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ABSTRACT

Fusing speech into pre-trained language model (SpeechLM) usually suffers from
inefficient encoding of long-form speech and catastrophic forgetting of pre-trained
text modality. We propose SSR-CONNECTOR (Segmented Speech Representation
Connector) for better modality fusion. Leveraging speech-text alignments, our
approach segments and compresses speech features to match the granularity of
text embeddings. Additionally, we introduce a two-stage training pipeline that
includes the distillation and fine-tuning phases to mitigate catastrophic forgetting.
SSR-CONNECTOR outperforms existing mechanism for speech-text modality
fusion, consistently achieving better speech understanding (e.g., +10 accuracy on
StoryCloze and +20 on Speech-MMLU) while preserving pre-trained text ability.

1 INTRODUCTION

Large language models (Brown et al., 2020; Chowdhery et al., 2022; Chiang et al., 2023; Anil et al.,
2023; Touvron et al., 2023; OpenAI et al., 2024, LLMs) have demonstrated remarkable performance
across various tasks and extending pre-trained abilities from LLMs to other modalities has sparked
interest in multimodal LLMs (Alayrac et al., 2022; Liu et al., 2023b; OpenAI et al., 2024; Tang et al.,
2024; Défossez et al., 2024). In this work, we focus on integrating speech into pre-trained language
models (SpeechLMs). A straightforward approach is to transcribe speech into text and use these
transcriptions as prompts for large language models (Huang et al., 2023); however, such cascaded
systems suffer from error propagation, higher latency, and cannot leverage raw speech information
like emotion, speaker identity, and other paralinguistic cues (Faruqui & Hakkani-Tür, 2021; Lin et al.,
2022; Kim et al., 2024). Consequently, developing end-to-end SpeechLMs that directly fuse speech or
audio input has gained popularity, where various approaches have been explored to encode speech and
align its representation with pre-trained language models (Zhang et al., 2023; Rubenstein et al., 2023;
Yu et al., 2023; Maiti et al., 2024; Hassid et al., 2024a; Tang et al., 2024; Nguyen et al., 2024).

Speech representations can be integrated into pre-trained language models mainly through two
approaches. The first method involves using connector modules that align speech representations
with the language model’s input space without modifying the model’s existing vocabulary. These
connector-based techniques typically incorporate a compression module to shorten the speech features,
enhancing efficiency. However, connectors are generally first trained for the speech recognition task
(with concatenated speech-to-text data) and lack the ability to support text or speech generation
unless further instruction-finetuned. The second approach, unit-based fusion, directly incorporates
discrete speech units—normally derived from self-supervised models like HuBERT (Hsu et al., 2021),
XLS-R (Babu et al., 2021), or DinoSR (Liu et al., 2023a)—into the language model’s vocabulary. This
allows the language model to be fine-tuned with a combination of speech and text tokens, enabling it
to handle dual-modal inputs and outputs. Despite its versatility, unit-based fusion can lead to longer
and less efficient training contexts due to the sparser nature of speech information. Regardless of the
fusion approach, SpeechLMs often face the challenge of catastrophic forgetting, where the model
loses its pre-trained text capabilities (Tang et al., 2024; Nguyen et al., 2024; Défossez et al., 2024).

To tackle these challenges, we propose SSR-CONNECTOR (Segmented Speech Representation
Connector), which grounds speech representations in the same semantic space as transcription token
embeddings. Different from prior work that concatenates speech with text (Fig. 1 (a,b)) for modality
fusion, we leverage speech-text alignments to segment and compress speech features (Fig. 1 (c)),
resulting in representations that match the length of text tokens.
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Figure 1: Comparison of different approaches for speech-text
modality fusion. (a): compressor-based connector. (b): direct
fusion with speech units. (c): our alignment-aware connector.

To mitigate catastrophic forget-
ting when introducing the speech
modality, we propose a two-stage
training pipeline. In Stage 1, we
freeze the LLM and pre-train the
connector using speech-text dis-
tillation, adapting speech inputs
into compressed representations
semantically aligned with text
embeddings. In Stage 2, we un-
freeze the LLM and fine-tune it
using next-token prediction, with
the adapted representation as in-
put and the corresponding tran-
scription tokens as targets.

SSR-CONNECTOR outperforms previous SpeechLMs (e.g., SPIRITLM (Nguyen et al., 2024),
VOXTLM (Maiti et al., 2024), TWIST (Hassid et al., 2024b), AUDIOLM (Borsos et al., 2023))
on tasks including Prompt-based Automatic Speech Recognition (ASR), Spoken Language Un-
derstanding (sWUGGY (Nguyen et al., 2020), sBLIMP (Nguyen et al., 2020), and StoryCloze
(Mostafazadeh et al., 2017)), Massive Multitask Language Understanding (Hendrycks et al., 2021,
MMLU), and Speech-MMLU (our synthesized speech variant of MMLU to assess cross-modal under-
standing). Additionally, we provide detailed analyses of speech-text aligners (§4.3) and fine-tuning
mechanisms (§5) to offer best practices when using SSR-CONNECTOR for modality fusion.

2 RELATED WORK

Modality Fusion for Speech Language Models SpeechLM typically encodes audio waveforms into
high-dimensional features using pre-trained encoders and integrate these representations to pre-trained
LLMs via a connection (adapter) module (Wu et al., 2023; Yu et al., 2023; Zhang et al., 2023;
Tang et al., 2024). To compress speech representations, Fathullah et al. (2023) apply stacking-based
fixed-rate compression on speech features extracted from the Conformer model (Gulati et al., 2020).
Inspired by the Q-former architecture (Li et al., 2023a), Yu et al. (2023) compress speech features
using a fixed number of query tokens, while Tang et al. (2024) extend this approach to a window-level
Q-former to support variable frame-rate reduction. Alternatively, Wu et al. (2023) utilize Connectionist
Temporal Classification (CTC) (Graves et al., 2006) to compress representations.

