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Abstract

To answer math word problems (MWPs), mod-001
els need to formalize equations from the source002
text of math problems. Recently, the tree-003
structured decoder has significantly improved004
model performance on this task by generating005
the target equation in a tree format. However,006
current decoders usually ignore the hierarchical007
relationships between tree nodes and their par-008
ents, which hinders further improvement. Thus,009
we propose a structure called hierarchical atten-010
tion tree to aid the generation procedure of the011
decoder. As our decoder follows a graph-based012
encoder, our full model is therefore named as013
Graph to Hierarchical Attention Tree (G2HAT).014
We show a tree-structured decoder with hierar-015
chical accumulative multi-head attention leads016
to significant performance improvement and017
reaches new state-of-the-art (SOTA) on both018
English MAWPS and Chinese Math23k MWP019
benchmarks. For further study, we also apply020
pre-trained language models for G2HAT, which021
even results in new higher performance.022

1 Introduction023

Math Word Problems (MWPs) require models to024

automatically give an answer to a math problem025

described by natural language text, which is called026

word context in a formal MWP. Presented in Fig-027

ure 1, based on a word context, models have to028

infer an equation from it and calculate the final so-029

lution. Since the introduction of machine learning030

methods in the language processing (NLP) field,031

much effort has been spent designing features to032

train models to solve MWP (Kushman et al., 2014;033

Roy and Roth, 2018; Shi et al., 2015). However,034

these models suffer from low scalability, as they035

require hand-made features designed by humans.036

In recent years, there has been a booming trend037

of the application of deep learning methods to038

MWP, among which seq2seq models apply an en-039

coder to encode the word context into an interme-040

diate representation for a decoder to sequentially041
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There are 17 girls and 27 boys in class, 
they are divided into groups each with 4 students 
by the teacher, how many groups are there?

Equation Tree:

Prefix Notaion:  / + 17 27 4
Equation:  (17+27)/4

Word Context: There are 17 girls and 27 boys in class, they 
are divided into groups each with 4 students by the teacher, 
how many groups are there?

Solution:  11

Figure 1: An example for MWP.

generate parts of the equation. To take advantage 042

of the tree-structured nature of equations for MWP, 043

(Xie and Sun, 2019) introduces a tree-structured 044

decoder that improves model performance signif- 045

icantly. Their tree-structured decoder generates a 046

tree for prefix notation by generating tree nodes 047

recursively while considering their parents and sib- 048

lings. 049

Efficient though the tree-structured decoder is, 050

it ignores the hierarchical nature of nodes in the 051

generated equation tree. Consider the equation 052

tree from Figure 1 for example. To induce the + 053

operator, the model should first pay attention to the 054

span “There are 17 girls and 27 boys in class," 055

and then induce the 17 and 27 by attending to “17 056

girls" and “27 boys" inside the span. 057

From the example above, we obtain two conclu- 058

sions. First, models have to attend to more words 059

to decode a parent node than its children. A more 060

comprehensive understanding of the word context 061

is required for inducting nodes in a higher hierarchy. 062

This property is named as hierarchical attention 063

decay in an equation tree. Second, word context 064
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Figure 2: Our G2HAT model.

