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Abstract

Current multimodal learning strategies primar-
ily optimize in the original token space. Such
a framework is easy to incorporate with the back-
bone of pretrained language model, but might re-
sult in modality collapse. To alleviate such issues,
we leverage the Joint-Embedding Predictive Ar-
chitecture (JEPA) on the multimodal tasks, which
converts the input embedding into the output em-
bedding space by a predictor and then conducts
the cross-modal alignment on the latent space.
We implement this predictor by a Multi-Gate Mix-
ture of Experts (MMoE) and name the framework
as M3-JEPA, accordingly. The gating function
disentangles the modality-specific and shared in-
formation and derives information-theoretic opti-
mality. The framework is implemented with both
contrastive and regularization loss, and solved by
alternative gradient descent (AGD) between dif-
ferent multimodal tasks. By thoroughly designed
experiments, we show that M3-JEPA can obtain
state-of-the-art performance on different modali-
ties and tasks, generalize to unseen datasets and
domains, and is computationally efficient in both
training and inference. Our observation suggests
that M3-JEPA might become a new basis to self-
supervised learning in the open world.

1. Introduction

Human perception is inherently multi-modal, seamlessly
integrating diverse sensory inputs from vision, hearing,
touch, and other senses to comprehend the world. Inspired
by this capability, modern modeling techniques also pro-
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Figure 1. The paradigm of M3-JEPA on any-to-any multi-modality
tasks. The self-supervised learning is conducted with two encod-
ing branches of input and output signals, as well as an MoE pre-
dictor which projects the input embedding into the output latent
space. M3-JEPA is an energy-based model that minimizes both
contrastive and regularization losses. M3-JEPA is also conditioned
on the inherent information content (g) which maximizes the mu-
tual information and minimizes the conditional entropy.

cess and integrate information from multiple modalities
like text, image, audio and video, becoming an important
way to solve complex tasks involving heterogeneous data
sources (Alayrac et al., 2022; Radford et al., 2021; Wang
et al., 2022a; Liu et al.). Modern multi-modal studies are
dominated by generative architecture, which can generally
be classified into two main categories. The first category
trains the model from scratch (Wang et al., 2022a; 2023a;
Oquab et al., 2025), which asks for large-scale data therefore
faces high training costs. Another category often employs
a pretrained Large Language Model (LLM) as the back-
bone while finetuning a lightweight cross-modal connector
(Alayrac et al., 2022; Li et al., 2023; Wu et al., 2024a; Liu
et al., 2023; Jun Zhan, 2024). In this manner, the prior
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knowledge of LLM can be well preserved while the compu-
tational burden can also be alleviated (Zhang et al., 2024).

Although these studies achieve remarkable success in mul-
timodal learning, however, they may be often subject to
the issue of modality collapse during the cross-modal align-
ment, resulting from the conflicting gradients (Javaloy et al.,
2022), missing modality or labels (Wu et al., 2024b), and
mismatched data distribution or fusion (Ma et al., 2022). Es-
pecially, LLMs take advantage of self-supervised learning
(SSL), which predicts the hidden parts of the data grounded
by the visible parts, in the discrete token space. Neverthe-
less, this paradigm relatively struggles in continuous do-
mains (e.g., image or video), which causes the cross-modal
alignment difficult to converge, and might fail to capture key
information (Dawid & LeCun, 2024), especially in the exis-
tence of information uncertainty, redundancy, or ambiguity
(e.g., one picture can be described by two content different
but semantically similar sentence).

To mitigate these issues, one possible solution is to switch
from generative and probabilistic modeling to the energy-
based model (EBM) paradigm, which minimizes a non-
negative energy function of both the input and output em-
beddings. To better handle the uncertainty of information,
the Joint-Embedding Predictive Architecture (JEPA) (Dawid
& LeCun, 2024) is proposed, which employs a latent predic-
tor that projects the necessary information from the input
into the output embedding space, while filtering out irrel-
evant or misleading input features. JEPA then aligns the
input and output signals in the latent level instead of the
token or pixel level, with a similar idea proposed by the
’platonic representation” (Huh et al., 2024). JEPA has been
applied in vision, namely I-JEPA (Assran et al., 2023), in
which an arbitrary part of an image is masked and predicted
by the other image blocks; as well as the motion and con-
tent features of videos (Bardes et al., 2023). Nevertheless,
there has been no generalized framework that applies the
idea of JEPA to generalized multi-modality modeling, with
any-to-any modality combinations either for the input or the
output.

In this work, we propose a novel Multimodal alignment
paradigm via Multi-gate MoE based on JEPA, in short,
M3-JEPA. It studies the dependency of the unobserved
part (y) on the observed part (x) in the embedding space
of y, where = and y may belong to different modalities or
any combination of them. Their embeddings are encoded
by pretrained uni-modality encoders, with possibly several
layers being finetuned during the multimodal learning. We
implement the latent predictor by the Mixture-of-Experts
(MoE) structure, as a lightweight cross-modal connector.
To tackle the potential multimodal semantic discrepancy,
we decouple the cross-modal information into modality-
specific and shared components through the gating function

of MoE. This MoE predictor is initialized randomly and
trained by two terms of losses, the contrastive loss and the
regularization loss. These two loss terms together form an
energy function, and are adapted with the two-gate output of
the MoE predictor. To avoid the representation collapse, the
predictor is also driven by the optimal information content
of an implicit latent variable, as discussed in (Dawid &
LeCun, 2024). The paradigm of M3-JEPA is visualized
by Figure 1, and the project code can be found at https:
//github.com/HongyangLL/M3—-JEPA.