Besides connector-based modality fusion, pre-processing other modalities—such as speech, vision,
and videos—into tokens (Lyu et al., 2023; Li et al., 2023b; Team, 2024; Kondratyuk et al., 2024)
has attracted attention for its scalability. Speech units are typically extracted from self-supervised
representations (Hsu et al., 2021; Babu et al., 2021; Chung et al., 2021; Liu et al., 2023a). For instance,
AudioLM (Borsos et al., 2023) integrates semantic tokens from w2v-BERT (Chung et al., 2021)
and acoustic tokens from SoundStream (Zeghidour et al., 2021), modeling them autoregressively
for audio generation. Rubenstein et al. (2023) fine-tune the pre-trained LLM PaLM-2 (Anil et al.,
2023) with audio tokens processed by AudioLM, enabling both text and speech as input and output.
Similarly, VoxtLM (Maiti et al., 2024) performs multi-task training with speech units and text tokens,
achieving high-quality speech recognition and synthesis. To mitigate catastrophic forgetting, Nguyen
et al. (2024) propose an interleaved training mechanism to fuse speech tokens into LLAMA2 model.

Speech-text Alignment Extraction Various aligner tools are available for extracting speech-text
alignments. For example, the Montreal Forced Aligner (MFA) (McAuliffe et al., 2017) is an easy-to-use
tool based on the Kaldi toolkit (Povey et al., 2011). Connectionist Temporal Classification (CTC)
(Graves et al., 2006) is also widely used for speech-text alignment (Sainath et al., 2020; Huang et al.,
2024); since it is a by-product of speech recognition, it supports alignment without explicit text labels.
More recently, the UnitY2 aligner (Communication et al., 2023) and the ZMM-TTS aligner (Gong
et al., 2024) have shown excellent alignment performance across multiple languages. These aligners
rely on speech units extracted from pre-trained encoders (Baevski et al., 2020; Hsu et al., 2021; Babu
et al., 2021) and use variants of RAD-TTS (Shih et al., 2021) as their alignment backbone.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Speech-Text Aligner

g3

select out
Compressor  

(Decoder-Only)

speech features x

segment

z1

y1

y2

y3

z2 z3

g4 g5

x3 x4 x5

Figure 2: SSR-CONNECTOR compresses speech features using speech-text alignments. Features are
transformed by a Decoder-only model and selected at boundary index of each segment.

3 METHODOLOGY

We develop an alignment-aware speech representation connector to foster modality fusion between
speech and pre-trained language model. We introduce our connector in §3.1, with detailed descriptions
of its aligners in §3.2. Lastly, we present the two-stage training pipeline for our connector in §3.3.

3.1 ALIGNMENT-AWARE SPEECH REPRESENTATION CONNECTOR

Though previous connectors (Fathullah et al., 2023; Yu et al., 2023; Wu et al., 2023; Tang et al., 2024)
vary in their compressor designs, they do not explicitly leverage speech-text alignment information.
SSR-CONNECTOR, in contrast, uses speech-text alignments to segment and compress speech features
into the same granularity as text tokens. As illustrated in Fig. 2, our connector consists of two
components: (1) a speech-text aligner and (2) a feature compressor.

Given speech features x = (x1, · · · , xn) ∈ Rn×D extracted by pre-trained speech encoders (e.g.,
WAV2VEC2.0, HUBERT, WHIPSER, etc.), the aligner produces a monotonic mapping (alignment
path) between the speech features and their transcriptions y = (y1, · · · , ym) ∈ Rm×1. This mapping
can be computed based on both speech features (or their units) and transcriptions (Communication
et al., 2023; Gong et al., 2024), or solely based on speech input (Sainath et al., 2020; Dong & Xu,
2020; Huang et al., 2024) (see §3.2 for details). Using the alignment mapping, we segment the input
into m chunks of speech features, where each chunk semantically corresponds to a transcription token.
For example, in Fig. 2, speech features are segmented at indices (2, 5, 7) according to the alignment
path. We refer to these indices as boundary indices.

Once the boundary indices are identified, we first apply a linear layer to transform the speech features
to match the embedding dimension H(H > D) of the pre-trained LLM, since LLMs typically have
a larger feature dimension than pre-trained speech encoders. We then use the boundary indices to
aggregate and compress the speech representations in each chunk through a Transformer Decoder
model (Vaswani et al., 2017). Specifically, we apply a causal decoder-only model to transform
the speech features into high-dimensional representations g = f(x; θdec) ∈ Rn×H . Given that
features at later positions include information from prior positions, we employ a selection-based
compression method that takes the transformed features g at the boundary indices to form the
compressed representation z ∈ Rm×H . Although our initial design included a block-wise attention
mask to restrict information flow within each chunk (as shown in Fig. 2, where the middle segment’s
features do not attend to previous segments), we found that removing these masks simplifies training
and inference with minimal impact on performance, as detailed in §4.4.

