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ABSTRACT

Deep generative models have made important progress towards modeling com-
plex, high dimensional data. Their usefulness is nevertheless often limited by a
lack of control over the generative process or a poor understanding of the latent
representation. To overcome these issues, attention is now focused on discovering
latent variables correlated to the data properties and manipulating these proper-
ties. This paper presents the Property-controllable VAE (PCVAE), where a new
Bayesian model is proposed to inductively bias the latent representation using
explicit data properties via novel group-wise and property-wise disentanglement
terms. Each data property corresponds seamlessly to a latent variable, by enforc-
ing invertible mutual dependence between them. This allows us to move along the
learned latent dimensions to control specific properties of the generated data with
great precision. Quantitative and qualitative evaluations confirm that the PCVAE
outperforms the existing models by up to 28% in capturing and 65% in manip-
ulating the desired properties. The code for the proposed PCVAE is available
at:https://github.com/xguo7/PCVAE.

1 INTRODUCTION

Important progress has been made towards learning the underlying low-dimensional representation
and generative process of complex high dimensional data such as images (Pu et al., 2016), natural
languages (Bowman et al., 2016), chemical molecules (Kadurin et al., 2017; Guo et al., 2019) and
geo-spatial data (Zhao, 2020) via deep generative models. In recent years, a surge of research has
developed new ways to further enhance the disentanglement and independence of the latent dimen-
sions, creating models with better robustness, improved interpretability, and greater generalizability
with inductive bias (see Figures 1(a) and 1(b)) (Kingma et al., 2014; Kulkarni et al., 2015; Creswell
et al., 2017) or without any bias (Higgins et al., 2017; Chen et al., 2018; Kumar et al., 2018). Al-
though it is generally assumed that the complex data is generated from the latent representations,
their latent dimensions are typically not associated with physical meaning and hence cannot reflect
real data generation mechanisms such as the relationships between structural and functional charac-
teristics. A critical problem that remains unsolved is how to best identify and enforce the correspon-
dence between the learned latent dimensions and key aspects of the data, such as the bio-physical
properties of a molecule. Knowing such properties is crucial for many applications that depend on
being able to interpret and control the data generation process with the desired properties.

In an effort to achieve this, several researchers (Klys et al., 2018; Locatello et al., 2019b) have sug-
gested methods that enforce a subset of latent dimensions correspond to targeted categorical prop-
erties, as shown in Figure 1(c). Though the initial results have been encouraging, critical challenges
remain unsolved such as: (1) Difficulty in handling continuous-valued properties. The control
imposed on data generation limits existing techniques to categorical (typically binary) properties, to
enable tractable model inference and sufficient coverage of the data. However, continuous-valued
properties (e.g., the scale and light level of images) are also common in real world data, while
their model inference usually can be easily intractable. Also, many cases require to generate data
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Figure 1: While most existing models (e.g., Sub-figures (a) (Kingma et al., 2014; Kulkarni et al., 2015) and
(b) (Creswell et al., 2017)) do not explicitly learn the correspondence between latent dimensions and data
properties, some recent work (Sub-figures (c) (Klys et al., 2018) and (d)) has started to explore this. The
generative model (right) and its model inference (left) are shown in each sub-figure. Dotted arrows represent
the enforcement of independence and double arrows represent the invertible dependence between two variables.
x refers to data, z and w refer to two subsets of latent variables, and y refers to the properties.

with properties of which the values are unseen during training process. This cannot be achieved
by conventional techniques such as conditional models without making strong assumption on the
model distributions. (2) Difficulty in efficiently enhancing mutual independence among latent
variables relevant and irrelevant to the properties. This problem requires to ensure that each
property is only correlated to its corresponding latent variable(s) and independent of all the oth-
ers. Directly enforcing such mutual independence inherently between all pairs of latent variables
incurs quadratic number of optimization efforts. Hence an efficient way is imperative. (3) Difficulty
in capturing and controlling correlated properties. It is feasible that several independent latent
variables can capture multiple independent properties. But when the properties are correlated, they
cannot be “one-on-one” mapped to corresponding independent latent variables anymore. However,
correlated properties are commonly found in formatting a real world data.

To solve the above challenges, we propose a new model, Property-controllable VAE (PCVAE),
where a new Bayesian model is proposed to inductively bias the latent representation using explicit
data properties via novel group-wise and property-wise disentanglement terms. Each data property
is seamlessly linked to the corresponding latent variable by innovatively enforcing an invertible
mutual dependence between them, as shown in Figure 1(d). Hence, when generating data, the
corresponding latent variables are manipulated to simultaneously control multiple desired properties
without influencing the others. We have also further extended our model to handle inter-correlated
properties. Our key contributions are summarized as follows:
• A new Bayesian model that inductively biases the latent representation using explicit real data

properties is proposed. A variational inference strategy and inference model have been customized
to ensure effective Bayesian inference.

• Group-wise and property-wise disentanglement terms are proposed to enhance the mutual inde-
pendence among property, relevant and irrelevant latent variables .

• The invertible mutual dependence between property-latent variable pair is achieved by enforcing
an invertibility constraint over a residual-based decoder.

• The quantitative and qualitative evaluation performed for this study revealed our PCVAE outper-
forms existing methods by up to 28% in capturing and 65% in manipulating the desired properties.

2 RELATED WORKS

Disentanglement Representation Learning. An important relevant area of research is disentan-
gled representation learning (Alemi et al., 2017; Chen et al., 2018; Higgins et al., 2017; Kim &
Mnih, 2018), which structures the latent space by minimizing the mutual information between all
pairs of latent variables. The goal here is to learn representations that separate out the underlying
explanatory factors that are responsible for variations in the data, as these have been shown to be rel-
atively resilient with respect to the complex variants involved (Bengio et al., 2013; Ma et al., 2019;
Guo et al., 2020), and thus can be used to enhance generalizability as well as improve robustness
against adversarial attack. As noted by Locatello et al. (2019a), it is impossible for disentangled
representation learning to capture the desired properties without supervision and inductive biases.

Learning latent representations via supervision. This ensures that the latent variables capture the
desired properties though supervision, generally by directly defining properties as latent variables
in the model (Locatello et al., 2019b). Unfortunately, apart from providing an explicit variable for
the labelled property, this yields no other easily interpretable structures, such as discovering latent
variables that are correlated to the properties, as the model proposed in the current study does. This
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is also an issue with other methods of structuring latent space that have been explored, such as
batching data according to labels (Kulkarni et al., 2015; Zhang et al., 2020) or using a discriminator
network in a non-generative model (Lample et al., 2017). Some researchers addressed this problem
by introducing the architecture bias through a two-way factored autoencoder and realize the super-
vision based on a pair-wise contrastive loss (Gyawali et al., 2019). Other researchers addressed
this problem by linking latent variables with observed labels through adversarial learning (Creswell
et al., 2017; Edwards & Storkey, 2015; Ganin et al., 2016; Mathieu et al., 2016). The most relevant
work for our purpose is CSVAE (Klys et al., 2018), where a subset of latent variables are correlated
with binary properties via an adversarial learning. All the above works can not handle multiple
continuous-valued properties due to their strict assumptions on the distribution of properties.

