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Abstract

Graph Neural Networks (GNNs) achieve strong performance in node classification
tasks but exhibit substantial performance degradation under label noise. Despite
recent advances in noise-robust learning, a principled approach that exploits the
node-neighbor interdependencies inherent in graph data for label noise detection
remains underexplored. To address this gap, we propose GD2, a noise-aware
Graph learning framework that detects label noise by leveraging Dual-view pre-
diction Discrepancies. The framework contrasts the ego-view, constructed from
node-specific features, with the structure-view, derived through the aggregation
of neighboring representations. The resulting discrepancy captures disruptions
in semantic coherence between individual node representations and the structural
context, enabling effective identification of mislabeled nodes. Building upon this
insight, we further introduce a view-specific training strategy that enhances noise
detection by amplifying prediction divergence through differentiated view-specific
supervision. Extensive experiments on multiple datasets and noise settings demon-
strate that GD2 achieves superior performance over state-of-the-art baselines.

1 Introduction

Graph Neural Networks (GNNs) have recently achieved significant advancements in node classifica-
tion, with extensive applicability across domains such as social network analysis [9], recommender
systems [38], and biomedical research [36]. Nevertheless, obtaining high-quality labeled data remains
challenging in real-world scenarios, and noisy labels are inevitably present. Prior research indicates
that noisy labels can mislead the training of GNNs, substantially degrading predictive accuracy and
generalization capability [45]. Furthermore, due to the message-passing mechanism inherent in
GNNs, the negative impact of label noise is exacerbated [5, 28]. Consequently, developing robust
GNN models under label noise represents a crucial and pressing research objective.

To alleviate negative impacts associated with noisy labels, general noise-learning approaches com-
monly exploit the memorization effect exhibited by neural networks [1, 42] or rely on handcrafted
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(a) GCN
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(b) GCN + view-specific heads
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(c) GD2

Figure 1: Normalized prediction discrepancy between the ego-view and structure-view on the
Computer dataset. (a) Standard GCN yields observable but limited separation in the discrepancy
distribution between clean and noisy nodes, hindering effective noise detection. (b) GCN with
a shared encoder and view-specific classifier heads produces a more distinguishable discrepancy
distribution. (c) GD2 enhances the distributional separability in prediction discrepancies between
clean and noisy nodes, yielding a well-separated distribution and facilitating noise detection.

heuristic signals [27, 10, 14] for filtering or rectifying mislabeled samples. However, these methods
implicitly assume that the data are independent and identically distributed (i.i.d.), which does not hold
in graph data due to interdependencies among connected nodes. Consequently, existing noise-learning
techniques perform suboptimally when directly applied to node classification tasks [32]. Recently,
several methods specifically tailored for graph data have emerged, incorporating structural informa-
tion into noise-robust learning. Representative methods include graph structure refinement [5, 6],
structure-based curriculum learning [39, 35], label correction via propagation [4, 2], and incorporation
of auxiliary supervision [28, 8, 43]. A common trait among these approaches is the implicit use
of semantic alignment between node features and the structural context. Such alignment captures
the node–neighbor interdependencies inherent to graph data, contributing to robust representation
learning and label noise mitigation. However, most existing techniques inherit noise detection mecha-
nisms originally developed for i.i.d. data and do not explicitly leverage such relational patterns. The
potential of interdependencies for identifying noisy labels remains underexplored. Consequently, an
open question naturally arises: can the intrinsic dependencies between node features and structural
context be explicitly modeled to enable effective label noise detection in graph data?

To address the aforementioned research question, this paper presents GD2, a noise-aware graph
learning framework that explicitly leverages the semantic discrepancies between node features and
structural context to detect label noise. The core component is a noise detection module based
on dual-view prediction discrepancy. Specifically, node representations are decoupled into two
distinct views based on information source. The ego-view is constructed solely from node-specific
features and captures individual semantic information. The structure-view is derived by aggregating
neighbor representations and encodes contextual semantics from local graph topology. The prediction
discrepancy between the two views is exploited as an intrinsic signal for identifying potential label
errors. Figure 1 illustrates the prediction discrepancy between the ego-view and structure-view
under label noise. The key insight is that label noise disrupts semantic coherence between the two
views, leading to divergent predictions. The ego-view, relying solely on individual features, tends
to overfit spurious correlations introduced by incorrect labels, resulting in semantically misaligned
representations. In contrast, the structure-view captures topological patterns that remain relatively
stable under noise. Therefore, prediction divergence between the two views serves as an indicator for
identifying mislabeled nodes. This insight is further supported by theoretical analysis, which reveals
that clean-labeled nodes inherently exhibit bounded cross-view representation discrepancies. Building
upon the above noise detection mechanism, we also introduce a view-specific training strategy, which
provides differentiated supervision to each view to further enhance prediction discrepancies and
facilitate noise detection. The main contributions are summarized as follows:

(1) We propose a novel perspective for noisy label detection in graph data, that prediction discrepancy
between ego-view and structure-view can be an indicator for identifying label errors.

(2) We introduce a graph learning framework named GD2, which incorporates a noise detection
module and a view-specific training strategy. By quantifying predictive discrepancies between views,
the proposed framework effectively detects mislabeled nodes and facilitates robust learning.
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(3) Extensive experiments on multiple real-world graph datasets under varying noise levels demon-
strate that GD2 consistently outperforms state-of-the-art baselines, highlighting its effectiveness in
addressing label noise in graph learning.

2 Related Work

2.1 Noisy Label Detection

Noisy label detection aims to identify and remove incorrectly labeled samples from the training
data. The main challenge lies in defining a suitable metric to quantify the label quality. A widely-
adopted approach leverages the memorization effect of deep neural networks [1], utilizing criteria
such as training loss or prediction confidence. Representative methods include Decoupling [23],
Co-teaching [13], Co-teaching+ [42], and ProMix [41]. More advanced criteria have also been
developed, such as AUM [27], which identifies mislabeled samples by tracking the prediction margin
during training, TopoFilter [37], which isolates noisy samples based on topological properties in
the representation space, and OT-Filter [10], which selects samples from the perspective of optimal
transport theory.

Recently, some studies have extended sample selection methods to graph-structured data. For instance,
TSS [39] employs class-conditional betweenness centrality based on graph topology to select nodes;
UnionNet [19] aggregates labels to perform sample re-weighting and label correction; and CLN-
ode [35] introduces a multi-perspective difficulty measurer for detecting label noise. Nevertheless,
these methods typically inherit noise detection mechanisms originally developed for i.i.d. data, failing
to explicitly model intrinsic dependencies between node features and structural context for effective
noisy label detection.

