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Abstract

Sentence Representation Learning (SRL) is001
a crucial task in Natural Language Process-002
ing (NLP), where contrastive Self-Supervised003
Learning (SSL) is currently a mainstream ap-004
proach. However, the reasons behind its re-005
markable effectiveness remain unclear. Specifi-006
cally, in other research fields, contrastive SSL007
shares similarities in both theory and practical008
performance with non-contrastive SSL (e.g.,009
alignment & uniformity, Barlow Twins, and010
VICReg). However, in SRL, contrastive SSL011
outperforms non-contrastive SSL significantly.012
Therefore, two questions arise: First, what com-013
monalities enable various contrastive losses to014
achieve superior performance in SRL? Second,015
how can we make non-contrastive SSL, which016
is similar to contrastive SSL but ineffective in017
SRL, effective? To address these questions, we018
start from the perspective of gradients and dis-019
cover that four effective contrastive losses can020
be integrated into a unified paradigm, which021
depends on three components: the Gradient022
Dissipation, the Weight, and the Ratio. Then,023
we conduct an in-depth analysis of the roles024
these components play in optimization and ex-025
perimentally demonstrate their significance for026
model performance. Finally, by adjusting these027
components, we enable non-contrastive SSL to028
achieve outstanding performance in SRL.029

1 Introduction030

Sentence Representation Learning (SRL) explores031

how to transform sentences into vectors (or “em-032

beddings”), which contain rich semantic informa-033

tion and are crucial to many downstream tasks in034

Natural Language Processing (NLP). In the era of035

Large Language Models (LLMs), SRL also plays036

an important role in providing the embedding mod-037

els for Retrieval-Augmented Generation (Gao et al.,038

2023)). The quality of sentence embeddings is usu-039

ally measured through Transfer tasks (TR) and Se-040

mantic Textual Similarity tasks (STS) (Conneau041
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Figure 1: Average Spearman’s correlation on Semantic
Textual Similarity tasks for ineffective optimization ob-
jectives before (“ori”) and after (“mod”) modifications
under different backbones.

and Kiela, 2018), where transfer tasks can be ef- 042

fectively addressed by pre-trained language mod- 043

els (Devlin et al., 2019), and current research pri- 044

marily focuses on the performance in STS tasks (Li 045

et al., 2020; Nie et al., 2023). 046

Contrastive Self-Supervised Learning (SSL) is 047

now prevalent in SRL, which is introduced by Gao 048

et al. (2021) and Yan et al. (2021). It optimizes 049

the representation space by reducing the distance 050

between a sentence (or “anchor”) and semantically 051

similar sentences (or “positive samples”, usually 052

obtained through data augmentation), as well as in- 053

creasing the distance between the sentence and se- 054

mantically dissimilar sentences (or “negative sam- 055

ples”, usually obtained through random sampling). 056

While the mechanisms underlying contrastive 057

SSL can be intuitively understood, its effective- 058

ness in SRL has not been thoroughly explored. 059

Specifically, there are still some conflicts between 060

the existing conclusions in SRL and other ar- 061

eas: (1) Machine learning community has found 062

that contrastive SSL shares theoretical similari- 063

ties with non-contrastive SSL (e.g. alignment 064

& uniformity (Wang and Isola, 2020), Barlow 065

Twins (Zbontar et al., 2021), and VICReg (Bardes 066

et al., 2022)) (Balestriero and LeCun, 2022; Tao 067

et al., 2022) (2) In Visual Representation Learning 068
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(VRL), all these contrastive and non-contrastive069