Data manipulation and generation. Here, trained machine learning models are utilized to manipu-
late and generate data in a controllable way with the desired properties, which is especially useful for
applications in the image domain. Several works have specifically considered transferring attributes
in images, which is the same goal as that in the CASVE. These earlier works (Zhou et al., 2017; Xiao
et al., 2017; 2018) all transfer attributes from a source image onto a target image. These models can
only perform categorical attribute transformation between images (e.g., “splice the beard style of
image A onto image B”), but only through interpolation between existing images. Once trained,
our proposed model can generate an objects with any value of a certain property (either observed or
unobserved during training) that can be encoded in the subset of latent variables.

3 PROPERTY CONTROLLABLE VAE

3.1 PROBLEM FORMULATION

Suppose we are given a dataset D where each data instance is (x, y) with x ∈ Rn and y = {yk ∈
R}Kk=1 to represent K properties of interest of x. For example, if x is a molecule, then we may have
properties of interest, such as cLogP and cLogS. We assume that the data (x, y) are generated by
some random process from continuous latent random variables (z, w). Each variable in w controls
one of the properties of interest in y, while the variables in z control all the other aspects of x.

Our goal is to learn such a generative model involving (x, y) and (z, w), where the subset of vari-
ables (i.e., z) are disentangled from subset w, and the variables inside w are disentangled from each
other. Once this model has been learned, then we can expect different elements of variables in w
to control different properties of interest, which is a highly desirable goal for many data generation
downstream tasks. For example, we may want to decrease the value of a specific property (e.g., pro-
tein energy) by changing the value of the corresponding element in w. It is also possible to directly
set a desired property value (e.g., the mass of a molecule) and then generate the corresponding x
with this target value (i.e., a molecule with the target mass value).

3.2 OVERALL OBJECTIVE

In this section, we first introduce the Bayesian variational inference of PCVAE. Then we introduce
the group-wise and property-wise disentanglement terms as part of the overall objective. Following
this, an invertibility constraint is introduced to enforce mutual dependence between each property-
latent variable pair. At last, PCVAE is extended to capture and control multiple correlated properties.

3.2.1 BAYESIAN VARIATIONAL INFERENCE OF PCVAE

The goal in Section 3.1 requires us to not only model the dependence between x and (w, z) for
latent representation learning and data generation, but also model the dependence between y and w
for property manipulation. We propose to achieve this by maximizing a form of variational lower
bound on the joint log likelihood p(x, y) of our model. Given an approximate posterior q(z, w∣x, y),
we can use the Jensen’s equality to obtain the variational lower bound of p(x, y) as:

log p(x, y) = logEq(z,w∣x,y)[p(x, y,w, z)/q(z,w∣x, y)]
≥ Eq(z,w∣x,y)[log p(x, y,w, z)/q(z,w∣x, y)]. (1)

The joint likelihood log p(x, y, w, z) can be decomposed as log p(x, y∣z, w) + log p(z, w). We
have two assumptions: (1) w only encodes the information from y, namely, x and y are condi-
tionally independent given w (i.e., x ⊥ y∣w); (2) z is independent from w and y, namely z ⊥ w
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and z ⊥ y, which is equal to y ⊥ z∣w (see derivation in Appendix A.3). First, based on the
two assumptions, we can get x ⊥ y∣(z, w) (see derivation in Appendix A.4). Thus, we have
log p(x, y∣z, w) = log p(x∣z, w)+ log p(y∣z, w) . Then, based on the assumption y ⊥ z∣w, we can
have log p(y∣z, w) = log p(y∣w). Then we get log p(x, y∣z, w) = log p(x∣z, w) + log p(y∣w). To
explicitly represent the dependence between x and (z, w) as well as the dependence between y and
w, we can parameterize the joint log-likelihood as log pθ,γ(x, y, w, z) with θ and γ as:

log pθ,γ(x, y, w, z) = log pθ(x∣z, w) + log p(z, w) + log pγ(y∣w). (2)

Given the condition that a parameterized qφ(z, w∣x, y) = qφ(z, w∣x) = qφ(z∣x)qφ(w∣x) (since
the information on y is included in x), by taking Eq. 2 into the above variational lower bound term
in Eq. 1, we obtain the negative part as an upper bound on − log pθ,γ(x, y) (as shown in the right
sub-figure of Figure 1(d)):

L1 = − Eqφ(z,w∣x)[log pθ(x∣z,w)] − Eqφ(w∣x)[log pγ(y∣w)] +DKL(qφ(z,w∣x)∣∣p(z,w)) (3)

This gives us the proposed Bayesian variational inference of PCVAE. The detailed derivation of
Eq. 3 can be found in Appendix A.1. As there are K properties of interest in y which are as-
signed and disentangled by the latent variables in w, the second term in Eq. 3 can be detailed as
∑K
k Eqφ(w∣x)[log pγ(yk∣wk)].

3.2.2 GROUP-WISE AND PROPERTY-WISE DISENTANGLEMENT

Considering that the above derivation is conditional on two requirements: (1) z is independent from
w and y and (2) the variables in w are independent from each other, while in practice minimizing the
above objective L1 will not imply that our model will satisfy these conditions. We therefore propose
to further penalize the novel Group-wise- and Property-wise Disentanglement terms.

We first decompose the KL (Kullback-Leibler) divergence term in Eq. 3 as:

Ep(x)[DKL(qφ(z,w∣x)∣∣p(z,w))] = DKL(qφ(z,w, x) ∥ q(z,w)p(x))
+DKL(q(z,w) ∥ ∏

i,j
q(zi)q(wj))

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
total correlation term

+∑
i
DKL(q(zi) ∥ p(zi)) +∑

j
DKL(q(wj) ∥ p(wj)) (4)

The second term in the right of the above equation is referred to as the total correlation (TC), as de-
fined by Chen et al. (2018), which is one of many generalizations of mutual information to more than
two random variables. The detailed derivation of this decomposition can be found in Appendix A.1.
The penalty on this TC term forces the model to find statistically independent factors in the data
distribution. A heavier penalty on this term induces a more disentangled representation among all
variables in both z and w, but as stated in our problem formulation, we only require that (1) vari-
ables in w are disentangled to capture different properties, and (2) although z is disentangled from
w, the latent variables inside z do not need to be disentangled from each other. Roughly enforcing
the disentanglement between all pairs of latent variables in w and z, as done by the existing TC
term, can incur at least quadratic number of redundant optimization efforts and could lead to poor
convergence. Thus, we further decompose and analyze the TC term as:

