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Abstract

To answer math word problems (MWPs), mod-
els need to formalize equations from the source
text of math problems. Recently, the tree-
structured decoder has significantly improved
model performance on this task by generating
the target equation in a tree format. However,
current decoders usually ignore the hierarchical
relationships between tree nodes and their par-
ents, which hinders further improvement. Thus,
we propose a structure called hierarchical atten-
tion tree to aid the generation procedure of the
decoder. As our decoder follows a graph-based
encoder, our full model is therefore named as
Graph to Hierarchical Attention Tree (G2HAT).
We show a tree-structured decoder with hierar-
chical accumulative multi-head attention leads
to significant performance improvement and
reaches new state-of-the-art (SOTA) on both
English MAWPS and Chinese Math23k MWP
benchmarks. For further study, we also apply
pre-trained language models for G2HAT, which
even results in new higher performance.

1 Introduction

Math Word Problems (MWPs) require models to
automatically give an answer to a math problem
described by natural language text, which is called
word context in a formal MWP. Presented in Fig-
ure 1, based on a word context, models have to
infer an equation from it and calculate the final so-
lution. Since the introduction of machine learning
methods in the language processing (NLP) field,
much effort has been spent designing features to
train models to solve MWP (Kushman et al., 2014;
Roy and Roth, 2018; Shi et al., 2015). However,
these models suffer from low scalability, as they
require hand-made features designed by humans.
In recent years, there has been a booming trend
of the application of deep learning methods to
MWP, among which seq2seq models apply an en-
coder to encode the word context into an interme-
diate representation for a decoder to sequentially

Word Context: There are 17 girls and 27 boys in class, they
are divided into groups each with 4 students by the teacher,
how many groups are there?

Equation: (17+27)/4 Solution: 11

Prefix Notaion: / + 17 27 4

Equation Tree:

There are 17 girls and 27 boys in class,
they are divided into groups each with 4 students
by the teacher, how many groups are there?

Figure 1: An example for MWP.

generate parts of the equation. To take advantage
of the tree-structured nature of equations for MWP,
(Xie and Sun, 2019) introduces a tree-structured
decoder that improves model performance signif-
icantly. Their tree-structured decoder generates a
tree for prefix notation by generating tree nodes
recursively while considering their parents and sib-
lings.

Efficient though the tree-structured decoder is,
it ignores the hierarchical nature of nodes in the
generated equation tree. Consider the equation
tree from Figure 1 for example. To induce the +
operator, the model should first pay attention to the
span “There are 17 girls and 27 boys in class,”
and then induce the 17 and 27 by attending to “/7
girls" and “27 boys" inside the span.

From the example above, we obtain two conclu-
sions. First, models have to attend to more words
to decode a parent node than its children. A more
comprehensive understanding of the word context
is required for inducting nodes in a higher hierarchy.
This property is named as hierarchical attention
decay in an equation tree. Second, word context
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Figure 2: Our G2ZHAT model.

covered by children’s attention is contained in con-
text covered by parent’s attention. We call this
property hierarchical attention succession in an
equation tree.

Previous tree-structured decoders fail to exploit
these two key properties of parent-child relation-
ships in the equation tree. They score attention
based just on the input features of the current
node for decoding without considering the atten-
tion score on its parent. We thus propose Hier-
archical Attention Tree (HAT) decoder which is
capable of implementing hierarchical attention on
both hierarchical decay and hierarchical succes-
sion. Specifically, we allow nodes to succeed atten-
tion from their parents during decoding. Our full
model lets the HAT decoder follow a graph-based
encoder, thus we overall build a Graph to Hierar-
chical Attention Tree model to solve MWPs with
an encoder-decoder framework.

We conduct experiments on two MWP bench-
marks on English and Chinese, respectively,
MAWPS and Math23k. Multi-head attention is
added for better information extraction from the
context with an attention mechanism. We show
that our model outperforms the previous SOTA by
1.7 solution matching accuracy score on MAWPS
and 2.6 on Math23k, which sets the new SOTA
for both MWP benchmarks. With further improve-
ment from the application of pre-trained language
model, G2HAT even reaches a significant 3.3 score
improvement on MAWPS and a 3.2 score improve-
ment on Math23k.