3.2 SPEECH-TEXT ALIGNERS

We extract speech-text alignment with various aligners to segment speech features and we provide a
brief overview of various aligners we experimented below:

UnitY2 Aligner The UnitY2 aligner (Barrault et al., 2023) is a forced aligner that computes
speech-text alignment using discrete speech units and character-level text tokens. The speech units
are derived by applying K-Means clustering to the XLS-R model (Babu et al., 2021). The aligner is
trained jointly with a non-autoregressive text-to-unit (T2U) model, adopting the architecture of the
RAD-TTS model (Shih et al., 2021) but replacing the target mel-spectrogram with speech units. It first
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computes a soft-alignment Asoft ∈ RV×U between the characters and units:

Di,j = ||schar
i − sunit

j ||2, (1)

Asoft
i,j =

e−Di,j∑
k e

−Dk,j
+ Pprior(i|j), (2)

where schar and sunit are the outputs of the character and unit encoders, respectively (both encoders
consist of an embedding layer and a 1D convolution layer). D ∈ RV×U is a distance matrix with
V and U representing the vocabulary sizes of characters and speech units. Pprior ∈ RV×U is the
Beta-binomial alignment prior matrix to encourage near-diagonal paths (Shih et al., 2021). After
soft-alignment is computed, the monotonic alignment search (MAS) algorithm Kim et al. (2020) is
applied to extract the most probable monotonic alignment path.

CTC-based Aligner Since the UnitY2 aligner requires both speech and transcription, it does not
support streamable alignment extraction. To enable textless alignment computation, we explored two
CTC-based (Graves et al., 2006) aligners. Given the speech features x and text sequences y, CTC
computes P (y|x) by summing over all valid alignment paths:

P (y|x) =
∑

π∈B−1(y)

P (π|x) (3)

Here, π denotes a possible alignment path that maps to the target sequence y, and B−1(y) represents
the set of all valid paths that collapse to y after removing blanks and repeated labels. We investigated
two CTC variants: one using character-level text sequences (CHAR-CTC) and another using subword
token sequences (SUB-CTC), which shares the same vocabulary as the LLM model.

CIF-based Speech Connector For both CTC and UnitY2 aligners, we extract segmentations from
the alignments and then apply selection-based compression. We also experimented with Continuous
Integrate-and-Fire (Dong & Xu, 2020, CIF) as the connector, which is designed to learn segmentation
and perform compression simultaneously. Instead of relying on a fixed, pre-computed segmentation,
CIF dynamically segments and aggregates speech features by scoring each feature and computing a
weighted average. For more details, we refer readers to the original paper (Dong & Xu, 2020).

3.3 TRAINING METHOD

Dist il lat ion

Stage 1: Connector Distillation 
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embed h

Figure 3: Two-stage training pipeline for SpeechLM with our
alignment-aware modality connector.

Previous approaches to integrate
speech into LLMs typically use
speech-text data concatenated in ASR
format (i.e., speech representation fol-
lowed by its transcription text embed-
ding), to pre-train the connector (Yu
et al., 2023; Wu et al., 2023; Tang
et al., 2024). However, after such pre-
training, the model is limited to speech
recognition task and necessitates an-
other instruction-tuning stage to per-
form generative tasks with pre-trained
connectors (Zhang et al., 2023; Tang
et al., 2024). Moreover, once the LLM is unfrozen and fine-tuned (whether based on a pre-trained
connector or direct fusion with speech units), it suffers from catastrophic forgetting, leading to
degraded text capabilities (Nguyen et al., 2024; Tang et al., 2024).

With SSR-CONNECTOR, we convert speech into representations with the same granularity as their
transcription tokens. This allows us to fine-tune the SpeechLM directly using the next-token prediction
objective, where the input is the compressed representation z and the target is the transcription
y. This approach is possible because our feature z and text token y share the same length m. However,
our preliminary studies showed that directly fine-tuning with the next-token prediction objective
leads to catastrophic forgetting, undermining the pre-trained LLM’s abilities. Therefore, we propose a
two-stage training pipeline consisting of a distillation stage and a fine-tuning stage, as shown in Fig. 3.
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In Stage 1, we pre-train SSR-CONNECTOR by distilling the LLM’s text embeddings to align the
connector’s representations with the LLM’s embedding space. Formally, given aligned speech-text
data, we compute the text embeddings h = f(y; θemb), where y is the transcription token sequence,
θemb is the embedding table, and f maps tokens y to their embeddings. Following our connector design
in §3.1, we obtain the compressed speech representations z. For distillation, we use a combination of
cosine similarity loss Lcos and mean squared error (MSE) loss LMSE

L = λLcos + LMSE =
1

m

m∑
i=1

[
λ

(
1− z⊤i hi

|zi| · |hi|

)
+ |zi − hi|2

]
, (4)

where λ is a hyperparameter to balance the losses1. In Stage 2, we fine-tune the LLM with the
pre-trained speech connector using the next-token prediction objective. We freeze the speech connector
and update only the LLM’s parameters using the negative log-likelihood (NLL) loss:

LNLL = −
m∑
t=1

log p(yt | z<t; θLLM) (5)

where yt is the tth token in the transcription sequence y, z<t denotes all preceding speech representa-
tions, and θLLM represents the LLM’s parameters. Note that our NLL loss is computed using only the
preceding speech representations z<t (see Fig. 3), whereas previous methods (Wu et al., 2023; Tang
et al., 2024) condition on both speech information and preceding text tokens y<t.

We offer detailed descriptions of different aligners and demonstrate the performance of SpeechLM
after distillation training in §4. In §5, we present results after fine-tuning SpeechLM and compare
various fine-tuning strategies to identify the method that minimizes catastrophic forgetting.