To better alleviate the gradient conflict issue across various
modalities, M3-JEPA switches multiple directional multi-
modal tasks stepwisely, and solves them by Alternating
Gradient Descent (AGD) (Akbari et al., 2023). To validate
the reasonability of M3-JEPA, we conduct both theoretical
study and empirical experiments. We provide an informa-
tive theoretic analysis, and discuss the convergence and
optimal hyper-parameters. We also conduct comprehensive
experiments across multiple multimodal tasks, including
vision-language, audio-language, and vision classification
tasks, while keeping the model architecture and training
strategy the same. Experimental results demonstrate that
our M3-JEPA achieves competitive results across different
modalities and tasks, as well as remarkable generalization
on unseen domains, compared to current state-of-the-art
(SoTA) multimodal models. Furthermore, our approach is
also computationally efficient from both training and infer-
ence aspects. We summarize our contributions as follows:

* We propose a novel any-to-any multi-modal alignment
paradigm based on JEPA, to mitigate the potential
modality collapse by aligning on the latent space.

* We leverage a computationally efficient multi-gate
MOoE architecture as the cross-modal predictor of JEPA,
while freeze most parameters of modality encoders.

* We disentangle the gating function of MoE into the
modality-specific and shared information, and also de-
rive an information-theoretical analysis.

* We optimize M3-JEPA by alternating the gradient de-
scent between different multi-directional multimodal
tasks, and discuss its theoretical convergence.

* The experimental results demonstrate remarkable mul-
timodal alignment accuracy and efficiency, encompass-
ing text, image, audio and other modalities.

The rest of the paper is organized as follows. We first intro-
duce the preliminary knowledge in Section 2. The method-
ology is stated in Section 3. The theoretical derivation is
stated in Section 4. Experiment results and subsequent dis-
cussions are summarized in Section 5. The connection with
previous works is stated in Section 6. Finally Section 7
concludes this paper.
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2. Preliminary
2.1. Joint-Embedding Predictive Architecture

Given an input-output pair (x,y) which are encoded into
(es, €y), a joint-embedding predictive architecture (JEPA)
(Dawid & LeCun, 2024) first converts the input encoding
into the output’s dimensional space by a predictor P(-) :
R?* — RY, then minimizes its loss with e:

Exmy = P(em) (1)

with £(-, -) denotes the loss; F is nonnegative and can be
viewed as the energy between x and y. Subsequently, the
JEPA framework belongs to energy-based model (EBM).

min L£(ez_y, €y) := F(z,y),

2.2. Mixture-of-Experts

The Mixture-of-Experts (MoE) architecture (Garmash &
Monz, 2016; Shazeer et al., 2017) uses N feed-forward
networks (FFN), namely “experts”. The output of expert
(EN_,) is given by:

E,(e) = we"t - o(w'™ - ) 2)

n n

in which EY_, denotes N experts, e is the input vector, w"
and w2"'P“! are learnable weights of the n-th expert, and &
is the activation function (e.g., GeLU). An additional gating
network G outputs an N-dimension normalized vector:

G(e) = softmax(g - e) 3)

where g is a learnable matrix. The output of G routes each
input via a few of the experts, and the output of MoE is:

N
MoE(e) = Y " G(e)nEn(e) 4

n=1

where G(e),, denotes the probability of selecting expert E,,.

Top-K MoE. The above MoE can be implemented with a
top- K mechanism, which first ranks the gating scores, then
keeps and summarizes top K experts instead of N experts

K
MoE-K(e) = 3 _ top-K(G(e)x)En—(e) )
k=1

Multi-gate Mixture-of-Experts. The Multi-gate Mixture-
of-Experts (MMOoE) (Ma et al., 2018) expand the MoE ar-
chitecture to the multi-task setting. Given L tasks, MMoE
generates the outputs simultaneously by L parallel gates:

N
MMOoE!(z) = Y (G'(2)n)En(2), 1=1,---,L (6)

n=1

then use them to calculate the loss of each task:

L
min £ := Y  £'(MMoE'(z)) (7)
=1

where £ and £(-) are the total loss and task losses.

3. Methodology

This section illustrate our methodology, and Figure 2 pro-
vides a detailed introduction to the framework of M3-JEPA.

3.1. Problem Formulation

We develop M3-JEPA as an any-to-any modality frame-
work. Assume we have total M modalities and T tasks. For
each modality m, a uni-modal encoder can be employed
to produce its latent embedding e,,,. For the t-th task, we
denote its input and output with (x?,y?), which contain
the set of {m/,} and {m/} modalities, respectively, with
1 <mf,m! < M. Then the embedding of (z*,y") can be
the corresponding or the combination of modality latents:

el = concat({e,,}), m € {m.}
t t

e, = concat({en, }), m € {m,}
Similar to Equation 1, we formulate an energy term J(x, y)
which behaves both the training loss and also the alignment
score during the inference

Fi@,y) = L (€hnyr€y) = L1(Pleg) ) 8)
To make the formulation simple and clear, in the follow-
ing derivations, we temporarily omit the superscript ¢ until

discussing the optimization method.

3.2. Losses
We implement the loss of JEPA (£ in Equation 8) from two

aspects, the regularization and contrastive losses.

Regularization loss. The regularization loss can be de-
fined by the L-2 distance:

Lreg = |€asy — €3 )

where | - |2 denotes the L-2 norm.

Contrastive loss. We conduct the contrastive learning by
sampling the in-batch negatives:

B

1 im(e’,_,, el
Lo=L13 | log ;?xp(SI (‘6 = ey)/jT) (10)
B = > j=1 exp(sim(ez—y, )/ T)

where B is the batch size, the superscripts ¢ and j represents
the i-th or the j-th sample within the batch. sim(-,-) is
the cosine similarity, and 7 is a temperature parameter that
controls the sharpness of the similarity distribution.

The total loss. The total loss is the linear combination
between the regularization loss and contrastive loss:
L(€y—sy,ey) = aLeg + (1 — ) Lo (11)

in which « is the loss weight which determines the weight-
ing balance between two loss terms.
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Figure 2. The entire framework of M3-JEPA with 4 modalities and 4 tasks indicated.

(A): Information is encoded by modality encoders (m = 1, 2, 3, 4), forming the input and output signals.

(B): Training is conducted by the alternative gradient descent (AGD), with different multimodal tasks switched stepwise. Tasks 1, 2, 3, 4
in the figure represent text-to-image, audio-to-text, image classification, and visual question-answering, respectively.