covered by children’s attention is contained in con-065

text covered by parent’s attention. We call this066

property hierarchical attention succession in an067

equation tree.068

Previous tree-structured decoders fail to exploit069

these two key properties of parent-child relation-070

ships in the equation tree. They score attention071

based just on the input features of the current072

node for decoding without considering the atten-073

tion score on its parent. We thus propose Hier-074

archical Attention Tree (HAT) decoder which is075

capable of implementing hierarchical attention on076

both hierarchical decay and hierarchical succes-077

sion. Specifically, we allow nodes to succeed atten-078

tion from their parents during decoding. Our full079

model lets the HAT decoder follow a graph-based080

encoder, thus we overall build a Graph to Hierar-081

chical Attention Tree model to solve MWPs with082

an encoder-decoder framework.083

We conduct experiments on two MWP bench-084

marks on English and Chinese, respectively,085

MAWPS and Math23k. Multi-head attention is086

added for better information extraction from the087

context with an attention mechanism. We show088

that our model outperforms the previous SOTA by089

1.7 solution matching accuracy score on MAWPS090

and 2.6 on Math23k, which sets the new SOTA091

for both MWP benchmarks. With further improve-092

ment from the application of pre-trained language093

model, G2HAT even reaches a significant 3.3 score094

improvement on MAWPS and a 3.2 score improve-095

ment on Math23k.096

2 Related Work097

Math Word Problem Early works on machine098

learning for MWP concentrate on statistical models099

(Kushman et al., 2014; Hosseini et al., 2014; Mi-100

tra and Baral, 2016; Roy and Roth, 2018; Zou and 101

Lu, 2019a) and semantic information (Shi et al., 102

2015; Koncel-Kedziorski et al., 2015; Roy and 103

Roth, 2015; Huang et al., 2017; Zou and Lu, 2019b) 104

for sequence construction and solution inference. 105

(Zou and Lu, 2019a) models MWPs as path search- 106

ing problems for token sequences and uses a model 107

to solve this modified problem based on statistics. 108

(Zou and Lu, 2019b) models MWPs as semantic 109

parsing tasks and defines special operators to build 110

a Text-Math Tree. The Text-Math Tree is inter- 111

preted into common equation to produce the final 112

solution. 113

The encoder-decoder structure now dominates 114

the realm of solving MWP with deep learning. An 115

early work (Wang et al., 2018a) directly applies 116

a Seq2Seq scenario to generate a sequence rep- 117

resenting equation from the context. (Li et al., 118

2019a) adds multi-head attention to solve MWPs. 119

Recently, a major improvement for MWPs is the 120

introduction of the tree-structured decoder (Xie 121

and Sun, 2019), which exploits the structural na- 122

ture of MWPs and improves model performance 123

significantly. For further exploration, (Hong et al., 124

2021) used a weakly supervised model that corrects 125

the generation process by back-searching for faults 126

from the result node. (Cao et al., 2021) introduces 127

a DAG-structured decoder. (Lin et al., 2021) ap- 128

plies hierarchical attention for the encoder and uses 129

sequential, additive clause attention and word atten- 130

tion are added sequential and (Zhang et al., 2020) 131

implements a dependency-based graph encoder. 132

Hierarchical Modeling Hierarchical models are 133

commonly used explicitly or implicitly for NLP 134

tasks to facilitate multiple round classification (Aly 135

et al., 2019) or inform models of cross-round re- 136

lations among representations. For instance, (Fan 137
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et al., 2018) applies a tree structure for story genera-138

