, while
the color indicates inference time per batch
(s/batch) ranging from low (blue) to high
(red). TVDN achieves competitive perfor-
mance with moderate computational cost
and relatively small model size.

This paper introduces a method called
TVDN, which decouples variable learning
from temporal dependency learning and mod-
els temporal features through historical and
prediction sequence dependency. TVDN ef-
fectively minimizes interference, reduces the risk of overfitting, and enables broader pa-
rameter space exploration. Experimental results demonstrate that TVDN addresses the
limitations of permutation-invariant models in capturing dynamic temporal dependencies
and outperforms permutation-equivariant models in efficiently capturing temporal features.
TVDN achieves SOTA performance across various real-world datasets.
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A Details Of Experiments

A.1 Datasets

Table 2: Detailed dataset descriptions. Dimension denotes the variate number of each
dataset. Dataset Size denotes the total number of time points in (Train, Validation, Test)
split respectively. Prediction Length denotes the future time points to be predicted and four
prediction settings are included in each dataset. Frequency denotes the sampling interval of
time points.

Dataset Dimension Prediction Length Dataset Size Frequency
ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly
ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min
Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Daily
Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10min
ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly
Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly

We performed comprehensive evaluations across seven widely adopted time series datasets.
In line with previous studies Wu et al. (2022), we split the datasets chronologically to form
the training, validation, and testing subsets. Specifically, the ETT dataset was divided with
a 6:2:2 ratio, while the remaining datasets employed a 7:1:2 ratio. Below is a summary of
the datasets:

• ETT (Electricity Transformer Temperature): This dataset consists of data
from electricity transformers located in two regions of China, covering the period
from July 2016 to July 2018. It provides two levels of temporal resolution: ETTh
(hourly) and ETTm (every 15 minutes). The dataset includes measurements of oil
temperature and six external load features.

• Weather: The Weather dataset offers meteorological data collected every 10 min-
utes in Germany throughout 2020. The dataset includes 21 variables, such as air
temperature, visibility, and others.

• Electricity: This dataset contains hourly electricity usage data from 321 house-
holds, recorded between 2012 and 2014. The electricity consumption is measured
in kilowatt-hours (kWh), and the data is available from the UCL Machine Learning
Repository.

• Traffic: The Traffic dataset records hourly road occupancy rates from 862 real-time
sensors on highways in the San Francisco Bay Area. The data spans the years 2015
to 2016.

The ETT dataset can be accessed at https://github.com/zhouhaoyi/Informer2020,
while the other datasets are available at https://github.com/thuml/Autoformer. Table
7 provides detailed dataset statistics, including time steps, variables, temporal resolution,
and the top five dominant periods.

A.2 Baselines

iTransformer (Liu et al., 2024) introduces an innovative inversion of the traditional Trans-
former architecture for time series forecasting. Instead of embedding time steps, iTrans-
former treats each variable as an independent token, using self-attention to capture multi-
variate correlations. This design allows the model to better generalize across different time
series, providing improved accuracy and interpretability. The source code can be accessed
at https://github.com/thuml/iTransformer

FITS (Xu et al., 2024) is a lightweight time series analysis model. It transforms input
sequences into the frequency domain, applies a low-pass filter to remove high-frequency
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noise, and utilizes a complex-valued linear layer for interpolation, learning amplitude scaling
and phase shifting. The processed data is then converted back to the time domain via inverse
Fourier transform. This approach enables FITS to excel in tasks like time series forecasting
and anomaly detection, with a model size of approximately 10,000 parameters, making it
suitable for deployment on resource-constrained edge devices. The source code is available
at https://github.com/VEWOXIC/FITS.
WITRAN (Jia et al., 2024) introduces a novel framework that captures both long- and
short-term patterns through bi-granular information transmission. It employs a Horizontal
Vertical Gated Selective Unit (HVGSU) to model global and local correlations and incorpo-
rates a Recurrent Acceleration Network (RAN) to enhance computational efficiency. The
source code is available at https://github.com/Water2sea/WITRAN.

[hsgf]
Client is a model designed for capturing cross-variable dependencies, integrating trend detec-
tion and a Reversible Instance Normalization (RevIN) module. The source code is available
at https://github.com/daxin007/Client

DLinear (Zeng et al., 2023), a simple one-layer linear model, challenges the dominance of
Transformer-based models in long-term time series forecasting by demonstrating superior
performance across multiple datasets. The source code can be accessed at https://github.
com/vivva/DLinear.
TimesNet (Wu et al., 2022) is a CNN-based model that converts one-dimensional time series
into two-dimensional tensors to effectively capture complex temporal dynamics through
adaptive multi-periodicity and inception blocks. The source code is accessible at https:
//github.com/thuml/TimesNet.
FEDformer (Zhou et al., 2022b) leverages a Transformer-based architecture that combines
seasonal-trend decomposition with frequency enhancement, enabling it to efficiently capture
both global temporal trends and intricate patterns. The source code can be found at https:
//github.com/MAZiqing/FEDformer.
ETSformer (Woo et al., 2022), inspired by exponential smoothing, incorporates both trend
and seasonal components into a Transformer architecture. This enables ETSformer to ac-
curately model short- and long-term dependencies in time series data. The source code is
available at https://github.com/salesforce/ETSformer

LightTS (Zhang et al., 2022) is a lightweight Transformer model designed for long-term time
series forecasting. It reduces computational complexity while maintaining accuracy, making
it ideal for environments with resource constraints. The source code can be accessed at
https://github.com/d-gcc/LightTS