2 Related Work

Math Word Problem Early works on machine
learning for MWP concentrate on statistical models
(Kushman et al., 2014; Hosseini et al., 2014; Mi-

tra and Baral, 2016; Roy and Roth, 2018; Zou and
Lu, 2019a) and semantic information (Shi et al.,
2015; Koncel-Kedziorski et al., 2015; Roy and
Roth, 2015; Huang et al., 2017; Zou and Lu, 2019b)
for sequence construction and solution inference.
(Zou and Lu, 2019a) models MWPs as path search-
ing problems for token sequences and uses a model
to solve this modified problem based on statistics.
(Zou and Lu, 2019b) models MWPs as semantic
parsing tasks and defines special operators to build
a Text-Math Tree. The Text-Math Tree is inter-
preted into common equation to produce the final
solution.

The encoder-decoder structure now dominates
the realm of solving MWP with deep learning. An
early work (Wang et al., 2018a) directly applies
a Seq2Seq scenario to generate a sequence rep-
resenting equation from the context. (Li et al,,
2019a) adds multi-head attention to solve MWPs.
Recently, a major improvement for MWPs is the
introduction of the tree-structured decoder (Xie
and Sun, 2019), which exploits the structural na-
ture of MWPs and improves model performance
significantly. For further exploration, (Hong et al.,
2021) used a weakly supervised model that corrects
the generation process by back-searching for faults
from the result node. (Cao et al., 2021) introduces
a DAG-structured decoder. (Lin et al., 2021) ap-
plies hierarchical attention for the encoder and uses
sequential, additive clause attention and word atten-
tion are added sequential and (Zhang et al., 2020)
implements a dependency-based graph encoder.

Hierarchical Modeling Hierarchical models are
commonly used explicitly or implicitly for NLP
tasks to facilitate multiple round classification (Aly
et al., 2019) or inform models of cross-round re-
lations among representations. For instance, (Fan



etal., 2018) applies a tree structure for story genera-
tion to explicitly represent story topics. (Chen et al.,
2020) models entities hierarchically for model to
enable the model’s entity typing. Combining hi-
erarchical models is a popular method for solving
NLP tasks, and has been used in the hierarchical
Transformer (Liu and Lapata, 2019) and hierarchi-
cal BERT (Zhang et al., 2019).

The tree-structured or graph-structured decoder
is a typical style of hierarchical modeling. Aside
from MWP, tree-structured decoder also leveraged
for generating math expressions or markup from
handwriting or images (Ma et al., 2019b; Zhang
et al., 2021). Based on dependency parsing trees,
the tree-structured decoder can also be applied for
neural machine translation (Choshen and Abend,
2021). The tree-structured decoder performs much
better than other models when generating struc-
tured data like expressions and codes (Wang et al.,
2018c; Xie et al., 2021), as it captures the natural
tree structure of sequences during generation.

For attention scoring, hierarchical models are
generally used to score attention in different levels
(Miculicich et al., 2018; Zhao et al., 2018; Wang
et al., 2018b; Liu and Chen, 2019), such as the
word level, the sentence level and the document
level. Some others integrate multiple attention
mechanisms for better representation (Luo et al.,
2018; Ma et al., 2019a). Our model differs from
those previous hierarchical attention-based model
by modeling hierarchical attention for the tree struc-
ture. Our design enables attention succession and
complement to further adapt hierarchical attention
to trees, which is a rather more complex structure
for modeling multi-level hierarchical attention.

Multi-head Attention First introduced with the
Transformer (Vaswani et al., 2017) model, multi-
head attention has been successfully applied in a
large variety of NLP domains. (An et al., 2020)
tries to interpret multi-head attention as Bayesian
inference and (lida et al., 2019) further develops
multi-head attention into multi-hop attention for
performance improvement on machine translation.
Multi-head attention can also be used for knowl-
edge reasoning tasks (Paul and Frank, 2020) and
multi-modal training (Wang et al., 2020).