tion to explicitly represent story topics. (Chen et al.,139

2020) models entities hierarchically for model to140

enable the model’s entity typing. Combining hi-141

erarchical models is a popular method for solving142

NLP tasks, and has been used in the hierarchical143

Transformer (Liu and Lapata, 2019) and hierarchi-144

cal BERT (Zhang et al., 2019).145

The tree-structured or graph-structured decoder146

is a typical style of hierarchical modeling. Aside147

from MWP, tree-structured decoder also leveraged148

for generating math expressions or markup from149

handwriting or images (Ma et al., 2019b; Zhang150

et al., 2021). Based on dependency parsing trees,151

the tree-structured decoder can also be applied for152

neural machine translation (Choshen and Abend,153

2021). The tree-structured decoder performs much154

better than other models when generating struc-155

tured data like expressions and codes (Wang et al.,156

2018c; Xie et al., 2021), as it captures the natural157

tree structure of sequences during generation.158

For attention scoring, hierarchical models are159

generally used to score attention in different levels160

(Miculicich et al., 2018; Zhao et al., 2018; Wang161

et al., 2018b; Liu and Chen, 2019), such as the162

word level, the sentence level and the document163

level. Some others integrate multiple attention164

mechanisms for better representation (Luo et al.,165

2018; Ma et al., 2019a). Our model differs from166

those previous hierarchical attention-based model167

by modeling hierarchical attention for the tree struc-168

ture. Our design enables attention succession and169

complement to further adapt hierarchical attention170

to trees, which is a rather more complex structure171

for modeling multi-level hierarchical attention.172

Multi-head Attention First introduced with the173

Transformer (Vaswani et al., 2017) model, multi-174

head attention has been successfully applied in a175

large variety of NLP domains. (An et al., 2020)176

tries to interpret multi-head attention as Bayesian177

inference and (Iida et al., 2019) further develops178

multi-head attention into multi-hop attention for179

performance improvement on machine translation.180

Multi-head attention can also be used for knowl-181

edge reasoning tasks (Paul and Frank, 2020) and182

multi-modal training (Wang et al., 2020).183

Recent work has shown that multi-head atten-184

tion can be successfully applied for MWP solv-185

ing. GROUP-ATT model (Li et al., 2019b) applies186

Transformer as the encoder for information extrac-187

tion to solve MWPs. GROUP-ATT explicitly as-188

signs self-attention to represent different types of 189

attention. The result from GROUP-ATT has shown 190

that all these attention mechanisms contribute to 191

final performance improvement. Our study, instead, 192

with the multi-head attention mechanism for the 193

decoder and in a hierarchical tree structure, which 194

differs from our previous study that only exploits 195

multi-head attention in the encoder. 196

3 Method and Model 197

3.1 Graph Encoder 198

For the encoder, we follow (Zhang et al., 2020) 199

to use a quantity graph to encode the word con- 200

text of MWP by constructing a quantity graph 201

based on it. Specifically, for a sentence W = 202

{w1, w2, · · · , wn}, we first use rules to extract 203

quantity tokens Q = {q1, q2, · · · , qm} from it. 204

Then a dependency parser is used to extract related 205

non-quantity tokens and connect them to quantity 206

tokens in the graph. A quantity token and its re- 207

lated tokens with edges between them are called a 208

quantity cell, which is used when building quantity 209

graphs for encoding in graph encoder. 210

With quantity cells extracted, we build two quan- 211

tity graphs: 212

• Quantity Cell Graph is a combination of graphs 213

of all quantity cells that are isolated from each other 214

and allow related words to pass information to the 215

quantity. 216

• Quantity Comparison Graph only contains 217

quantity tokens as nodes. Edges are built based on 218

partial ordering relations between quantity nodes. 219

Specifically, a directed edge e = (q1, q2) is built 220

when q1 > q2. 221

Based on Quantity Cell Graphs GQcell = 222

{GQcell
i } where i = 1, 2, · · · , kQcell and Quantity 223

Comparison Graphs GQcomp = {GQcomp
i } where 224

i = 1, 2, · · · , kQcomp, A represents the adjecent 225

matrix for a certain graph G where Ai,j = 1 no- 226

tating there is an edge from i to j and Ai,j = 0 227

otherwise. The encoding procedure for MWP con- 228

text is formulated as follows, 229

X = Embed(W )

X = RNN(X)

X = TransLayeri(X) for i = 1, 2, · · ·N
H = MinPooling(X)

230

Here, the sentence is first embedded via an em- 231

bedding layer before it is fed into a recurrent neural 232
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Figure 3: The procedure of attention succession from
top to bottom in hierarchical attention tree.

network, such as a bidirectional long short-term233

memory (BiLSTM) network or a gated recurrent234

unit (GRU) network for contextual representations.235

Then the sentence is further processed by multiple236

Transformer layers that are defined as follows,237

TransLayer(X) = GCN(X) + LN(GCN(X))

GCN(X) = FFN( ||
A for G

(LN(AX) +X))

