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Abstract. Abdominal organ and tumour segmentation has many im-
portant clinical applications, such as organ quantification, surgical plan-
ning, and disease diagnosis. However, manual assessment is inherently
subjective with considerable inter- and intra-expert variability. In the
paper, we propose a hybrid supervised framework, StMt, that integrates
self-training and mean teacher for the segmentation of abdominal organs
and tumors using partially labeled and unlabeled data. We introduce
a two-stage segmentation pipeline and whole-volume-based input strat-
egy to maximize segmentation accuracy while meeting the requirements
of inference time and GPU memory usage. Experiments on the testing
set of FLARE2023 demonstrate that our method achieves excellent seg-
mentation performance as well as fast and low-resource model inference.
Our method achieved an average DSC score of 90.48% and 50.00% for
the organs and lesions on the testing set and the average running time
and area under GPU memory-time cure are 11.1 seconds and 8979 MB,
respectively.

Keywords: Abdominal organ segmentation · Pan-cancer segmentation
· Self-training · Mean teacher.

1 Introduction

Abdomen organs are quite common cancer sites, such as colorectal cancer and
pancreatic cancer, which are the 2nd and 3rd most common cause of cancer
death [22]. Computed Tomography (CT) scanning provides important prognos-
tic information for cancer patients and is a widely used technology for treatment
monitoring. In both clinical trials and daily clinical practice, radiologists and
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clinicians measure the tumor and organ on CT scans based on manual two-
dimensional measurements (e.g., Response Evaluation Criteria In Solid Tumors
(RECIST) criteria) [5]. However, this manual assessment is inherently subjective
with considerable inter- and intra-expert variability. Moreover, existing chal-
lenges mainly focus on one type of tumor (e.g., liver cancer, kidney cancer).
There are still no general and publicly available models for universal abdominal
organ and cancer segmentation at present.

The organizer of FLARE2022 curated a large-scale and diverse abdomen CT
dataset, including 4000+ 3D CT scans from 30+ medical centers where 2200
cases have partial labels and 1800 cases are unlabeled. The challenge task is
to segment 13 organs (liver, spleen, pancreas, right kidney, left kidney, stomach,
gallbladder, esophagus, aorta, inferior vena cava, right adrenal gland, left adrenal
gland, and duodenum) and one tumor class with all kinds of cancer types (such
as liver cancer, kidney cancer, stomach cancer, pancreas cancer, colon cancer) in
abdominal CT scans. Typically, semi-supervised segmentation (SSS) can be em-
ployed to resolve this issue. SSS aims to explore tremendous unlabeled data with
supervision from limited labeled data. Recently, self-training methods [26,17]
have dominated this field. Furthermore, methods employing consistency regu-
larization strategies [26,3,19] improve the generalization ability by encouraging
high similarity in predictions from two perturbed networks for the same input
image.

In this challenge, due to the fact that the annotation data only includes anno-
tations for partial organs or tumors, traditional SSS methods struggle to achieve
excellent segmentation results. The key to developing segmentation algorithms
lies in fully leveraging the semantic representation in partially labeled data and
extending it to unlabeled cases to enhance the algorithm’s generalization. Seg-
mentation of multiple organs and tumors is a generally recognized difficulty in
medical image analysis [28], particularly when there is no large-scale fully labeled
datasets. To address this issue, [6,21] formulate the partially labeled issue as a
multi-class segmentation task and treat unlabeled organs as the background,
which may be misleading since the organ unlabeled in this dataset is indeed the
foreground on another task. Moreover, most of these methods adopt the multi-
head architecture, which is composed of a shared backbone network and multiple
segmentation heads for different tasks. Each head is either a decoder [2] or the
last segmentation layer [21]. In the paper, we propose a hybrid supervised frame-
work, StMt, that integrates self-training and mean teacher for the segmentation
of abdominal organs and tumors using partially labeled and unlabeled data.
We introduce a two-stage segmentation pipeline and whole-volume-based input
strategy to maximize segmentation accuracy while meeting the requirements of
inference time and GPU memory usage.