(C): Input and output are aligned on the latent space with an energy (F), consisting of both contrastive (cl) and regularization (reg) losses.
(D): A Multi-gate MoE predictor projects the input latent vector to the output latent space, and generates parallel outputs (A and B) for
different loss terms. Gating functions automatically separate modality-specific (e,,) and shared information (g).

3.3. Implementation of Predictor

In this paper, we implement the predictor of JEPA with a
top-K MoE module:

ez—y = P(es) := MoE-K(e,) (12)

For each modality, we implement N experts, which results
in totally M * N experts (EXY). Furthermore, we implement
the gating function with the following formulation

G = softmax(g - [ex @ €,]),m € {mL} (13)

where eq.) is a learnable complementary matrices which
convert the input of the gating function into a constant latent
dimension, h. As a result, the gate matrix g is task-agnostic.

Disentangle modality-specific and shared information.
Our MoE-predictor not only serves as a multimodal aligner,
but also harmonize shared semantic information across
modalities while preserving modality-specific details. This
disentanglement is implemented with different terms in
Equation 13:

* Modality-specific paths: the modality-specialized ex-
perts, as well as the gating embedding e,,,.

* Shared representation: the projection matrix g creates
a common subspace for the cross-modal gating.

Multi-gating on losses. We further expand our formation
to the setting of MMOoE architecture. In M3-JEPA, the multi-
gate functions are employed to represent two loss terms, the
regularization loss in Equation 9 and the contrastive loss in
Equation 10. As a result, the number of gates L = 2.

3.4. Alternating Gradient Descent

At different training steps, we switch between 7T tasks and
conduct the forward pass and back-propagation of the train-
able parameter 6 sequentially:

(i + 1) «6(i) — VL' (MMOE-K(ch (i), ¢4 (1)) (14)

Gy
ifmod(:,T)=¢t, t=1,2,---,T

where ¢ is the current step, n is the learning rate, and
mod(-, -) is the reminder after integer division. This op-
timization paradigm is called alternating gradient descent
(AGD) with similar implementation on previous multimodal
studies (Likhosherstov et al., 2022; Akbari et al., 2023).

The conventional joint optimization requires simultaneous
updates to overlapping parameter subsets (e.g., a single con-
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nector aligns both image-to-text and text-to-image), leading
to potential gradient conflict (Javaloy et al., 2022). In con-
trast, AGD decouples these updates, mirroring the success
of alternating training in multi-task learning.

4. The Theoretical Analysis

In this section, we show that M3-JEPA optimizes the infor-
mation content by simultaneously maximizing the mutual
information and minimizing the conditional entropy. We
further discuss the optimality of loss weight, as well as the
convergence condition.

4.1. The Information-Theoretic Analysis

We start this section with the information-theoretic analysis.
To simplify the problem, we take the vision-language learn-
ing as an example', with M = T' = 2. We then propose a
new perspective of loss objective:

0" argmin —I(z;y) + a (H(ylz) + Hzly)) (15

in which Z(z; y) is the mutual information between x and
y, while H(y|x) and H(x|y) are their conditional entropies.
COMPLETER (Lin et al., 2021) proves the connection be-
tween these terms and different loss types:

¢ Redundancy reduction: the contrastive loss £ maxi-
mizes Z by separating negatives.

* Uncertainty reduction: the regularization loss L4
minimizes ‘H by regressing the positives.

Connection with the original loss. The above state-
ments ensure that minimizing the averaged task-specific
losses (F(x,y), F(y, z)) in Equation 11 is equivalent to the
information-theoretic objective in Equation 15. Also, the
loss weight « in both equations is consistent, balancing the
compression (L., and 7) and predictiveness (L., and H).

Information decomposition and coupling. Conditional
entropy H(y|x) and H(x|y) represent the modality-specific
information in text and image, respectively; while the mu-
tual information Z(x; y) quantifies the shared information
between image and text. For a reasonable alignment, high
mutual information (more shared content) and low condi-
tional entropy (less modality-specific noises) are desirable,
ensuring strong information coupling across modalities.

4.2. The Optimal Loss Weight

In this subsection, we derive the optimal loss weight from
two different aspects, both of which suggest the optimal

'In this case, both z and ¥ consist of only one modality. Two
related tasks (image — text and text — image) can be simply
represented by x — y and y — .

o = 0.5. It is of significance to note that this theoretical
conclusion is also validated by the subsequent empirical
result (Figure 4).

Connection with the free energy. Loss in Equation 15
mirrors the free energy minimization principle

F=U-TS

in which Z(x; y) corresponds to the internal energy U, and
H(y|z) + H(z|y) corresponds to the entropy T'S. The
critical temperature 7, where the energy/entropy balance
occurs corresponds to o = 0.5.

Derivation from the convergence assumption. For sim-
plicity, we show this derivation with the case of two tasks,
x — yand y — x. Given a large enough step 1, it is rea-
sonable to assume that the losses of two consecutive steps
converge to each other. Then the stable total loss can be
approximated by

Lot oy +Lw— )

2
5 (= Tlwy) + Hlyle) — (o) + Hlaly)
— ~T(w;y) + = (Hlyl) + Hzly) (16)

2

based on the fact Z(x; y) = Z(y; «). Comparison between
Equation 11, 15 and 16 indicates the optimal o = 0.5.

4.3. Convergence of AGD on M3-JEPA

We assume for each task ¢, minimizing the task-specific
loss in Equation 11 is independent and convex. From this
assumption, from previous derivation (Jain & Kar, 2017;
Pascal et al., 2022; Wibisono et al., 2022), AGD on multiple
tasks (Equation 14) is guaranteed the convergence to a local
optimum if each subtask is convex and optimally solved.

5. Experiment

To empirically verify our theoretical claims of M3-JEPA,
we design the experiments to address the following research
questions:

RQ1: Can M3-JEPA align well on the cross-modal repre-
sentation on typical multimodal tasks?

