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Abstract

Most existing large-scale academic search en-
gines are built to retrieve text-based informa-
tion. However, there are no large-scale retrieval
services for non-textual components such as
scientific figures and tables. One challenge to-
wards such services is scientific figure under-
standing that represents visual information by
text. A key problem is a lack of datasets con-
taining annotated scientific figures and tables,
which can be used for classification, question-
answering, and auto-captioning. Here, we de-
sign a pipeline that extracts figures and tables
from scientific literature and a deep-learning-
based framework that classifies scientific fig-
ures using visual features. Using this pipeline,
we develop the first large-scale annotated cor-
pus, SCIFIG consisting of more than 264k sci-
entific figures extracted from ~ 56k research
papers in the ACL Anthology. We make avail-
able the SCIFIG-PILOT dataset that contains
1671 manually labeled scientific figures belong-
ing to 19 different categories. The dataset is
accessible at https://bit.ly/3m4u0eq under a CC
BY-NC license.

1 Introduction

Figures are ubiquitous in scientific papers to illus-
trate experimental and analytical results. We refer
to these figures as scientific figures to distinguish
them from natural images, which usually contain
richer colors and gradients. Scientific figures pro-
vide a compact way to present numerical and cate-
gorical data, which often enable researchers to draw
more intuitive insights and conclusions. Automatic
understanding of scientific figures can assist in de-
veloping retrieval systems that discover from hun-
dreds of millions of papers that are readily available
on the Web (Khabsa and Giles, 2014). The state-of-
the-art machine learning models can read captions
and parse shallow semantics for certain types of
scientific figures. However, the task of building a
general and robust system that can reliably repre-
sent and interpret visual information and connect

it with text content remains a challenge. One key
step to facilitate advancing figure understanding is
to build datasets containing diverse collections of
scientific figures and their textual descriptions.

Here, we propose a pipeline to build a
categorized and contextualized scientific figure
dataset. Applying the pipeline on 55,760 pa-
pers in the ACL Anthology (downloaded from
https://aclanthology.org/ in mid-2021) we built two
datasets: SCIFIG and SCIFIG-PILOT. SCIFIG con-
sists of 263,952 scientific figures, their captions,
inline references, and metadata. SCIFIG-PILOT is
a subset of SCIFIG, consisting of 1671 scientific
figures. It was manually classified into 19 cate-
gories. The SCIFIG-PILOT dataset can be used as a
benchmark for scientific figure classification. The
pipeline is open source and configurable, enabling
others to expand the datasets by extracting and an-
notating figures from other scholarly datasets with
pre-defined or new labels.

2 Related Work
2.1 Scientific Figures Extraction

Automatically extracting figures from scientific pa-
pers is important because many downstream tasks
rely on large numbers of accurately extracted fig-
ures. Wu et al. (2015) introduced a multi-entity
extraction system called PDFMEF, incorporating
a scientific figure extraction module. Shared tasks
such as ImageCLEF (Miiller et al., 2015) drew at-
tention to compound figure detection (Yu et al.,
2017) and separation (Tsutsui and Crandall, 2017).
Clark and Divvala (2015) proposed a framework
called PDFFIGURES that extracted figures and
their captions in research papers. The authors ex-
tended their work and built a more robust frame-
work called PDFFIGURES2 (Clark and Divvala,
2016). DEEPFIGURES was later proposed to over-
come the limitations of the above frameworks by
incorporating deep neural networks, i.e.,ResNet-
101 (Siegel et al., 2018a).


https://bit.ly/3m4u0eq

2.2 Scientific Figure Classification

Scientific figure classification (Savva et al., 2011;
Choudhury and Giles, 2015) helps machine under-
standing of figures. Early work used a visual bag-of-
words representation with a support vector machine
(SVM) classifier (Savva et al., 2011). Hough trans-
forms recognized bar charts in document images
(Zhou and Tan, 2000b,a). Prasad et al. considered
Scale Invariant Feature Transform (SIFT) (Lowe,
2004) and Histogram of Oriented Gradient (HOG)
(Dalal and Triggs, 2005) features to recognize five
different types of charts (Prasad et al., 2007). Hand-
crafted features were used to classify charts in sci-
entific documents into various types, e.g., Zhou and
Tan (2000b); Siegel et al. (2016); Vitaladevuni et al.
(2007). However, handcrafted features usually did
not generalize well. As such a convolutional neural
network (CNN)-based model was proposed (Kava-
sidis et al., 2018) which identified the locations of
tables, bar charts, and pie charts in research papers.
Another that combined CNN and the deep belief
networks showed improved performance compared
with feature-based classifiers (Tang et al., 2016).

Table 1: Datasets for scientific figure classification.

Dataset

Labels | #Figures | Image Source

Deepchart 5 5000 Web Image
Figureseer 5 30600' Web Image
Prasadetal. | 5 653 Web Image
DocFigure 28 33000° Scientific Papers
Revision 10 2000 Web Image
FigureQA® 5 100000 Synthetic figures
SciFig-pilot | 19 1671 Scientific Papers
SciFig* - 263952 | Scientific Papers

! Only 1000 images are public.