SSL methods show comparable performance. How-070

ever, in SRL, the methods based on contrastive SSL071

seem to be the only effective ones, outperforming072

non-contrastive SSL significantly. Even with ex-073

tensive hyper-parameter selection, various methods074

in non-contrastive SSL face problems of overfit-075

ting (Nie et al., 2023) and low performance (Klein076

and Nabi, 2022; Xu et al., 2023) in SRL. These in-077

consistent conclusions imply unique requirements078

for optimizing SRL have been overlooked in other079

research areas and have not yet been explored by080

existing studies in SRL.081

In this work, we attempt to identify the key fac-082

tors that enable contrastive SSL to be effective in083

SRL. Specifically, we would like to answer two084

questions: (1) What commonalities enable various085

contrastive losses to achieve superior performance086

in SRL? (2) How can we make non-contrastive SSL,087

which is similar to contrastive SSL but ineffective088

in SRL, effective? We first analyze the commonali-089

ties among four effective losses (Oord et al., 2018;090

Zhang et al., 2022b; Nie et al., 2023) in SRL from091

the perspective of gradients. From this analysis,092

we find that all gradients can be unified into the093

same paradigm, which is determined by three com-094

ponents: the Gradient Dissipation, the Weight,095

and the Ratio. By statistically analyzing the val-096

ues of these three components under different rep-097

resentation space distributions, we propose three098

conjectures, each corresponding to the role of a099

component in optimizing the representation space.100

Subsequently, we construct a baseline model to em-101

pirically validate our conjectures. Furthermore, we102

comprehensively demonstrate the significance of103

these components to model performance by vary-104

ing them in the baseline.105

After understanding the key factors that enable106

contrastive losses to be effective, we are able to107

analyze the reasons behind the poor performance108

of non-contrastive SSL in SRL from the perspec-109

tive of three components in the paradigm. We find110

that these ineffective losses do not perform as well111

as effective ones across these components. There-112

fore, by adjusting these components, we manage to113

make them function and achieve improved model114

performance in SRL (refer to Figure 1).115

Briefly, our main contributions are as follows:116

• We propose a unified gradient paradigm for117

effective losses in SRL, which is controlled by118

three components: the Gradient Dissipation,119

the Weight, and the Ratio (Section 2); 120

• We analyze the roles in optimization for each 121

component theoretically. Further, we propose 122

and validate the conjectures on their effective 123

roles in performing STS tasks (Section 3); 124

• With the guidance of our analysis results, we 125

modify four optimization objectives in non- 126

contrastive SSL to be effective in SRL by ad- 127

justing the three components (Section 4). 128

2 A Unified Paradigm for Gradient 129

2.1 Preliminary 130

Given a batch of sentences {si}Ni=1, we adopt a 131

encoder f(·) to obtain two l2-normalized embed- 132

dings (i.e., hi and h′i) for two different augmented 133

views of sentence si. Regarding hi as the anchor, 134

the embedding from the same sentence (i.e., h′i) is 135

called the positive sample, while the embeddings 136

from the other sentences (i.e., hj and h′j , j ̸= i) are 137

called negative samples. Then, what contrastive 138

learning does is to increase the similarity (typically 139

cosine similarity) between the anchor and its pos- 140

itive sample and decrease the similarity between 141

the anchor and its negative samples. 142

2.2 Gradient Analysis 143

To understand the optimization mechanism rigor- 144

ously, we choose four contrastive losses used in re- 145

cent works and derive the gradient for them. Note 146

that all the loss functions have been proven to be 147

effective in SRL and can obtain competitive perfor- 148

mance based on the model architecture of SimCSE 149

(Gao et al., 2021). 150

InfoNCE (Oord et al., 2018) is a widely used con- 151

trastive loss introduced to SRL by ConSERT (Yan 152

et al., 2021) and SimCSE (Gao et al., 2021). It can 153

be formed as 154

Linfo
i = − log

eh
⊤
i h′

i/τ∑N
j=1 e

h⊤
i h′

j/τ
, 155

where τ is a temperature hyperparameter. The gra- 156

dient of Linfo
i w.r.t hi is 157

∂Linfo
i

∂hi
=

∑N
j ̸=i e

h⊤
i h′

j/τ (h′j − h′i)