RQ2: Can the same architecture be arbitrarily expanded to
more forms of information (other than well-studied text, im-
age and audio)), or generalized to unseen data and domains?
RQ3: Can M3-JEPA take multiple-modality as input (or
output), instead of single-modality?

RQ4: Are MoE, finetuning and AGD all reasonable compo-
nents of M3-JEPA?

RQS5: Are both contrastive and regularization losses neces-
sary to achieve the optimality, and how about their weights?
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Table 1. Finetuned results on Vision-Language Retrieval tasks.

Flickr30K COCO
Method # Trainable Params Image — Text Text — Image Image — Text Text — Image
R@l R@5 R@l0 R@l! R@5 R@l0 R@l! R@5 R@I0 R@l R@5 R@I10
Lightweight models
TinyCLIP (Wu et al., 2023) 63M+31M 849 - 66.0 - - 56.9 38.5
MobileCLIP (Vasu et al., 2024) <30.7M 85.9 - 67.7 - - 58.7 40.4
Dual-encoder models
CLIP (Radford et al., 2021) 428M 88.0 98.7 99.4 68.7  90.6 95.2 - - - - - -
ALIGN (Cohen, 1997) 820M 88.6  98.7 99.7 75.7 938 96.8 77.0 935 96.9 599 833 89.8
FILIP (Yao et al., 2022) 417M 89.8 99.2 99.8 75.0 934 96.3 789 944 97.4 612 843 90.6
Florence (Yuan et al., 2021) 893M 909  99.1 - 76.7  93.6 - 81.8 952 - 632 857 -
BEIT-3 (Wang et al., 2023b) 1.9B 949 999 100.0 815 95.6 97.8 84.8 96.5 98.3 672 877 92.8
Fusion-encoder models
UNITER (Chen et al., 2020) 303M 83.6 957 97.7 68.7 89.2 93.9 65.7 88.6 93.8 529 799 88.0
OSCAR (Li et al., 2020) 345M - - - - - - 70.0 91.1 95.5 540 80.8 88.5
VinVL (Zhang et al., 2021) 345M - - - - - - 754 929 96.2 58.8 835 90.3
Dual encoder + Fusion encoder
ALBEF (Li et al., 2021) 233M 941 995 99.7 82.8 963 98.1 77.6 943 97.2 60.7 843 90.5
BLIP (Li et al., 2022) 446M 97.1 1000 100.0 86.7 97.3 98.7 824 954 97.9 65.1 86.3 91.8
BLIP-2 w/ ViT-L (Li et al., 2023) 474M 969 100.0 1000 88.6 97.6 98.9 83.5 96.0 98.0 66.3  86.5 91.8
BLIP-2 w/ ViT-g (Li et al., 2023) 1.2B 97.6 100.0 100.0 89.7 98.1 98.9 854 970 98.5 68.3 877 92.6
Ours
M3-JEPA 140M 97.8 100.0 100.0 97.8 100.0 1000 87.7 99.6 99.9 89.7 99.7 99.9

RQ6: Is M3-JEPA a computational efficient framework for
both training and inference?

In the following subsections, we discuss different experi-
mental results and answer the above questions.

5.1. Setting

M3-JEPA employs pretrained uni-modal encoders and con-
nects their latent spaces with an MoE. We use LLama3-8B
(Dubey et al., 2024), Dinov2-Large (Oquab et al., 2025)
and LanguageBind (Zhu et al., 2024) to encode text, image
and audio modalities, respectively. We select 3 layers of
the modality encoders to be finetuned by LoRA (Hu et al.,
2022) (with rank=64), while keep the rest of parameters
frozen. We implement an MMOoE predictor with N = 12,
K =4 and L = 2. The inner hidden size (h) is 2048 and a
dropout rate is set to 0.1. The MoE predictor is initialized
randomly with full parameters updated during the training.

All tasks have the batch size of 128, solved by the Adam
optimizer with the Ir schedule of cosine, warmup of 0.1
and weight decay of 0.005. For retrieval tasks, we evalu-
ate recall-based metrics including R@1, R@5 and R@10.
For classification tasks, we provide metrics such as Accu-
racy, Precision, Recall and F1 score. Further details of
implementation, datasets and benchmarks are summarized
in Appendix A.

5.2. Vision-Language Retrieval

To answer RQ1, we first validate M3-JEPA on image-text
retrieval tasks, including COCO (Lin et al., 2014b) and
Flickr30K (Plummer et al., 2015) and evaluate it on the

test set. Table 1 shows the experimental results, compared
to previous state-of-the-art baselines across different archi-
tectures. M3-JEPA obtained superior performance on both
image-to-text and text-to-image tasks. This observation in-
dicates that our framework achieves stronger cross-modal
alignment on the latent space, capturing different levels of
abstraction on the cross-modal relationship.

M3-JEPA also demonstrates superior computational effi-
ciency by observing the size of training parameters. To
partially address RQ6, notice that M3-JEPA has only 140M
trainable parameters, which is significantly smaller than the
1.2B BLIP-2, the second-best method in Table 1.

In Figure 3, we also visualize the similarity matrix for 10
text-image pairs from COCO, as a snapshot of the image-
text retrieval performance. It shows that M3-JEPA can
differentiate positive pairs (the diagonal grids) and negative
pairs (the non-diagonal grids) well, which ensures retrieval
performance.

5.3. Audio-Language Retrieval

In address RQ2, we attempt to adapt M3-JEPA to a new
modality and simultaneously examine its generalization abil-
ity. In more detail, we experiment on audio-text retrieval
tasks by replacing the image encoder with the audio en-
coder. For a fair comparison, we inherit the same experi-
mental setting from LanguageBind (Zhu et al., 2024), i.e.,
training on a held-out audio-language dataset (including
wavtextSk (Deshmukh et al., 2023) and freesound (Fonseca
et al., 2022)) while evaluate on Clotho (Drossos et al., 2020)
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Table 2. Audio-text retrieval results. Results of AVFIC, ImageBind and VALOR are obtained from Zhu et al. (2024) directly. We download
the original model of LanguageBind and evaluate it by ourselves to collect the results of all metrics.