Autoformer (Wu et al., 2021) employs a decomposition strategy to separate time series into
trend and seasonal components. This approach enhances long-term forecasting by focusing
on individual components, allowing the model to learn more effectively. The source code is
available at https://github.com/thuml/Autoformer

Pyraformer (Liu et al., 2021) utilizes a pyramid structure within its Transformer model
to capture hierarchical dependencies over different time scales. This design improves the
model’s ability to handle both local and global temporal patterns. The source code is
accessible at https://github.com/ant-research/Pyraformer

Informer (Zhou et al., 2021), known for its ProbSparse Attention mechanism, enhances
the efficiency and scalability of Transformer models for long-term time series forecasting.
This method reduces the computational complexity of handling long sequences, making
it a practical solution for large-scale time series data. The source code is available at
https://github.com/zhouhaoyi/Informer2020
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B EXTENDED NUMERICAL RESULTS OF TVDN IN
LONG-TERM FORECASTING WITH 96 INPUT LENGTH

Table 3: The complete results for LTSF. The results of 4 different prediction lengths of
different models are listed in the table. The look-back window sizes are set to 96 for all
datasets. We also calculate the average (Avg) and median(Me) of the results for the 4
prediction lengths and the number of optimal values obtained by different models.

Models TVDN iTransformer
2024

Client
2023b

DLinear
2023

TimesNet
2022

FEDformer
2022b

ETSformer
2022

LightTS
2022

Autoformer
2021

Pyraformer
2021

Informer
2021

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

El
ec

tr
ic

ity

96 0.132 0.226 0.148 0.240 0.141 0.236 0.197 0.282 0.168 0.272 0.193 0.308 0.187 0.304 0.207 0.307 0.201 0.317 0.386 0.449 0.274 0.368
192 0.153 0.250 0.162 0.253 0.161 0.254 0.196 0.285 0.184 0.289 0.201 0.315 0.199 0.315 0.213 0.316 0.222 0.334 0.378 0.443 0.296 0.386
336 0.164 0.264 0.178 0.269 0.173 0.267 0.209 0.301 0.198 0.300 0.214 0.329 0.212 0.329 0.230 0.333 0.231 0.338 0.376 0.443 0.300 0.394
720 0.186 0.284 0.225 0.317 0.209 0.299 0.245 0.333 0.220 0.320 0.246 0.355 0.233 0.245 0.265 0.360 0.254 0.361 0.376 0.445 0.373 0.439

Avg 0.158 0.256 0.178 0.270 0.171 0.264 0.212 0.300 0.192 0.295 0.214 0.327 0.208 0.323 0.229 0.329 0.227 0.338 0.379 0.445 0.311 0.397
Me 0.158 0.257 0.170 0.261 0.167 0.261 0.203 0.293 0.191 0.295 0.208 0.322 0.206 0.322 0.222 0.325 0.227 0.336 0.377 0.444 0.298 0.390

Tr
affi

c

96 0.401 0.248 0.395 0.268 0.438 0.292 0.650 0.396 0.593 0.321 0.587 0.366 0.607 0.392 0.615 0.391 0.613 0.388 0.867 0.468 0.719 0.391
192 0.427 0.259 0.417 0.276 0.451 0.298 0.598 0.370 0.617 0.336 0.604 0.373 0.621 0.399 0.601 0.382 0.616 0.382 0.869 0.467 0.696 0.379
336 0.438 0.271 0.433 0.283 0.472 0.305 0.605 0.373 0.629 0.336 0.621 0.383 0.622 0.399 0.613 0.386 0.622 0.337 0.881 0.469 0.777 0.420
720 0.469 0.285 0.467 0.302 0.499 0.321 0.645 0.394 0.640 0.350 0.626 0.382 0.632 0.396 0.658 0.407 0.660 0.408 0.896 0.473 0.864 0.472

Avg 0.433 0.265 0.428 0.282 0.465 0.304 0.625 0.383 0.620 0.336 0.610 0.376 0.621 0.396 0.622 0.392 0.628 0.379 0.878 0.469 0.764 0.416
Me 0.432 0.265 0.425 0.280 0.462 0.302 0.625 0.384 0.623 0.336 0.613 0.378 0.622 0.396 0.614 0.389 0.619 0.385 0.875 0.469 0.748 0.406

W
ea

th
er

96 0.152 0.202 0.174 0.214 0.163 0.207 0.196 0.255 0.172 0.220 0.217 0.296 0.197 0.281 0.182 0.242 0.266 0.336 0.622 0.556 0.300 0.384
192 0.200 0.250 0.221 0.254 0.214 0.253 0.237 0.296 0.219 0.261 0.276 0.336 0.237 0.312 0.227 0.287 0.307 0.367 0.739 0.624 0.598 0.544
336 0.261 0.305 0.278 0.296 0.271 0.294 0.283 0.335 0.280 0.306 0.339 0.380 0.298 0.353 0.282 0.334 0.359 0.395 1.004 0.753 0.578 0.523
720 0.325 0.349 0.358 0.349 0.360 0.346 0.345 0.381 0.365 0.359 0.403 0.428 0.352 0.390 0.352 0.386 0.419 0.428 1.420 0.934 1.059 0.741

Avg 0.234 0.276 0.258 0.279 0.249 0.275 0.265 0.317 0.259 0.287 0.309 0.360 0.271 0.334 0.261 0.312 0.338 0.382 0.946 0.717 0.634 0.548
Me 0.230 0.277 0.250 0.275 0.243 0.274 0.260 0.316 0.250 0.284 0.308 0.358 0.268 0.333 0.255 0.311 0.333 0.381 0.872 0.689 0.588 0.534