2 Not publicly available.

3 Scientific-style synthesized data.

* SciFig does not contain human-assigned labels.

2.3 Figure classification Datasets

Existing datasets for figure classification include
DocFigure (Jobin et al., 2019), FigureSeer (Siegel
et al., 2016), Revision (Savva et al., 2011), and
datasets presented by Karthikeyani and Nagarajan
(2012) and Vitaladevuni et al. (2007). Most datasets
were collected from the Web except for DocFig-
ure, which was created by extracting figures from
scientific documents. FigureSeer and DocFigure
each contain more than 30k images. The sizes of
other datasets are relatively small. Only a small
subset (= 1000) of the FigureSeer dataset was la-
beled. Most datasets have no more than 10 labels
except for DocFigure, which has 28 labels. Table 1

summarizes existing datasets that may be used for
scientific figure classification.

FigureQA is a dataset consisting of over one
million question-answer pairs grounded in over
100,000 synthesized scientific images (Kahou et al.,
2018) with five styles. Our dataset is different from
FigureQA because the figures were directly ex-
tracted from research papers.
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Figure 1: Overview of the data generation pipeline.

3 Data Generation Methods

The ACL Anthology corpus is a sizable, well-
maintained PDF corpus with clean metadata cover-
ing papers in computational linguistics with freely
available full-text. Previous work on figure classi-
fication used a set of pre-defined categories, e.g.,
Kahou et al. (2018), which may not cover all types
of figures. We use an unsupervised method to de-
termine figure categories. After the category label
is assigned, each figure is automatically annotated
with metadata, captions, and inline references. The
pipeline includes 3 steps: figure extraction, cluster-
ing, and automatic annotation. An overview of the
data generation pipeline is illustrated in Figure 1.

3.1 Figure Extraction

We extracted figures using PDFFIGURES2 and
DEEPFIGURES. PDFFIGURES2 (Clark and Divvala,
2016) first identifies captions and the body text in-
side a document, because these elements can often
be identified accurately in scientific articles. Areas
containing figures can then be located by identify-
ing rectangular regions adjacent to captions and not
overlapped with the body text.



DEEPFIGURES (Siegel et al., 2018b) uses the
distant supervised learning method to induce labels
of figures from a large collection of scientific doc-
uments in LaTeX and XML format. The model is
based on TensorBox, applying the Overfeat detec-
tion architecture to image embeddings generated
using ResNet-101 (Siegel et al., 2018a). We uti-
lized the publicly available model weights' trained
on 4M induced figures and 1M induced tables for
extraction. The model outputs the bounding boxes
of figures and tables. Here, unless otherwise, we
refer to figures and tables as “figures”.

Using DEEPFIGURES and PDFFIGURES?2, we
successfully extracted 249,669 figures and 254,906
figures from 55,760 papers, respectively. Each pro-
cess extracts figures following the steps below. The
system extracts figures at a rate of 200 papers per
minute on a Linux server with 24 cores.

Retrieve a paper identifier from the job queue.
Pull the paper from the file system.

Extract figures and captions from the paper.
Crop the figures out of the rendered PDFs using
detected bounding boxes.

5. Save cropped figures into PNG format and the
metadata in JSON format.

b=

3.2 Clustering Methods

Now we use an unsupervised method to classify
extracted figures. We extract visual features us-
ing VGG16 (Simonyan and Zisserman, 2015), pre-
trained on the ImageNet dataset (Deng et al., 2009).
VGG16 contains a series of convolutional layers
followed by max-pooling layers and a set of 3 fully
connected dense layers. VGG16 has been used in
document representation learning and pattern anal-
ysis, e.g., (Simonyan and Zisserman, 2014).

All input figures are scaled to a dimension of
224 x 224 to be compatible with the input require-
ment of VGG16. The features were extracted from
the second last hidden (dense) layer, consisting of
4096 features. Principal Component Analysis was
adopted to reduce the dimension to 1000.

Next, we cluster figures represented by the 1000-
dimension vectors. We compare two heuristic meth-
ods to determine the optimal number of clusters,
including the Elbow Method (Thorndike, 1953) and
the Silhouette Analysis (Rousseeuw, 1987). To use
the method, one needs to examine the explained
variation, a measure that quantifies the difference
between the between-group variance to the total

"https://github.com/allenai/deepfigures-open

variance, as a function of the number of clusters.
The pivot point (elbow) of the curve determines the
number of clusters to use.

Silhouette Analysis determines the number of
clusters by measuring the distance between clus-
ters. The Silhouette plot displays how close each
point in one cluster is to points in the neighboring
clusters, allowing us to visually assess the cluster
number. This measure has a range of [—1, 1]. Sil-
houette Analysis takes into account more factors,
e.g., variance, skewness, and high-low differences,
and is usually considered a better method.