Clotho Audiocaps
Method Audio — Text Text — Audio Audio — Text Text — Audio
R@l R@5 R@I0 R@l R@5 R@I0 R@1 R@5 R@10 R@1 R@5 R@I10
AVFIC (Nagrani et al., 2022) - - - 3.0 - 17.5 - - - 8.7 - 37.7
ImageBind (Girdhar et al., 2023) - - - 6.0 - 28.4 - - - 9.3 - 42.3
VALOR (Liu et al., 2025) - - - 8.4 - - - - - - - -
LanguageBind (Zhu et al., 2024)  16.1  39.9 53.2 155 38.6 51.7 17.8 473 64.0 16.5 48.7 64.6
M3-JEPA (ours) 17.0  40.8 53.0 20.1 452 58.7 204 508 66.6 198 514 66.8
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Figure 3. The similarity matrix of the text-image pairs. The colors
indicate different levels of retrieval scores. The up-triangle part
indicates text-to-image and the down-triangle part indicates image-
to-text. The diagonal grids correspond to the ground truth pairs.

and Audiocaps (Kim et al., 2019) in a zero-shot manner?.
Since LanguageBind (Zhu et al., 2024) provides limited
results of metrics (only R@1 and R@10 on text-to-audio),
we re-run the evaluation test of LanguageBind on all text-
to-audio and audio-to-text metrics®. As shown in Table 2,
M3-JEPA still demonstrates superior performance over all
baselines, showcasing its alignment capability in the au-
dio modality and an exceptional level of generalization. In
this zero-shot setting, M3-JEPA also becomes extremely
sensitive to the dataset bias (i.e., the ratio of freesound to
wavtext5k) and their sampling intervals and lengths, due to

20ne can refer to Zhu et al. (2024) for more details of training
datasets and other settings.

3For overlapping metrics, our results are close to the origi-
nally reported values in (Zhu et al., 2024) and do not change the
conclusion.

Table 3. Image classification results on ImageNet-1K. All results
are in percentage.

Method Accuracy Precision Recall F1 score
CLIP-ViT (Radford et al., 2021) 82.1 824 82.0 82.0
DinoV2 (Oquab et al., 2025) 83.2 83.5 833 83.1
M3-JEPA (ours) 86.6 86.9 86.6 86.5

the sparsity of audio samples.

5.4. Vision Classification

This subsection further addresses RQ2 by expanding to the
image classification task. In this situation, we assume M3-
JEPA can still learn well, by treating the classified labels as
another modality. To validate this hypothesis, we train and
evaluate M3-JEPA on ImageNet-1K (Deng et al., 2009) and
compare it to DinoV2 (Oquab et al., 2025) and CLIP-ViT
(Radford et al., 2021). Specifically, DinoV2 is vision-only,
while CLIP-ViT is a text-guided vision model; they cap-
ture distinct types of information and offer complementary
perspectives of performance comparison, but may need ex-
plicit classification heads. Unlike these methods, we encode
the classification labels by one-hot, such that they can be
involved in a self-supervised manner as a separate modal-
ity. As shown in Table 3, M3-JEPA outperforms DinoV?2
and CLIP-ViT on all classification metrics, indicating the
potential of M3-JEPA to represent the inherent knowledge
of the natural world, not limited to the traditionally studied
modalities (text, image, audio, etc).

5.5. Vision-Language Understanding

To address RQ3, we examine M3-JEPA in a more challeng-
ing scenario, where the input or output consists of multiple
modalities, instead of uni-modality. To test M3-JEPA’s
adaptation ability to this situation, we conduct the Visual
Question Answering (VQA) task, in which the model is
concurrently prompted with an image and textual question,
and is expected to provide a reasonable textual answer. In
this situation, we integrate the image encoding and text en-
coding by simple concatenation into the input, then feed it
into the MMOE predictor. The rest of the algorithm pipeline
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is kept the same.

Training and evaluation are performed on VQAv2 (Goyal
et al., 2017) and NLVR-2 (Suhr et al., 2019). Results are ex-
hibited in Table 4. M3-JEPA adapts well to this multimodal
input scenario, obtaining the second-best result obtained for
each split of test sets. Although results of M3-JEPA are
lower than BEiT-3(Wang et al., 2023b), it might be due to
the large pretrained corpus of BEiT-3, including MSCOCO
(Lin et al., 2014a) and Visual Genome (Krishna et al., 2017)).
Furthermore, M3-JEPA could be further improved by im-
plementing smarter fusion of multimodal information (e.g.,
cross-attention between input modalities), instead of simple
concatenation. We will leave this further attempt to future
work. To better discuss this observation, we put a detailed
bad case analysis in Appendix B.3.

Table 4. VQA scores on VQAv2 and NLVR-2. For each test set,
the bold number indicates the best result and the underlined number
indicates the second best.

Method VQAvV2 NLVR-2
test-dev test-std dev test-P
ALBEF (Li et al., 2021) 75.8 76.0 82.6 83.14
BLIP (Li et al., 2022) 78.3 78.3 822 822
X-VLM (Zeng et al., 2022) 78.2 78.4 844 848
SimVLM (Wang et al., 2022b) 80.0 80.3 845 852
OFA (Wang et al., 2022a) 82.0 82.0 - -
Flamingo (Alayrac et al., 2022) 82.0 82.1 - -
CoCa (Yu et al., 2022) 82.3 82.3 86.1 87.0
BLIP-2 (Li et al., 2023) 82.2 82.3 - -
BEIiT-3 (Wang et al., 2023b) 84.2 84.0 915 92.6
M3-JEPA (ours) 82.3 825 86.8 87.6

5.6. Analysis and Discussions

We conduct further analysis, including ablation and sensitiv-
ity studies, as well as an efficiency analysis, to address RQ4,
RQ5 and RQ6, and obtain a deeper insight on M3-JEPA.

Ablation on the M3-JEPA approach. To validate the
design of the MoE predictor design, we replace it with a
comparable-size MLP, with results shown in the first row of
Table 5. Compared to the last row (the formal M3-JEPA), a
significant drop in performance is observed, demonstrating
the effectiveness of MoE.