Recent work has shown that multi-head atten-
tion can be successfully applied for MWP solv-
ing. GROUP-ATT model (Li et al., 2019b) applies
Transformer as the encoder for information extrac-
tion to solve MWPs. GROUP-ATT explicitly as-

signs self-attention to represent different types of
attention. The result from GROUP-ATT has shown
that all these attention mechanisms contribute to
final performance improvement. Our study, instead,
with the multi-head attention mechanism for the
decoder and in a hierarchical tree structure, which
differs from our previous study that only exploits
multi-head attention in the encoder.

3 Method and Model

3.1 Graph Encoder

For the encoder, we follow (Zhang et al., 2020)
to use a quantity graph to encode the word con-
text of MWP by constructing a quantity graph
based on it. Specifically, for a sentence W =
{wi,wa, - ,wy}, we first use rules to extract
quantity tokens Q@ = {qi,q2, - ,qn} from it
Then a dependency parser is used to extract related
non-quantity tokens and connect them to quantity
tokens in the graph. A quantity token and its re-
lated tokens with edges between them are called a
quantity cell, which is used when building quantity
graphs for encoding in graph encoder.

With quantity cells extracted, we build two quan-
tity graphs:

e Quantity Cell Graph is a combination of graphs
of all quantity cells that are isolated from each other
and allow related words to pass information to the
quantity.

e Quantity Comparison Graph only contains
quantity tokens as nodes. Edges are built based on
partial ordering relations between quantity nodes.
Specifically, a directed edge e = (g1, ¢2) is built
when q; > qo.

Based on Quantity Cell Graphs G@cel!
{G?Ce”} where i = 1,2, -, kgeen and Quantity
Comparison Graphs GReom? — {G2™P} where
i =1,2,--- ,kQcomp, A represents the adjecent
matrix for a certain graph G' where A; ; = 1 no-
tating there is an edge from 7 to j and 4; ; = 0
otherwise. The encoding procedure for MWP con-
text is formulated as follows,

X = Embed(W)

X = RNN(X)

X = TransLayer;(X) fori=1,2,---N
H = MinPooling(X)

Here, the sentence is first embedded via an em-
bedding layer before it is fed into a recurrent neural
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Figure 3: The procedure of attention succession from
top to bottom in hierarchical attention tree.

network, such as a bidirectional long short-term
memory (BiLSTM) network or a gated recurrent
unit (GRU) network for contextual representations.
Then the sentence is further processed by multiple
Transformer layers that are defined as follows,

TransLayer(X) = GCN(X) + LN(GCN (X))
GCON(X) = FEN( || (LN(AX) + X))
A for G
G = Gchll U GQcomp

where LN refers to layer normalization. Finally,
the output Y € R™*¢ from graph encoder is pooled
into hidden representation H € R by token-level
min pooling for decoder to process and generate
the equation tree.

3.2 Hierarchical Attention

We give an elaborate description of our hierar-
chical attention mechanism in the HAT-structured
Decoder in this section. Our decoder generates
an equation tree following a hierarchical structure
from top to bottom with attention succeeded from
parent to child. In practice, we first generate the
root operator node, then its left sub-tree and right
sub-tree, each with part of its parent’s attention
on the encoded representation. This procedure re-
curses for each sub-tree until the sub-tree is a single
quantity node.

As in Figure 3, the root operator node attends
fully to the whole encoded representation. When
we build the left and right sub-tree, we pass the
representation down to them via an attention suc-
cession process. However, the sub-trees will only
attend on part of the representation from its par-
ent based on attention scores (succession attention)
which are calculated during the succession process.
Thus we can see how our hierarchical attention
mechanism satisfies the two key properties for bet-
ter equation tree construction.
¢ Hierarchical Attention Decay A child node in
a hierarchical attention tree can only focus on part

Conventional Scorer AMHA Scorer
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Figure 4: Comparison between the conventional atten-
tion scorer and our accumulative multi-head attention
scorer.

of the encoded representation that is attended by
its parent. As a result, the attention will decay
hierarchically during the succession from top to
bottom.

e Hierarchical Attention Succession Likewise,
the partial attention of child nodes will always be
covered by their parents, which leads to succession
relationships.