2.2 Noise Robust Learning

Besides detecting noisy labels, another line of research focuses on developing robust training algo-
rithms and models. Such methods include designing noise-resistant network architectures [17, 11],
robust loss functions [46], and regularization [34, 24], as well as training strategies [15, 20, 40].

In the context of Graph Neural Networks (GNNs), previous studies [5, 8] have demonstrated that
label noise can propagate through the graph structure, significantly impairing the performance
of GNNs. Several methods have mitigated this issue by refining graph structure. For instance,
NRGNN [5] connects unlabeled nodes to trustworthy labeled neighbors to alleviate the effects of
label noise, while RS-GNN [6] learns a denoised graph structure to reduce noise propagation. Other
methods introduce auxiliary supervisory signals to strengthen robustness, including self-training
and consistency regularization [28], information-theoretic objectives [49], and pairwise consistency
modeling [8]. Graph contrastive learning has also been leveraged, with representative methods
including RNCGLN [50], ALEX [43], and CGNN [44]. Label propagation approaches have likewise
been explored: ERASE [2] integrates label propagation with coding rate minimization, while R2LP [4]
applies propagation on reconstructed graphs to correct noisy labels. DND-NET [7] mitigates noise
by decoupling message passing in GNNs.

Although these methods have improved the robustness of GNNs against noisy labels, their identifi-
cation of mislabeled samples still predominantly relies on loss-based or confidence-based metrics.
Different from existing approaches, we propose a graph learning framework that identifies noisy
labels based on dual-view prediction discrepancy.

3 Preliminary

This work focuses on node classification under label noise. Consider a graph G = (V, E), where V
denotes the set of nodes and E ⊆ V × V represents the set of edges. The graph G is assumed to be
undirected and without self-loops. Node features are represented by a matrix X ∈ R|V|×d, where |V|
is the number of nodes and d is the feature dimension. Let Y ∈ R|V|×C denote the one-hot encoded
ground-truth label matrix, and Ỹ ∈ R|V|×C the one-hot encoded noisy label matrix, where C is the
number of classes. The adjacency matrix is denoted by A ∈ R|V|×|V|, where Aij = 1 if nodes vi
and vj are connected, and Aij = 0 otherwise. The objective is to train a Graph Neural Network
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Figure 2: Overview of the proposed framework GD2, which consists of two core modules: noise detec-
tion and view-specific training. In the noise detection module, the cross-view prediction discrepancy
is quantified and modeled using a Gaussian Mixture Model (GMM) to identify label noise. For model
training, pseudo-labels are assigned to confident noisy nodes to refine supervision. The framework
then jointly optimizes three view-specific objectives. The two modules are mutually reinforcing: the
denoised training set improves model robustness, which in turn sharpens the discrepancy for more
effective noise detection.

(GNN) on the training set Vtrain with noisy labels Ỹ, such that accurate predictions can be made for
the true labels Y on the unlabeled nodes.

Graph Neural Networks (GNNs) typically follow a message-passing architecture, where node repre-
sentations are updated by aggregating information from neighboring nodes. At the ℓ-th layer, the
representation of node v is computed as:

h(ℓ)
v = UPDATE(ℓ)

(
h(ℓ−1)
v ,AGG(ℓ)

(
{h(ℓ−1)

u | u ∈ N (v)}
))

, (1)

where N (v) denotes the set of neighbors of node v, AGG(ℓ) is the aggregation function, and
UPDATE(ℓ) is the update function. Initial representations are given by node features, i.e., h(0)

v =
xv ∈ Rd. For Graph Convolutional Networks [16], the representation matrix at the ℓ-th layer is
updated as:

H(ℓ) = σ
(
D̃− 1

2 ÃD̃− 1
2H(ℓ−1)W(ℓ)

)
, (2)

where Ã = A+ I is the adjacency matrix with self-loops, I is the identity matrix, D̃ is the degree
matrix of Ã, W(ℓ) is the learnable weight matrix, and σ denotes a non-linear activation function.

4 Method

This section details the proposed framework GD2. A standard approach to learning under label noise
typically involves two stages: first identifying mislabeled samples, and then training the model using
the samples estimated to be clean. As illustrated in Figure 2, GD2 follows this paradigm and consists
of two core components: a noise detection module and a view-specific training module. In the noise
detection module, cross-view prediction discrepancies are used to estimate the likelihood of label
correctness via a Gaussian Mixture Model. In the training module, pseudo-labels are generated
from a mixed-view, and then distinct training objectives are designed for different views. The
two components are trained in a mutually reinforcing manner: the detection module provides a
cleaner training set for the model, while the training process strengthens view discrepancies, further
improving noise detection. The pseudo code of GD2 is presented in the Appendix E.

4.1 Noise Detection via Prediction Discrepancy

Identification of mislabeled nodes is achieved by explicitly modeling prediction discrepancies between
different views. The distinct views differ in information sources: the ego-view relies exclusively
on intrinsic node features, whereas the structure-view aggregates neighborhood information. Node
representations of the ego-view and structure-view, denoted as Ze and Zs, respectively, are first
computed. Specifically, a Graph Convolutional Network (GCN)-based encoder fθ with parameters θ
is employed. Representations at the ℓ-th layer for the ego-view and structure-view, denoted by H

(ℓ)
e
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and H
(ℓ)
s , are updated according to:

H(ℓ)
e = σ

(
H(ℓ−1)

e W(ℓ)
)
, H(ℓ)

s = σ
(
D− 1

2AD− 1
2H(ℓ−1)

s W(ℓ)
)
, (3)

where W(ℓ) denotes learnable weights at layer ℓ, σ represents a non-linear activation function, A is
the adjacency matrix without self-loops, and D is the corresponding degree matrix of A. The final
representations for both views are:

Ze = fθ(X, I), Zs = fθ(X,A), (4)

where X is the node feature matrix, I denotes the identity matrix.

To enhance the discrepancy between view-specific predictions and avoid mutual interference between
the different training objectives (further discussed in Section 4.2.2), distinct linear classifiers are
employed for each view. The ego-view prediction matrix Pe ∈ R|V|×C and the structure-view
prediction Ps ∈ R|V|×C are computed using classifiers gϕ1

and gϕ2
, respectively:

Pe = gϕ1
(Ze), Ps = gϕ2

(Zs). (5)

The prediction discrepancy between the two views for node i ∈ Vtrain is quantified using the ℓ2-norm:

δi =
∥∥∥P[i]

e −P[i]
s

∥∥∥
2
, (6)

where P
[i]
· represents the prediction vector of node i.