ET
T

h1

96 0.386 0.400 0.386 0.405 0.392 0.409 0.386 0.400 0.384 0.402 0.376 0.419 0.494 0.479 0.424 0.432 0.449 0.459 0.664 0.612 0.865 0.713
192 0.440 0.431 0.441 0.436 0.445 0.436 0.437 0.432 0.436 0.429 0.420 0.448 0.538 0.504 0.475 0.462 0.500 0.482 0.790 0.681 1.008 0.792
336 0.478 0.451 0.487 0.458 0.482 0.456 0.481 0.459 0.491 0.469 0.459 0.465 0.574 0.521 0.518 0.488 0.521 0.496 0.891 0.738 1.107 0.809
720 0.476 0.468 0.503 0.491 0.489 0.480 0.519 0.516 0.521 0.500 0.506 0.507 0.562 0.535 0.547 0.533 0.514 0.512 0.963 0.782 1.181 0.865

Avg 0.445 0.437 0.454 0.447 0.452 0.445 0.456 0.452 0.458 0.450 0.440 0.460 0.542 0.510 0.491 0.479 0.496 0.487 0.827 0.703 1.040 0.795
Me 0.458 0.441 0.464 0.447 0.464 0.446 0.459 0.446 0.464 0.449 0.440 0.457 0.550 0.513 0.497 0.475 0.507 0.489 0.841 0.710 1.058 0.801

ET
T

h2

96 0.299 0.350 0.297 0.349 0.305 0.353 0.333 0.387 0.340 0.374 0.358 0.397 0.340 0.391 0.397 0.437 0.346 0.388 0.645 0.597 3.755 1.525
192 0.364 0.391 0.380 0.400 0.382 0.401 0.477 0.476 0.402 0.414 0.429 0.439 0.430 0.439 0.520 0.504 0.456 0.452 0.788 0.683 5.602 1.931
336 0.409 0.427 0.428 0.432 0.434 0.445 0.594 0.541 0.452 0.452 0.496 0.487 0.485 0.479 0.626 0.559 0.482 0.486 0.907 0.747 4.721 1.835
720 0.421 0.443 0.427 0.445 0.424 0.444 0.831 0.657 0.462 0.468 0.463 0.474 0.500 0.497 0.863 0.672 0.515 0.511 0.963 0.783 3.647 1.625

Avg 0.373 0.402 0.383 0.407 0.386 0.411 0.559 0.515 0.414 0.427 0.437 0.449 0.439 0.452 0.602 0.543 0.450 0.459 0.826 0.703 4.431 1.729
Me 0.386 0.409 0.404 0.416 0.403 0.423 0.536 0.509 0.427 0.433 0.446 0.457 0.458 0.459 0.573 0.532 0.469 0.469 0.848 0.715 4.238 1.730

ET
T

m
1 96 0.324 0.356 0.334 0.368 0.336 0.369 0.345 0.372 0.338 0.375 0.379 0.419 0.375 0.398 0.374 0.409 0.505 0.475 0.543 0.510 0.672 0.571

192 0.366 0.383 0.377 0.391 0.374 0.387 0.380 0.389 0.374 0.387 0.426 0.441 0.408 0.410 0.400 0.407 0.553 0.496 0.557 0.537 0.795 0.669
336 0.395 0.403 0.426 0.420 0.408 0.407 0.413 0.413 0.410 0.411 0.445 0.459 0.435 0.428 0.438 0.438 0.621 0.537 0.754 0.655 1.212 0.871
720 0.467 0.440 0.491 0.459 0.477 0.442 0.474 0.453 0.478 0.450 0.543 0.490 0.499 0.462 0.527 0.502 0.671 0.561 0.908 0.724 1.166 0.823

Avg 0.388 0.395 0.407 0.410 0.399 0.401 0.403 0.407 0.400 0.406 0.448 0.452 0.429 0.425 0.435 0.437 0.588 0.517 0.691 0.607 0.961 0.734
Me 0.380 0.383 0.402 0.406 0.391 0.397 0.397 0.401 0.392 0.399 0.436 0.450 0.422 0.419 0.419 0.423 0.587 0.517 0.656 0.596 0.981 0.746

ET
T

m
2 96 0.180 0.262 0.180 0.264 0.184 0.267 0.193 0.292 0.187 0.267 0.203 0.287 0.189 0.280 0.209 0.308 0.255 0.339 0.435 0.507 0.365 0.453

192 0.246 0.306 0.250 0.309 0.252 0.307 0.284 0.362 0.249 0.309 0.269 0.328 0.253 0.319 0.311 0.382 0.281 0.340 0.730 0.673 0.533 0.563
336 0.307 0.340 0.311 0.348 0.314 0.345 0.369 0.427 0.321 0.351 0.325 0.366 0.314 0.357 0.442 0.446 0.339 0.372 1.201 0.845 1.363 0.887
720 0.408 0.403 0.412 0.407 0.412 0.402 0.554 0.522 0.408 0.403 0.421 0.415 0.414 0.413 0.675 0.587 0.433 0.432 3.625 1.451 3.379 1.338

Avg 0.285 0.327 0.288 0.332 0.291 0.330 0.350 0.401 0.291 0.333 0.305 0.349 0.293 0.342 0.409 0.436 0.327 0.371 1.498 0.869 1.410 0.810
Me 0.276 0.323 0.281 0.329 0.283 0.326 0.327 0.395 0.285 0.330 0.297 0.347 0.284 0.338 0.377 0.424 0.310 0.356 0.966 0.759 0.948 0.725