G = GQcell ∪GQcomp

238

where LN refers to layer normalization. Finally,239

the output Y ∈ Rn×d from graph encoder is pooled240

into hidden representation H ∈ Rd by token-level241

min pooling for decoder to process and generate242

the equation tree.243

3.2 Hierarchical Attention244

We give an elaborate description of our hierar-245

chical attention mechanism in the HAT-structured246

Decoder in this section. Our decoder generates247

an equation tree following a hierarchical structure248

from top to bottom with attention succeeded from249

parent to child. In practice, we first generate the250

root operator node, then its left sub-tree and right251

sub-tree, each with part of its parent’s attention252

on the encoded representation. This procedure re-253

curses for each sub-tree until the sub-tree is a single254

quantity node.255

As in Figure 3, the root operator node attends256

fully to the whole encoded representation. When257

we build the left and right sub-tree, we pass the258

representation down to them via an attention suc-259

cession process. However, the sub-trees will only260

attend on part of the representation from its par-261

ent based on attention scores (succession attention)262

which are calculated during the succession process.263

Thus we can see how our hierarchical attention264

mechanism satisfies the two key properties for bet-265

ter equation tree construction.266

• Hierarchical Attention Decay A child node in267

a hierarchical attention tree can only focus on part268

������������������� �����������

����������

��������

���������

Figure 4: Comparison between the conventional atten-
tion scorer and our accumulative multi-head attention
scorer.

of the encoded representation that is attended by 269

its parent. As a result, the attention will decay 270

hierarchically during the succession from top to 271

bottom. 272

• Hierarchical Attention Succession Likewise, 273

the partial attention of child nodes will always be 274

covered by their parents, which leads to succession 275

relationships. 276

3.3 Accumulative Multi-head Succession 277

Attention 278

To better exploit the hierarchical attention mecha- 279

nism, we apply a novel attention mechanism which 280

we call accumulative multi-head attention (AMHA) 281

to score succession attention to pass representation 282

attention. As shown in Figure 4, different from 283

conventional attention scorer, the AMHA scorer 284

will use a multi-head input to score multiple at- 285

tention scores for all heads. Then, those attention 286

scores are accumulated together via a max-pooling 287

process. 288

Ak
i =

exp(Scorerk(Xk
i ))∑n

j=1 exp(Scorerk(Xk
j ))

Ai = max(A1
i , A

2
i , · · · , An

i )

289

where Xk
i ∈ refers to the hidden representation 290

of the word in i-th position and k-th head. Each 291

scorer passes Xk
i through a linear layer and then 292

uses a softmax function to get attention Ak on k-th 293

head. These attention scores are finally pooled via 294

max-pooling to get our AMHA score. 295

AMHA is intuitively better than conventional 296

attention mechanism for MWP solving due to the 297

following two reasons: 298

• Multiple Concentration When constructing an 299

equation tree, an operator node should not only 300

contain information to induct its type, but it should 301

also integrate information for its children, the nodes 302

in its left sub-tree and right sub-tree. Thus, AMHA 303

is a better vector for trees’ information as different 304
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heads are responsible to attend to different parts of305

the encoded representation.306

• Steady Attention Decay For hierarchical atten-307

tion tree building, attention succession is a key308

procedure for better performance. However, us-309

ing a conventional attention mechanism will lead310

to an attention succession that decays too fast for311

performance improvement.312

Here is an easy example: suppose there are two313

positions i and j for which a parent node wants314

to memorize for its children. This parent node315

will be encouraged to assign attention scores close316

to 1 for them. However, conventional attention317

mechanisms only allow attention scores with sums318

of 1, which means at least half of the attention319

will decay for either position. This will certainly320

hurt the efficiency of attention succession. AMHA321

can easily fix this problem by applying two heads322

for both positions for a parent node to succeed323

integrative attention for its children. This allows324

AMHA to preserve attention succession which is325

crucial for hierarchical attention tree building.326

3.4 Complement Attention327

To capture all necessary information for build-328

ing trees and further improve the capacity of our329

model, we introduce another complementary atten-330

tion mechanism to replenish attention scores that331

are dropped in previous rounds of attention succes-332

sion. We once again apply AMHA for attention333

scoring. For a node during tree building, Aparent334

refers to the attention of the node’s parent, and X335

refers to the input representation to induct succes-336

sion and complement attentions.337

SA = AMHAsuccession(X)