DKL(q(z,w) ∥ ∏
i,j
q(zi)q(wj)) = DKL(q(z,w) ∥ q(z)q(w))

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
group-wise disentanglement

+DKL(q(w) ∥ ∏
i
q(wi))

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
property-wise disentanglement

+DKL(q(z) ∥ ∏
i
q(zi)). (5)

The first term in the right part of above decomposition enforces the independence between the two
subsets of latent variables z and w, which we term group-wise disentanglement. The second term
enforces the independences of variables inside w, ensuring that each latent variable can only capture
the information of the single property assigned to it. We term this property-wise disentanglement.
Imposing a heavy penalty on these two terms can satisfy the two requirements mentioned above. We
can now obtain the second part for the objective of PCVAE by introducing the coefficient ρ as:

L2 = DKL(q(z,w)∣∣q(z)q(w)) + ρDKL(q(w)∣∣∏
i
q(wi)) (6)

3.2.3 INVERTIBLE CONSTRAINT FOR PROPERTY CONTROL

As stated in the problem formulation, an important goal for our new model is to generate a data
point x that retains the original property value of a given property yk with great precision. More
importantly, there should be no strict assumptions of parameters for p(yk) and q(wk∣yk). The most
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straightforward way to do this is to model both the mutual dependence between yk and its relevant
latent variable wk, namely, q(wk∣yk) and p(yk∣wk), which, however, could incur double errors in
this two-way mapping. To address it, we innovatively propose instead an invertible function that
mathematically ensures the exact recovery of wk given yk based on the following deduction.

In the above objective, we only explicitly model the conditional distribution of pγ(yk∣wk), hence,
to achieve the precisely control of property via z and w, which is necessary to generate x with a
certain property yk = m, we need to maximize the probability that yk = m as follows:

x ∼ pθ(x∣z, w), z, w ← arg maxz∼p(z),w∼p(w) pγ(yk = m∣z, w), (7)
which is equal to:

x ∼ pθ(x∣z, w), z ∼ p(z), wj,j/=k ∼ p(wj), wk ← arg maxwk∼p(wk) pγ(yk = m∣wk) (8)

where wk can be determined as follows (N in the followings denotes Gaussian distribution):

wk ← arg maxwk∼p(wk) pγ(yk = m∣wk)
= wk ← arg maxwk∼p(wk) logN (yk = m∣fk(wk; γ), σk) (9)

= wk ← arg maxwk∼p(wk) −(m − fk(wk; γ))2 = wk ← fk
−1(m)

Therefore, by learning an invertible function fk(wk; γ) from wk to the expectation of yk to model
pγ(yk∣wk), we can easily achieve the desired precise control of the property. The above derivation
are based on the assumption that y is a continuous-value. It can also be extended into the situation
when y is discrete property, as detailed in Appendix A.2. To learn an invertible function fk(wk; γ),
we propose to leverage an invertible neural network. Inspired by the invertible ResNet (Behrmann
et al., 2019), we decompose the function fk(wk; γ) as fk(wk; γ) = f̄k(wk; γ) + wk. As proved
by Behrmann et al. (2019), the sufficient condition that fk(wk; γ) is invertible is that Lip(f̄k) < 1,
where Lip(f̄k) is the Lipschitz-constant of f̄k(wk; γ).

Thus, the overall objective of the proposed PCVAE is finally formalized as: min
θ,φ,γ

L1 + αL2 with

subject to Lip(f̄k) < 1 for all k ∈ K, where α is the coefficient parameter.
Remark (Monotonic relationship of property-latent variable pair). Given the condition that
fk(wk; γ) is invertible and continuous (Lip(f̄k) is less than 1), fk(wk; γ) is thus a monotonic
function. This is very important to increase (or decrease) the value of property yk by increasing (or
decreasing) wk, especially when the desired value of property is not available.

3.2.4 GENERALIZATION OF HANDLING CORRELATED PROPERTIES

As stated in the third challenge in Section 1, there are usually several groups of properties involved in
describing the data x and each group has several properties. These different groups are independent,
but the properties within the same group are correlated. Thus, we can further generalize the above
objective framework to handle the correlated properties inside the same group.

The notation for yk is extended to yk = {yj,k ∈ R}Mk

j=1, signifying that there are Mk correlated prop-
erties inside the k-th property group. The properties inside the same property set yk are correlated,
while the different property sets (e.g. yp and yk) are independent. Similarly, the notation for wk is
extended as a group of latent variables to control the corresponding property set. For the properties
inside the same group, we assume all depend on the same group of latent variables wk as

p(yj,k∣wk) = N (yj,k∣fk(wk; γ)[j], σj,k)), (10)

where fk(wk; γ)[j] denotes the j-th element of the output of fk(wk; γ). Thus, the second term in
Eq. 3 can be generalized as ∑K

k ∑Mk

j Eqφ(w∣x)[log pγ(yj,k∣wk)].

3.3 NEURAL NETWORK ARCHITECTURE OF PCVAE

As shown in Figure 1(d), there is an encoder (left-hand side of Figure 1(d)) that models the dis-
tribution q(z, w∣x) and two decoders (right-hand side of Figure 1(d)) that model the distribution
p(y∣w) and p(x∣z, w). To implement the encoder and decoders in the first objective (i.e., L1), we
use Multi-perceptions (MLPs) , Convolution Neural Networks (CNNs) or Graph Neural Networks
(GNNs) to represent the distributions over relevant random variables.
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To implement the second part L2, it is necessary to calculate the group-wise and property-wise
disentanglement terms. Noting that the calculation of the density q(z), q(w) and q(wi) in group-
wise and property-wise disentanglement terms depends on the entire data space. As such, it is
inaccessible to compute it exactly during training. Thus, as the same operation conducted by Chen
et al. (2018), we utilize the Naı̈ve Monte Carlo approximation based on a mini-batch of samples to
underestimate q(z), q(w) and q(wk). The detailed operation is described in Appendix B.3.

To implement the invertible constraint and model the distribution of pγ(yk∣wk), we utilize MLPs to
model the function f̄k(⋅). Since the function f̄k(⋅) modeled by MLPs is a composition of contractive
nonlinearities (e.g., ReLU, ELU, tanh) and linear mappings, based on the definition of Lipschitz-
constant we have Lip(f̄k) < 1 if ∥ Wl ∥2< 1 for l ∈ L, where Wl refer to the weights of the
l-th layer in f̄k, ∥ ⋅ ∥2 denotes the spectral norm, and L refers to the number of layer in the
MLPs. To realize the above constraint on weights of neural networks, we propose to use the spectral
normalization for each layer of MLPs, as introduced by Behrmann et al. (2019).