Ex
ch

an
ge

96 0.084 0.207 0.086 0.206 0.086 0.206 0.088 0.218 0.107 0.234 0.148 0.278 0.085 0.204 0.116 0.262 0.197 0.323 1.748 1.105 0.847 0.752
192 0.188 0.319 0.177 0.299 0.176 0.299 0.176 0.315 0.226 0.334 0.271 0.380 0.182 0.303 0.215 0.359 0.300 0.369 1.874 1.151 1.204 0.895
336 0.329 0.425 0.331 0.417 0.330 0.416 0.313 0.427 0.367 0.448 0.460 0.500 0.348 0.428 0.377 0.466 0.509 0.524 1.943 1.172 1.672 1.036
720 0.779 0.670 0.847 0.691 0.828 0.689 0.839 0.695 0.964 0.746 1.195 0.841 1.025 0.774 0.831 0.699 1.447 0.941 2.085 1.206 2.478 1.310

Avg 0.345 0.405 0.360 0.403 0.355 0.403 0.354 0.414 0.416 0.443 0.519 0.500 0.410 0.427 0.385 0.447 0.613 0.539 1.913 1.159 1.550 0.998
Me 0.258 0.372 0.254 0.358 0.253 0.358 0.245 0.371 0.297 0.396 0.366 0.440 0.265 0.366 0.296 0.413 0.405 0.447 1.909 1.162 1.438 0.966

1st Count 70 12 9 4 2 5 1 0 0 0 0
2st Count 15 28 48 4 5 0 3 0 0 0 0

Avg 1st Count 13 2 1 0 0 0 0 0 0 0 0
Me 1st Count 12 2 2 1 0 0 0 0 0 0 0
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Table 4: The complete results for LTSF. The results of 4 different prediction lengths of
different models are listed in the table. The look-back window sizes are set to 96 for all
datasets. We also calculate the average (Avg) and median(Me) of the results for the 4
prediction lengths and the number of optimal values obtained by different models.

Models TVDN FITS
2024

WITRAN
2024

DLinear
2023

TimesNet
2022

FEDformer
2022b

ETSformer
2022

LightTS
2022

Autoformer
2021

Pyraformer
2021

Informer
2021

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

El
ec

tr
ic

ity

96 0.132 0.226 0.293 0.401 0.237 0.335 0.197 0.282 0.168 0.272 0.193 0.308 0.187 0.304 0.207 0.307 0.201 0.317 0.386 0.449 0.274 0.368
192 0.153 0.250 0.268 0.378 0.258 0.350 0.196 0.285 0.184 0.289 0.201 0.315 0.199 0.315 0.213 0.316 0.222 0.334 0.378 0.443 0.296 0.386
336 0.164 0.264 0.355 0.452 0.273 0.362 0.209 0.301 0.198 0.300 0.214 0.329 0.212 0.329 0.230 0.333 0.231 0.338 0.376 0.443 0.300 0.394
720 0.186 0.284 0.416 0.498 0.300 0.382 0.245 0.333 0.220 0.320 0.246 0.355 0.233 0.245 0.265 0.360 0.254 0.361 0.376 0.445 0.373 0.439

Avg 0.158 0.256 0.333 0.432 0.267 0.357 0.212 0.300 0.192 0.295 0.214 0.327 0.208 0.323 0.229 0.329 0.227 0.338 0.379 0.445 0.311 0.397
Me 0.158 0.257 0.324 0.427 0.265 0.356 0.203 0.293 0.191 0.295 0.208 0.322 0.206 0.322 0.222 0.325 0.227 0.336 0.377 0.444 0.298 0.390

Tr
affi

c

96 0.401 0.248 0.898 0.572 1.037 0.441 0.650 0.396 0.593 0.321 0.587 0.366 0.607 0.392 0.615 0.391 0.613 0.388 0.867 0.468 0.719 0.391
192 0.427 0.259 0.763 0.522 1.061 0.455 0.598 0.370 0.617 0.336 0.604 0.373 0.621 0.399 0.601 0.382 0.616 0.382 0.869 0.467 0.696 0.379
336 0.438 0.271 0.894 0.608 1.095 0.470 0.605 0.373 0.629 0.336 0.621 0.383 0.622 0.399 0.613 0.386 0.622 0.337 0.881 0.469 0.777 0.420
720 0.469 0.285 1.019 0.646 1.121 0.474 0.645 0.394 0.640 0.350 0.626 0.382 0.632 0.396 0.658 0.407 0.660 0.408 0.896 0.473 0.864 0.472

Avg 0.433 0.265 0.894 0.587 1.079 0.460 0.625 0.383 0.620 0.336 0.610 0.376 0.621 0.396 0.622 0.392 0.628 0.379 0.878 0.469 0.764 0.416
Me 0.432 0.265 0.879 0.597 1.078 0.463 0.625 0.384 0.623 0.336 0.613 0.378 0.622 0.396 0.614 0.389 0.619 0.385 0.875 0.469 0.748 0.406

W
ea

th
er

96 0.152 0.202 0.174 0.214 0.178 0.223 0.196 0.255 0.172 0.220 0.217 0.296 0.197 0.281 0.182 0.242 0.266 0.336 0.622 0.556 0.300 0.384
192 0.200 0.250 0.221 0.254 0.223 0.261 0.237 0.296 0.219 0.261 0.276 0.336 0.237 0.312 0.227 0.287 0.307 0.367 0.739 0.624 0.598 0.544
336 0.261 0.305 0.278 0.309 0.288 0.309 0.283 0.335 0.280 0.306 0.339 0.380 0.298 0.353 0.282 0.334 0.359 0.395 1.004 0.753 0.578 0.523
720 0.325 0.349 0.358 0.349 0.372 0.363 0.345 0.381 0.365 0.359 0.403 0.428 0.352 0.390 0.352 0.386 0.419 0.428 1.420 0.934 1.059 0.741