Table 5. Ablation of the M3-JEPA approach on COCO.

Image — Text Text — Image

MoE AGD
R@l R@5 R@10 R@l R@5 R@I10
X v 744  86.0 922 823 895 92.6
v X 682  68.7 81.1 742 887 924

v v 877 996 999 897 997 999

Additionally, we examine the impact of the AGD approach.
Ablating it to a non-alternating optimization also leads to

significant performance degradation, as indicated by the
second row of Table 5.

Ablation on finetuning of modality encoder. During
training, one can choose the uni-modality encoder to be
completely frozen, finetuned on its full layers or part of
layers (we test for 3 layers). We show this ablation result
in Table 6. Results indicate that finetuning has a positive
impact on both performances of image-to-text and text-to-
image, while full-layer LoRA generally performs better than
3-layer LoRA. Nevertheless, full-layer LoRA is also sub-
ject to a higher time cost. As a result, we apply 3-layer
LoRA in all the aforementioned formal experiments, and
we achieve state-of-the-art performance on vision-language
and audio-language tasks with only 3 layers finetuned.

Table 6. Ablation of modality encoder finetuning on COCO.

Image — Text Text — Image

Approach

R@l R@5 R@I10 R@l R@5 R@I0
freeze 75.4 88.6 94.5 843 90.1 97.8
3-layer LoORA 87.7 99.6 99.9 89.7 99.7 99.9

full-layer LoORA 92.1 99.4 99.9 91.1 99.8 99.9

Sensitivity analysis on the loss weight. We then conduct
the sensitivity study on an important hyper-parameter, the
loss weight o between L., and L,.,. The experiment is
conducted on the text-to-image task of COCO, with the
R@1 results shown in Figure 4. One can observe that the
best performance is achieved when av = 0.5, indicating that
both contrastive loss and regularization loss are necessary.
We then select 0.5 as the formal choice of « in all formal
experiments, which also empirically verifies the theoretical
conclusion in Section 4.2.
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Figure 4. Sensitivity plot of the loss weight c.

Analysis of computational efficiency. In order to answer
RQ6, here we discuss the computational efficiency of M3-
JEPA from the aspects of training and inference costs, re-
spectively. Although M3-JEPA has relatively heavy modal-
ity encoders, its training cost is relatively low, since only the
lightweight MMOoE predictor and several layers of encoders
(3 layers in the formal experiment) need to be trained, while



M3-JEPA: Multimodal Alignment via MMoE based on JEPA

the rest parts of encoder parameters are freeze. To elabo-
rate the comparison of training costs to baselines, we also
include the # of trainable parameters in Table 1.

For the inference cost, one should notice that M3-JEPA
supports the modality precomputing and online caching,
while the cross-modality alignment only happens in the
latent space of the MMOoE predictor (which is relatively
lightweight compared to the uni-modality encoders), sig-
nificantly reducing the memory overhead. To illustrate this
difference, we calculate the averaged retrieval time (RT)
of M3-JEPA on COCO, a typical image-text retrieval task.
We observe the RT of M3-JEPA is only 0.02 seconds, com-
paring to CLIP, a classical dual-encoder approach, with an
RT of 0.16s, and BLIP-2, which relies on a lightweight
Q-former, with an RT of 0.05s. These results indicate M3-
JEPA with modality pre-computing is much more compu-
tationally efficient, and can be potentially applied as an
efficient multimodal retriever on massive documents.

For inference with dynamic inputs (i.e., user-provided im-
ages/text) which are intractable to be precomputed, M3-
JEPA’s retrieval latency is dominated by the modality en-
coder inference (approximately 0.1s/image for DINOv2,
0.3s/text for LLaMA-3-8B). In such a situation, it is recom-
mended to cache frequent queries (e.g., common prompts
in retrieval systems), for latency-sensitive applications.

6. Related Works
6.1. Multimodal Learning

Modern multimodal Learning has achieved outstanding per-
formance, which can be classified into two main categories:
training end-to-end, or training a connector based on pre-
trained unimodal models. The end-to-end multimodal mod-
els can have various architectures, such as dual-encoder
(Radford et al., 2021; Jia et al., 2021) or fusion encoder
(Li et al., 2020; Chen et al., 2020; Jia et al., 2021; Wang
et al., 2022a). Such end-to-end pre-training consumes large-
scale multi-modal datasets. As the model scale continues
to increase, it may incur prohibitively high computational
costs and often struggle to adapt to novel modalities or tasks
without extensive re-training.

Another category of multimodal learning focused on in-
tegrating unimodal models to achieve high-quality multi-
modal alignment (Alayrac et al., 2022; Li et al., 2023; Liu
et al., 2023; Zhang et al., 2024). For example, Flamingo
(Alayrac et al., 2022) integrates visual information into
each layer of a frozen Large LLM through the use of cross-
attention. BLIP-2 (Li et al., 2023) introduces a Q-former
before feeding into the LLM, and propose also a two-stage
training process. LLaVA (Liu et al., 2023) aligns vision
and language representation by employing a two-layer mul-
tilayer perceptron (MLP). M3-JEPA further advances this

concept by interconnecting vision, text and audio encoders
through a multi-gate MoE. We design the gating function
to separate the model-specific and shared information to
optimize the cross-modal performance.

6.2. Multimodal Models with MoE Structures

There are also pioneer works that integrate multimodal mod-
els with MoE-like structures. For instance, LIMoE (Mustafa
et al., 2022) feeds both images and text signals into a single
MOoE encoder, trained by a contrastive loss. VL-MoE (Shen
et al., 2023) uses modality-specific experts for image-text
modeling. MoE-LLaVA (Lin et al., 2024) proposes MoE-
Tuning, a training strategy for large vision-language models,
and construct a sparse model with a constant computational
cost. In contrast, M3-JEPA adopts the multi-gate MoE ar-
chitecture, which simultaneously feeds parallel output terms
to both contrastive and regularization losses.