4 STAGE 1: ALIGNMENT-AWARE CONNECTOR DISTILLATION

4.1 DATASETS

For distillation training, we use the aligned speech-to-text dataset MLS (Pratap et al., 2020), specifically
the English portion, which consists of about 50,000 hours of speech. To evaluate our SpeechLMs, we
employ several datasets as shown in Table 1. To assess the model’s spoken language understanding
(SLU) capabilities, we follow Nguyen et al. (2024) and use sWUGGY, sBLIMP, and the StoryCloze
dataset. sWUGGY and sBLIMP are detailed in (Nguyen et al., 2020). Briefly, sWUGGY evaluates
whether a model can discriminate between real spoken words and non-words (e.g., “brick” vs. “blick”),
while sBLIMP assesses if the model can distinguish between a grammatically correct spoken sentence
and its ungrammatical variant (e.g., “cats are lazy” vs. “cats is lazy”). We evaluate our SpeechLMs on
both text (T ) and speech (S) versions of sWUGGY and sBLIMP. The StoryCloze dataset measures
whether the model can identify the plausible ending between two sentences given the beginning
of a short story, which typically requires high-level semantic understanding and common sense
(Mostafazadeh et al., 2017). Besides spoken and text versions of StoryCloze, following Nguyen et al.
(2024), we use a speech-text version (S → T ), where the beginning of the story is synthesized into
speech and the two ending sentences are kept in text format. This version requires the model to have
cross-modal understanding to infer the sensible story ending.

MMLU (Hendrycks et al., 2021) is widely used to assess LLMs’ knowledge comprehension, under-
standing, and reasoning abilities, and we use it to measure the extent of forgetting during cross-modal
fine-tuning. Since MMLU is a diverse and high-quality evaluation dataset for LLMs, we craft a variant,
Speech-MMLU, to assess our SpeechLM’s cross-modal understanding. Specifically, we utilized
AUDIOBOX (Vyas et al., 2023), a high-quality text-to-speech synthesizer, to convert the question
portion of each choice task into speech while keeping the multiple-choice answers in text format. We
selected a subset of MMLU to construct our Speech-MMLU dataset, as some domains’ questions are
not suitable for synthesis (e.g., the algebra subset contains many mathematical notations that are
not synthesized properly). sWUGGY, sBLIMP, StoryCloze, and Speech-MMLU are all categorized

1In practice, we set λ = 5 to balance the scales of the cosine similarity and MSE losses
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Eval Dataset Type Eval Metric Eval Format

sWUGGY (Nguyen et al., 2020) Choice Task Accuracy S, T
sBLIMP (Nguyen et al., 2020) Choice Task Accuracy S, T
StoryCloze (Mostafazadeh et al., 2017) Choice Task Accuracy S, T , S → T
MMLU (Hendrycks et al., 2021) Choice Task Accuracy T
Speech-MMLU (Ours) Choice Task Accuracy S → T
LibriSpeech (Panayotov et al., 2015) Generation Task Word Error Rate S → T

Table 1: Evaluation Datasets and their types. For the evaluation format, S is speech-only, T is text-only,
and S → T means the evaluation prompt consists of speech prefix and text continuation.

as ”Choice Task”, meaning several choices are presented to the SpeechLM (Speech-MMLU has
four choices while the other task has only two choices). For each task, we compute accuracy using
groundtruth choice and the highest likelihood choice predicted by the SpeechLM.

Lastly, we also evaluate our SpeechLM’s ASR performance using the Librispeech clean/other datasets.
We evaluate ASR in a prompt-based fashion with zero-shot and five-shot setting. More details about
our evaluation (e.g., prompts for ASR, Speech-MMLU construction, etc.,) can be found in Appendix.

4.2 MODEL SETUP

We instantiate our LLM using the pre-trained LLAMA3 model (Touvron et al., 2023) and employ
DinoSR (Liu et al., 2023a) as our pre-trained speech feature extractor. Our speech connector includes
a linear layer that maps DinoSR’s extracted representations (D = 768) to the LLM’s embedding space
dimension (H = 4096). We then utilize a 4-layer Transformer Decoder to transform and compress the
speech representations based on alignments, as described in §3.1. The compressed representations
z and the embeddings of text tokens h are used to compute the distillation loss for updating the
connector’s parameters. We train our connector for 400,000 steps with a learning rate of 1× 10−5,
using dynamic batching with a maximum of 4,096 tokens per device. We employ distributed data
parallelism (DDP) with 32 A100 GPUs.

To extract alignments, we experimented with different aligners listed in §3.2. For the UnitY aligner2, we
used it off-the-shelf to construct alignment indices. Since the UnitY2 aligner provides alignments based
on character-level tokens, we merge the durations into subword level to ensure that the compressed
representations and text embeddings have the same granularity. For CTC-based aligners, we trained
them using a 4-layer Transformer Decoder followed by a linear projection. In the character-level
variant (CHAR-CTC), we deduplicate the sequence to obtain character-level durations and then merge
them into subword-level durations to segment the speech features, similar to the UnitY2 aligner. In the
subword-level variant (SUB-CTC), we directly use CTC’s blank token to segment the speech input.

4.3 ALIGNER PERFORMANCE COMPARISON

Model Type Cos(%)↑ MSE↓ WER (%) ↓
UNITY2 96.8 0.018 5.6 / 4.0
CHAR-CTC 95.1 0.023 9.7 / 6.5
SUB-CTC 92.2 0.037 16.7 / 14.0
CIF 77.5 0.096 27.6 / 23.7

Table 2: Performance comparison (with Cosine
Similarity, MSE, and 0/5-shot ASR WER) between
different aligners used for Stage 1 training, evalu-
ated on Librispeech clean test set.