To adapt flexibly across different graphs and noise scenarios, the discrepancy set D = {δi | i ∈
Vtrain} is modeled using a two-component Gaussian Mixture Model (GMM) via the Expectation-
Maximization (EM) algorithm. Each discrepancy value δi is mapped to a posterior probability
Pclean(s | δi), indicating the likelihood of belonging to the clean-label component s with the smaller
mean. A threshold τ is then applied to partition the training set into clean and noisy subsets:

Vclean = {i | Pclean(s | δi) > τ, i ∈ Vtrain}, Vnoisy = Vtrain \ Vclean. (7)

4.2 Model Training

4.2.1 Label Purification

After identifying nodes with noisy labels, pseudo-labels are generated to purify corrupted supervision.
However, predictions obtained from either the ego-view or the structure-view exhibit inherent bias, as
each is derived from a single source of information. To mitigate this issue and improve pseudo-label
reliability, a mixed-view representation is introduced. The mixed-view integrates node features with
local structural context to provide more accurate semantic estimates. Formally, the mixed-view
representation is computed as:

Zm = fθ(X, Ã), (8)

where Ã denotes the adjacency matrix with added self-loops. Representations are updated following
the standard GCN formulation [16] as described in Eq. 2. Mixed-view predictions are then obtained
via the classifier gϕ2

as Pm = gϕ2
(Zm). To ensure pseudo-label quality, only high-confidence

predictions are retained. Specifically, noisy nodes with prediction confidence exceeding a predefined
threshold γ are selected to construct the purified training set:

Vpurified = {i | max(P[i]
m) > γ, i ∈ Vnoisy}. (9)

For each node selected into Vpurified, the pseudo-label is determined by the class with the highest
predicted probability:

Ŷ[i] = argmaxP[i]
m, i ∈ Vpurified. (10)

4.2.2 Training Objective

As training progresses, predictions from different views tend to overfit noisy labels, resulting in a
reduced discrepancy between views, especially for mislabeled nodes. The diminished discrepancy
degrades the effectiveness of noise detection. To address this issue, view-specific training objectives
are introduced to encourage distinct learning for each view. Specifically, the overall training objective

5



comprises three loss terms corresponding to the ego-view, structure-view, and mixed-view, each
optimized on dedicated training nodes and labels.

First, the ego-view loss employs the original noisy labels Ỹ to supervise predictions over all training
nodes Vtrain, allowing the model to closely capture potential label inconsistencies. Letting L(·, ·)
denote the cross-entropy loss function, the ego-view loss is formulated as:

Le =
1

|Vtrain|
∑

i∈Vtrain

L(P[i]
e , Ỹ[i]). (11)

For the structure-view, pseudo-labels Ŷ generated from the mixed-view serve as the supervisory
signals. The mixed-view integrates both node features and local structural context, producing
more reliable pseudo-labels that mitigate the effect of noisy labels. Notably, nodes estimated to be
mislabeled receive divergent supervision: the structure-view is trained with pseudo-labels, while the
ego-view relies on the original noisy labels. This asymmetry amplifies the prediction discrepancy
between views, which in turn facilitates the identification of mislabeled nodes. The structure-view
loss is defined as:

Ls =
1

|Vclean ∪ Vpurified|

 ∑
i∈Vclean

L(P[i]
s , Ỹ[i]) +

∑
i∈Vpurified

L(P[i]
s , Ŷ[i])

 . (12)

The mixed-view is trained using the original noisy labels Ỹ, but restricted to the confidently identified
clean nodes Vclean. This design aims to mitigate confirmation bias, which refers to the risk of
reinforcing incorrect predictions when the model is trained on unreliable pseudo-labels. The mixed-
view loss is given by:

Lm =
1

|Vclean|
∑

i∈Vclean

L(P[i]
m, Ỹ[i]). (13)

Finally, these three losses are jointly optimized, resulting in the overall training objective:

L = Le + Ls + Lm. (14)

During the evaluation stage, predictions Pm from the mixed-view are employed as the final classifi-
cation outputs.

5 Theoretical Justification

To theoretically justify the use of prediction discrepancy as an indicator of label noise, we analyze the
deviation between ego-view and structure-view representations in graph neural networks. We begin
by introducing assumptions on graphs and then propose a theorem that characterizes the probabilistic
behavior of the discrepancy.

Assumptions on Graphs. Following previous works [22, 47], we consider a graph G, where each
node i has features xi ∈ Rd and label yi. We assume that (1) The features of node i are sampled
from feature distribution Fyi

, i.e., xi ∼ Fyi
; (2) Dimensions of xi are independent to each other;

(3) The features in X are bounded by a positive scalar B, i.e., maxi,j |X[i, j]| ≤ B; (4) For node i,
its neighbor’s labels are independently sampled from neighbor distribution Dyi . The sampling is
repeated for deg(i) times to sample the labels for deg(i) neighbors.

We denote a graph following these assumptions (1)–(4) as G = {V, E , {Fc, c ∈ C}, {Dc, c ∈ C}}.
Note that we use the subscripts in Fyi

and Dyi
to indicate that these two distributions are shared

by all nodes with the same label as node i. Define µe := Ex∼Fyi
[x] as the expected feature of

node i given the ground-truth label yi, and define µs := Ec∼Dyi
, x∼Fc

[x] as the expected feature
of neighbors. We analyze the embeddings obtained after a GCN operation. Following previous
works [18, 3, 22, 47], we drop the non-linearity in the analysis.

Theorem 1. Consider a graph G = {V, E , {Fc, c ∈ C}, {Dc, c ∈ C}} that satisfies Assumptions
(1)–(4). For any node i ∈ V , let hi = Wxi denote the pre-activation output of a single-layer GCN
using only the node’s own features (ego-view), where xi ∼ Fyi

. Let hi = W
(

1
|Ni|

∑
j∈Ni

xj

)
denote the corresponding structure-view representation that aggregates features from neighbors. Let
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Table 1: Node classification accuracy (%, mean ± std) on noisy datasets. p denotes the noise rate for
each setting. Best results are highlighted in bold, and second-best results are underlined.