6.3. Multimodal Models Trained by AGD

Although most multimodal learning is trained jointly and
concurrently, there have also been attempts that train the
model by alternating gradient descent (AGD), i.e., alternat-
ing back-propagation across different tasks. Such efforts in-
clude Polyvit (Likhosherstov et al., 2022) and IMP (Akbari
et al., 2023), revealing that the alternation of diverse modal-
ities, tasks, and resolutions may enhance the model’s cross-
domain performance and generalization capabilities. In our
study, we apply AGD on the joint-embedding-predictive
architecture, in which the gradient descent happens on the
latent space, which further mitigates the gradient conflict
issue from cross-modality samples.

7. Conclusion

This paper introduces M3-JEPA, a novel any-to-any multi-
modal training framework, which is lightweight, scalable,
and computationally efficient. M3-JEPA effectively inte-
grates pretrained unimodality encoders, projects the input
embedding into the output embedding space through a multi-
gate MoE predictor, and finally aligns the cross-modal infor-
mation on the latent space. The MoE predictor includes two
gates, corresponding to the contrastive and regularization
losses, while each gating function is designed with sepa-
rated model-specific and shared learnable encodings. The
M3-JEPA is optimized by alternating the multi-directional
multimodal tasks, facilitating the cross-modal alignment in
multiple directions. By theoretical derivation, we demon-
strate that M3-JEPA is information-theoretic optimal, while
its convergence can be ensured with reasonable assumptions
on the subtasks. Extensive experiments finally demonstrate
that M3-JEPA can achieve state-of-the-art performance on
different types of tasks and modalities, and generalize well
on unseen datasets and domains.



M3-JEPA: Multimodal Alignment via MMoE based on JEPA

Impact Statement

In this paper, we apply JEPA to multimodal tasks, including
vision-language retrieval, audio-language retrieval, image
classification, and vision-language understanding. We im-
plement the predictor of JEPA with a multi-gate MoE ar-
chitecture, which attempts to separate the model-specific
and model-shared information. Two gates of MoE generate
parallel outputs which are used to calculate the contrastive
loss and the regularization loss, respectively. We name
this framework as M3-JEPA, and optimize it by AGD, an
alternative optimization strategy between different multi-
modal tasks. An information-theoretic analysis is provided,
which connects our loss with maximization of the mutual
information and minimization of the conditional entropy.
We also discuss the convergence of AGD, and the optimal
loss weight in this formulation. M3-JEPA achieves state-
of-the-art performance across various tasks and modalities,
and also exhibits strong generalization and high compu-
tational efficiency. This work opens new directions for
self-supervised multimodal learning and open-world under-
standing.
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A. Extra Implementation Details
A.1. Image-Text Retrieval

For image-text retrieval, we examine M3-JEPA on two fa-
mous datasets, COCO and Flickr30K, with the detailed
introductions below:

e COCO (Lin et al., 2014b): 330,000 images with object
annotations and captions, providing a rich resource for
multi-label image classification and visual understand-
ing. It encompasses 80 object categories with 5,000
training and 1,000 testing images per category. The
test set contains 5,000 samples.

e Flickr30K (Plummer et al., 2015): comprises over
30,000 images, each paired with five descriptive sen-
tences. It is sourced from Flickr and reflects the diver-
sity and complexity of real-world data, making it suit-
able for tasks such as image annotation, visual question
answering, and image retrieval. The test set contains
1,000 samples.

For each dataset, we finetune M3-JEPA on its training set
and evaluate it on its test set, respectively. The initial learn-
ing rate is 0.001 and the final learning rate is 5.5e-6.

A.2. Audio-Text Retrieval

Details of our audio-language datasets are as follows:

¢ Clotho (Drossos et al., 2020): 4,981 audio samples
with 24,905 descriptions, sourced from the Freesound
platform and crowdsourced from English-speaking
contributors.

¢ Audiocaps (Kim et al., 2019): A curated subset of
AudioSet, focusing on audio captions and enabling the
study of audio-text relationships.

¢ Wavtext5k (Deshmukh et al., 2023): The WavText5K
data was sourced from two main websites: BigSound-
Bank and SoundBible 3 (details can be found in (Desh-
mukh et al., 2023)). WavText5K contains 4505 audios,
4348 descriptions, 4525 audio titles, and 2058 tags.

¢ Freesound(Font et al., 2013): The Freesound dataset
contains 363,618 samples, totaling 2,162.10 hours of
audio.

To zero-shot evaluate the performance of M3-JEPA on audio-
text retrieval, similar to Similar to LanguageBind (Zhu et al.,
2024), we zero-shot evaluate the performance of M3-JEPA
on Clotho and Audiocaps based on the knowledge of other
datasets. In more details, we train M3-JEPA on the mixture
of AudioCaps, WavText5K, and Freesound then test it on
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the Clotho dataset; then we train M3-JEPA on the mixture
of Clotho, WavText5K, and Freesound then test it on Audio-
Caps dataset. The initial learning rate is 5.0e-4 and the final
learning rate is 2.5e-6.

A.3. Image Classification

We train and test M3-JEPA on the popular benchmark,
ImageNet-1K (Deng et al., 2009), which contain 1,281,167
training images, 50,000 validation images, and 100,000 test
images across totally 1,000 classes. For image classification,
the initial learning rate is 1.0e-3 and the final learning rate
is 5.5e-6.

A.4. Visual Question Answer

We consider the following two datasets for the VQA task:

* VQAV2 (Antol et al., 2015): 265,016 images with mul-
tiple questions per image, assessing the ability of mod-
els to understand and answer questions about visual
content.

e NLVR-2 (Suhr et al., 2019): 107,292 pairs of images
with corresponding sentences, testing the visual rea-
soning capabilities of models.

Specifically, the VQA task requires the model to answer
textual questions about input images. We starts from the
pretrained version of M3-JEPA by the COCO datasets, then
finetune it following previous works (Wang et al., 2023b;a;
Bao et al., 2022), which formulate the VQA task as a textual
answer retrieval problem. The initial learning rate is 2.0e-4
and the final learning rate is 2.4e-5.