3.4 PRECISELY PROPERTY CONTROLLABLE GENERATION

Our proposed model can be applied to an important downstream task, namely precisely property
controllable generation. Given the value of a required property yk, the goal of property controllable
generation is to generate a data x which holds the same value as this desired property. To achieve
this, three steps are conducted: (1) infer the value of wk based on the well-trained neural network
f̄k(⋅) and the given property yk via fixed-point iteration by followingwi+1k ∶= yk−f̄k(wik; γ), where
w
i
k is the updated latent variable at the i-th iteration step and w0

k = yk; (2) randomly sample the
values of z and the remaining variables inw from their prior distributions (i.e., Gaussian distribution)
to obtain all the latent variables; and (3) generate a data x using the decoder based on the latent
variables that are inferred from the previous two steps.

4 EXPERIMENT

This section reports the results of the qualitative and quantitative evaluation carried out to test the
performance of the proposed model on two datasets in two domains, namely images and molecules.
All experiments were conducted on a 64-bit machine with an NVIDIA GPU (GTX 1080 Ti, 11016
MHz, 11 GB GDDR5). The architectures and hyper-parameters can be found in Appendix B. The
code for the proposed PCVAE is available at:https://github.com/xguo7/PCVAE.

4.1 EXPERIMENT SETUP

4.1.1 DATASETS

The dSprites dataset (Matthey et al., 2017) consists of 2D shapes procedurally generated from
ground truth independent semantic factors. The factors that are explored as properties of data in
this experiment are scale, and the x and y positions (mentioned as x pos and y pos) of a sprite.
All possible combinations of these semantic factors are used for generating a total of 730k images,
where 580k/146k is the training/testing set split. The 3Dshapes dataset (Burgess & Kim, 2018)
consists of 3D shapes procedurally generated from ground truth independent semantic factors. The
factors that are explored as properties of data in this experiment are wall hue, floor hue and scale.
All possible combinations of these semantic factors are used for generating a total of 480k images,
where 390k/90k is the training/testing set split. The QM9 dataset (Ramakrishnan et al., 2014)
consists of 134k stable small organic molecules, where 120k/20k is the training/testing set split.

4.1.2 COMPARISON METHODS

In order to validate the superiority of our proposed model in capturing and manipulating the prop-
erty during generation, we compare the performance of PCVAE to those achieved by three com-
parison models that are most relevant to our problem: (1) semi-VAE (Locatello et al., 2019b) is
a semi-supervised model that enforces the value of each latent variable to be equal to the value
of each property. Here we utilize all the labels for supervision for fairness; (2) CSVAE (Klys
et al., 2018) is a VAE-based model that utilizes mutual information minimization to learn latent
dimensions associated with only binary properties. Here we adjust this model to handle contin-
uous property by assuming a Gaussian distribution; and (3) PCVAE tc is a baseline model that
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holds the same inference model and property controlling strategy as PCVAE, of which the pro-
posed group-wise and property-wise disentanglement terms are replaced with the TC term, namely,
DKL(q(z, w)∣∣∏i,j q(zi)q(wj)), as proposed in β-TCVAE (Chen et al., 2018). It is used as an
ablation study to validate the effectiveness of the proposed group-wise and property-wise disentan-
glement. (4) PCVAE nsp is a baseline model that holds the same architecture and disentanglement
terms as PCVAE except for the spectral normalization. It is used as an ablation study to validate the
effectiveness of spectral normalization.

4.2 EVALUATION FOR DISENTANGLED LATENT VARIABLES

In this section, we explore (1) whether each variable wk successfully captures the information of the
property that is assigned to it through supervision, and (2) whether the subset z of latent variables is
independent from the properties.

Quantitative evaluation. We calculate the normalized mutual information between each encoded
latent variable wk and the property yk that is assigned to it, as well as the average mutual informa-
tion between latent z and each yk. Figure 2 shows the mutual information heat map by each model
on dSprites(results on QM9 datasets can be found in Appendix C). The element in the row of zavg
denotes to the average of all the mutual information between z and each property. In addition, we
utilize the metric avgMI1 proposed by Locatello et al. (2019b) to show an overall quantitative com-
parison between different methods, as shown in Table 1. The proposed PCVAE achieves the least
avgMI of 0.257, which demonstrate its strength in enforcing the relationship between wk and yk.
These results also validate the effectiveness and necessity of the proposed group-wise and property-
wise disentanglement term, as PCVAE outperforms the baseline model PCVAE tc on avgMI by
around 28%. Though CSVAE shows an good performance in disentangling z and w, its latent vari-
ables in w turn in a poor performance for capturing the properties. Similar conclusions can also be
drawn from the results on the 3Dshapes and QM9 dataset. For example, PCVAE outperforms the
comparison models by about 16% in capturing two independent properties cLogP and Molweights.

 

Figure 2: Heat-maps of the mutual information between latent variables and three properties by each model
for the dSprites dataset. Data value in each cell denotes the normalized mutual information.

Table 1: The avgMI achieved by each model on the
dSprites and QM9 datasets.

Methods dSpirites 3Dshapes QM9
Semi-VAE 0.439 0.115 1.413
CSVAE 0.868 1.348 1.411
PCVAE tc 0.285 0.018 1.245
PCVAE nsp 0.266 0.031 1.162
PCVAE 0.257 0.016 1.125

Table 2: MSE between the expected and actual prop-
erty of the generated molecules (PCVAE (cor) denotes
the extended model for correlated properties).

Model cLogP Molweights cLogS
Semi-VAE 1.40 122.34 N/A
CSVAE 4.69 180.92 N/A
PCVAE tc 5.02 131.15 N/A
PCVAE nsp 1.81 176.94 N/A
PCVAE 1.29 87.62 N/A
PCVAE (cor) 1.33 53.49 1.15

Qualitative evaluation. We also qualitatively evaluate the dependence of each latent variable and
its relevant property by visualizing the variation of the properties when traversing the priors of each
latent variable. As shown in Figure 3, as the values of w1, w2 and w3 change between (−0.5, 0.5),
the continuous variations of the assigned properties of scale, x position and y position of the gen-
erated images are clearly visible (as highlighted in red rectangle). The variables in z = {z1, z2, z3}
have almost no influence on these properties, which validates the effectiveness of the group-wise
disentanglement term. More evaluation results the other two datasets can be found in Appendix C.

1
avgMI =∥ I(w, y) − E(k)) ∥2

F , where k is the number of properties. I(w, y) is mutual information
matrix. The details can be found in Appendix B.4
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Figure 3: The generated images by PCVAE when traversing three latent variables in subset z (upper
3 rows) and three latent variables in subset w (bottom 3 rows) for the dSprites dataset.