τ
∑N

k=1 e
h⊤
i h′

k/τ
. (1) 158

ArcCon (Zhang et al., 2022b) improves InfoNCE 159

by enhancing the pairwise discriminative power 160
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Objective Gradient Dissipation Weight Ratio

InfoNCE (2018) 1/(1 +
ecos(θii′ )/τ∑N
k ̸=i e

cos(θik′ )/τ
)

ecos(θij′ )/τ

τ
∑N

k ̸=i e
cos(θik′ )/τ

1

ArcCon (2022b) 1/(1 +
ecos(θii′+u)/τ∑N
k ̸=i e

cos(θik′ )/τ
)

ecos(θij′ )/τ

τ
∑N

k ̸=i e
cos(θik′ )/τ

sin(θii′ + u)

sin(θii′)

MPT (2023) I{cos(θii′ )−max
k ̸=i

cos(θik′ )<m}

{
1, else

0, j ̸= argmin
k ̸=i

θik′
1

MET (2023) I{min
k ̸=i

√
2−2 cos(θik′ )−

√
2−2 cos(θii′ )<m}

1/
√

2− 2 cos(θij′), else

0, j ̸= argmin
k ̸=i

θik′

√
1− cos(θij′)

1− cos(θii′)

Table 1: Three components of four different contrastive losses. We convert the cosine similarity (e.g., h⊤
i h

′
j) and

distance (e.g., ∥hi − h′
j∥2) into angular form (e.g., cos(θij′) and

√
2− 2 cos(θij′), respectively).

and it can be formed as161

Larc
i = − log

ecos(θii′+u)/τ

ecos(θii′+u)/τ +
∑N

j ̸=i e
h⊤
i h′

j/τ
,162

where θij = arccos(h⊤i hj) and u is a hyperparam-163

eter. The gradient of Larc
i w.r.t hi is164

∂Larc
i

∂hi
=

∑N
j ̸=i e

h⊤
i h′

j/τ (h′j −
sin(θii′+u)
sin(θii′ )

h′i)

τ(ecos(θii′+u)/τ +
∑N

k ̸=i e
h⊤
i h′

k/τ )
. (2)165

MPT and MET (Nie et al., 2023) are two loss166

functions in the form of triplet loss in SRL, which167

have the same form:168

Ltri
i = max(0, d(hi, h

′
i)−max

j ̸=i
d(hi, h

′
j) +m),169

where m is a margin hyperparameter and d : Rd ×170

Rd → R is metric function. Specifically, the only171

difference among the three loss functions is d(a, b),172

which is −aT b for MPT and ||a − b||2 for MET.173

Similarly, we can obtain their gradient w.r.t hi:174

∂Lmpt
i

∂hi
= I× (h′

j − h′
i),

∂Lmet
i

∂hi
= I×

(
h′
j

∥hi − h′
j∥2

− h′
i

∥hi − h′
i∥2

)
,

(3)175

where j = argmaxh⊤i h
′
k(k ̸= i) and I is an176

indicator function equal to 1 only if d(hi, h′j) −177

d(hi.h
′
i) < m satisfies.178

Comparing the above gradient forms, we find179

that all gradients guide the anchor hi move towards180

its positive sample h′i and away from its negative181

samples h′j . It implies that these various forms182

of loss functions have some commonalities in the183

perspective of the gradient. After reorganizing the184

gradient forms, we find that they can all be mapped 185

into a unified paradigm: 186

∂Li

∂hi
= GD(·)

N∑
j ̸=i

W(·)(h′j − R(·)h′i). (4) 187

There are three components control this paradigm: 188

• GD(i, {hk, h′k}Nk=1) is the Gradient Dissipa- 189

tion term, which overall controls the magni- 190

tude of the gradient; 191

• W(i, j, {hk, h′k}Nk=1) is the Weight term, 192

which controls the magnitude of the contri- 193

bution of negative samples to the gradient; 194

• R(i, j, {hk, h′k}Nk=1) is the Ratio term, which 195

controls the magnitude of the contribution of 196

positive samples to the gradient; 197

Table 1 shows the specific form of three compo- 198

nents in each loss, which all have been converted 199

into the angular form for subsequent analysis. 200

3 Role of Each Component 201

3.1 Theoretical Analysis 202
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Figure 2: Average values of gradient dissipation term
under different µpos-µneg pairs for ArcCon and MET.
Appendix B shows the results for InfoNCE and MPT.