3.3 Accumulative Multi-head Succession
Attention

To better exploit the hierarchical attention mecha-
nism, we apply a novel attention mechanism which
we call accumulative multi-head attention (AMHA)
to score succession attention to pass representation
attention. As shown in Figure 4, different from
conventional attention scorer, the AMHA scorer
will use a multi-head input to score multiple at-
tention scores for all heads. Then, those attention
scores are accumulated together via a max-pooling
process.

A — exp(Scorer®(XF))
v > i1 exp(Scorerk(XJ’?))
A = maX(A'Ll7A'L27"’ 7A?)

where X* € refers to the hidden representation
of the word in i-th position and k-th head. Each
scorer passes Xik' through a linear layer and then
uses a softmax function to get attention A* on k-th
head. These attention scores are finally pooled via
max-pooling to get our AMHA score.

AMHA is intuitively better than conventional
attention mechanism for MWP solving due to the
following two reasons:

e Multiple Concentration When constructing an
equation tree, an operator node should not only
contain information to induct its type, but it should
also integrate information for its children, the nodes
in its left sub-tree and right sub-tree. Thus, AMHA
is a better vector for trees’ information as different



heads are responsible to attend to different parts of
the encoded representation.

e Steady Attention Decay For hierarchical atten-
tion tree building, attention succession is a key
procedure for better performance. However, us-
ing a conventional attention mechanism will lead
to an attention succession that decays too fast for
performance improvement.

Here is an easy example: suppose there are two
positions ¢ and j for which a parent node wants
to memorize for its children. This parent node
will be encouraged to assign attention scores close
to 1 for them. However, conventional attention
mechanisms only allow attention scores with sums
of 1, which means at least half of the attention
will decay for either position. This will certainly
hurt the efficiency of attention succession. AMHA
can easily fix this problem by applying two heads
for both positions for a parent node to succeed
integrative attention for its children. This allows
AMHA to preserve attention succession which is
crucial for hierarchical attention tree building.

3.4 Complement Attention

To capture all necessary information for build-
ing trees and further improve the capacity of our
model, we introduce another complementary atten-
tion mechanism to replenish attention scores that
are dropped in previous rounds of attention succes-
sion. We once again apply AMHA for attention
scoring. For a node during tree building, AP "t
refers to the attention of the node’s parent, and X
refers to the input representation to induct succes-
sion and complement attentions.

SA= AMHAsuccession(X)
CA = AMHAcomplement (X)

We then use max pooling to get the final attention
on the child node.

Aghild — max(SA; x AP O Ay)

Integrating complement attention can lead to fur-
ther improvement compared to using only succes-
sion attention as complement attention allows child
nodes to replenish their information to themselves
without harming the hierarchical attention decay
or succession properties. Also, the application of
complement attention can prevent node attention
from degrading to zero, which guarantees a slower
attention decay for better tree building.

3.5 HAT-structured Decoder

Our HAT-structured decoder decodes the output
H from encoder following the tree-structured de-
coder’s procedure (Xie and Sun, 2019) with accu-
mulative multi-head attention based attention suc-
cession process. Starting with a root representation
¢OOT initialized based on H and an all-ones root
attention vector a#997 | we predict the label of the
root node and generate the rest equation tree via
four sub-modules of decoder, the Left Label and
Attention Scorer (LLAS), Right Label and Atten-
tion Scorer (RLAS), Sub-Tree Encoder (STE) and
Node Classifier (NC).

Here, LLS and RLS use AMHA to score suc-
cession attention. LLAS and RLAS are of gated
structures to process input representations while
NC applies a linear classifier for operator and con-
stant label and pairwise classifier for pairs between
the input representation and encoded quantity rep-
resentations. These details are omitted in this paper
since they are not contributions of this paper and
can be found in detail in the implementation of
tree-structured decoder of (Xie and Sun, 2019).

Step 1. Representation Attention Integration
With current root representations and attention, we
first use element-wise multiplication to integrate
attention scores with encoded representations.