2 Method

We conducted an analysis of the distribution of labels in the labeled data, as
depicted in Figure 1. We define datasets that include labels for all 13 organs
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Fig. 1. The statistics and utilization of partial=labeled data and unlabeled data.

as ‘fully organ labeled cases’. Those without any organ annotations are termed
‘non-organ labeled data’, and data with annotations for some but not all of the
13 organs are referred to as ‘partially labeled organ Data’. Similarly, the data is
categorized based on the presence or absence of tumors into two distinct groups:
‘Tumor-Annotated Data’ and ‘Non-Tumor-Annotated Data’. Specifically focus-
ing on abdominal organs, we found that out of a total of 219 cases, all 13 organs
were fully annotated. Moreover, there were 1093 cases with partial annotations,
indicating that only specific organ categories were annotated. The remaining
888 cases had no annotations. For tumors, 1497 cases have annotations, and the
remaining 703 cases do not. It is worth noting that within the annotated cases,
there may still be unlabeled regions that potentially contain tumors. We intro-
duce a two-stage segmentation pipeline [14] to maximize segmentation accuracy
while meeting the requirements of inference time and GPU memory usage, in
where the first-stage aims to obtain the rough location of the abdomen and
the second-stage achieves precise segmentation of abdominal organs and tumour
based on the first-stage location. Considering the uncertainty in the distribu-
tion of tumors, we divided second-stage segmentation task into two subtasks:
semi-supervision organ segmentation and tumor segmentation. The method is
described in detail in the following subsections.

2.1 Preprocessing

The preprocessing strategy for input data in the two-stage segmentation frame-
work is as follows:

– Resampling images to uniform sizes. We use small-scale images as the input
of the two-stage segmentation to improve the segmentation efficiency. First-
stage input: [128, 128, 128]; Second-stage input: [192, 192, 192].

– We uses the 0.5 and 99.5 percentiles of the foreground voxels for clipping
as well as the global foreground mean and s.d. for the normalization of all
images [12].

– In training phase, considering that the purpose of first-stage segmentation
is to roughly extract the locations of abdomen, we set the voxels whose in-
tensity values are greater than 1 in the resampled ground truth to 1, which
converts the multi-classification abdominal organ and tumour segmentation
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Fig. 2. (a) Self-training with partially annotated data and unlabeled data. (b) Tumor
segmentation based on Mean Teacher with hybrid supervision. (c) Two-stage inference
pipeline for abdominal organ and tumor segmentation.

into a simple two-classification integrated abdomen segmentation. Further-
more, we set the label of tumors in the input data for the second-stage
organ segmentation as 0, while setting the label of organs in the input data
for tumor segmentation as 0.

2.2 Proposed Method

We follow self-training to segment abdominal organs in both the first and sec-
ond stages: 1) train a teacher using fully annotated abdominal organ data, 2)
generate pseudo-labels for partial labeled and unlabeled data, 3) train a stu-
dent using both labeled data and pseudo-labeled data. In order to obtain high-
accuracy pseudo-labels, PHTrans [13], a hybrid network consisting of CNN and
Swin Transformer, replaces U-Net as the network within the nnU-Net framework
for training the teacher and generating generate precise pseudo labels for partial
labeled data and unlabeled data. The student model employ a smaller Res-UNet
to reduce memory consumption and utilizes a whole-volume-based input strat-
egy to improve inference efficiency. As shown in the Figure 2 (a), in step 2), we
use partial annotations to correct pseudo-labels. Specifically, we calculate the
category set A of organ annotations in the partial labels. We set the voxels in
the pseudo-labels with values belonging to set A to 0. Finally, we assign the same
label to the pseudo-labels based on the position indices of the annotated voxels
in the partial labels. As a result, we obtained three types of labeled data: fully
labeled cases, corrected pseudo-labeled (CPL) cases, and pseudo-labeled (PL)
cases. We fed them into the student model, where the input batch for model
training consisted of these three types of data in equal proportions. We calcu-
lated the loss function for each of these three types of data separately. Finally,
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the training objective Lo of organ segmentation is formulated as