4.3 EVALUATION FOR PROPERTY CONTROLLABLE GENERATION

In this section, we validate the performance of the property controllable generation. Specifically,
given a predefined value of property yk, the aim is to explore whether the proposed model could
generate a data point x with a property y′k that is the same as yk.

Qualitative evaluation. For dSprites and 3Dshapes dataset, since we have no ground-truth method
with which to calculate the property y′k of the generated images, we directly visualize the images
that are generated given different values of property yk. In Figure 4, each column contains four
images generated given the same value of yk (here yk refers to the x position property) but given
the different values for the other two properties. The objects of the generated images in the same
column clearly share the same x position. Similar results can be observed in Figure 5, the wall hue
or flooe hue of four images in the same column are the same given the same desired property. More
visualizations for the other properties can be found in Appendix C.
 

Figure 4: The generated images on dSprites dataset when traversing the desired value of property
X-position. Each column of images are generated given the same value of the desired property.

 

(a) Control the property of “wall hue” (b)Control the property of “floor hue” 

Figure 5: The generated images on 3Dshapes dataset when traversing the desired value of property
(a) wall hue and (b)floor hue. Each column of images are generated given the same value of the
desired property and random values of other properties.

Quantitative evaluation. For the QM9 dataset, since the properties can not be visualized directly
from the molecule, we quantitatively measure the property controllable performance in terms of the
MSE (mean squared error) between the actual property y′k of generated molecule and the desired
property yk, as shown in Table 2. The proposed PCVAE outperforms the other comparison mod-
els in successfully controlling cLogP and Molweights in molecule generation with a smaller MSE
than that of the comparison methods by around 65.1% and 40.5% on average, respectively. This
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demonstrate the superiority of PCVAE in precisely controlling the continuous-valued properties due
to the effective invertible property prediction network. In addition, the obvious advantage of PC-
VAE over PCVAE tc demonstrate the effectiveness and necessity of the proposed group-wise and
property-wise disentanglement term in precisely property controllable generation.

4.4 EVALUATION FOR HANDLING CORRELATED PROPERTIES

In this section, we access the ability of the proposed model to capture and control the correlated
properties. The performance is tested on the QM9 molecule set for two tasks: property prediction
and property controllable generation. Three properties are selected: Molweights, cLogP and cLogS.
Molweights is independent from cLogP and cLogS, while cLogP and cLogS are inner-correlated.

Table 3: Evaluation of the property prediction task in
term of MSE between the predicted and real properties.

Latent Variable Molweights cLogP cLogS
semi-VAE 975.18 1.44 N/A
CSVAE 63.78 1.21 N/A

PCVAE tc 34.37 0.86 N/A
PCVAE nsp 31.50 0.64 N/A

PCVAE 33.33 1.21 N/A
PCVAE (cor) 33.04 0.96 0.53

First, we evaluate whether the subset of la-
tent variables w can power the ability of prop-
erty prediction, which is a very important task
for new compound design in drug discovery.
Given an input molecule, the trained encoder
(inference model) is used to get the relevant la-
tent variable wk, and then utilize the invertible
function of p(yk∣wk) to predict the property
yk. Table 3 compares the performance of prop-
erty prediction task on PCVAE and comparison
models for uncorrelated properties, as well as
the extended model (denoted as PCVAE(cor))
for correlated properties. Though PCVAE(cor) deals with a more difficult case than PCVAE, where
an additional property clogS that is correlated with cLogP is included, PCVAE(cor) still successfully
captures the information of the added property cLogS with ignorable influence on the prediction of
cLogP and Molweight. Specifically, as shown in Table 3, regarding the prediction of independent
properties, PCVAE outperforms semi-VAE and CSVAE with a smaller MSE of 33.33 in terms of
Molweights. It can be also observed that the prediction results of PCVAE nsp is better than PCVAE,
which shows that enforcing both directions’ dependence (i.e., p(w∣y) as well as p(y∣w) via spectral
normalization) can introduce more errors than only modelling the dependence p(y∣w).

Next, we further explore the performance of the PCVAE(cor) to control the generation of the corre-
lated properties. As shown in Table 2, PCVAE(cor) achieves the smallest MSE on all the properties.
It demonstrate that adding the supervision of its correlated property cLogS does not influence the
control of the property cLogP. This also demonstrates the effectiveness of the invertible function for
handling multi-input and multi-output data. To test the necessities of the proposed PCVAE (cor),
we also evaluate the performance of PCVAE and comparison models in dealing with correlated
properties, of which the results could be found in Appendix C.4.

5 CONCLUSION

In this paper, we have proposed the PCVAE and its extended model, which learns a latent space that
separates information correlated with the properties into a predefined subset of latent variables. To
accomplish this, we first propose a novel Bayesian variational inference of PCVAE to jointly learn
the distribution of data and properties followed by a novel group-wise and property-wise disentan-
glement term to deal with the complex dependency of subsets of latent variables. Then, we propose
to enforce an invertible mutual dependence to allow the precise property controllable generation.
At last, we demonstrate through quantitative and qualitative evaluations from three aspects that our
proposed model achieves better performance than existing and baseline models. In future work, we
plan to extend PCVAE to a semi-supervised setting, where some of the property labels are missing.
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A ADDITIONAL DERIVATIONS ABOUT METHODOLOGY

A.1 DETAILED DERIVATION OF BAYESIAN VARIATIONAL INFERENCE OF PCVAE

Given an approximate posterior q(z, w∣x, y), we can use the Jensen’s equality to obtain the varia-
tional lower bound of p(x, y) as:

log p(x, y) ≥ Eq(z,w∣x,y)[log p(x, y, w, z)/q(z, w∣x, y)].
We have two assumptions: (1) w only encode the information from y, namely, x and y are condi-
tionally independent given w (i.e., x ⊥ y∣w); (2) z is independent from w and y, namely z ⊥ w
and z ⊥ y, which is equal to y ⊥ z∣w (see derivation in Appendix A.3). First, based on the
two assumptions, we can get x ⊥ y∣(z, w) (see derivation in Appendix A.4). Thus, we have
log p(x, y∣z, w) = log p(x∣z, w)+ log p(y∣z, w) . Then, based on the assumption y ⊥ z∣w, we can
have log p(y∣z, w) = log p(y∣w). Then we get log p(x, y∣z, w) = log p(x∣z, w) + log p(y∣w). To
explicitly represent the dependence between x and (z, w) as well as the dependence between y and
w, we can parameterize the joint log-likelihood as log pθ,γ(x, y, w, z) with θ and γ as:

log pθ,γ(x, y, w, z) = log pθ(x∣z, w) + log p(z, w) + log pγ(y∣w). (11)