Dataset Method
Uniform Pair

p = 0.2 p = 0.4 p = 0.6 p = 0.2 p = 0.3 p = 0.4

Computer

GCN 85.33 ± 0.45 82.68 ± 0.66 80.78 ± 0.85 84.11 ± 0.51 82.05 ± 0.90 77.85 ± 1.89
NRGNN 86.86 ± 0.67 83.09 ± 0.90 80.04 ± 4.16 85.75 ± 1.60 83.59 ± 0.80 76.20 ± 1.72
RTGNN 83.25 ± 1.14 82.44 ± 1.63 79.94 ± 2.52 82.54 ± 0.65 80.14 ± 1.09 72.24 ± 1.92
PI-GNN 83.25 ± 1.94 81.00 ± 1.89 79.10 ± 2.24 81.42 ± 2.41 79.81 ± 1.03 75.80 ± 2.89

TSS 86.87 ± 2.14 83.62 ± 1.73 82.11 ± 1.02 83.80 ± 1.78 82.56 ± 1.75 79.89 ± 2.03
ERASE 86.77 ± 0.93 84.84 ± 0.83 83.41 ± 1.13 86.68 ± 0.75 84.60 ± 1.03 80.13 ± 4.42

GD2 86.91 ± 0.56 86.26 ± 0.71 84.76 ± 0.81 86.88 ± 0.55 85.75 ± 0.64 83.16 ± 1.75

Photo

GCN 90.10 ± 0.72 86.38 ± 1.27 72.55 ± 5.13 89.03 ± 0.49 87.26 ± 0.78 85.84 ± 2.21
NRGNN 89.29 ± 1.99 83.25 ± 5.20 69.64 ± 6.85 88.36 ± 1.21 83.10 ± 3.94 82.16 ± 5.35
RTGNN 89.65 ± 1.10 87.35 ± 2.58 73.49 ± 3.38 91.66 ± 1.06 89.90 ± 1.89 87.03 ± 6.18
PI-GNN 90.83 ± 0.71 87.07 ± 0.81 73.33 ± 1.44 89.58 ± 0.41 88.18 ± 1.54 87.79 ± 4.81

TSS 91.66 ± 1.08 87.27 ± 0.95 73.07 ± 4.46 89.03 ± 0.85 88.00 ± 2.13 86.04 ± 5.75
ERASE 91.86 ± 0.47 88.00 ± 0.53 75.10 ± 1.57 91.41 ± 0.75 87.67 ± 1.47 85.59 ± 2.33

GD2 92.45 ± 1.30 89.72 ± 0.98 74.32 ± 5.85 92.83 ± 1.10 91.84 ± 1.00 89.00 ± 1.23

CS

GCN 91.51 ± 0.13 90.57 ± 0.29 88.07 ± 0.72 91.07 ± 0.27 88.54 ± 0.46 80.67 ± 2.12
NRGNN 92.07 ± 0.50 91.40 ± 0.46 89.37 ± 1.23 89.50 ± 0.14 86.44 ± 1.10 75.51 ± 6.00
RTGNN 93.23 ± 0.33 91.91 ± 0.55 90.62 ± 0.94 92.44 ± 0.52 89.69 ± 1.33 76.16 ± 8.44
PI-GNN 92.40 ± 0.18 91.68 ± 0.34 89.57 ± 0.88 91.17 ± 0.76 89.75 ± 0.93 82.68 ± 5.65

TSS 89.80 ± 0.52 87.23 ± 1.04 82.13 ± 1.71 87.70 ± 0.94 84.69 ± 2.01 75.83 ± 7.20
ERASE 91.52 ± 0.25 91.18 ± 0.33 89.00 ± 0.46 90.23 ± 0.35 86.92 ± 1.34 81.66 ± 2.66

GD2 93.43 ± 0.34 92.37 ± 0.45 89.61 ± 0.54 92.75 ± 0.38 90.54 ± 0.43 84.68 ± 1.92

WikiCS

GCN 78.35 ± 0.49 75.06 ± 0.52 72.36 ± 0.86 78.84 ± 0.67 74.33 ± 1.00 69.15 ± 1.75
NRGNN 74.52 ± 0.97 69.48 ± 1.16 64.73 ± 2.81 74.89 ± 1.66 71.01 ± 1.65 67.74 ± 2.83
RTGNN 76.75 ± 0.57 75.46 ± 0.70 72.35 ± 1.44 76.68 ± 0.67 75.12 ± 1.93 71.56 ± 3.47
PI-GNN 74.11 ± 1.66 71.48 ± 1.33 69.85 ± 6.87 65.05 ± 8.78 63.40 ± 7.91 59.28 ± 8.92

TSS 78.23 ± 0.28 77.39 ± 0.66 69.98 ± 0.85 77.76 ± 0.40 74.67 ± 1.03 65.43 ± 3.49
ERASE 79.85 ± 0.62 77.27 ± 0.66 74.08 ± 0.76 78.86 ± 0.52 74.43 ± 1.52 69.74 ± 4.07

GD2 79.45 ± 0.36 78.21 ± 0.60 74.47 ± 0.80 79.84 ± 0.29 78.09 ± 0.42 75.88 ± 1.68

Roman-Empire

GCN 64.65 ± 0.80 57.86 ± 2.00 50.50 ± 1.02 66.78 ± 1.05 64.16 ± 1.04 58.34 ± 2.62
NRGNN 61.85 ± 0.46 59.53 ± 1.01 49.60 ± 1.36 62.41 ± 0.68 60.55 ± 0.69 53.71 ± 1.39
RTGNN 64.85 ± 0.47 60.13 ± 0.98 51.80 ± 1.31 62.28 ± 0.71 59.82 ± 0.92 51.61 ± 1.68
PI-GNN 63.64 ± 0.48 57.49 ± 1.51 47.74 ± 2.15 62.45 ± 0.99 57.87 ± 1.32 50.06 ± 1.81

TSS 58.29 ± 0.35 54.18 ± 0.66 47.66 ± 1.10 66.35 ± 0.48 63.60 ± 0.52 58.52 ± 1.04
ERASE 63.26 ± 0.41 51.66 ± 0.31 48.74 ± 0.44 61.53 ± 0.76 57.42 ± 1.48 51.81 ± 2.27

GD2 66.19 ± 0.69 60.26 ± 0.80 51.24 ± 1.68 68.25 ± 1.01 66.22 ± 0.86 62.16 ± 1.14

Amazon-Ratings

GCN 36.82 ± 0.65 35.85 ± 2.16 34.95 ± 2.10 37.58 ± 1.07 35.09 ± 3.06 32.99 ± 2.12
NRGNN 37.90 ± 0.26 37.03 ± 0.84 35.33 ± 1.06 37.15 ± 1.32 36.98 ± 0.62 36.52 ± 0.85
RTGNN 36.65 ± 0.01 36.62 ± 0.04 34.59 ± 0.18 36.59 ± 0.12 34.58 ± 3.64 30.87 ± 3.39
PI-GNN 37.22 ± 0.42 35.10 ± 0.80 33.17 ± 2.25 36.60 ± 0.49 33.35 ± 1.42 31.98 ± 2.73