Avg 0.234 0.276 0.258 0.278 0.265 0.289 0.265 0.317 0.259 0.287 0.309 0.360 0.271 0.334 0.261 0.312 0.338 0.382 0.946 0.717 0.634 0.548
Me 0.230 0.277 0.250 0.275 0.255 0.285 0.260 0.316 0.250 0.284 0.308 0.358 0.268 0.333 0.255 0.311 0.333 0.381 0.872 0.689 0.588 0.534

ET
T

h1

96 0.386 0.400 0.381 0.391 0.414 0.419 0.386 0.400 0.384 0.402 0.376 0.419 0.494 0.479 0.424 0.432 0.449 0.459 0.664 0.612 0.865 0.713
192 0.440 0.431 0.443 0.422 0.464 0.448 0.437 0.432 0.436 0.429 0.420 0.439 0.538 0.504 0.475 0.462 0.500 0.482 0.790 0.681 1.008 0.792
336 0.478 0.451 0.474 0.446 0.516 0.478 0.481 0.459 0.477 0.456 0.459 0.465 0.574 0.521 0.518 0.488 0.521 0.496 0.891 0.738 1.107 0.809
720 0.476 0.468 0.464 0.463 0.538 0.509 0.519 0.516 0.521 0.500 0.459 0.474 0.562 0.535 0.547 0.533 0.514 0.512 0.963 0.782 1.181 0.865

Avg 0.445 0.437 0.438 0.431 0.483 0.464 0.456 0.452 0.444 0.447 0.429 0.449 0.542 0.510 0.491 0.479 0.496 0.487 0.827 0.703 1.040 0.795
Me 0.458 0.441 0.459 0.434 0.490 0.463 0.459 0.446 0.456 0.445 0.440 0.452 0.550 0.513 0.497 0.475 0.507 0.489 0.841 0.710 1.058 0.801

ET
T

h2

96 0.299 0.350 0.290 0.339 0.325 0.364 0.333 0.387 0.340 0.374 0.358 0.397 0.340 0.391 0.397 0.437 0.346 0.388 0.645 0.597 3.755 1.525
192 0.364 0.391 0.375 0.388 0.433 0.427 0.477 0.476 0.402 0.414 0.429 0.439 0.430 0.439 0.520 0.504 0.456 0.452 0.788 0.683 5.602 1.931
336 0.409 0.427 0.414 0.425 0.471 0.457 0.594 0.541 0.452 0.452 0.496 0.487 0.485 0.479 0.626 0.559 0.482 0.486 0.907 0.747 4.721 1.835
720 0.421 0.443 0.419 0.437 0.499 0.480 0.831 0.657 0.424 0.444 0.463 0.474 0.500 0.497 0.863 0.672 0.515 0.511 0.963 0.783 3.647 1.625

Avg 0.373 0.402 0.375 0.397 0.432 0.432 0.559 0.515 0.414 0.427 0.437 0.449 0.439 0.452 0.602 0.543 0.450 0.459 0.826 0.703 4.431 1.729
Me 0.386 0.409 0.395 0.406 0.452 0.442 0.536 0.509 0.427 0.433 0.446 0.457 0.458 0.459 0.573 0.532 0.469 0.469 0.848 0.715 4.238 1.730

ET
T

m
1 96 0.324 0.356 0.351 0.370 0.375 0.402 0.345 0.372 0.338 0.375 0.379 0.419 0.375 0.398 0.374 0.409 0.505 0.475 0.543 0.510 0.672 0.571

192 0.366 0.383 0.392 0.393 0.427 0.434 0.380 0.389 0.374 0.387 0.426 0.441 0.408 0.410 0.400 0.407 0.553 0.496 0.557 0.537 0.795 0.669
336 0.395 0.403 0.424 0.413 0.455 0.452 0.413 0.413 0.408 0.407 0.445 0.459 0.435 0.428 0.438 0.438 0.621 0.537 0.754 0.655 1.212 0.871
720 0.467 0.440 0.485 0.448 0.527 0.488 0.474 0.453 0.478 0.442 0.543 0.490 0.499 0.462 0.527 0.502 0.671 0.561 0.908 0.724 1.166 0.823

Avg 0.388 0.395 0.413 0.406 0.446 0.444 0.403 0.407 0.400 0.403 0.448 0.452 0.429 0.425 0.435 0.439 0.588 0.517 0.691 0.607 0.961 0.734
Me 0.380 0.393 0.408 0.403 0.441 0.443 0.397 0.401 0.391 0.397 0.436 0.450 0.422 0.419 0.419 0.423 0.587 0.517 0.656 0.596 0.981 0.746

ET
T

m
2 96 0.180 0.262 0.181 0.264 0.191 0.272 0.193 0.292 0.187 0.267 0.203 0.287 0.189 0.280 0.209 0.308 0.255 0.339 0.435 0.507 0.365 0.453