]fli = Hi X aﬁOOT

Step 2. Left Sub-tree Generation LLAS gener-
ates the label representation, node representation,
and succession attention for the left child node of
the current root node. Then, NC is used to classify
the label of the left child node.

el ¢, SAL, CA' = LLAS(¢T9°T H)
al = aft99T x sAL 4 C AL

i =

I = NC(e)

If €l is classified to be an operator label, jump
to Step 1 with current root node representation set
to ¢' and root representation attention set to a' to
generate the left sub-tree. This procedure returns
when the left sub-tree is completely constructed.

Step 3. Right Sub-tree Generation We first in-
tegrate representation of the left sub-tree with the
root representation via STE. The label representa-
tion, node representation, and succession attention
are then generated by RLAS for the right child



node of the current root node. The same NC for the
left child node is applied to finally label the right
child node.

t! = STE(€', ¢);
e, q", SAT, CA" = RLAS(¢5O°T [ th):
af = afO9T x SAT + CAT;
I" = NC(e")

Likewise, if e” is classified to be an operator
label, jump to Step 1 with current root node repre-
sentation set to ¢" and root representation attention
set to a” to generate the right sub-tree. The pro-
cedure ends when the right sub-tree is completely
constructed.

3.6 Pre-trained Language Model

For encoding word context, we first encode the sen-
tence with the pre-trained language model (PLM)
and then pool it into a context representation ()
with mean pooling on the word level.

P = PLM(W)

Finally, () from PLM and H from graph encoder
are added together to get the final context represen-
tation.

H =H+Q

4 Experiment

4.1 Experiment Setting

Dataset We conduct experiments on two MWP
datasets, MAWPS and Math23K.

o MAWPS is an English MWP dataset with 2373
problems, where both template equation and final
solution are provided for training and testing.

e Math23K is a Chinese MWP dataset with 23162
problems, where only equations for real quantities
in the context are provided.

Model We use an embedding size of 128 dimen-
sions and a hidden size of 512 dimensions for word
representation. For RNNs, we use 4-layer LSTM
or GRU for encoding. When calculating AMHA
for succession attention, we use 4 attention heads
to accumulate attention scorers. The beam size is
5 to search for the most likely equation to induct a
more plausible solution.

Model MAWPS Math23K
Test 5-fold Valid
DNS 59.5 - 58.1
Math-EM 69.2 66.7 -
T-RNN 66.8 66.9 -
S-Aligned - - 65.8
GROUP-ATT 76.1 69.5 66.9
AST-Dec - 69.0 -
IRE - 76.7 -
HMS 80.3 - 76.1
GTS 82.67/78.6* 75.6 743
G2T(Zhang et al., 2020) 83.7 774 75.5
G2T* 83.7 77.0 753
G2HAT(GRU) 85.2(11.5)  80.0(12.6)  76.6(11.3)
G2HAT(LSTM) 85.4(11.7)  79.2(11.8)  77.4(12.1)
G2HAT+BERT 87.013.3)  80.9(13.5)  78.0(12.7)

Table 1: Comparison of solution matching accuracy on
MWP datasets. {: Result of GTS from G2T. I: Result
of GTS from HMS. *: Re-implementation of previous
model.

Pre-trained Language Model We apply BERT-
base-cased and BERT-base-Chinese as PLM for
MAWPS and Math23k respectively, we do not
finetune the PLMs during training as the training
datasets are rather small.

Training We use cross entropy loss for model
optimization. The batch size for training is set to
64, and we use Adam optimizer (Kingma and Ba,
2015) with initial learning rate 10~3 and decay rate
10~° for parameter updating. We train the model
for 200 epochs in each experiment and save the
model with the highest solution accuracy.

Model MAWPS Math23K
Test  5-fold Valid
G2t 828 658 643
G2HAT(GRU) 843  68.0 65.6
G2HAT(LSTM) 844 673 65.7
GOHAT+BERT 857  69.0 66.5

Table 2: Comparison of equation matching accuracy
on MWP datasets. *: Re-implementation of previous
model.