TSS 39.56 ± 0.55 37.62 ± 0.97 34.73 ± 2.84 39.65 ± 0.52 38.99 ± 0.84 36.45 ± 1.46
ERASE 38.85 ± 0.62 36.53 ± 0.48 33.26 ± 0.74 37.11 ± 1.99 35.47 ± 2.87 31.67 ± 5.13

GD2 39.80 ± 0.73 37.58 ± 1.10 35.72 ± 1.04 39.97 ± 0.55 38.76 ± 0.74 38.28 ± 0.90

d denote the feature dimensionality, and ρ(W) denote the largest singular value of the weight matrix
W. Define the discrepancy between the two views as δi = ∥hi − hi∥2. Then, for any t > 0, the
probability that δi exceeds t is bounded by

P(δi ≥ t) ≤ 2d · exp

(
−deg(i) + 1

2B2d

(
t

ρ(W)
− ∥µe − µs∥2

)2
)
. (15)

The proof is provided in Appendix D. Theorem 1 shows that clean-label nodes inherently exhibit
bounded representation discrepancies between the ego-view and structure-view. This behavior arises
from the statistical alignment between node-specific features µe and neighborhood semantics µs.
Furthermore, the bound strengthens with increasing node degree deg(i), implying that nodes with
richer neighborhood contexts exhibit more stable discrepancy patterns. This explains the robustness
of structure-view representations under label noise, as neighborhood aggregation smooths out indi-
vidual perturbations. In contrast, the ego-view representation of a mislabeled node is constructed
independently of neighbor information and is therefore more susceptible to corrupted supervision. As
a result, the representation deviates from the structure-view and violates the concentration behavior
observed in clean-label cases.
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Table 2: Ablation of GD2 on the Computer and Roman-Empire datasets under the Pair-0.4 noise.

Ablation Le Ls Separate classifier Computer Roman-Empire

GD2 Vtrain Vclean ∪ Vpurified
√

83.16 ± 1.75 62.16 ± 1.14

GD2 with ϕ1 ≡ ϕ2 Vtrain Vclean ∪ Vpurified × 81.89 ± 1.76 60.87 ± 2.52

GD2 w/o label purification Vtrain Vclean
√

82.35 ± 1.29 60.76 ± 1.70

GD2 w/o distinct objectives

Vtrain Vtrain
√

81.13 ± 1.26 61.62 ± 1.48
Vclean Vclean

√
82.69 ± 0.88 60.97 ± 2.73

Vclean ∪ Vpurified Vclean ∪ Vpurified
√

82.35 ± 2.06 61.13 ± 1.06

6 Experiments

6.1 Setup

Datasets and Settings. We conduct experiments on six benchmark datasets, including four ho-
mophilous graphs: Computer, Photo, CS [29], and WikiCS [25], and two heterophilous graphs:
Roman-Empire, and Amazon-Ratings [26]. Dataset statistics are provided in Appendix A. Following
previous works [12, 48], we randomly select 10% of the nodes for training, 10% for validation, and
use the remaining nodes for testing. All results are averaged over 10 runs with different random seeds,
and we report both the mean and standard deviation.

Following prior studies [5, 2, 28, 8], we synthetically corrupt labels of the training and validation
sets. We consider two types of label noise:

1) Uniform-p: Each label is flipped to a randomly selected incorrect class with probability p.

2) Pair-p: Each label is flipped to a corresponding pair class with probability p, simulating realistic
mislabeling patterns.

We set p ∈ {0.2, 0.4, 0.6} for uniform noise and p ∈ {0.2, 0.3, 0.4} for pair noise. More implemen-
tation details, including model architectures and training configurations, are provided in Appendix B.

Baselines. We compare GD2 with several representative methods designed for learning with noisy
labels on graph data. The baselines include: (1) NRGNN [5], which refines the graph structure
to alleviate the effects of label noise; (2) ERASE [2], which performs label denoising via label
propagation; (3) RTGNN [28] and PI-GNN [8], which incorporate auxiliary supervision; and (4)
TSS [39], which leverages graph topology for node selection under a curriculum learning framework.
All hyperparameters are tuned following the original publications. Additional comparisons with
general noisy label learning methods are provided in Appendix C.

6.2 Main Results

Table 1 reports the node classification performance across diverse noise settings and datasets. As
shown in the table, GD2 achieves the best or second-best performance across a wide range of datasets
and noise settings. Compared to representative graph-specific methods such as NRGNN and ERASE,
GD2 achieves substantial performance improvements, particularly under high noise rates. For
example, on Computer, GD2 outperforms ERASE by more than 3.03% under pair-0.4 noise. These
consistent improvements indicate that GD2 offers a general solution for robust node classification
under label noise, delivering strong performance across diverse graphs and noise settings.

6.3 Ablation Study

Effect of separate classifiers. We begin by evaluating the necessity of using separate classifiers
for ego-view and structure-view representations. The variant GD2 with ϕ1 ≡ ϕ2 employs a shared
classifier head for both views while keeping all other settings unchanged. As shown in Table 2,
this modification results in a noticeable performance drop (−1.27% on Computer and −1.29% on
Roman-Empire), indicating that separate classifiers are crucial for preventing interference between
views. The decoupled heads allow each view to independently learn view-specific predictions and
avoid mutual supervision contamination.

Effect of label purification. To evaluate the effect of label purification, we compare GD2 with
the variant GD2 w/o label purification, where Ls is trained only on the clean set while the purified
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Figure 4: Sensitivity of pseudo-label confidence threshold γ.

set is excluded. As reported in Table 2, this variant performs worse than GD2, confirming that label
purification is beneficial not only for supervision but also for enhancing the prediction discrepancy
signal. Although the purified set is not directly used for training the mix-view branch, it plays an
essential role in amplifying cross-view disagreement, thereby improving noise detection quality.

Effect of distinct training objectives. Finally, we assess the impact of using distinct training
objectives for the ego and structure views. The variant GD2 w/o distinct objectives uses the same
training set for both Le and Ls, with three configurations considered: (i) both views are trained on
the full noisy set Vtrain, (ii) both are trained on the clean set Vclean, and (iii) both are trained on the
union of clean and purified nodes Vclean ∪ Vpurified. As shown in Table 2, all three variants exhibit
performance degradation compared to GD2, with the largest drop reaching 2.03% on Computer and
1.19% on Roman-Empire. These results highlight the importance of assigning different supervision
to the views, which amplify prediction discrepancies among views.