To compare the quality of different aligners, we
trained several SSR-CONNECTOR based on dif-
ferent aligners via distillation. We evaluated the
aligners using the Librispeech clean test set by
computing the Cosine Similarity (Cos(%)) and
Mean Squared Error (MSE) between the com-
pressed representations and text embeddings.
Additionally, we performed zero-shot and five-
shot ASR with the learned connector. Note that
we never explicitly trained the model for ASR
tasks, and the base LLM remained frozen during
Stage 1 training. Therefore, the model achieves
low word error rates (WER) only when the distilled speech representations closely resemble the text
embeddings. As shown in Table 2, the UNITY2 aligner brings the speech representations close to
their corresponding text embeddings, achieving very low WER in both zero-shot and five-shot ASR

2 Publicly available at https://github.com/facebookresearch/seamless_
communication/blob/main/docs/m4t/unity2_aligner_README.md
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Figure 4: t-SNE plots of text and speech representations after distillation.

settings. Among textless aligners, we found that CHAR-CTC performs the best, likely because it has a
much smaller vocabulary compared to SUB-CTC, making it easier to learn. Lastly, CIF resulted in
suboptimal performance, possibly due to its less accurate alignment, as its segmentation is predicted
by accumulating scores without exploiting the monotonicity between speech and text.

To visualize the effect of distillation, we present t-SNE plots of the adapted speech representations
and text embeddings in Fig. 4, categorizing them into high and low similarity groups based on the
cosine similarity between CHAR-CTC representations and text embeddings. We observe that longer
subwords tend to exhibit higher similarity, likely because their long segments make it easier for the
connector to convert speech representations into corresponding text embeddings. Furthermore, longer
subwords possess more coherent semantics compared to shorter tokens like ‘wy’ or ‘ia’.

Aligner WBE↓ WDUR

Groundtruth 0 305
UNITY2 33 279
CHAR-CTC 42 230

Other Aligners
CTC+Label Prior 29 288
MMS 37 242
MFA 23 314

Table 3: Alignment quality of aligners.

Given that UNITY2 and CHAR-CTC performs the best,
we also follow Huang et al. (2024) to measure their word
boundary error (WBE) and word average duration (WDUR)
using the TIMIT (Garofolo et al., 1993) data. Though the
aligner quality can be further improved with other methods
such as CTC + Label Prior (Huang et al., 2024), MMS
(Pratap et al., 2023), or MFA (McAuliffe et al., 2017),
CHAR-CTC and UNITY2 still achieve good quality and
we choose them out of simplicity and general availability
(unlike ”CTC+Label Prior”, for example, which requires
customization with library like k23).

4.4 EXPERIMENTAL RESULTS

In the previous section (§3.2), we compared different aligners and found that UNITY2 and CHAR-CTC
performed the best. Consequently, we evaluate SpeechLM using these two aligners. First, we assess
the model on Spoken Language Understanding (SLU) tasks and the MMLU benchmark (Hendrycks
et al., 2021). We compare our model against several generative speech systems, all of which utilize
Transformer-Decoder models trained on speech units. These methods vary in training approaches
(pretrained from scratch or fine-tuned), types of speech units, and the size of training data.

Briefly, GSLM (Lakhotia et al., 2021) trains on speech units like HuBERT, TWIST (Hassid et al.,
2024b) is a textually pretrained speech model based on Llama-13B (Touvron et al., 2023), and
AudioLM (Borsos et al., 2023) employs a cascade system with a semantic sequence model alongside
coarse- and fine-acoustic models. These models focus solely on speech without capabilities for text
understanding or generation. More recently, SPIRITLM (Nguyen et al., 2024) and VoxtLM (Maiti
et al., 2024) have adopted multi-task training objectives that incorporate text-only, speech-only, and
speech-text token sequences to fuse the speech modality into pre-trained LLMs effectively. Since the
original SPIRITLM is fine-tuned based on LLAMA2, we follow the same recipe to fine-tune the
LLAMA3-based SPIRITLM ourself for a fair comparison on text relevant metrics like MMLU.

3https://github.com/k2-fsa/k2
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Model Type sWUGGY sBLIMP Storycloze MMLU

T S T S T S S→T 5-shot

Previous Work
GSLM♢ (Lakhotia et al., 2021) ∅ 64.8 ∅ 54.2 ∅ 53.3 ∅ ∅
AUDIOLM♢ (Borsos et al., 2023) ∅ 71.5 ∅ 64.7 ∅ ∅ ∅
VOXTLM♢ (Maiti et al., 2024) 80.3 66.1 74.2 57.1
TWIST♢ (Hassid et al., 2024b) ∅ 74.5 ∅ 59.2 ∅ 55.4 ∅ ∅
MOSHI♣ (Défossez et al., 2024) ∅ 72.6 ∅ 58.8 ∅ 60.8 49.8
SPIRITLM♢ (Nguyen et al., 2024) 80.3 69 73.3 58.3 79.4 61 64.6 36.9
SPIRITLM (LLAMA3)♠ 77.6 73.5 74.5 56.3 75.1 61.1 61.6 53.5

SSR-CONNECTOR
UNITY2 + Blockwise-mask 81 71.5 74.5 73.1 80.9 71.8 75 65.3
UNITY2 81 71.2 74.5 72.4 80.9 69.3 74.8 65.3
CHAR-CTC 81 56.4 74.5 67.3 80.9 62.2 74.3 65.3
CHAR-CTC (Unit-based) 81 54.1 74.5 61.8 80.9 59.2 72.5 65.3

Cascade System
ASR (WHIPSER) + LLAMA2 ♢ 84.1 79.2 72.8 71.6 81.9 75.7 75.7 46.2

Table 4: Model performance on spoken language understanding and MMLU. ♢: Results taken
from Nguyen et al. (2024).♣: Results taken from Défossez et al. (2024). ♠: Our implementation of
SPIRITLM based on LLAMA3 checkpoint. We fill with ∅ the task and modality that are not supported
by the reported system, and with the scores that are not publicly available. We bold the best result
and highlight the second-best system with the blue color box (excluding the cascaded system).