Given the condition that a parameterized qφ(z, w∣x, y) = qφ(z, w∣x) = qφ(z∣x)qφ(w∣x) (since
the information on y is included in x), by taking it into the above variational lower bound term, we
obtain the negative part as an upper bound on − log pθ,γ(x, y) as:

L1 =Eq(z,w∣x,y)[log pθ(x∣z, w) − log p(z, w) − log pγ(y∣w) + log q(z, w∣x, y)]
= −Eq(z,w∣x,y)[− log pθ(x∣z, w)] − Eq(z,w∣x,y)[log pγ(y∣w)]
+ Eq(z,w∣x,y)[log q(z, w∣x, y) − log p(z, w)] (12)

= −Eq(z,w∣x)[− log pθ(x∣z, w)] − Eq(w∣x)[log pγ(y∣w)] + Eq(z,w∣x)[log
q(z, w∣x)
p(z, w) ]

= −Eqφ(z,w∣x)[log pθ(x∣z, w)] − Eqφ(w∣x)[log pγ(y∣w)] +DKL(qφ(z, w∣x)∣∣p(z, w))

Based on the above derivation of DKL(qφ(z, w∣x)∣∣p(z, w)), we could further decompose it as:

DKL(qφ(z, w∣x)∣∣p(z, w)) = Eq(z,w∣x)[log
q(z, w∣x)
p(z, w) ]

= Eq(z,w∣x)[log q(z, w∣x) − log p(z, w)]

= Eq(z,w∣x)[log
q(z, w∣x)
q(z, w) + log

q(z, w)
∏i,j q(zi)q(wj))

+ log
∏i q(zi)
∏i p(zi)

+ log
∏i q(wi)
∏i p(wi)

].

Considering that q(z, w) = Ep(x)q(z, w∣x), we can get:

Ep(x)[DKL(qφ(z, w∣x)∣∣p(z, w))]

= Ep(x)[Eq(z,w∣x)[log
q(z, w∣x)
q(z, w) + log

q(z, w)
∏i,j q(zi)q(wj))

+ log
∏i q(zi)
∏i p(zi)

+ log
∏i q(wi)
∏i p(wi)

]]

= Eq(z,w,x)[log
q(z, w, x)
q(z, w)p(x) + Eq(z,w)[log

q(z, w)
∏i,j q(zi)q(wj))

]

+ Eq(z)[log
∏i q(zi)
∏i p(zi)

] + Eq(w)[log
∏i q(wi)
∏i p(wi)

] (13)

= DKL(qφ(z, w, x) ∥ q(z, w)p(x)) +DKL(q(z, w) ∥ ∏
i,j
q(zi)q(wj))

+∑
i
DKL(q(zi) ∥ p(zi)) +∑

j
DKL(q(wj) ∥ p(wj)) (14)

A.2 EXTENSION OF THE INVERTIBLE FUNCTION TO DISCRETE-VALUED PROPERTIES

Here we consider the situation when property y is discrete-valued and we denote yk = {0, 1} ∈ RC
as a one-hot vector here to represent its category and C is the number of categories. In the overall
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objective, we only explicitly model the conditional distribution of pγ(yk∣wk), hence, to achieve the
precisely control of property via z and w, which is necessary to generate x with a certain property
yk that belong to the mth category, we need to maximize the probability that yk =M as follows:

x ∼ pθ(x∣z, w), z, w ← arg maxz∼p(z),w∼p(w) pγ(yk =M∣z, w), (15)

where M is also an one-hot vector with M[m] = 1. Then the above equation is equal to:

x ∼ pθ(x∣z, w), z ∼ p(z), wj,j/=k ∼ p(wj), wk ← arg maxwk∼p(wk) pγ(yk =M∣wk) (16)

where wk can be determined as follows based on cross entropy objective (Cat in the followings
denotes categorical distribution):

wk ← arg maxwk∼p(wk) pγ(yk =M∣wk)
= wk ← arg maxwk∼p(wk) log Cat(yk =M∣νk(wk; γ))

= wk ← arg maxwk∼p(wk) log
exp(νk(wk; γ)[m])
∑C
j exp(νk(wk; γ)[j]

= wk ← ν
−1
K (M) (17)

A.3 DERIVATION PROCESS EXPLANATION 1

In this section, we proof that if z ⊥ w and z ⊥ y, we can have y ⊥ z∣w.
First, based on the Bayesian theory, we could have p(y, z∣w) = p(z∣y, w)p(y∣w) =

p(y∣z, w)p(z∣w), namely,

p(z∣y, w)p(y∣w) = p(y∣z, w)p(z∣w). (18)

Then, considering that z ⊥ w and z ⊥ y, we can have p(z∣w) = p(z) and also p(z∣y, w) = p(z).
Then the right and left sides of Equation 18 can be replaced as: p(z)p(y∣w) = p(y∣z, w)p(z),
and then we have p(y∣w) = p(y∣z, w). Given p(y∣w) = p(y∣z, w), both sides of the equations
are multiplied by p(z∣w), and we have p(z∣w)p(y∣w) = p(y∣z, w)p(z∣w) = p(y, z∣w). Thus,
y ⊥ z∣w.

A.4 DERIVATION PROCESS EXPLANATION 2

In this section, we proof that if x ⊥ y∣w, y ⊥ z, and z ⊥ w, we can have x ⊥ y∣(w, z).

First, based on the Bayesian theory, we could have p(x, y∣w, z) = p(y∣x, z, w)p(x∣z, w) =

p(x∣y, z, w)p(y∣z, w), namely,

p(y∣x, z, w)p(x∣z, w) = p(x∣y, z, w)p(y∣z, w) (19)

Then, considering that y ⊥ z and z ⊥ w (namely y ⊥ z∣w, as proved in Section A.3), as well as
y ⊥ x∣w, we can have p(y∣x, z, w) = p(y∣w) and also p(y∣z, w) = p(y∣w). Then the right and left
sides of Equation 19 can be replaced as p(y∣w)p(x∣z, w) = p(x∣z, y, w)p(y∣w), and then we have
p(x∣z, w) = p(x∣y, z, w). Thus, we get x ⊥ y∣(w, z).

B ARCHITECTURE AND HYPER-PARAMETERS

B.1 ARCHITECTURE AND HYPER-PARAMETERS FOR DSPRITS AND 3DSHAPES DATASET

Based on the description of the implementation of the proposed objective, there are three compo-
nents, namely, encoder 1 to model pθ(z, w∣x), decoder 1 to model pφ(x∣z, w) and decoder 2 to
model pγ(w∣y). When evaluate the dSprites data, the number of latent dimensions in z is 3 and the
number of latent dimensions in w is also 3. The detailed architectures are shown in Table 4. The
hyper-paramter used for training is detailed in Table 6.