CA = AMHAcomplement(X)
338

We then use max pooling to get the final attention339

on the child node.340

Achild
i = max(SAi ∗Aparent

i , CAi)341

Integrating complement attention can lead to fur-342

ther improvement compared to using only succes-343

sion attention as complement attention allows child344

nodes to replenish their information to themselves345

without harming the hierarchical attention decay346

or succession properties. Also, the application of347

complement attention can prevent node attention348

from degrading to zero, which guarantees a slower349

attention decay for better tree building.350

3.5 HAT-structured Decoder 351

Our HAT-structured decoder decodes the output 352

H from encoder following the tree-structured de- 353

coder’s procedure (Xie and Sun, 2019) with accu- 354

mulative multi-head attention based attention suc- 355

cession process. Starting with a root representation 356

qROOT initialized based on H and an all-ones root 357

attention vector aROOT , we predict the label of the 358

root node and generate the rest equation tree via 359

four sub-modules of decoder, the Left Label and 360

Attention Scorer (LLAS), Right Label and Atten- 361

tion Scorer (RLAS), Sub-Tree Encoder (STE) and 362

Node Classifier (NC). 363

Here, LLS and RLS use AMHA to score suc- 364

cession attention. LLAS and RLAS are of gated 365

structures to process input representations while 366

NC applies a linear classifier for operator and con- 367

stant label and pairwise classifier for pairs between 368

the input representation and encoded quantity rep- 369

resentations. These details are omitted in this paper 370

since they are not contributions of this paper and 371

can be found in detail in the implementation of 372

tree-structured decoder of (Xie and Sun, 2019). 373

Step 1. Representation Attention Integration 374

With current root representations and attention, we 375

first use element-wise multiplication to integrate 376

attention scores with encoded representations. 377

Ĥi = Hi × aROOT
i 378

Step 2. Left Sub-tree Generation LLAS gener- 379

ates the label representation, node representation, 380

and succession attention for the left child node of 381

the current root node. Then, NC is used to classify 382

the label of the left child node. 383

el, ql, SAl, CAl = LLAS(qROOT , Ĥ)

ali = aROOT
i × SAl

i + CAl
i

ll = NC(el)

384

If el is classified to be an operator label, jump 385

to Step 1 with current root node representation set 386

to ql and root representation attention set to al to 387

generate the left sub-tree. This procedure returns 388

when the left sub-tree is completely constructed. 389

Step 3. Right Sub-tree Generation We first in- 390

tegrate representation of the left sub-tree with the 391

root representation via STE. The label representa- 392

tion, node representation, and succession attention 393

are then generated by RLAS for the right child 394
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node of the current root node. The same NC for the395

left child node is applied to finally label the right396

child node.397

tl = STE(el, ql);

er, qr, SAr, CAr = RLAS(qROOT , Ĥ, tl);

ari = aROOT
i × SAr

i + CAr
i ;

lr = NC(er)

398

Likewise, if er is classified to be an operator399

label, jump to Step 1 with current root node repre-400

sentation set to qr and root representation attention401

set to ar to generate the right sub-tree. The pro-402

cedure ends when the right sub-tree is completely403

constructed.404

3.6 Pre-trained Language Model405

For encoding word context, we first encode the sen-406

tence with the pre-trained language model (PLM)407

and then pool it into a context representation Q408

with mean pooling on the word level.409

P = PLM(W ) Q =
1

n

n∑
i

(Pi)410

Finally, Q from PLM and H from graph encoder
are added together to get the final context represen-
tation.