Although the above losses are unified into the 203

same paradigm, the specific forms of the three 204
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components in different loss functions are various.205

Therefore, we first demonstrate that their roles are206

consistent despite their varied forms. To validate207

this, we record the trends of each component with208

the anchor-positive angle θii′ and anchor-negative209

angle θij′ and confirm whether there are consistent210

trends under different forms.211

Specifically, we assume that θii′ and θij′212

follow normal distribution N (µpos, σ
2
pos) and213

N (µneg, σ
2
neg), respectively. Based on experimen-214

tal evidence, we draw µpos from [ π20 ,
π
2 ], and µneg215

from [ π20 , π], with σpos fixed at 0.05 and σneg fixed216

at 0.10. After validating the consistency among217

different forms, we propose intuitive conjectures218

regarding the roles played by each component.219

3.1.1 Gradient Dissipation220

To study the role of the gradient dissipation term,221

we experiment with three steps: (1) For both µpos222

and µneg, we divide their intervals equally into 100223

parts to obtain 10,000 µpos-µneg pairs, covering all224

situations of the entire optimization process; (2) For225

each µpos-µneg pair, we sample 1,000 batches, each226

comprising 1 sampled from θii′ and 127 sampled227

from θij′ ; (3) The average value of the gradient228

dissipation term is calculated across these batches.229

The results are plotted in Figure 2 with heatmaps.230

There are two forms of gradient dissipation: one231

is implemented through fraction functions (includ-232

ing InfoNCE and ArcCon), and the other is im-233

plemented through indicator functions (including234

MPT and MET). The results in Figure 2 show that235

both the two forms of the gradient dissipation term236

exhibit a similar pattern: when µpos and µneg are237

close, the value is 1; when µneg is larger than µpos238

to some extent, the value rapidly decreases to 0.239

Intuitively, this term avoids a great distance gap be-240

tween the anchor-positive and the anchor-negative241

pairs. Recall that the semantic similarity is scored242

on a scale from 0 to 5 in traditional STS tasks,243

rather than being binary classified as similar or244

dissimilar. Such a great gap may deteriorate the245

performance of sentence embeddings in STS tasks.246

Therefore, we propose247

Conjecture 1. The effective gradient dissipation248

term ensures that the distance gap between µneg249

and µpos remains smaller than the situation trained250

without gradient dissipation.251

3.1.2 Weight252

To study the role of the weight term, we also ex-253

periment with three steps: (1) For µneg, we divide254
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Figure 3: Variations in the average portion of the hardest
negative samples in the weight across different µneg,
under different temperatures τ .