B.2 ARCHITECTURE AND HYPER-PARAMETERS FOR MOLECULE QM9 DATASET

The architecture used for evaluation on the QM9 dataset are totally borrowed from the work pro-
posed by Liu et al. (2018b). A molecule is represented as a graph G(X,A), where each atom is a
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Table 4: Encoders and decoders architectures of PCVAE for dSprites dataset (Each layers
is expressed in the format as < kernel size >< layer type >< Num channel ><

Activation function >< stride size >. FC refers to the fully connected layers).

Encoder 1 Decoder 1 Decoder 2
Input: X ∈ R64×64 Input[z,w] ∈ R6 Input:wk ∈ R
4 × 4 Conv.32 ReLU.stride 2 FC.256 ReLU FC.50 ReLU
4 × 4 Conv.32 ReLU.stride 2 FC.256 ReLU Spectral Norm Layer
4 × 4 Conv.32 ReLU.stride 2 FC.512 ReLU FC.1
4 × 4 Conv.32 ReLU.stride 2 4 × 4 ConvTranspose.32 ReLU.stride 2 N/A
FC.256 ReLU 4 × 4 ConvTranspose.32 ReLU.stride 2 N/A
FC.256 ReLU 4 × 4 ConvTranspose.32 ReLU.stride 2 N/A
FC.12 4 × 4 ConvTranspose.64 ReLU.stride 2 N/A

node andX refers to the features for all nodes; each bond is an edge, whereA denotes to the adjacent
matrix of the graph. Considering it is not the concentration of this paper, we briefly introduce the
model and provide it architecture parameters in Table 5. We recommend the reader to the work (Liu
et al., 2018b) for more details.

Table 5: Encoders and decoders architectures of PCVAE for QM9 dataset (Each layers is expressed
in the format as < kernel size >< layer type >< Num channel >< Activation function ><
stride size >. FC refers to the fully connected layers).

Encoder 1 Decoder 1 Decoder 2
Input: G(X,A),X ∈ R9 Input[z,w] ∈ R100

, h type ∈ R101 Input:wk ∈ R
FC.100 ReLU FC.100 ReLU FC.20 ReLU
GGNN.100 ReLU GGNN.100 ReLU Spectral Norm Layer
GGNN.100 ReLU GGNN.100 ReLU FC.1
FC.100 FC.9 (node) FC.3 (edge) N/A

Molecule Encoder and Decoder. A encoder 1 is constructed to model pφ(z, w∣x) based on a gated
graph neural network (GGNN). As a result, by sampling from the modelled distribution, (z, w) are
obtained variables containing the graph representation vectors. The molecule decoder 1 models
the distribution pθ(x∣z, w) to generate the molecule graph G. The molecule decoder 2 models the
distribution pθ(y∣w) to predict the properties y. The process proceeds in an auto-regressive style.
In each step a focus node is chosen to be visited, and then the edges are generated related to this
focus node. The nodes are ordered by using the breadth-first traversal. The molecule decoder mainly
contains three steps, namely node initialization, node update and edge selection and labelling.

Node Initialization. We first define N as an upper bound on the number of nodes in the final gen-
erated graph. An initial state h(t=0)

i is assigned with each node vi in a set of initially unconnected
nodes. Specifically, h(t=0)

i is the concatenation as [(z, w), τi], where τi is an one-hot vector indi-
cating the atom type. τi is derived from (z, w) by sampling from the softmax output of a learned
mapping τi ∼ f(Zi). From these node-level states, we can calculate global representations H(t),
which is the average representation of nodes in the connected component at generation step t. In
addition to N working nodes, a special “stop node” is also initialized to a learned representation
hend for managing algorithm termination detailed as below.

Edge Selection and Labeling At each step t, a focus node vi is picked from the queue of nodes.
Then an edges ei,j is selected from node vi to node vj with label Ei,j . Specifically, for each non-

focus node vj , we construct a feature vector η(t)i,j = [h(t)
i , h

(t)
j , di,j , H(t), H(0)], where di,j is the

graph distance (i.e. path) between two nodes vi, vj . We use these representations to produce a dis-

tribution over candidate edges as p(ei,j , Ei,j∣η
(t)
i,j ) = p(Ei,j∣η

(t)
i,j , ei,j)⋅p(ei,j∣η

(t)
i,j ). The parameters

of the distribution are calculated as softmax outputs from neural networks. New edges are sampled
one by one from the above learned distributions. Any nodes that are connected to the graph for the
first time during this edge selection are added to the node queue.
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Node Update. Whenever we obtain a new graph G(t+1) at step t, the previous node states h(t)
i is

discarded and a new node representations h(t+1)
i for each node is calculated by taking their (possibly

changed) neighborhood into account. To this end, a standard gated graph neural network (GGNN)
is utilized through S steps, which is defined as a recurrent operation over messages r(s)i .

Termination. In the edge generation process of each node, the edges to a node vi is kept added until
an edge to the stop node is selected. Then we move the focus from the node vi, and regard vi as
a “closed” node. The next focus node is then selected from the focus queue. In this way, a single
connected component is grown in a breadth-first manner. The node and edge generations continue
until the queue of nodes is empty.

Table 6: hyper-paramter used for training on dSprites and QM9 datasets

Dataset Learning rate Batch size α ρ Num iteration c (spectral norm)
dSprites 5e-4 64 3 1 20 0.97
QM9 5e-4 32 1 6 100 1

B.3 ESTIMATION OF GROUP-WISE AND PROPERTY-WISE DISENTANGLEMENT TERMS

To evaluate the density q(z), q(w) and q(wi) in the second loss L2, a naı̈ve Monte Carlo approxi-
mation (Caflisch et al., 1998) is utilized for the estimation. We describe the operation by taking q(z)
as an example. A naı̈ve Monte Carlo approximation based on a minibatch of samples from p(n) (n
is the data sample index) is likely to underestimate q(z). As stated by Chen et al. (2018), this can
be intuitively seen by viewing q(z) as a mixture distribution where the data index n indicates the
mixture component. With a randomly sampled component, q(z∣n) is close to 0, whereas q(z∣n)
would be large if n is the component that z came from. So it is much better to sample this compo-
nent and weight the probability appropriately. Thus, we can use a weighted version for estimating
the function log q(z) during training. When provided with a mini-batch of samples {n1, ..., nM},
we can use the estimator as:

Eq(z)[log q(z)] ≈ 1

M
∑
i=1

[log
1

MN

M

∑
j=1

q(z(ni)∣ni)], (20)

where z(ni) is a sample from q(z∣n), and N is the count of the whole samples in dataset. M is the
count of samples in a mini-batch.