H ′ = H +Q

4 Experiment411

4.1 Experiment Setting412

Dataset We conduct experiments on two MWP413

datasets, MAWPS and Math23K.414

• MAWPS is an English MWP dataset with 2373415

problems, where both template equation and final416

solution are provided for training and testing.417

• Math23K is a Chinese MWP dataset with 23162418

problems, where only equations for real quantities419

in the context are provided.420

Model We use an embedding size of 128 dimen-421

sions and a hidden size of 512 dimensions for word422

representation. For RNNs, we use 4-layer LSTM423

or GRU for encoding. When calculating AMHA424

for succession attention, we use 4 attention heads425

to accumulate attention scorers. The beam size is426

5 to search for the most likely equation to induct a427

more plausible solution.428

Model MAWPS Math23K

Test 5-fold Valid

DNS 59.5 - 58.1
Math-EM 69.2 66.7 -
T-RNN 66.8 66.9 -

S-Aligned - - 65.8
GROUP-ATT 76.1 69.5 66.9

AST-Dec - 69.0 -
IRE - 76.7 -

HMS 80.3 - 76.1

GTS 82.6†/78.6‡ 75.6 74.3
G2T(Zhang et al., 2020) 83.7 77.4 75.5

G2T∗ 83.7 77.0 75.3
G2HAT(GRU) 85.2(↑1.5) 80.0(↑2.6) 76.6(↑1.3)

G2HAT(LSTM) 85.4(↑1.7) 79.2(↑1.8) 77.4(↑2.1)

G2HAT+BERT 87.0(↑3.3) 80.9(↑3.5) 78.0(↑2.7)

Table 1: Comparison of solution matching accuracy on
MWP datasets. †: Result of GTS from G2T. ‡: Result
of GTS from HMS. *: Re-implementation of previous
model.

Pre-trained Language Model We apply BERT- 429

base-cased and BERT-base-Chinese as PLM for 430

MAWPS and Math23k respectively, we do not 431

finetune the PLMs during training as the training 432

datasets are rather small. 433

Training We use cross entropy loss for model 434

optimization. The batch size for training is set to 435

64, and we use Adam optimizer (Kingma and Ba, 436

2015) with initial learning rate 10−3 and decay rate 437

10−5 for parameter updating. We train the model 438

for 200 epochs in each experiment and save the 439

model with the highest solution accuracy. 440

Model MAWPS Math23K

Test 5-fold Valid

G2T∗ 82.8 65.8 64.3
G2HAT(GRU) 84.3 68.0 65.6

G2HAT(LSTM) 84.4 67.3 65.7

G2HAT+BERT 85.7 69.0 66.5

Table 2: Comparison of equation matching accuracy
on MWP datasets. *: Re-implementation of previous
model.

4.2 Result 441

Tables 1 and 2 show the comparison between our 442

proposed G2HAT model and previous SOTA mod- 443

els. We first re-implement the Graph2Tree model 444

(Zhang et al., 2020), and find the result slightly 445

lower than the reported result but still competitive 446

for comparison. We then run our G2HAT on MWP 447

datasets for GRU and LSTM encoders and find 448

our AMHA-based HAT-structured decoder leads 449

to significant improvement on both the English 450
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and Chinese datasets. For solution matching ac-451