Lo = Lol + λ1Lcpl + λ2Lpl (1)

where, λ1 and λ2 are the weight of loss components Lcpl and Lpl.
The tumor segmentation task cannot follow traditional SSS settings due to

the possibility of tumors being unannotated in partial labels. Pan-cancer Seg-
mentation of the abdomen includes various types such as liver cancer and kidney
cancer. Each annotated case only contains some types of tumors, and there may
be unannotated tumors. As shown in the Figure 2 (b), we follow the idea of
model weight aggregation in the mean teacher approach. The teacher model
utilizes Exponential Moving Average (EMA) on the student model to update
itself, aggregating all the previously learned representation information. Thanks
to the updating mechanism of the teacher model, the model can explore the
semantic representation of potential unannotated tumors. Therefore, in each
training iteration, we use the predictions generated by the teacher model as
pseudo-labels to provide additional supervision information. Specifically, similar
to the pseudo-labels for organ segmentation, we make real-time corrections to the
pseudo-labels. The training objective Lt of tumour segmentation is formulated
as

Lt = Ltl + λLcpl (2)

where, λ is the weight of loss components Lcpl.
Similarly, both the teacher and the student for tumor segmentation employ a

smaller Res-UNet and a whole-volume-based input strategy to improve inference
efficiency. Due to the poor performance of the tumor segmentation model trained
using labeled data, unlabeled images were not used. The objective of each model
training is to minimize the composite loss function, which is a combination of dice
loss and cross-entropy loss. Moreover, We not used the pseudo labels generated
by the FLARE22 winning algorithm [11] and the best-accuracy-algorithm [24].
As shown in the Figure 2 (c), in inference phase, the segmentation model of
first-stage obtain the rough location of the abdomen from the whole CT volume.
The second-stage achieves precise segmentation of abdominal organs and tu-
mour based on cropped ROIs from the first-stage segmentation result. Then, the
results of abdominal organ segmentation and tumor segmentation are merged,
i.e., overlaying the segmented tumor onto the organ segmentation results. Fi-
nally, the result is restored to the size of the original data by resampling and
zero padding.

2.3 Post-processing

Connected component-based post-processing is commonly used in medical image
segmentation. Especially in organ image segmentation, it often helps to eliminate
the detection of spurious false positives by removing all but the largest connected
component. We applied it to the output of the second-stage organ segmentation.
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3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [16][17],
aiming to aim to promote the development of foundation models in abdomi-
nal disease analysis. The segmentation targets cover 13 organs and various ab-
dominal lesions. The training dataset is curated from more than 30 medical
centers under the license permission, including TCIA [4], LiTS [1], MSD [23],
KiTS [9,10], autoPET [8,7], TotalSegmentator [25], and AbdomenCT-1K [18].
The training set includes 4000 abdomen CT scans where 2200 CT scans with
partial labels and 1800 CT scans without labels. The validation and testing sets
include 100 and 400 CT scans, respectively, which cover various abdominal can-
cer types, such as liver cancer, kidney cancer, pancreas cancer, colon cancer,
gastric cancer, and so on. The organ annotation process used ITK-SNAP [27],
nnU-Net [12], and MedSAM [15].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

The training and inference of the teacher model in self-training utilize the de-
fault configuration of nnU-Net. For organ segmentation, the loss weights λ1 and
λ2 for the student model are set as 1 and 0.5, respectively. The loss weight λ
for correcting pseudo labels in tumor segmentation is set to 1. To achieve model
lightweight, the base number of channels of Res-UNet is set to 16 and the num-
ber of up-sampling and down-sampling is 5. The development environments and
requirements are presented in Table 1. The training protocols for first-stage and
second-stage segmentation are presented in Table 2. To alleviate the over-fitting
of limited training data, we employed online data argumentation, including ran-
dom rotation, scaling, adding white Gaussian noise, Gaussian blurring, adjusting
rightness and contrast, simulation of low resolution, Gamma transformation, and
elastic deformation.

4 Results and discussion

4.1 Quantitative results on validation set.

We used the default nnU-Net with full supervision to train on 2200 labeled data
as the baseline. We conducted the following experiments: 1) two-stage segmen-
tation experiments using the Fully Supervised method on 219 full Organs la-
beled data (FSO); 2) two-stage segmentation experiments using the self-training



Two-Stage Hybrid Supervision Framework 7

Table 1. Development environments and requirements.