its intervals equally into 100 parts, while for µpos, 255

we fixed its value to π
6 . Then we can obtain 100 256

µpos-µneg pairs to analyze the relative contribution 257

among the negative samples; (2) For each µpos- 258

µneg pair, we sample 1000 batches, each compris- 259

ing 1 sampled from θii′ and 127 sampled from θij′ ; 260

(3) The average proportion of the weight for the 261

hardest negative sample (i.e., the one with the high- 262

est cosine similarity to the anchor) is calculated. 263

The results calculated under different temperatures 264

are plotted in Figure 3. 265

There are two forms of weight: one is imple- 266

mented through the exponential function (includ- 267

ing InfoNCE and ArcCon), and the other is imple- 268

mented through the piecewise function (including 269

MPT and MET). For the piecewise-form weight, 270

the value is non-zero if and only if the negative 271

sample is the hardest. Therefore, to prove the con- 272

sistency between these two forms, it is only need 273

to examine the proportion of the hardest negative 274

samples in the exponential-form weight. The re- 275

sults show that the exponential-form weight also 276

becomes focused solely on the hardest negative ex- 277

amples during the training process, similar to the 278

piecewise-form weight. Therefore, we propose 279

Conjecture 2. The effective weight term ensures 280

that the hardest negative sample occupies a dom- 281

inant position in the gradient compared to other 282

negative samples. 283

3.1.3 Ratio 284

The ratio term can be categorized into two types: 285

One is the static ratio (including InfoNCE and 286

MPT), keeping the value of 1; The other is the 287

dynamic ratio (including ArcCon and MET), with 288

values dependent on θii′ and θij′ . To investigate 289

the value range of the dynamic ratio, we follow the 290

first two steps in Section 3.1.1 and calculate the 291

values of different dynamic ratio terms. The results 292

are plotted in Figure 4. As shown in the figure, the 293
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Figure 4: Average values of three dynamic ratio terms,
The shaded areas indicate that these µpos-µneg pairs do
not occur in the actual optimization process, where the
lower part is due to gradient dissipation, and the upper
part is because there is always µpos < µneg.

dynamic ratio varies significantly. However, when294

considering the impact of gradient dissipation and295

the fact that µpos is typically smaller than µneg, it296

can be found that the values of the dynamic ratio297

mostly fall between 1 and 2.298

There exists an interesting phenomenon where299

sentence embeddings trained with ArcCon outper-300

form those trained with InfoNCE, and MET does301

the same for MPT (Refer to Table 3). However, as302

observed in previous analyses, the gradient dissipa-303

tion term and the weight term of these losses are304

essentially consistent. Therefore, we believe that it305

is precisely because ArcCon and MET can achieve306

larger ratios during the training process that these307

losses exhibit better performance, which can be308

explained through the following lemma.309

Lemma 1. For an anchor hi and its positive sam-310

ple h′i and negative sample h′j , assume the angle311

between the plane Ohih
′
i and the plane Ohih

′
j is312

α. When hi moves along the optimization direction313

λ(rh′i − h′j), r must satisfy314

r >
1

λ
+

sin θij′ cosα

sin θii′
−

√
1

λ2
−

sin2 θij′ sin
2 α

sin2 θii′
.315

to ensure the distance from hi to h′i becomes closer316

after the optimization step.317

The larger ratios in ArcCon and MET enable318

them to meet the condition in more situations,319

thereby exhibiting better performance. We propose320

Conjecture 3. The effective ratio term can meet the321

condition in Lemma 1 more frequently, and ensure322

that the distance from the anchor to the positive323

sample is closer after optimization than that before324

optimization.325

3.2 Empirical Study326

To validate the conjectures in Section 3.1 and fur-327

ther investigate the impact of each component on328

the model performance, this section conducts ex- 329

periments based on 330

Li = GD(·)
N∑
j ̸=i

W(·)
(
h⊤i h

′
j − R(·)h⊤i h′i

)
, (5) 331

where GD(·), W(·), and R(·) do not require gra- 332

dient. It can be easily verified that the gradient 333

of Li w.r.t hi is the paradigm in Equation 4. We 334

select GD(·) = I{h⊤
i h′

i−maxNk ̸=i h
⊤
i h′

k<m}, W(·) = 335

e
h⊤i h′j/τ∑N

k ̸=i e
h⊤
i

h′
k
/τ

, R(·) = r, and m = 0.3, τ = 336

0.05, r = 1 as baseline. We adopt BERTbase (De- 337

vlin et al., 2019) as backbone and utilize commonly 338

used unsupervised datasets (Gao et al., 2021) as 339

training data. In validating conjectures, we divide 340

the training data into two parts, where 90% is used 341

for training and 10% is held out for statistical anal- 342

ysis. In investigating the impact of each component 343

on performance, we vary each component in the 344

baseline and train with all data, with Spearman’s 345

correlation on the STS-B (Cer et al., 2017) valida- 346

tion set as the performance metric. 347

3.2.1 Validation of Conjecture 1 348
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Figure 5: Distribution of cosine similarity for anchor-
negative pairs (left) and anchor-positive pairs (right).