curacy, our model results in 1.7 an accuracy score452

improvement on the English MAWPS dataset and453

a 2.6 accuracy score improvement on the Chinese454

Math23K dataset.455

The equation matching accuracy is evaluated as456

it reflects the capability for pattern discerning. The457

results in Table 2 can explain our model’s source of458

improvement. Our G2HAT model boosts the base-459

line G2T model by 1.7 accuracy score on MAWPS460

and 2.6 accuracy score on Math23K. As our model461

enjoys both hierarchical attention decay and succes-462

sion for hierarchical tree building, better equation463

trees are produced for higher solution matching464

accuracy. Moreover, results from 5-fold validation465

on Math23k show the robustness of our results, as466

G2HAT outperforms G2T by 1.9 accuracy score467

on solution matching and 1.4 accuracy score on468

equation matching.469

For encoder choice, we can see LSTM outper-470

forms GRU on MAWPS but performs worse on471

Math23k. We attribute this to the vocabulary dif-472

ference. For MAWPS, the vocabulary is smaller,473

thus most words in the training dataset will still474

occur in the test dataset. A preciser encoder like475

LSTM will better capture details of training data.476

However, Math23k covers problems in all kinds of477

mathematics applications, resulting in a much large478

and unusual vocabulary, which makes LSTM easily479

overfitting, while GRU can resist such an overfit-480

ting risk with its simpler structure than LSTM.481

After features from BERT are also incorpo-482

rated for context representations, the improvement483

of G2HAT reaches 3.3 for the English MAWPS484

dataset and 3.5 for the Chinese Math23k dataset485

on solution matching. Correspondingly, respec-486

tive improvements of 2.9 and 3.2 are achieved on487

MAWPS and Math23k datasets for equation match-488

ing, which proves the efficiency of BERT integra-489

tion.490

5 Analysis and Discussion491

5.1 Ablation Study492

Table 3 shows the results of the ablation study for493

our G2HAT model. We first run G2HAT with suc-494

cession attention (SA) or complement attention495

(CA) removed to build equation trees. The drops496

in both results verify the contribution from both497

mechanisms to the model performance. The com-498

parison also shows that succession attention makes499

a larger contribution than complement attention.500

Model MAWPS Math23K

EM SM EM SM

G2HAT 84.4 85.4 68.0 80.0
-CA 84.3 85.1 68.8 79.1
-SA 83.7 84.4 67.6 78.7
-AMHA 83.2 84.1 66.9 77.7

G2T 82.7 83.7 65.8 77.0

Table 3: Ablation studies on MWP datasets with only
succession attention, CA: complement attention. SA:
succession attention. G2T equals to G2HAT with all
these mechanisms removed.

Moreover, G2HAT with only succeeding attention 501

achieves a higher equation matching accuracy score 502

but less solution matching accuracy than does the 503

full model. This indicates that G2HAT with only 504

succeeding attention better reconstructs equation 505

trees in the way taught by the training dataset but is 506

not flexible enough when facing new MWP prob- 507

lems. 508

We also trained the model without accumulative 509

multi-head attention and unsurprisingly encounter 510

a drop in performance, though there is still an im- 511

provement on the baseline G2T model. Thus we 512

can see AMHA is a critical attention mechanism 513

that supports the efficacy of our SA and CA proce- 514

dure by avoiding a too fast attention decay which 515

may hinder parent-child attention succession. 516

5.2 Attention Distribution Learning 517

G2T; G2HAT

5 10 15 20
0

0.2

0.4

Figure 5: KL Divergence between Siblings vs. Training
Epoch

Focusing on modeling hierarchical attention 518

with attention succession and complementing, we 519

next explore how our model learns to pass the atten- 520

tion score from parent nodes to child nodes. Here 521

we experiment on MAWPS to evaluate the attention 522

distribution learning of our G2HAT model, compar- 523

ing with G2T baseline. We use KL divergence to 524

represent the variation between two attention distri- 525
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Q1: Tom went to 4 hockey games this year, but missed 7.
He went to 9 games last year. How many hockey games
did Tom go to in all?

G2T: 4 + 7 = 11 G2HAT: 4 + 9 = 13
Gold: 4 + 9 = 13

Q2: Evelyn has 95 marbles. She gets 9 more from
Henry. Later, Evelyn buys 6 cards at the store. How
many marbles does Evelyn have in all?