6.4 Hyperparameter Sensitivity

Effect of clean threshold τ . The clean threshold τ determines the minimum agreement required
between ego-view and structure-view predictions for a node to be considered clean. Figure 3 shows
the accuracy of GD2 as τ varies from 0.1 to 0.9. Overall, increasing τ leads to a gradual decline in
performance, as stricter thresholds reduce the coverage of clean samples. However, when τ ≤ 0.7,
the degradation remains limited, suggesting that GD2 is relatively robust to moderate threshold
choices. A sharp performance drop is observed at τ = 0.9, indicating that overly conservative
filtering discards too much supervision and impairs learning. These results highlight the importance
of avoiding excessively large thresholds, while also demonstrating stability under moderate settings.

Effect of pseudo-label confidence threshold γ. The pseudo-label confidence threshold γ controls
the trade-off between the quantity and quality of pseudo-labels used in label purification. Figure 4
reports the accuracy of GD2 as γ varies from 0.0 to 1.0. As γ increases, accuracy generally improves,
suggesting that high-confidence pseudo-labels provide more reliable supervision and enhance model
robustness. In the low-γ regime, performance exhibits greater variance and tends to degrade. In
contrast, when γ is sufficiently large (e.g., γ ≥ 0.9), accuracy becomes both higher and more stable,
indicating that GD2 is relatively insensitive to the threshold within the high-confidence range. Notably,
setting γ = 1.0, which disables pseudo-labeling entirely, results in inferior performance compared to
slightly relaxed thresholds (e.g., γ = 0.9). This confirms that incorporating a small number of highly
confident pseudo-labels is more beneficial than discarding them altogether. These results highlight
the importance of maintaining both precision and minimal coverage in the label purification process.
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7 Conclusion

In this paper, we propose a novel graph learning framework GD2 to mitigate the detrimental effects of
label noise in Graph Neural Networks (GNNs). Our key insight is leveraging the prediction discrep-
ancy derived from two complementary views—the ego-view, capturing individual node semantics,
and the structure-view, encoding neighborhood structural semantics. This discrepancy serves as
an intrinsic signal for noisy-label detection. Furthermore, we introduce a view-specific training
strategy that amplifies prediction discrepancies through differentiated supervision, enhancing the
noise detection module. Extensive experiments across multiple real-world datasets under various
noise conditions demonstrated that GD2 outperforms state-of-the-art noise-robust GNN baselines.
These results demonstrate the effectiveness of modeling node–neighbor dependencies for label noise
detection and highlight the potential of graph-specific relational patterns in improving robustness. Fu-
ture work includes extending this framework to dynamic and heterogeneous graphs, where structural
variations and multiple relation types pose additional challenges for noise detection.
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Guidelines:
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made in the paper.
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either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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versions (if applicable).
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results?

Answer: [Yes]
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and appendix.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Following previous studies, we use the average accuracy and standard deviation
to evaluate the model performance in the node classification task.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided detailed information on hardware and software environments
in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper is conducted with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper focuses on foundational research of graph learning under label
noise, which does not involve societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use the public datasets for experiments in this paper and have cited the
original paper that produced the dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper focuses on graph learning under label noise, which does not involve
crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Dataset Statistics

Table 3: Statistics of used graph datasets in this paper.

Dataset # Nodes # Edges # Classes # Features Type

Computer 13,752 245,861 10 767 Homophily
Photo 7,650 119,081 8 745 Homophily

CS 18,333 81,894 15 6,805 Homophily
WikiCS 11,701 431,206 10 300 Homophily

Roman-Empire 22,662 32,927 18 300 Heterophily
Amazon-Ratings 24,492 93,050 5 300 Heterophily

B Implementation Details

The GNN encoder fθ is implemented as a Graph Convolutional Network (GCN) optionally equipped
with residual connections, Batch Normalization, or Layer Normalization, depending on the specific
dataset. The classifiers gϕ1 and gϕ2 are implemented as single-layer linear networks. We use the
AdamW optimizer for training. For graph data augmentations, we adopt a combination of random
node feature masking and edge masking, where node features and edges are independently masked
with probabilities pf and pe, respectively.

Hyperparameters. We select the hyperparameters through a grid search, with the search ranges
detailed in Table 4. All hyperparameters are tuned using validation sets. For baseline methods,
hyperparameter tuning is conducted within the ranges recommended in their original publications.

Table 4: Search ranges for hyperparameters.

Hyperparameter Search range

Traing epoch 500, 1000
Learning rate 0.001, 0.005, 0.01
Hidden dim 64, 256, 512
GNN Layers 1, 2, 3, 4, 5

Normalization Batch Norm, Layer Norm
Residual Connection True, False

Dropout 0.2, 0.3, 0.5, 0.7
Feature masking prob. 0.0, 0.1, 0.2, 0.3, 0.4
Edge dropping prob. 0.0, 0.1, 0.2, 0.3, 0.4

Clean prob. threshold τ 0.1, 0.3, 0.5, 0.7, 0.9
Pseudo-label confidence threshold γ 0.0, 0.5, 0.9, 0.95, 0.99, 1.0

Label Noise Generation Following prior work [5, 8, 30], label noise is simulated by corrupting
the ground-truth labels. The noise generation process is characterized using a noise transition matrix
Q ∈ RC×C , where C denotes the number of classes. Each entry Qij = Pr(ynoisy = j | ytrue = i)
represents the probability of a true label i being flipped to a noisy label j.

For Uniform-p noise, the transition matrix Q takes the following form:

Q =


1− p p

C−1 · · · p
C−1

p
C−1 1− p · · · p

C−1
...

...
. . .

...
p

C−1
p

C−1 · · · 1− p


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For Pair-p noise, a typical transition matrix Q is defined as:

Q =


1− p p 0 · · · 0
0 1− p p · · · 0
...

. . . . . . . . .
...

0 · · · 0 1− p p
p 0 · · · 0 1− p


Note that GD2 does not rely on knowledge of the transition matrix or the noise rate to operate
effectively.

Infrastructures. We implement the proposed GD2 with PyTorch 2.4.0 and torch_geometric 2.6.1.
All experiments are conducted on a Linux server with a NVIDIA GeForce RTX 4090 GPU with
24GB memory.

C Performance Comparison against General Noisy Label Learning Methods

We further compare GD2 with representative general noisy label learning methods that are originally
designed for i.i.d. data rather than graph-structured data. The baselines include: (i) robust loss function
approaches such as SCE [31] and APL [21]; (ii) small-loss based sample selection methods such as
Co-teaching [13] and JoCoR [33]; and (iii) confidence-based sample selection and semi-supervised
learning methods, exemplified by ProMix [41]. These methods represent different paradigms of
noise-robust learning and provide a complementary evaluation to validate the effectiveness of GD2.