192 0.246 0.306 0.246 0.304 0.261 0.316 0.284 0.362 0.249 0.307 0.269 0.328 0.253 0.319 0.311 0.382 0.281 0.340 0.730 0.673 0.533 0.563
336 0.307 0.340 0.306 0.341 0.330 0.358 0.369 0.427 0.321 0.351 0.325 0.366 0.314 0.357 0.442 0.446 0.339 0.372 1.201 0.845 1.363 0.887
720 0.408 0.403 0.407 0.397 0.450 0.427 0.554 0.522 0.408 0.403 0.421 0.415 0.414 0.413 0.675 0.587 0.433 0.432 3.625 1.451 3.379 1.338

Avg 0.285 0.327 0.285 0.327 0.308 0.343 0.350 0.401 0.291 0.333 0.305 0.349 0.293 0.342 0.409 0.436 0.327 0.371 1.498 0.869 1.410 0.810
Me 0.276 0.323 0.276 0.323 0.296 0.337 0.327 0.395 0.285 0.330 0.297 0.347 0.284 0.338 0.377 0.424 0.310 0.356 0.966 0.759 0.948 0.725

1st Count 73 3 0 1 1 6 0 0 0 0 0
2st Count 4 33 0 11 33 1 0 0 0 0 0

Avg 1st Count 12 0 0 0 0 1 0 0 0 0 0
Me 1st Count 12 0 0 0 0 1 0 0 0 0 0

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C Visualization of main results

ClientTVDN DLinear

iTransformerTransformer FEDformer

Figure 9: Visualization of the prediction results on the Electricity dataset, where TVDN
predicts more accurately compared to other models in terms of better fitting the actual
series.
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D Performance with increasing lookback length

To investigate the impact of increasing lookback length on model performance, we conducted
comparative experiments across different input sequence lengths (L). As shown in Figure 10,
we evaluate TVDN against state-of-the-art baselines on the electricity dataset under both
short-term (T=96) and long-term (T=720) forecasting scenarios.
Previous studies have observed that increasing lookback length does not necessarily improve
forecasting performance in Transformer-based models, primarily due to distracted attention
on growing input sequences (Zeng et al., 2023; Liu et al., 2024; Gao et al., 2023b). Our
experimental results reveal distinct patterns: while traditional Transformer-based models
show inconsistent performance with increased lookback lengths, TVDN demonstrates robust
and improving performance as L increases from 24 to 720.
For T=96, TVDN’s MSE steadily decreases, effectively utilizing longer historical informa-
tion. PatchTST and DLinear also show improvements with increasing lookback lengths, but
their performances are worse than TVDN. In contrast, Transformer, FEDformer, and Auto-
former exhibit relatively unstable performance patterns, confirming the attention distraction
phenomenon noted in previous works(Liu et al., 2024).
The advantage of TVDN becomes more pronounced in the long-term forecasting scenario
(T=720). TVDN’s performance is consistently better than the other models, including
PatchTST and DLinear. While Autoformer and Transformer show significant fluctuations,
particularly in the L=48 to L=96 range, TVDN maintains stable performance and achieves
optimal results in the L=192-336 range. This demonstrates TVDN’s superior capability
in handling longer sequences decrease suffering from the attention distraction issues that
plague traditional Transformer architectures.

24 48 96 192 336 720
L

0.10

0.15

0.20

0.25

0.30

M
SE

Electricity (T=96)

Transformer
FEDformer
Autoformer
PatchTST
DLinear
TVDN

24 48 96 192 336 720
L

0.20

0.25

0.30

0.35

0.40

0.45

M
SE

Electricity (T=720)

Transformer
FEDformer
Autoformer
PatchTST
DLinear
TVDN

Figure 10: Performance comparison of TVDN against baseline models on the electricity
dataset. Results are shown for two prediction lengths: T=96 (left) and T=720 (right). The
x-axis represents different input sequence lengths (L), and the y-axis shows the Mean Square
Error (MSE). TVDN consistently achieves lower MSE across different sequence lengths,
particularly demonstrating better performance in long-term forecasting scenarios. [tVnS]
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E Robustness Analysis of TVDN Model

In this appendix, we present a comprehensive analysis of TVDN’s robustness against differ-
ent types of data perturbations commonly encountered in real-world applications. Specifi-
cally, we evaluate the model’s performance under two major categories of data corruption:
Gaussian noise and missing values. To assess TVDN’s resilience to random disturbances, we
conducted experiments by introducing Gaussian noise at various intensity levels (from 0.0 to
1.0). The noise was added to the input sequences following x′

t = xt + ϵ, where ϵ ∼ N (0, σ2),
σ2 represents the noise level, xt is the original value at time t, and x′

t is the corrupted value.

Table 5: Performance comparison of TVDN under different Gaussian noise levels (0.0-
1.0), where noise level σ represents the standard deviation of the additive Gaussian noise
x′

t = xt + ϵ, ϵ ∼ N (0, σ2). The evaluation metrics include MSE and MAE across multiple
prediction horizons (96, 192, 336, and 720 steps), demonstrating the model’s robustness
against input perturbations.

Models 96 steps 192 steps 336 steps 720 steps
Metric MSE MAE MSE MAE MSE MAE MSE MAE

Noise Level

0.0 0.132 0.226 0.153 0.250 0.164 0.264 0.186 0.284
0.1 0.136 0.232 0.153 0.253 0.167 0.267 0.195 0.290
0.2 0.136 0.237 0.156 0.258 0.171 0.276 0.186 0.286
0.3 0.140 0.244 0.157 0.262 0.168 0.276 0.196 0.298
0.4 0.144 0.250 0.160 0.268 0.173 0.283 0.192 0.295
0.5 0.147 0.255 0.164 0.273 0.173 0.282 0.193 0.300
0.7 0.155 0.266 0.171 0.283 0.179 0.291 0.197 0.306
1.0 0.165 0.281 0.184 0.297 0.191 0.306 0.209 0.319

Average 0.144 0.249 0.162 0.268 0.173 0.281 0.194 0.297

The experimental results in Table 5 and Figure 11demonstrate that the performance degra-
dation follows a gradual trend as noise intensity increases. At low noise levels (0.1-0.3), the
model maintains performance close to the baseline, with degradation limited to within 10%.
Even at high noise levels (0.7-1.0), the increase in MSE and MAE remains within 25% of
the baseline performance.