B. More Experimental Results
B.1. Parameter Comparisons

To provide a more comprehensive discussion, here we sum-
marize the parameter statistics of M3-JEPA, compared to
vision-language model baselines, as listed in Table 7. Specif-
ically, M3-JEPA can also be viewed as a lightweight knowl-
edge connector, similar to BLIP-2. Therefore, although our
M3-JEPA has a large total parameter size (around 8.5B), its
trainable parameter is only 140M, even smaller than BLIP-2,
which ensures its training efficiency.

B.2. Ablation of MoE Hyperparameters

Here we conduct the ablation studies on the structural pa-
rameters of MoE, including the number of experts n, and
the top-k ranking mechanism. For n, we compare different
values on VQAv(q?2, with results shown in Table 8. One can
observe that a larger n can benefit the VQA performance,
where n = 12 outperforms 2 and 8. However, increasing n
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Table 7. Parameter statistics of vision-language methodologies.

Method # total parameter  # trainable parameter
CLIP 428M the same
ALIGN 820M the same
FLIP 417M the same
BEiT-3 1.9B the same
UNITER 303M the same
OSCAR 345M the same
BLIP-2 4.1B 474M
M3-JEPA 8.5B 140M

also amplifies the computational cost, therefore we do not
attempt a larger n. For k, we conduct the ablation study on
COCO, with image-text retrieval results shown in Table 9.
The results validate the optimality of our formal settings,
which is k = 4.

Table 8. Ablation of n on the validation set of VQAvq2. The
reported score is the accuracy of VQA answers.

n 2 8 12
55.15 59.84 68.03

score

Table 9. Ablation of k£ on COCO. The reported metric is R@1.

k Flickr30K COCO
Image — Text Text — Image Image — Text Text — Image
2 96.0 95.5 85.0 82.0
4 89.7 87.9 97.8 97.8
6 88.0 86.5 97.5 97.0

B.3. Typical Failure Case

Currently, we found that M3-JEPA may suffer performance
degradation in the existence of multimodality input or out-
put, e.g. the VQA task. As discussed before, part of reasons
may be the insufficient pretraining, as well as its simple con-
catenation strategy of modality input embeddings. To better
demonstrate this phenomenon, here we exhibit a typical bad
case of M3-JEPA on VQAv2. The input image is in Figure
5, while the textual questions, answers, and corresponding
scores are shown in Table 10.

This example is challenging to M3-JEPA since it contains
multiple visual objects as well as corresponding questions.
As indicated in Table 10, M3-JEPA successfully predicts the
number and color of the horse, but fails to identify the num-
ber of steps. This may be due to the simple concatenation of
visual and question embeddings before passing to the MoE
predictor. The MoE tends to focus on dominant objects
(e.g., the horse), while failing to capture minor details like
the stairs. A specifically designed mechanism, such as the
cross-modal attention, or a unified positional embedding,
may help capture finer-grained objects and alleviate such
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Figure 5. A typical failure case on the VQA task. The input image
contains multiple visual objects (a horse and a staircase).

issues.

C. Limitation and Future Direction

In this paper, we propose M3-JEPA and demonstrate its
effectiveness across different modalities and tasks. However,
the following limitations still persist and hinder M3-JEPA
from a more generalized foundation model:

» Generative capability: the joint-embedding-predictive
architecture (JEPA) reformulate the next-token predic-
tion into the alignment on the latent space, to filter the
modality noise and capture the core cross-modal infor-
mation. As a cost, JEPA is not a generative framework
which prevents its wider applications. Nevertheless,
we believe there might be potential solutions that are
able to incorporate generative learning with JEPA.

* Modality expansion: different modalities have differ-
ent information intensity. Therefore, popular modality
encoders generally encode different modalities into
various embedding dimensions. Built upon these pre-
trained modality encoders, M3-JEPA needs to adapt
with these different input embedding dimensions. Al-
though we have disentangled the modality-specific and
shared components inside the architecture, the entire
M3-JEPA framework can not be claimed as modality-
agnostic. Introducing a new modality need to manu-
ally select its modality encoder, add the corresponding
modality-specific expert, and redetermined the subse-
quent training pipeline. Incorporating the idea of meta
or hyper networks into the MoE predicter may increase
its adaptability to new information or modality, making
it a true modality-agnostic framework.

* Generality as a world model: in the future, one may
mask out an arbitrary part of world, and ask a gener-
alized world model to predict the masked part, given
the information of unmasked content. Without los-
ing the generality, the masked and unmasked parts
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Table 10. A typical failure case on the VQA task, which corresponds to the image in Figure 5. The bold answer indicated the model’s
predicted answer. M3-JEPA correctly answers questions about the house, but fails to identify the number of steps.

Question | Answer | Score
What kind of horse is this? brown and white 0.6
clydesdale 1.0
others 0.0
1 1.0
How many horses are in the picture? others 0.0
5 0.9
10 0.3
o 4 0.3
How many steps to the building? 6 0.3
20 0.9
others 0.0

should be assumed as a combination of different modal-
ities, instead of a single modality. In this paper, we
explore such a case, the VQA task. We show that
simply concatenating the visual and question embed-
dings as the input can have reasonable performance,
but is worse than the best baseline, BEiT-3. Better
cross-modality encoding techniques may be needed to
further enhance M3-JEPA’s performance in such cases,
such as Mixture-of-Heads (MoH) (Jin et al., 2024).
Furthermore, the spatial-temporal representation and
corresponding positional embedding may also be cru-
cial to expand M3-JEPA in related scenarios, e.g., and
video comprehension.

¢ Possibility of other optimization: in this paper, we
mainly apply AGD, an alternative optimization strat-
egy between tasks, to train M3-JEPA. We conduct the
ablation study of AGD and compare its result to a joint
optimization, and suggests AGD’s superiority. Never-
theless, we admit there are many details (e.g., various
tasks, modalities, losses) and different possible joint
optimization implementations, which has not been ex-
plored by us. The ultimate optimization strategies can
still be experimented.
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