Spoken Language Understanding Performance As shown in Table 4, our systems outperform
previous models on all tasks except sWUGGY. The sWUGGY dataset includes incorrectly spoken
words that cause segmentation errors because these words were not present during aligner training,
leading to our system’s lower performance on this dataset. However, sWUGGY is the least significant
task since it relies on synthesized incorrect words and does not require the model’s understanding or
reasoning capabilities. In contrast, both UNITY2 and CHAR-CTC based connector greatly surpass
previous models on other datasets, demonstrating the effectiveness of SSR-CONNECTOR in enhancing
SLU performance while preserving model’s text understanding ability.

Beyond UNITY2 and CHAR-CTC, we introduce two additional systems for ablation. The UNITY2 +
Blockwise-mask system achieves the highest performance by applying a blockwise attention mask
to further constrain the Transformer-Decoder (described in §3.1). However, due to its marginal
improvement over UNITY2 and increased computational cost, we decide to simplify the design and
remove the blockwise-attention masks. The CHAR-CTC (Unit-based) system differs by utilizing
discrete speech units instead of raw waveform features processed by the DinoSR (Liu et al., 2023a)
encoder. These units are extracted via K-Means clustering on DinoSR representations, which leads
to some information loss during discretization and reconstruction, resulting in lower performance
compared to CHAR-CTC. Nonetheless, CHAR-CTC (Unit-based) demonstrates that our alignment-
aware connector design is compatible with both continuous waveforms and discrete speech units.

Speech-MMLU and Prompt-based ASR Performance In addition to SLU tasks, we evaluate our
systems on the Speech-MMLU benchmark, which assesses cross-modal understanding and is more
challenging than previous SLU tasks. We also conduct prompt-based ASR evaluations to assess the
quality of the adapted features. As shown in Table 5, our systems greatly outperform the previous
SpeechLM (SPIRITLM), achieving a +20 accuracy improvement on the Speech-MMLU dataset4.
These results indicate that SpeechLM based on SSR-CONNECTOR possesses enhanced cross-modal
abilities that enable it to comprehend spoken questions and reason through multiple-choice options to
select correct answers. Similarly, our systems achieve much lower WERs on both the Librispeech
clean and other test sets compared to SPIRITLM. Notably, neither SPIRITLM nor our system were
trained on ASR tasks, so the model relies solely on in-context learning to generate transcriptions.
Even our weakest system (CHAR-CTC (Unit-based)) can outperform SPIRITLM ’s 10-shot result.

4 We report micro-average across 22 domains and the detailed breakdown is available in Appendix C.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Model Type Speech MMLU ↑ ASR Clean Test ↓ ASR Other Test ↓
0-shot 5-shot 0-shot 5-shot 0-shot 5-shot

SPIRITLM (Nguyen et al., 2024) N/A N/A N/A 21.9∗ N/A 29.2∗

SPIRITLM (LLAMA3) 40.5 42.75 N/A 21.0∗ N/A 28.5∗

SSR-CONNECTOR
UNITY2 + Blockwise-mask 65.0 69.5 5.0 2.6 8.1 6.8
UNITY2 64.2 68.6 5.6 4.0 12.1 10.6
CHAR-CTC 61.7 66.5 9.7 6.5 20.2 14.9
CHAR-CTC (Unit-based) 57.4 62.3 12.6 8.8 25.6 18.6

Table 5: Comparison of Speech-MMLU and ASR performance. Speech-MMLU results are micro-
averages across all domains. ∗: For SPIRITLM, We report WER using 10-shot prompting, following
Nguyen et al. (2024). N/A: We did not evaluate SPIRITLM in those settings.

5 STAGE 2: SPEECH LANGUAGE MODEL FINE-TUNING

In Stage 1 (§4), we freeze the pre-trained LLM and distill its text embeddings into our alignment-aware
connector. In this section, we fine-tune SpeechLM by freezing the connector and updating the LLM.
This process enhances the model’s spoken language understanding (SLU) performance by fitting
SpeechLM on the aligned speech-text data, albeit at the expense of degrading its pre-trained text
capabilities. In the following sections, we compare various methods to mitigate catastrophic forgetting
and demonstrate their trade-offs between speech and text understanding.

5.1 MITIGATE CATASTROPHIC FORGETTING

Model and Dataset Setup We fine-tune SpeechLM using the next-token prediction objective
described in §3.3. In this stage, we freeze the connector distilled in Stage 1 and unfreeze the LLM
(LLAMA3) parameters. Following Stage 1 (§4), we use the MLS dataset for training and evaluate the
model on the same speech and text understanding tasks. Beyond vanilla fine-tuning, we also explore
Low-rank Adaptation (Hu et al., 2021, LoRA) and multitask fine-tuning as they have been shown
effective for mitigating catastrophic forgetting in other tasks (Xue et al., 2021; Vu et al., 2022). Details
of our fine-tuning setup are shown below:

• Vanilla Fine-tuning: We perform full fine-tuning on the aligned speech-text data with a learning
rate of 1× 10−6 and a maximum token size of 4096. Training is model-parallelized across 32 A100
GPUs using Fully Sharded Data Parallel (Zhao et al., 2023, FSDP).

• LoRA Fine-tuning: We leverage the low-rank constraints from as regularization to prevent model
overfitting in MLS dataset. We configure LoRA layers with α = 512, r = 256, and a dropout
probability of 0.1.