To verify Conjecture 1, we compare the distri- 349

bution of θii′ and θij′ in sentence embeddings ob- 350

tained from baseline training and from training 351

without gradient dissipation (i.e., setting GD(·) = 352

1). The results, presented in Figure 5, indicate that 353

the distribution of θii′ is closer to that of θij′ when 354

gradient dissipation is applied, compared to the sce- 355

nario without it, therefore validating the conjecture. 356

To investigate the impact of the gradient dissi- 357

pation term on performance, we vary m in GD(·) 358

from 0.3 to 1 and plot the corresponding perfor- 359

mance changes in the first graph of Figure 6. An 360

increase in m implies a weakening effect, and 361

the model performance decreasing as m increases 362

proves the importance of effective gradient dissipa- 363

tion term for model performance. 364
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Figure 6: Spearman’s correlation on the STS-B validation set when changing the three components in the baseline.

3.2.2 Validation of Conjecture 2365

0.3 0.1 0.0
5

0.0
3

0.0
1

0.0
05

Temperature τ

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

0.3 0.1 0.0
5

0.0
3

0.0
1

0.0
05

Temperature τ

Figure 7: Average portion of the hardest negative sam-
ples in the weight under different temperatures τ , mea-
sured on the original BERT model (left) and the BERT
model fine-tuned with the baseline loss (right).

To verify Conjecture 2, we calculated the aver-366

age proportion of the hardest negative samples in367

the exponential-form weight under different tem-368

perature τ , with results presented in Figure 7. In369

the original BERT, since embeddings are confined370

within a smaller space (Li et al., 2020), a very small371

τ is required to allow the hardest negative samples372

to occupy a higher proportion. However, in mod-373

els trained with the baseline, the spatial range of374

embeddings increases, enabling a commonly used375

setting (τ = 0.05) to also allow the hardest nega-376

tive samples to dominate the optimization direction.377

These findings validate the conjecture.378

To investigate the impact of the weight term on379

performance, we vary τ in W(·) from 0.01 to 3.0380

and plot the corresponding performance changes381

in the second graph of Figure 6. An increase in τ382

means the overall proportion of the hardest negative383

samples in the gradient decreases. When τ is in-384

creased to 0.3, the proportion begins to sharply de-385

cline (refer to Figures 3 and 7), at which point there386

is also a sharp drop in model performance. This387

demonstrates the necessity of an effective weight388

term for model performance.389

3.2.3 Validation of Conjecture 3390

To verify Conjecture 3, we first record the distribu-391

tion of the minimum values required to meet the392

conditions in Lemma 1 (presented in Figure 8a).393
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Figure 8: Results for validating Conjecture 3.

The results show that, across different models and 394

values of λ, a ratio greater than 1 consistently meets 395

more conditions. Then, we record the values of 396

three dynamic ratios during the training process 397

(presented in Figure 8b). The results show that 398

ArcCon and MET maintain a ratio greater than 1 399

throughout the training process, thus better fulfill- 400

ing the lemma’s conditions. Finally, we record the 401

average cosine similarity between the anchor and 402

positive sample during the training process under 403

different ratios (presented in Figure 8c). The re- 404

sults show that a larger ratio can indeed result in 405

a closer anchor-positive distance. Together, the 406

above results validate the conjecture. 407

To investigate the impact of the ratio term on 408

performance, we vary r in R(·) from 0.25 to 2.0 409

and plot the corresponding performance changes 410

in the third graph of Figure 6. An increase in r 411

means the conditions in Lemma 1 can be met more 412

frequently, and the model performance improving 413

as r increases proves the significance of an effective 414

ratio term for model performance. 415
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4 Modification to Ineffective Losses416