3.3 Automatic Annotation

This automatically associates figures to metadata,
including captions, inline reference, figure type, fig-
ure boundary coordinates, caption boundary coor-
dinates, and image text (text appearing on figures,
only available for results from PDFFIGURES?2).
The figure type is determined in the clustering step
above. The inline reference is obtained using GRO-
BID (see below). The other metadata was avail-
able in the output of the figure extractor. PDF-
FIGURES2 and DEEPFIGURES extract the same
metadata fields except for “image text” and “re-
gionless captions” (captions for which no figure
regions were found), which are only available for
results of PDFFIGURES2.

An inline reference is a text span that contains
a citation to a cross-reference, such as a figure or
a table. Inline references can be useful to under-
stand the relationship between text and the entities
it refers to. After processing a paper, GROBID out-
puts a TEI file (a type of XML file), containing
marked-up full-text and references. We locate in-
line references of a particular figure using its label
(e.g., “Figure 1) and extract the sentence contain-
ing the label. A regular expression was used to
match figure labels.

4 Results

4.1 Figure Extraction

PDFFigures2 DeepFigures
Figure 2: Numbers of extracted figures.

We use both PDFFIGURES2 and DEEPFIGURES
to extract figures. The numbers of extracted figures



Table 2: Figure class distribution in the SCIFIG dataset.

Class | % || Class | %
Trees 13 || Graphs 6
Natural Images 8 Tables 6
Confusion Matrix 7 Screenshots 6
Pie Charts 6 Scatter Plot 4
Bar Charts 6 Maps 3
NLP text/grammar 6 Boxplots 2
Architecture Diagram | 6 Venn Diagram | 1
Algorithm 6 Word Cloud 1
Neural Networks 6 Pareto 1
Line Graph 6

by these two packages are shown in Figure 2. The
diagram indicated that there is a significant overlap
between figures extracted by both software pack-
ages. However, each package extracted (=~ 5%) fig-
ures that were not extracted by the other package.
By inspecting a random sample of figures extracted
by both software packages, we found that DEEP-
FIGURES tended to miss cases in which two figures
were vertically adjacent to each other. We took the
union of all figures extracted by both software pack-
ages to build the SCIFIG dataset, which contains a
total of 263,952 figures. All figures extracted are
converted to 100 DPI using standard OpenCV li-
braries. The total size of the data is ~ 25GB before
compression. Inline References were extracted us-
ing GROBID wrapped by PDFMEF. About 78% of
figures have inline references.

4.2 Determining the Cluster Number

The extraction contains ~ 150k tables and 110k fig-
ures. The figures were clustered using the k-means
algorithm. We increased %k from 2 to 20 with an
increment of 1 to determine the number of clus-
ters. The results were analyzed using the Elbow
Method and Silhouette Analysis. No evident arm
was observed in the Elbow Method. The Silhou-
ette diagram exhibits an evident turning point at
k = 15, where the score reaches the maximum.
Therefore, we group the figures into 15 clusters.
To validate the clustering results, 100 figures ran-
domly sampled are manually inspected from each
cluster. We identified three additional types of fig-
ures, namely word cloud, pareto, and venn diagram.
The SCIFIG-PILOT dataset was built using these
manually inspected figures. For completeness, we
add 100 randomly selected tables. Now the SCIFIG-
PILOT dataset contains a total of 1671 figures and
tables in 19 classes. The distribution of all classes
is shown in Table 2. Examples of figures are shown
in Figure 3.
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Figure 3: Example figures in the SCIFIG-PILOT dataset.

5 Figure Classification

Based on the SCIFIG-PILOT dataset, we train a
supervised classifier. The dataset was split into a
training and testing set with an 8:2 ratio. Two deep
learning models were investigated. The first model
is a 3-Layer CNN, trained with a categorical cross-
entropy loss function and the Adam optimizer. The
model contains three typical convolutional layers,
each followed by a max-pooling and a drop-out
layer, and three fully-connected layers. The di-
mensions are reduced from 32 x 32 to 16 x 16
to 8 x 8. The last fully connected layer classifies
the encoded vector into 19 classes. The classifier
achieves an accuracy of 59%. The second model
was trained based on the VGG16 model (Simonyan
and Zisserman, 2014) except that the three fully-
connected layers at the top of the original network
were replaced by a long short-term memory layer,
followed by several dense layers for classification.
This model achieves an accuracy of ~ 79%, 20%
higher than the 3-Layer CNN model.

6 Conclusion

We designed a pipeline that builds a corpus of clas-
sified scientific figures and applied it to ACL An-
thology papers leveraging state-of-the-art figure
extraction frameworks. This corpus, SCIFIG, con-
sists of ~ 250k scientific figures and tables, and
SCIFIG-PILOT, a subset of SCIFIG, consisting of
1671 scientific figures with 19 manually verified
labels. One limitation of our pipeline is the deter-
mination of the number of clusters required visual
inspection. Future work could be using density-
based methods, e.g., Xuanzuo et al. (2017), to fully
automate the clustering module.
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