Table 6: Performance evaluation of TVDN under varying missing value rates (0.0-0.7), where
missing rate represents the proportion of randomly masked values in the input sequence xt.
Results are measured using MSE and MAE across different prediction lengths (96, 192, 336,
and 720 steps), illustrating the model’s capability in handling incomplete time series data.

Models 96 steps 192 steps 336 steps 720 steps
Metric MSE MAE MSE MAE MSE MAE MSE MAE

Missing Rate

0.0 0.132 0.226 0.153 0.250 0.164 0.264 0.186 0.284
0.1 0.140 0.241 0.152 0.256 0.165 0.271 0.185 0.288
0.3 0.147 0.252 0.159 0.264 0.172 0.280 0.191 0.301
0.5 0.156 0.263 0.169 0.276 0.179 0.289 0.198 0.307
0.7 0.168 0.275 0.182 0.287 0.194 0.301 0.216 0.321

Average 0.149 0.251 0.163 0.267 0.175 0.281 0.195 0.300

To evaluate TVDN’s capability in handling incomplete data, we conducted experiments
with missing values by randomly masking out portions of the input sequence at different
rates (0.1 to 0.7). The results in Table 6 and Figure 12 show that the model demonstrates
strong resilience to missing values. At moderate missing rates (0.1-0.3), the performance
degradation is limited to within 10%, and even with 70% missing values, the model maintains
reasonable prediction accuracy with performance degradation within 30% of the baseline.
The experimental results demonstrate TVDN’s robust performance under both Gaussian
noise and missing values. Several factors contribute to this resilience. First, the temporal-
value decomposition mechanism helps isolate noise effects from the underlying temporal
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patterns. Second, the multi-scale feature extraction enables the model to capture temporal
dependencies at different granularities, reducing the impact of local perturbations. Third,
the adaptive attention mechanism can effectively focus on more reliable segments of the
input sequence. These findings suggest that TVDN is well-suited for real-world applications
where data quality cannot be guaranteed.
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Figure 11: Impact of Gaussian noise on TVDN’s prediction performance, where noise level
σ represents the standard deviation of the additive Gaussian noise x′

t = xt +ϵ, ϵ ∼ N (0, σ2).
A higher σ indicates stronger noise perturbation on the original input sequence xt. The left
panel shows MSE and right panel shows MAE versus noise level (0.0 to 1.0) for prediction
lengths of 96, 192, 336, and 720 time steps. Key findings: (1) MSE and MAE increase
gradually with noise level; (2) Longer prediction horizons show higher error rates; (3) Per-
formance degradation remains stable across noise levels; and (4) Performance gaps between
prediction lengths remain consistent, demonstrating TVDN’s robust handling of noisy data.
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Figure 12: Impact of missing values on TVDN’s prediction performance, where missing
rate represents the proportion of randomly masked values in the input sequence. The left
panel shows MSE and right panel shows MAE versus missing rate (0.1 to 0.7) for prediction
lengths of 96, 192, 336, and 720 time steps. Key findings: (1) MSE and MAE show moderate
increases with higher missing rates; (2) Performance remains stable even at 0.7 missing
rate; (3) Shorter prediction horizons maintain better performance; and (4) Performance
gaps between prediction lengths remain stable across missing rates, demonstrating TVDN’s
robust handling of incomplete data.

[Jesy]
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F Transformer Limitations Analysis

Figure 13: Observation of the model’s loss trend on the Electricity and Traffic datasets.
Training was fixed for 10 epochs with an early stopping tolerance of 3. Training was termi-
nated upon exceeding this tolerance level.
In the context of time series prediction problems based on Transformer models, we can
perceive the data-driven learning of the Transformer model as two distinct parts. The first
part involves the encoder extracting valuable information from historical sequences through
self-attention and feed-forward networks (FFNs). The second part is the decoder, which,
in conjunction with the encoder’s output, models the associative relationships of the target
sequence.
To investigate which part primarily contributes to the Transformer model’s benefits, we
conducted an extreme experiment. This study tested the original Transformer model and
a model using only the Transformer decoder on the Electricity and Traffic datasets. For
the decoder-only model, we retained few historical sequences as start tokens for the Trans-
former’s decoder, thereby minimizing the use of historical sequence information as much as
possible.
As show in Figure13 When applying the original Transformer model to time series prediction,
we observed significant overfitting. As shown in the figure, despite setting a relatively small
learning rate (1 × 10−4 ), it’s apparent that there’s an early occurrence of the training set
loss decreasing while the validation set loss increases. Moreover, the losses for both the
validation and test sets stabilize quickly.
While the Transformer with historical information performs marginally better in most cases,
the performance difference compared to the Transformer Decoder (without historical infor-
mation) is insignificant. In certain cases, the Transformer Decoder even surpasses the full
Transformer. This partially supports the hypothesis that the Transformer model may not ef-
fectively utilize historical information. This observation is consistent with previous findings
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Figure 14: Comparative analysis of the original Transformer versus a decoder-only Trans-
former model on Electricity and Traffic datasets.