• Multitask Fine-tuning: To preserve the LLM’s pre-trained text capabilities, we also fine-tune
SpeechLM on text-only data using the standard Negative Log-Likelihood (NLL) loss. The dataloader
is configured to sample from both speech-text and text-only datasets with equal probability. We
continue using the MLS dataset for speech-text training and utilize a subset of the LLAMA2 training
datasets (Touvron et al., 2023) for text-only training.

Model Type sWUGGY sBLIMP Storycloze MMLU

T S T S T S S→T 5-shot

CHAR-CTC 81 56.4 74.5 67.3 80.9 62.2 74.3 65.3

+ Vanilla Fine-tuning 82.5 56.6 75.8 68.8 75.2 62.8 71 57.4
+ LoRA Fine-tuning 82.4 56.5 75.8 68.7 76.3 62.6 71.5 58.2
+ Multitask Fine-tuning 82.9 56.7 75.9 68.9 81 63.4 73.1 63.1

Table 6: Comparison of different Stage 2 fine-tuning methods (reported after fine-tuned for 5k updates).
Multitask fine-tuning obtains the best improvement on SLU tasks while achieving least catastrophic
forgetting. We bold the best performance and use blue color box for the second-best result.
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Figure 5: Comparison of different fine-tuning methods on StoryCloze (S) and MMLU benchmark.

Model Type Speech MMLU↑ ASR Clean Test ↓ ASR Other Test ↓
0-shot 5-shot 0-shot 5-shot 0-shot 5-shot

SPIRITLM (LLAMA3) 40.5 42.75 N/A 21.0∗ N/A 28.5∗

CHAR-CTC 61.7 66.5 9.7 6.5 20.2 14.9
+ Multitask Fine-tuning 48.1 56.3 N/A 5.7 N/A 13.1

Table 7: Speech-MMLU and ASR performance of different models. ∗: For SPIRITLM, We report
WER using 10-shot prompting for ASR, following Nguyen et al. (2024). N/A: The 0-shot generation
of our fine-tuned SpeechLM tends to have hallucinations (keep generating after completing the
transcription) so we only report its 5-shot performance.

5.2 COMPARISON OF FINE-TUNING METHODS

In Fig. 5, we compare different fine-tuning methods on StoryCloze (S) and MMLU. StoryCloze
performance is indicative of how well model is fitted to the speech modality and MMLU measures the
degree of catastrophic forgetting in pre-trained text abilities. We observe that Vanilla Fine-tuning
quickly overfits to the speech domain, achieving improved performance on StoryCloze but drastically
decreasing MMLU accuracy. In contrast, LoRA Fine-tuning introduces strong regularization, resulting
in limited improvements in speech understanding. Although LoRA mitigates catastrophic forgetting to
some extent compared to vanilla fine-tuning, performance still steadily declines. Multitask fine-tuning
emerges as the most promising approach, enhancing speech understanding while largely mitigating
catastrophic forgetting, evidenced by the modest 2-point drop in MMLU.

Since model performance does not further improve with additional training steps (as shown in Fig. 5),
we utilize the checkpoint trained for 5,000 updates to compare with baseline models. The results are
presented in Table 6 and Table 7. Note that even with only 5,000 updates, the model has observed
all speech-text data due to our large effective batch size. Across SLU, MMLU, and ASR tasks,
the fine-tuned SpeechLM outperforms baseline methods on tasks primarily relying on speech-only
information (sWUGGY, sBLIMP, ASR), with multitask fine-tuning achieving the best performance
among all fine-tuning methods. However, we also observe a decline in performance on S → T tasks
such as Speech-MMLU and StoryCloze, indicating that there is still unavoidable degradation of
text capabilities which adversely affects SpeechLM’s cross-modal performance.

Overall, Stage 2 fine-tuning experiments highlight a trade-off between enhanced speech understanding
and degraded text abilities when unfreezing pre-trained LLM weights. Though such forgetting
phenomenon is unavoidable, our two-stage training pipeline has largely preserved SpeechLM’s text
ability and our experimental results underscore the importance of incorporating high-quality text data
during cross-modal fine-tuning to balance performance across both modalities.

6 CONCLUSION

We propose SSR-CONNECTOR to inject speech representation into pre-trained LLMs. Through
explicitly leveraging speech-text alignment, our connector compresses long and sparse speech
information to the same granularity as text tokens. To mitigate catastrophic forgetting, we propose a
two-stage training pipeline for modality fusion. Compared to previous baselines, our SpeechLM
achieves much better speech understanding ability while retaining its pre-trained text ability.
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SUPPLEMENTARY MATERIAL

A DATASETS

As described in §4.1, we employ sWUGGY, sBLIMP, StoryCloze, MMLU, Speech-MMLU and
Librispeech datasets to assess model performance. In this section, we provide more examples for each
evaluation set. sWUGGY and sBLIMP are simple tasks where two choices can be directly compared.
As shown in Table 8, sWUGGY provides two choices that requires models to discriminate real words
from non-words. sBLIMP assesses whether model can distinguish between a grammatically correct
sentence and its ungramatical variant. MMLU and StoryCloze, on the other hand, have a prefix and
choices. The StoryCloze dataset measures whether the model can identify the logical ending between
two sentences given the beginning of a short story. Since StoryCloze has a shared prefix, we can
synthesize only the prefix part into speech and keep choices in text format, resulting in our S → T
format evaluation that assess model’s cross-modal understanding. Similarly, for MMLU, we also
synthesize its prefix (the question portion) into speech and keep the choices in text format, resulting in
our Speech-MMLU dataset. Since some topics have bad audio synthesis quality (e.g., the algebra
subset contains many mathematical notations), we only keep 22 topics in our test suite (Table 9).