B.4 DETAILED DESCRIPTION OF AVGMI

To evaluate the performance of the disentangled representation learning of the inference model, we
adopt the metric avgMI proposed by Locatello et al. (2019b). The goal of avgMI is to evaluate the
whether each latent variable wk only capture the information of the relevant property yk and has
nothing correlation with the other properties. We utilize the MI matrix (i.e. the matrix of pairwise
mutual information between w and y) to represent the overall disentanglement performance. The
optimal MI matrix should be like an identity matrix with diagonal entries all 1 and other entries all
0, where the mutual information between each wk and yk is 1 and the MI between wk and other
property yj is 0. Then avgMI score is calculated as the distance between the real MI matrix and the
optimal MI matrix. The smaller the avgMI is, the better the performance are.

Each entry, namely, mutual information MI(wi, yj), in the mutual information matrix I(x, y) is cal-

culated as: MI(wi, yj) = ∑wi
∑yj

[(p(wi, yj) log
p(wi,yj)
p(wi)p(yj)

)]. Therefore, to empirically estimate

p(wi), p(yj), and p(wi, yj), we need to have w and y in the experiments. And as we know, we have
the observations on x and y, and w is generated from x by the encoder.

16



Published as a conference paper at ICLR 2021

C ADDITIONAL EXPERIMENT RESULTS

C.1 EVALUATION ON THE QUALITY OF GENERATION ON QM9

We evaluate the quality of the generated molecules on the QM9 dataset by three metrics: Novelty
measures the fraction of generated molecules that are not in the training dataset; Uniqueness mea-
sures the fraction of generated molecules after and before removing duplicates; Validity measures
the fraction of generated molecules that are chemically valid. The results of the evaluation are shown
in Table 7. As shown in Table 7, the proposed PCVAE still achieve 100% valdity and 99.5%, which
is desirable in the problem of controlling generation. We could also found that the proposed PC-
VAE can have an influence on the uniqueness of the generated data, which may be explained by the
supervision of the model. However, considering our focus is on data generation given the desired
property, is not a critical issue, whereas the validity and novelty are still very high.

Table 7: Quantitative evaluation of the generated molecules.

Method Validity Novelty Uniqueness
GrammarVAE (Kusner et al., 2017) 30.00% 95.44% 9.30%

GraphVAE (Li et al., 2018) 61.00% 85.00% 40.90%
CGVAE (Liu et al., 2018a) 100.00% 96.33% 98.03%

PCVAE tc 100.00% 99.10% 63.50%
PCVAE 100.00% 99.50% 33.40%

C.2 EVALUATION ON DISENTANGLED LATENT VARIABLES

Evaluation results on dSprites. We provide the qualitative evaluation on the comparison experi-
ments when traversing the values of latent variables in Fig. 6. As shown here, the latent variables
w learned by the baseline model PCVAE tc could successfully capture the three properties, which
validate the effectiveness of the proposed overall inference model. The latent variables w2 and w3

learned by CSVAE can capture the x pos and y pos properties, while w1 fails in capture the scale
property. Semi-VAE can capture the three properties but the quality of the generated images is very
bad and biased.

Evaluation results on 3Dshapes. We provide the qualitative evaluation on the 3Dshapes when
traversing the values of each latent variables w in Fig. 6. As shown here, the latent variables w
learned by the proposed model PCVAE could successfully capture the three properties, object scale,
wall hue and the floor hue in the images, which validate the effectiveness of the proposed overall
inference model.

Evaluation results on QM9 dataset. We calculate the mutual information between each encoded
latent variable wk and the property yk that assigned to it, as well as the average mutual information
between latent z and each yk, as shown in Figure 8 for the results on molecule QM9 dataset. For this
difficult task in the molecule domain which contains the implicit properties, the proposed PCVAE
still shows significant advantage in capturing the Mol weight and cLogP properties. We also qual-
itative evaluate the relationship of each latent variable and its relevant properties. We visualize the
variation of the properties on QM9 datasets, when traversing on the priors of each latent variable,
as shown in Figure 9. The variable w1 and w2 could successfully capture the properties Molweight
and cLogP.

C.3 EVALUATION FOR PRECISE PROPERTY CONTROL

Evaluation on dSprites dataset. For dsprits dataset, since we have no ground-truth method to
calculatethe properties y′k of the image, we directly visualize the images that are generated given
different properties yk on three comparison models. As shown in Figure 10, each column shows
four images generated given the same value of yk, but given the different values of other properties.
It could be easily observed that the objects of the generated images in the same column have the
same value of y′k. We provide the visualization of y pos in Fig.10.
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Figure 6: The generated images by comparison models when traversing on three latent variables in
subset of latent z (upper3 rows) and three latent variables in subset of latent w (bottom 3 rows) for
the Dsprits dataset
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Figure 7: The generated images by PCVAE and comparison methods when traversing on three latent
variables in subset of latent w (bottom 3 rows) for the 3Dshapes dataset

 

Figure 8: Comparison on Mutual Information between different latent variables on different proper-
ties on molecule QM9 dataset.

C.4 EVALUATION ON THE NECESSARIES OF PCVAE(COR) FOR DEALING WITH
CORRELATED PROPERTY

To validate the necessity of PCVAE (cor) for dealing with the correlated properties, we evaluated
the performance of PCVAE and comparison models in dealing with correlated properties. As shown
in Table 8, for generation task, the proposed PCVAE (cor) achieved much smaller MSE than those
achieved by CSVAE and PCVAE by averagely around 72.9%, 52.5% and 58.0% on the control of

Figure 9: The properties of generated molecules when traversing on the corresponding latent vari-
ables in sub-space w by ControlVAE tc (left) and ControlVAE (right).
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Figure 10: The generated images when traversing on the given desired property of Y-position. Each
column of images share the same value of the desired property.

Molweigt, cLogP and cLogS, respectively. This validates that traditional disentangled-based VAE
models cannot handle the controllable generation for correlated properties. For prediction task,
the proposed PCVAE (cor) also achieved much smaller MSE than those achieved by CSVAE and
PCVAE by averagely around 53.12%, 13.2% and 22.1% on the prediction of Molweight, cLogP
and cLogS respectively. The bad performance on PCVAE and CSVAE in dealing with correlated
properties is caused by the conflicts between the independence enforcement on latent variables w
and the dependence relationship enforcement on w and the correlated properties y, which largely
deteriorate the optimization of the whole model.

Table 8: Comparison of models in dealing with the correlated properties

Prediction task Generation task
Model Molweight cLogP cLogS Molweight cLogP cLogS

CSVAE 88.03 1.21 0.63 183.41 3.84 2.56
PCVAE 52.43 1.03 0.73 168.52 1.76 2.95

PCVAE (cor) 33.04 0.96 0.53 53.49 1.33 1.15
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