indicating that some Transformer-based models do not necessarily achieve better perfor-
mance with an increased historical sequence length(Zeng et al., 2023; Liu et al., 2024; Gao
et al., 2023b)

[tVnS]
As we can see, even when the Transformer model reduces the information from the historical
sequence, its performance does not significantly decline. This suggests that modeling the
temporal relationships in the prediction sequence is also crucial, which may be one of the
reasons why the Transformer’s performance remains stable.
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G VISUALIZATION OF TVDN MODEL WEIGHT
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Figure 15: Visualization of TVDN Model Weights. (a) Heatmap of the attention matrix in
CVE. (b) Heatmap of convolutional kernel weights in the local window of the input layer in
CTE. (c) Convolutional kernel weights in the local window of the output layer in CTE. (d)
Convolutional kernel weights for feature down-sampling in FDS.
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H Motivation from cross-variable learning to cross-temporal
learning

Theoretical Motivation Previous studies have highlighted that Cross-temporal Trans-
formers are prone to bad local minima and are harder to converge to their true solutions
Ilbert et al. (2024). Modeling cross-temporal relationships first can provide an unstable
optimization starting point for subsequent cross-variable learning. In contrast, starting
with cross-variable modeling helps establish a stable inter-variable relationship structure
Liu et al. (2024); Gao et al. (2023b), which in turn provides a better optimization starting
point for cross-temporal learning. This order increases the likelihood of convergence to the
true solution and improves the overall performance of the model.
Experimental Evidence To validate the importance of this modeling order, we conducted
experiments where the order of learning was reversed. The results clearly demonstrate that
the proposed sequence of learning cross-variable relationships first (CVE) followed by cross-
temporal relationships (CTE) outperforms the reversed order. The results are summarized
in the Table 7.

[hsgf]

Table 7: Performance comparison of different learning orders on the ECL dataset. Results
highlighted in red indicate the best performance for each prediction length.

Prediction Length CVE → CTE (Proposed) CTE → CVE (Reversed)

MSE MAE MSE MAE

96 0.132 0.226 0.191 0.295
192 0.153 0.250 0.194 0.293
336 0.164 0.264 0.194 0.294
720 0.186 0.284 0.228 0.321

I Instantaneous and Lagged Effects Discussion in TVDN

In multivariate time series analysis, the temporal relationships between variables manifest
as instantaneous and lagged effects. For example, in a biomedical time series, multiple
physiological signals (e.g., heart rate and blood pressure) may be transiently correlated
simultaneously. In some cases, there may be delayed effects between some variables. For
example, the impact of temperature change on plant growth is usually gradual.
While our paper focuses on developing a general foundation model for various temporal data
types, emphasizing the interaction between cross-variable and temporal dependencies, we
should have explicitly discussed these temporal relationship types.
Cross-variable learning: Can capture interactions between variables at same or
different timesteps but overlook the specific time ordering. In the cross-variable
learning stage, the model can capture interactions between variables at different timesteps
(V i

t and V j
(t+∆)), where V i

t represents the i-th variable at time t, and V j
(t+∆) represents

the j-th variable at time (t + ∆). The temporal offset ∆ allows the model to capture
instantaneous effects (when ∆ = 0) and lagged effects (when ∆ ̸= 0). This formulation
maintains temporal invariance, meaning the model can identify relationships regardless of
the specific time ordering of the variables.
Cross-temporal learning: Incremental learning instead of siloed learning. Our
temporal learning component incrementally builds upon the cross-variable relationships
identified in the first stage. Instead of treating these interactions in isolation, we integrate
them to capture instantaneous and lagged effects better. This comprehensive approach en-
sures that our model effectively captures complex temporal dynamics, including direct and
delayed influences between variables.

[hsgf]
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J Comparison of focusing on Cross-variable learning
approaches and shifting

Continuing to learn dependencies among variables results in a minimal decrease in MSE
and can even lead to an increase in MSE, making overfitting more likely.

Shifting to Temporal DependencyFocusing on Variable Dependency

Figure 16: Comparison of focusing on Cross-variable learning approaches and shifting from Cross-
variable learning to temporal dependency learning approaches. Visualization of prediction results
on the ECL and Weather datasets. The latter shows a better fit for amplitude and trends.
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K Model efficiency
[hsgf]

Table 8: Model efficiency comparison with state-of-the-art methods. FLOPs and parameters
are measured on the ETTh1 dataset with prediction length 96. Time represents the average
inference time per sample, and Memory denotes the peak memory usage during inference.
The MSE values are averaged over all prediction lengths on ETTh1. Our TVDN achieves
competitive performance (0.186 MSE) with moderate computation and memory costs (0.46G
FLOPs, 50.25MB memory).

Model FLOPs (G) Param (M) Time (s) Memory (MB) MSE

TVDN (ours) 0.46 1.44 0.0020 50.25 0.186
iTransformer 1.67 5.15 0.0019 62.06 0.225
Client 0.32 1.01 0.0016 46.33 0.209
DLinear 0.04 0.14 0.0003 42.94 0.245
TimesNet 612.79 150.37 0.0625 724.97 0.220
FEDformer 4.41 12.14 0.0298 246.33 0.246
ETSformer 0.85 6.57 0.0055 80.64 0.233
LightTS 0.10 0.33 0.0009 43.65 0.265
Autoformer 4.41 12.14 0.0107 221.52 0.254
Pyraformer 1.21 362.29 0.0039 1434.35 0.376
Informer 3.94 12.45 0.0055 218.42 0.373
PatchTST 25.73 10.74 0.0036 257.58 0.246
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