G2T: 95 + 9 + 6 = 110 G2HAT: 95 + 9 = 104
Gold: 95 + 9 = 104

Q3: Tom bought 40 tickets at the state fair. He spent 28
tickets at the ’dunk a clown’ booth and decided to use
the rest on rides. If each ride cost 4 tickets, how many
rides could he go on?

G2T: 4 * (40 - 28) = 48 G2HAT: (40 - 28) / 4 = 3
Gold: (40 - 28) / 4 = 3

Table 4: Case study for MWP solving capacity compari-
son between G2T and G2HAT.

butions on two sibling nodes. A good learning pro-526

cess for attention distribution should be in a steady527

increasing trend as sibling nodes should attend on528

related but still different information. As attention529

scores on deeper nodes become rather small due530

to hierarchical attention decay, we first normalize531

the attention distribution and then compute the KL532

divergence:533

âlefti =
alefti

1
n

∑n
j=1 â

left
j

ârighti =
arighti

1
n

∑n
j=1 a

right
j

D =DKL(â
left||âright) +DKL(â

right||âleft)

=
n∑

i=1

log(âlefti ) log(
âlefti

ârighti

)+

n∑
i=1

log(ârighti ) log(
ârighti

âlefti

)

534

From Figure 5, we can see the learning curve535

of KL divergence for the G2T baseline and our536

G2HAT model. We can see that, though both learn-537

ing curves converge to about 0.3 KL divergence,538

the training of G2T model fluctuates a lot, which539

might hinder the decoder from correctly allocating540

attention to sibling nodes. Our G2HAT model, in-541

stead, keeps a rather steady learning curve thanks542

to two attention mechanisms, and consequently,543

better model performance when building equation544

trees.545

5.3 Case Study546

Table 4 shows our case study for our G2HAT547

model’s performance solving MWPs in comparison548

with the G2T baseline. From the results for Ques- 549

tion 1, G2HAT model successfully selects quantity 550

9, representing the games Tom went to last year to 551

add to the number of games Tom went to this year, 552

while G2T is misled by quantity 7, which repre- 553

sents the number of games that Tom missed. Thus, 554

we can see that attention following a hierarchical 555

tree structure can indeed help the model to focus 556

more on relevant information since G2HAT model 557

attends according to the selection of both parent 558

and child. 559

In Question 2, G2T models add all the three 560

quantities in question context together because the 561

attention for word context representation is cho- 562

sen independently when building each node. As a 563

result, the seemingly relevant quantity 6 confuses 564

the model as it appears to be the number of to- 565

kens necessary for counting all the marbles. Our 566

G2HAT is immune to this problem as such irrele- 567

vant information is filtered during multiple rounds 568

of hierarchical attention decay. 569

In Question 3, though G2T model solves a sub- 570

problem with the sub-tree 40 - 28, it fails to under- 571

stand the whole hierarchical structure of the equa- 572

tion tree and multiplies the result of this sub-tree by 573

4. In comparison, being aware of the hierarchical 574

nature of the equation tree, our G2HAT model has 575

learned to first construct a division relation and then 576

build the subtraction sub-tree. Therefore we can 577

conclude that the hierarchical nature of the equa- 578

tion tree can be better captured by a hierarchical 579

structure motivated model than a model that scores 580

attention on context each time independently. 581

6 Conclusion 582

In this paper, we propose a novel hierarchical atten- 583

tion tree-structured (HAT) decoder that satisfies the 584

two intuitive properties for equation tree building. 585

The HAT-structured decoder allows child nodes to 586

succeed attention via a succession attention scorer. 587

This scorer selects the child’s parent’s attention rep- 588

resentation, enabling hierarchical attention decay 589

and succession in the tree structure. For better atten- 590

tion succession, accumulative multi-head attention 591

is further incorporated to avoid a too fast attention 592

decay. Experiments on MWP benchmarks show 593

that the use of our HAT decoder leads to a large 594

performance margin between previous SOTA on 595

equation matching accuracy, together with a signif- 596

icant improvement in solution matching accuracy. 597
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