System Ubuntu 20.04.3 LTS
CPU AMD EPYC 7742 64-Core Processor
RAM 94 GB; 2933 MT/s
GPU (number and type) One NVIDIA A100 80G
CUDA version 11.6
Programming language Python 3.10.11
Deep learning framework Pytorch (Torch 2.0.0, torchvision 0.15.0)
Specific dependencies nnU-Net

Table 2. The training protocols of two-stage segmentation framework.

Model first-stage model / organ seg model / tumour seg model
Batch size 2 / 3 / 2
Patch size 128×128×128 / 192×192×192 / 192×192×192
Total epochs 500
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule Poly LR
Training time (hours) 17.28 / 47.88/ 31
Number of model parameters 45.87 M4

Number of flops 372.55 / 1886.03/ 1257.35G5

CO2eq 1.40 / 7.27 / 5.00 kg6

Table 3. Ablation studies. (FSO: two-stage segmentation experiments using the Fully
Supervised method on 219 full Organs labeled data; FST: two-stage segmentation ex-
periments using the Fully Supervised method on 1497 Tumor labeled data.)

Methods Organ Tumour
DSC(%) NSD(%) DSC(%) NSD(%)

nnU-Net 38.76 40.32 46.8 35.47
FSO 87.86 94.27 — —
Self-training with part label 89.1 95.58 — —
Self-training with part label and unlabel 89.6 96.19 — —
FST — — 46.69 39.02
Mean teacher — — 52.08 42.82
StMt 89.6 96.19 52.08 42.82
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method on 219 full organs labeled data and 1093 partial labeled data; 3) two-
stage segmentation experiments introducing 888 + 1800 unlabeled data based on
experiment 2); 4) two-stage segmentation experiments using the Fully Supervised
method on 1497 Tumor labeled data (FST); 5) two-stage segmentation exper-
iments using mean teacher and pseudo-label supervision based on experiment
4); 6) hybird supervision of Self-training and Mean teacher for organ-tumor
segmentation (StMt), which is the combination of experiments 3) and 5).

Table 3 shows that the average organ DSC on the validation set of nnU-
Net is only 38.76%. The reason for this result is that when training partial
labeled data in a fully supervised manner, the unlabeled organs are considered as
background, which can lead to ambiguity during training optimization and result
in lower performance. With FSO training using only full organ labeled data,
the DSC for organs is 87.86%. By introducing pseudo-label data from partial
labeled data through self-training, the DSC improves to 89.1%. Furthermore,
with the additional introduction of pseudo-labels from unlabeled data, the DSC
further increases to 89.6%. The NSD exhibits a similar changing trend. These
results fully demonstrate that both partial label and unlabeled data are beneficial
for performance improvement. Using Mean teacher for tumor segmentation has
shown improvements of 5.39% in DSC and 3.8% in NSD compared to FST.
StMt integrates self-training and mean teacher to achieve the best segmentation
results. Table 4 presents detailed results for StMt in terms of public Validation,
online validation, and test submission.

Table 4. Quantitative evaluation results.

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 97.41 ± 0.60 99.32 ± 0.51 97.40 99.21 96.33 97.94
Right Kidney 94.18 ± 6.14 95.74 ± 8.13 93.78 95.51 93.60 94.62
Spleen 95.29 ± 1.93 97.94 ± 2.99 95.78 98.45 95.37 98.04
Pancreas 85.95 ± 5.22 97.50 ± 3.71 85.42 97.01 89.05 98.15
Aorta 94.87 ± 0.97 99.09 ± 1.13 94.77 98.91 95.31 99.68
Inferior vena cava 92.81 ± 2.09 97.38 ± 2.14 92.86 97.35 93.21 98.05
Right adrenal gland 82.76 ± 5.03 96.98 ± 2.47 81.67 96.50 81.19 95.21
Left adrenal gland 81.54 ± 5.14 96.26 ± 3.37 80.91 95.31 81.36 94.38
Gallbladder 87.12 ± 18.85 89.15 ± 19.90 89.92 91.40 87.26 90.44
Esophagus 92.39 ± 14.93 93.29 ± 14.72 83.56 94.76 89.53 98.89
Stomach 93.40 ± 5.11 97.49 ± 5.68 93.98 98.03 94.53 98.10
Duodenum 83.60 ± 6.68 95.69 ± 4.75 84.72 96.27 88.40 97.87
Left kidney 93.49 ± 6.24 94.68 ± 8.91 92.55 94.40 92.26 93.97
Tumor 52.08 ± 34.09 42.82 ± 28.69 45.55 37.82 50.00 38.32
Average 86.92 ± 8.07 92.38± 7.65 86.63 92.21 87.59 92.35
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4.2 Qualitative results on validation set