4.2 Result

Tables 1 and 2 show the comparison between our
proposed G2HAT model and previous SOTA mod-
els. We first re-implement the Graph2Tree model
(Zhang et al., 2020), and find the result slightly
lower than the reported result but still competitive
for comparison. We then run our G2ZHAT on MWP
datasets for GRU and LSTM encoders and find
our AMHA-based HAT-structured decoder leads
to significant improvement on both the English



and Chinese datasets. For solution matching ac-
curacy, our model results in 1.7 an accuracy score
improvement on the English MAWPS dataset and
a 2.6 accuracy score improvement on the Chinese
Math23K dataset.

The equation matching accuracy is evaluated as
it reflects the capability for pattern discerning. The
results in Table 2 can explain our model’s source of
improvement. Our GZHAT model boosts the base-
line G2T model by 1.7 accuracy score on MAWPS
and 2.6 accuracy score on Math23K. As our model
enjoys both hierarchical attention decay and succes-
sion for hierarchical tree building, better equation
trees are produced for higher solution matching
accuracy. Moreover, results from 5-fold validation
on Math23k show the robustness of our results, as
G2HAT outperforms G2T by 1.9 accuracy score
on solution matching and 1.4 accuracy score on
equation matching.

For encoder choice, we can see LSTM outper-
forms GRU on MAWPS but performs worse on
Math23k. We attribute this to the vocabulary dif-
ference. For MAWPS, the vocabulary is smaller,
thus most words in the training dataset will still
occur in the test dataset. A preciser encoder like
LSTM will better capture details of training data.
However, Math23k covers problems in all kinds of
mathematics applications, resulting in a much large
and unusual vocabulary, which makes LSTM easily
overfitting, while GRU can resist such an overfit-
ting risk with its simpler structure than LSTM.

After features from BERT are also incorpo-
rated for context representations, the improvement
of G2HAT reaches 3.3 for the English MAWPS
dataset and 3.5 for the Chinese Math23k dataset
on solution matching. Correspondingly, respec-
tive improvements of 2.9 and 3.2 are achieved on
MAWPS and Math23k datasets for equation match-
ing, which proves the efficiency of BERT integra-
tion.

5 Analysis and Discussion

5.1 Ablation Study

Table 3 shows the results of the ablation study for
our G2HAT model. We first run G2ZHAT with suc-
cession attention (SA) or complement attention
(CA) removed to build equation trees. The drops
in both results verify the contribution from both
mechanisms to the model performance. The com-
parison also shows that succession attention makes
a larger contribution than complement attention.

MAWPS Math23K
EM SM EM SM
G2HAT 844 854 68.0 80.0

Model

-CA 843 851 68.8 79.1
-SA 837 844 676 787
-AMHA 832 84.1 669 777
G2T 827 837 658 770

Table 3: Ablation studies on MWP datasets with only
succession attention, CA: complement attention. SA:
succession attention. G2T equals to G2HAT with all
these mechanisms removed.

Moreover, G2ZHAT with only succeeding attention
achieves a higher equation matching accuracy score
but less solution matching accuracy than does the
full model. This indicates that G2ZHAT with only
succeeding attention better reconstructs equation
trees in the way taught by the training dataset but is
not flexible enough when facing new MWP prob-
lems.

We also trained the model without accumulative
multi-head attention and unsurprisingly encounter
a drop in performance, though there is still an im-
provement on the baseline G2T model. Thus we
can see AMHA is a critical attention mechanism
that supports the efficacy of our SA and CA proce-
dure by avoiding a too fast attention decay which
may hinder parent-child attention succession.

5.2 Attention Distribution Learning

—e— G2T; —e— G2HAT

T T T T T T T

0.4 b

0 | ! | ! | I
5 10 15 20

Figure 5: KL Divergence between Siblings vs. Training
Epoch

Focusing on modeling hierarchical attention
with attention succession and complementing, we
next explore how our model learns to pass the atten-
tion score from parent nodes to child nodes. Here
we experiment on MAWPS to evaluate the attention
distribution learning of our G2ZHAT model, compar-
ing with G2T baseline. We use KL divergence to
represent the variation between two attention distri-



Q1: Tom went to 4 hockey games this year, but missed 7.
He went to 9 games last year. How many hockey games
did Tom go to in all?