Table 5 presents the comparison results. It can be observed that general noisy label learning methods,
although effective on i.i.d. data, exhibit limited robustness when applied to graph-structured data.
In contrast, GD2 achieves consistently superior performance, demonstrating its effectiveness in
addressing label noise by explicitly leveraging the structural information inherent in graphs. These
results highlight the necessity of designing noise-robust methods tailored to graph domains rather
than directly transferring techniques developed for i.i.d. settings.

D Proof of Theorem

Proof. The expectation of hi is given by:

E[hi] = E[Wxi] = WE[xi] = Wµe,

and the aggregated neighbor representation is:

hi = W

 1

|Ni|
∑
j∈Ni

xj

 , E[hi] = Wµs.

Define the discrepancy:

δi =
∥∥hi − hi

∥∥
2
=

∥∥∥∥∥∥W
xi −

1

|Ni|
∑
j∈Ni

xj

∥∥∥∥∥∥
2

= ∥Wξi∥2,

where we let:
ξi := xi −

1

|Ni|
∑
j∈Ni

xj .

By the sub-multiplicativity of matrix norms, we have:

δi ≤ ∥W∥2 · ∥ξi∥2 = ρ(W) · ∥ξi∥2.

Thus, for any t > 0,

P(δi ≥ t) ≤ P
(
∥ξi∥2 ≥ t

ρ(W)

)
.
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Table 5: Node classification accuracy (%, mean ± std) on noisy datasets. p denotes the noise rate for
each setting. Best results are highlighted in bold.

Dataset Method
Uniform Pair

p = 0.2 p = 0.4 p = 0.6 p = 0.2 p = 0.3 p = 0.4

Computer

SCE 86.15 ± 1.80 84.41 ± 0.92 79.91 ± 2.10 86.05 ± 0.36 83.57 ± 1.31 76.51 ± 2.16
APL 83.86 ± 5.95 79.22 ± 2.25 78.80 ± 2.29 77.91 ± 3.14 76.90 ± 5.62 74.95 ± 4.51

Co-teaching 84.57 ± 1.33 83.59 ± 1.38 78.18 ± 2.15 82.62 ± 1.16 82.22 ± 1.08 74.38 ± 1.47
JoCoR 81.10 ± 1.29 81.03 ± 1.20 78.14 ± 1.02 79.24 ± 0.26 77.57 ± 0.78 68.63 ± 5.16
ProMix 84.66 ± 1.01 82.26 ± 1.06 80.61 ± 1.52 81.60 ± 0.75 80.11 ± 0.92 78.57 ± 3.04

GD2 86.91 ± 0.56 86.26 ± 0.71 84.76 ± 0.81 86.88 ± 0.55 85.75 ± 0.64 83.16 ± 1.75

Photo

SCE 91.20 ± 0.64 88.86 ± 0.93 73.54 ± 1.21 89.90 ± 1.08 86.79 ± 1.51 76.21 ± 3.54
APL 91.72 ± 1.05 89.73 ± 0.73 72.09 ± 2.05 89.80 ± 2.55 88.30 ± 1.11 83.05 ± 3.06

Co-teaching 85.60 ± 7.02 77.11 ± 6.62 61.98 ± 5.02 86.43 ± 5.64 84.67 ± 5.67 78.78 ± 9.57
JoCoR 88.69 ± 3.36 83.33 ± 4.87 68.32 ± 4.67 83.30 ± 3.62 81.41 ± 2.96 74.49 ± 2.42
ProMix 91.76 ± 1.83 88.36 ± 0.11 68.59 ± 2.40 89.03 ± 2.14 88.60 ± 1.11 83.86 ± 2.39

GD2 92.45 ± 1.30 89.72 ± 0.98 74.32 ± 5.85 92.83 ± 1.10 91.84 ± 1.00 89.00 ± 1.23

CS

SCE 92.12 ± 0.29 91.25 ± 0.39 88.22 ± 1.38 90.10 ± 0.66 87.23 ± 1.53 75.89 ± 2.60
APL 92.18 ± 0.22 90.48 ± 0.96 87.00 ± 0.56 90.04 ± 0.89 86.74 ± 1.90 79.73 ± 5.30

Co-teaching 91.66 ± 0.37 90.52 ± 0.48 86.38 ± 1.96 90.17 ± 0.89 87.26 ± 0.80 73.81 ± 6.66
JoCoR 91.30 ± 0.82 91.17 ± 0.34 87.44 ± 1.05 88.45 ± 1.65 84.15 ± 0.88 70.32 ± 6.13
ProMix 92.56 ± 0.51 90.33 ± 0.59 88.91 ± 1.26 90.98 ± 0.61 87.83 ± 1.13 77.31 ± 3.37

GD2 93.43 ± 0.34 92.37 ± 0.45 89.61 ± 0.54 92.75 ± 0.38 90.54 ± 0.43 84.68 ± 1.92

WikiCS

SCE 72.21 ± 0.63 70.68 ± 0.47 61.89 ± 1.94 71.22 ± 0.70 68.90 ± 0.85 60.48 ± 3.16
APL 71.61 ± 2.16 68.36 ± 2.84 60.82 ± 2.17 69.90 ± 0.45 69.09 ± 0.73 63.21 ± 5.68

Co-teaching 76.15 ± 1.46 71.69 ± 2.97 60.65 ± 1.58 74.45 ± 1.54 71.53 ± 1.81 62.23 ± 5.45
JoCoR 76.09 ± 1.70 74.84 ± 1.90 65.19 ± 4.33 73.50 ± 0.79 68.79 ± 2.57 60.39 ± 3.32
ProMix 73.74 ± 2.29 72.52 ± 2.81 68.69 ± 2.19 74.45 ± 0.85 72.42 ± 0.23 67.69 ± 5.71

GD2 79.45 ± 0.36 78.21 ± 0.60 74.47 ± 0.80 79.84 ± 0.29 78.09 ± 0.42 75.88 ± 1.68

Roman-Empire

SCE 57.78 ± 1.13 54.83 ± 1.86 50.46 ± 3.35 66.84 ± 1.22 54.14 ± 0.60 52.20 ± 0.78
APL 63.29 ± 1.46 50.67 ± 1.09 45.82 ± 2.61 61.49 ± 2.31 58.29 ± 0.98 54.65 ± 1.55