We visualize the segmentation results of the validation set. The representative
samples in Figure 3 demonstrate the success of identifying organ details by StMt,
which is the closest to the ground truth compared to other methods due to retain-
ing most of the spatial information of abdominal organs and tumour. In particu-
lar, it outperforms FSO significantly by leveraging partial labeled and unlabeled
data with self-training, which enhances the generalization of the segmentation
model. Compared to FST, mean Teacher achieves more complete tumor segmen-
tation. Furthermore, we show representative examples of poor segmentation. The
third row demonstrates that none of the methods were able to segment the tu-
mor (atrovirens region) in the lower abdomen. Due to the fact that the 13 organ
classes in the Flare2023 dataset are primarily focused on the upper abdomen,
it is difficult to accurately locate the approximate position of the abdominal
area containing the tumor in the first stage by relying solely on the tumor. The
fourth row shows another case where none of the methods accurately detected
the spleen (blue region).

Image Ground Truth StMtFSTFSO
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Fig. 3. Visualization of segmentation results of abdominal organs and tumour.
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4.3 Segmentation efficiency results on validation set

In the official segmentation efficiency evaluation, the average inference time of
100 cases in the validation set is 11.25 s, the average maximum GPU memory
is 3519.06 MB, and the area under the GPU memory-time curve is 9627.82MB.
Thanks to the two-stage framework and the whole-volume-based input strategy,
the inference time for each test case is within 15 seconds. Additionally, the small
Res-UNet and input size ensure that the GPU memory usage remains below
4GB. The detailed quantitative results of the segmentation efficiency for some
cases are shown in Table 5.

Table 5. Quantitative evaluation of segmentation efficiency in terms of the run-
ning them and GPU memory consumption. Total GPU denotes the area under GPU
Memory-Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G).

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 11.76 3220 10849
0051 (512, 512, 100) 10.2 3044 8833
0017 (512, 512, 150) 10.62 3200 9204
0019 (512, 512, 215) 11.14 3800 9557
0099 (512, 512, 334) 11.92 3800 9941
0063 (512, 512, 448) 13.51 3582 10614
0048 (512, 512, 499) 13.85 3800 10724
0029 (512, 512, 554) 14.6 3800 11134

4.4 Results on final testing set

In the testing set, the StMt model achieved average DSC scores of 90.48% for
organs and 50.00% for lesions, along with NSD scores averaging 96.51% for
organs and 38.32% for lesions. Additionally, the average running time was 11.1
seconds, and the area under the GPU memory-time curve was 8979 MB.

4.5 Limitation and future work

Due to the limited time available for participating in the challenge, our work
still has many shortcomings. For example, the segmentation performance of tu-
mors is poor, partly due to the fact that the tumor in the lower abdomen was
not successfully segmented in the first stage. It is possible to try performing
tumor segmentation independently in the first stage and then integrating the re-
sults with organ segmentation, similar to the second stage. Furthermore, select-
ing high-quality pseudo-labeled data may contribute to improving segmentation
performance, and it is worth a try.
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5 Conclusion

In the paper, we propose a hybrid supervised framework, StMt, that integrates
self-training and mean teacher for the segmentation of abdominal organs and
tumors using partially labeled and unlabeled data. We introduce a two-stage
segmentation pipeline and whole-volume-based input strategy to maximize seg-
mentation accuracy while meeting the requirements of inference time and GPU
memory usage. Experiments on the validation set of FLARE2023 demonstrate
that our method achieves excellent segmentation performance as well as fast
and low-resource model inference. Our method achieved an average DSC score
of 89.79% and 45.55 % for the organs and lesions on the validation set and the
average running time and area under GPU memory-time cure are 11.25s and
9627.82MB, respectively.
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