G2T:4+7=11
Gold: 4 +9=13

Q2: Evelyn has 95 marbles. She gets 9 more from
Henry. Later, Evelyn buys 6 cards at the store. How
many marbles does Evelyn have in all?

G2T:95+9+6=110 G2HAT: 95 + 9 =104
Gold: 95 +9=104

Q3: Tom bought 40 tickets at the state fair. He spent 28
tickets at the *dunk a clown’ booth and decided to use
the rest on rides. If each ride cost 4 tickets, how many
rides could he go on?

G2T: 4 * (40 - 28) =48
Gold: (40-28)/4=3

G2HAT:4+9=13

G2HAT: (40-28)/4=3

Table 4: Case study for MWP solving capacity compari-
son between G2T and G2HAT.

butions on two sibling nodes. A good learning pro-
cess for attention distribution should be in a steady
increasing trend as sibling nodes should attend on
related but still different information. As attention
scores on deeper nodes become rather small due
to hierarchical attention decay, we first normalize
the attention distribution and then compute the KL
divergence:

left
&left a‘z

Q.

v 1 Aleft i
Z] 19

D :DKL((lleftH&”ght) + D

right
~right a,;

1 mght
Zg 1 j

(arzght| |aleft)

_Zlog 3 )log( Amght)_‘_
=1
n - dright
Zl(’g(&;w ) log( T )
=1 %

From Figure 5, we can see the learning curve
of KL divergence for the G2T baseline and our
G2HAT model. We can see that, though both learn-
ing curves converge to about 0.3 KL divergence,
the training of G2T model fluctuates a lot, which
might hinder the decoder from correctly allocating
attention to sibling nodes. Our G2ZHAT model, in-
stead, keeps a rather steady learning curve thanks
to two attention mechanisms, and consequently,
better model performance when building equation
trees.

5.3 Case Study

Table 4 shows our case study for our G2HAT
model’s performance solving MWPs in comparison

with the G2T baseline. From the results for Ques-
tion 1, G2ZHAT model successfully selects quantity
9, representing the games Tom went to last year to
add to the number of games Tom went to this year,
while G2T is misled by quantity 7, which repre-
sents the number of games that Tom missed. Thus,
we can see that attention following a hierarchical
tree structure can indeed help the model to focus
more on relevant information since GZHAT model
attends according to the selection of both parent
and child.

In Question 2, G2T models add all the three
quantities in question context together because the
attention for word context representation is cho-
sen independently when building each node. As a
result, the seemingly relevant quantity 6 confuses
the model as it appears to be the number of to-
kens necessary for counting all the marbles. Our
G2HAT is immune to this problem as such irrele-
vant information is filtered during multiple rounds
of hierarchical attention decay.

In Question 3, though G2T model solves a sub-
problem with the sub-tree 40 - 28, it fails to under-
stand the whole hierarchical structure of the equa-
tion tree and multiplies the result of this sub-tree by
4. In comparison, being aware of the hierarchical
nature of the equation tree, our G2ZHAT model has
learned to first construct a division relation and then
build the subtraction sub-tree. Therefore we can
conclude that the hierarchical nature of the equa-
tion tree can be better captured by a hierarchical
structure motivated model than a model that scores
attention on context each time independently.

6 Conclusion

In this paper, we propose a novel hierarchical atten-
tion tree-structured (HAT) decoder that satisfies the
two intuitive properties for equation tree building.
The HAT-structured decoder allows child nodes to
succeed attention via a succession attention scorer.
This scorer selects the child’s parent’s attention rep-
resentation, enabling hierarchical attention decay
and succession in the tree structure. For better atten-
tion succession, accumulative multi-head attention
is further incorporated to avoid a too fast attention
decay. Experiments on MWP benchmarks show
that the use of our HAT decoder leads to a large
performance margin between previous SOTA on
equation matching accuracy, together with a signif-
icant improvement in solution matching accuracy.
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