Name Prefix Choices

sWUGGY N/A {Good=obsolete, Bad=odsolete}

sBLIMP N/A {Good=Walter was harming himself,
Bad=Walter was harming itself}

StoryCloze I had been giving this homeless man
change every day. He was on the same
corner near my house. One day, as I was
driving through my neighborhood I saw
a new car. Soon enough, I saw the same
homeless man emerge from it!

{Good=I never gave the man money
again. Bad=The next day I gave the man
twenty dollars.}

MMLU During the period when life is believed to
have begun, the atmosphere on primitive
Earth contained abundant amounts of all
the following gases except

{”A”: ”oxygen”, ”B”: ”hydrogen”, ”C”:
”ammonia”, ”D”: ”methane”}

Table 8: Examples of different evaluation datasets.
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B EVALUATION METRIC AND PROMPT

Choice tasks (sWUGGY, sBLIMP, StoryCloze, MMLU, Speech-MMLU) are evaluated by comparing
perplexity of different choices. The choice with smallest perplexity is selected as the prediction and
we measure accuracy across different benchmarks.

For generation task (prompt-based ASR), we use the prompt below, with pairs of speech and transcrip-
tion is provided to the SpeechLM. For 0-shot evaluation, we do not include any examplers.

Prompt

Given the speech, provide its transcription.
[speech]: {demo speech}
[text]: {demo transcription}
...
[speech]: {speech to transcribe}
[text]:

C SPEECH MMLU EVALUATION

We present the detailed comparison results in Table 9 for better comparison of model performance
across different domains / topics. We see that the trend for different domains are mostly consistent,
with our alignment-aware connector based on UNITY2 achieving the best performance, followed
by CHAR-CTC based connector. Similar as our main findings, the unit-based system has worse
performance due to information loss from discretization and the fine-tuned model suffers from
catastrophic forgetting (albeit mitigated through our multitask fine-tuning approach). Nevertheless,
all these SSR-CONNECTOR based system obtains better performance compared to SPIRITLM
(LLAMA3), confirming the effectiveness of our modality-fusion strategy.

Topic SPIRITLM UNITY2 + Mask UNITY2 CHAR-CTC Unit-based Fine-tuned

0-shot 5-shot 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot

Astronomy 45.6 40.8 60.0 66.0 60.7 65.3 57.0 60.4 49.7 61.1 50.7 52.0
Business Ethics 37.1 40.2 52.0 60.0 53.0 62.0 56.0 59.0 52.0 55.0 37.0 51.0
Clinical Knowledge 36.0 39.8 60.6 63.3 61.0 62.9 61.2 62.7 57.8 57.4 47.3 53.8
College Biology 36.4 33.6 65.0 69.9 62.9 68.5 57.7 59.9 54.2 57.7 40.6 44.1
Electrical Engineering 37.7 44.2 52.5 57.4 52.5 53.9 48.2 58.9 44.7 48.2 53.2 54.6
High School Biology 40.8 41.2 66.0 72.2 67.6 72.2 63.3 68.2 57.1 65.6 50.5 62.5
High School Gov. Pol. 44.4 43.4 79.2 84.9 78.1 83.3 76.6 81.8 71.4 73.4 54.7 64.1
International Law 55.9 58.5 71.1 81.0 71.1 81.0 71.1 80.2 71.1 75.2 66.1 71.1
Jurisprudence 37.1 36.2 60.2 68.5 62.0 70.4 57.4 63.9 54.6 60.2 51.9 57.4
Machine Learning 39.3 32.1 45.8 59.3 50.8 59.3 45.8 61.0 44.1 57.6 39.0 55.9
Management 43.0 42.0 79.6 84.5 77.7 75.7 73.8 74.8 68.0 70.9 45.6 65.0
Marketing 39.8 49.8 77.8 85.0 76.1 81.6 76.9 81.6 74.4 76.9 51.3 67.1
Miscellaneous 38.5 36.4 69.2 71.5 66.6 70.1 60.3 64.6 52.3 57.5 42.7 50.3
Moral Disputes 39.1 42.3 59.5 66.5 59.5 67.3 56.4 62.7 52.9 62.1 43.6 52.9
Nutrition 45.0 47.3 68.4 69.1 66.1 66.8 65.5 62.8 64.5 59.8 52.8 58.5
Philosophy 37.5 37.2 58.3 64.5 59.0 62.5 55.9 64.1 54.6 59.5 44.0 53.1
Prehistory 38.9 43.3 62.0 66.4 61.1 64.5 61.2 64.3 55.0 57.5 49.1 55.2
Security Studies 43.8 54.8 63.8 67.8 61.7 67.8 68.1 76.9 59.3 69.2 51.0 59.7
Sociology 37.4 45.5 71.6 74.6 68.7 74.6 69.7 73.6 68.2 72.1 57.7 66.2
US Foreign Policy 56.7 60.8 80.0 80.0 78.0 85.0 75.8 81.8 75.8 83.8 61.0 76.0
Virology 40.1 46.3 47.9 49.1 49.1 53.9 47.9 49.7 46.1 51.5 46.7 44.8
World Religions 39.3 46.4 66.1 67.8 63.2 63.7 52.0 59.1 51.5 60.8 40.9 50.3
Micro Average 40.5 42.7 65.0 69.5 64.2 68.6 61.7 66.5 58.1 63.3 49.0 57.5

Table 9: Detailed Speech-MMLU evaluation results on different domains.
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