Co-teaching 53.92 ± 0.43 52.16 ± 0.46 48.53 ± 0.82 61.59 ± 0.63 59.13 ± 0.57 55.47 ± 0.62
JoCoR 59.52 ± 0.71 55.25 ± 0.75 50.41 ± 1.05 66.91 ± 0.22 57.60 ± 0.78 53.67 ± 1.70
ProMix 53.51 ± 0.17 52.27 ± 0.37 48.90 ± 0.83 61.68 ± 0.80 59.43 ± 0.88 55.50 ± 0.49

GD2 66.19 ± 0.69 60.26 ± 0.80 51.24 ± 1.68 68.25 ± 1.01 66.22 ± 0.86 62.16 ± 1.14

Amazon-Ratings

SCE 36.66 ± 0.17 36.52 ± 0.14 36.29 ± 0.33 36.38 ± 0.77 37.25 ± 0.40 35.32 ± 2.09
APL 38.28 ± 1.49 35.85 ± 0.73 34.88 ± 2.19 37.70 ± 0.26 36.89 ± 0.75 34.97 ± 0.80

Co-teaching 38.86 ± 1.91 36.12 ± 1.46 35.02 ± 1.00 38.63 ± 1.64 37.71 ± 0.75 35.87 ± 1.09
JoCoR 38.15 ± 0.47 36.93 ± 0.31 35.22 ± 1.44 38.57 ± 0.38 37.40 ± 0.50 36.50 ± 0.63
ProMix 38.55 ± 1.10 37.08 ± 1.54 35.38 ± 1.74 38.89 ± 1.49 37.54 ± 0.84 35.33 ± 1.84

GD2 39.80 ± 0.73 37.58 ± 1.10 35.72 ± 1.04 39.97 ± 0.55 38.76 ± 0.74 38.28 ± 0.90

We now bound ∥ξi∥2. First note that:

E[ξi] = E[xi]−
1

|Ni|
∑
j∈Ni

E[xj ] = µe − µs.

We utilize Hoeffding’s inequality to bound the deviation of each dimension of ξi from its expectation.
Let xi[k] denote the k-th coordinate of x, for k = 1, . . . , d. Then, for each fixed k, the set {xj [k] |
j ∈ N (i)} consists of i.i.d. bounded random variables (by assumption), and by directly applying
Hoeffding’s inequality, we have:

P (|ξi[k]− E[ξi[k]]| ≥ t1) = P

∣∣∣∣∣∣xi[k]−
1

|Ni|
∑
j∈Ni

xj [k]− E

xi[k]−
1

|Ni|
∑
j∈Ni

xj [k]

∣∣∣∣∣∣ ≥ t1


= P

∣∣∣∣∣∣(xi[k]− E[xi[k]])−

 1

|Ni|
∑
j∈Ni

xj [k]− E

 1

|Ni|
∑
j∈Ni

xj [k]

∣∣∣∣∣∣ ≥ t1


≤ 2 exp

(
−deg(i) + 1

2B2
t21

)
(16)

We now use the following implication: if the d2 norm of the deviation vector satisfies

∥ξi − E[ξi]∥2 ≥
√
dt1,
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then at least one coordinate k ∈ {1, . . . , d} must satisfy

|ξi[k]− E[ξi[k]]| ≥ t1

Therefore, by the union bound over all d dimensions:

P
(
∥ξi − E[ξi]∥2 ≥

√
dt1

)
≤

d∑
k=1

P (|ξi[k]− E[ξi[k]]| ≥ t1)

≤ 2d · exp
(
−deg(i) + 1

2B2
t21

)
.

(17)

Now, set t1 = t2√
d

, we obtain the vector norm deviation bound:

P (∥ξi − E[ξi]∥2 ≥ t2) ≤ 2d · exp
(
−deg(i) + 1

2B2d
t22

)
.

By triangle inequality:

∥ξi∥2 ≤ ∥ξi − E[ξi]∥2 + ∥E[ξi]∥2 = ∥ξi − E[ξi]∥2 + ∥µe − µs∥2.

Hence,

P
(
∥ξi∥2 ≥ t

ρ(W)

)
≤ P

(
∥ξi − E[ξi]∥2 ≥ t

ρ(W)
− ∥µe − µs∥2

)
,

as long as t
ρ(W) − ∥µe − µs∥2 > 0. Finally, we conclude:

P(δi ≥ t) ≤ 2d · exp

(
−deg(i) + 1

2B2d

(
t

ρ(W)
− ∥µe − µs∥2

)2
)
.

E Pseudo-code

We describe the overall pipeline of GD2 in Algorithm 1.

F Limitation

One limitation of the current framework lies in its focus on static, homogeneous graphs. While the
proposed discrepancy-based noise detection mechanism demonstrates strong performance under these
settings, its applicability to more complex graph structures remains unexplored. In particular, dynamic
graphs introduce temporal evolution in both node features and structure patterns, which may obscure
discrepancy signals or introduce new sources of semantic drift. Similarly, heterogeneous graphs
involve multiple node and edge types, where semantic alignment across views can be relation-specific
and context-dependent. These additional layers of structural and semantic complexity pose significant
challenges for robust noise detection. Future work will explore how to adapt the proposed framework
to these more general graph scenarios, potentially incorporating temporal modeling techniques or
relation-aware discrepancy estimation to maintain effectiveness under such conditions.
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Algorithm 1 Pseudo code of GD2

Input: Node feature matrix X, adjacency matrix A, noisy labels Ỹ, training sets Vtrain
Parameter: Training epochs E, clean probability threshold τ , pseudo-label confidence threshold γ;
GNN encoder fθ, linear classifiers gϕ1

, gϕ2

1: Initialize parameters θ, ϕ1, ϕ2

2: for epoch = 1 to E do
3: // Noise Detection
4: Compute view-specific representations: Ze = fθ(X, I), Zs = fθ(X,A)
5: Compute predictions: Pe = gϕ1

(Ze), Ps = gϕ2
(Zs)

6: Measure prediction discrepancy δi = ∥P[i]
e −P

[i]
s ∥2, i ∈ Vtrain

7: Fit GMM on {δi} and compute clean probability Pclean(s | δi)
8: Determine clean set Vclean and noisy set Vnoisy using threshold τ (Eq. (7))
9: // Label Purification

10: Compute mixed-view prediction Pm = gϕ2(fθ(X, Ã))

11: Construct Vpurified and assign pseudo-labels Ŷ (Eq. (9) and Eq. (10))
12: // Model Training
13: Compute loss terms Le, Ls, and Lm

14: Joint optimization of total loss L = Le + Ls + Lm

15: Update model parameters θ, ϕ1 and ϕ2

16: end for
Output: Trained encoder fθ and classifiers gϕ1

, gϕ2
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