After understanding the properties that the gradi-417

ents of the effective losses in SRL should possess,418

we can make some ineffective optimization objec-419

tives in non-contrastive SSL effective by adjusting420

their gradients.421

Alignment & Uniformity (Wang and Isola, 2020)422

are two metrics used to assess the performance of423

the representation space, yet directly using them as424

optimization objectives results in poor performance.425

Alignment can be represented as426

La =
1

N

N∑
i=1

∥hi − h′i∥22,427

and uniformity can be represented in many428

forms (Liu et al., 2021), one of which is the Mini-429

mum Hyperspherical Energy (MHE)430

Lu,MHE = log
2

N(N − 1)

∑
1≤k<l≤N

e−∥hk−hl∥22 ,431

and another is the Maximum Hyperspherical Sep-432

aration (MHS)433

Lu,MHS
i = −min

j ̸=i
∥hi − hj∥2.434

Another two widely used optimization objectives435

in non-contrastive SSL are Barlow Twins (2021)436

LB =
D∑

k=1

(CB
kk − 1)2 + νB

D∑
k ̸=l

(CB
kl)

2,437

where CB = 1
N

∑N
i=1 hih

′⊤
i , and VICReg (2022):438

LV = La + νV,1
(
v({hi}Ni=1) + v({h′i}Ni=1)

)
439

+ νV,2
(
c({hi}Ni=1) + c({h′i}Ni=1)

)
,440

v({hi}Ni=1) =
1

D

D∑
k ̸=l

(CV({hi}Ni=1)kl)
2,441

c({hi}Ni=1) =
1

D

D∑
k=1

max
(
0, γ − σ({hi}Ni=1)k

)
,442

where CV({hi}Ni=1) = 1
N−1

N∑
i=1

(hi − h̄i)(hi −443

h̄i)
⊤, and σ(·) is the sample standard deviation.444

They are both popular in Visual Representation445

Learning, yet their performances are relatively poor446

when applied to SRL.447

The gradient w.r.t hi for alignment and unifor-448

mity (La + νuLu,MHE and La + νuLu,MHS
i ) and449

non-contrastive SSL (LB and LV) can also be 450

mapped into the paradigm. We present the results 451

in the upper part of Table 2, where the gradient for 452

LB and LV is derived by Tao et al. (2022). 453

Components in the paradigm of ineffective 454

losses do not perform in the same manner as those 455

of effective losses. For gradient dissipation terms, 456

since their values are 1 in all ineffective losses, it 457

implies that they have no effect. For weight terms, 458

except for MHS, other losses cannot ensure that 459

the hardest negative samples dominate in the gra- 460

dient. For ratio terms, since they are dynamic and 461

cannot guarantee an effective value throughout the 462

optimization process, it is better to adopt a static 463

ratio. Therefore, we attempt to make these losses 464

effective by adjusting these terms, with the results 465

presented in the lower part of Table 2. 466

We take Barlow Twins as an example to intro- 467

duce the modification method. For the specific 468

modification process of other optimization objec- 469

tives, please refer to Appendix E. Based on gradi- 470

ents, the optimization objective of Barlow Twins is 471

equivalent to 472

LeB
i = −h⊤i w

B
p,ih

′
i + νB

N∑
j ̸=i

h⊤i w
B
n,ijhj , 473

where wB
p,i =

2(I−(1−λ)Wdiag)
N , wB

n,ij =
2h′⊤

i h′
jI

N2 , 474

and both of them do not require gradient. To adjust 475

the gradient dissipation term, we stop the gradi- 476

ent of anchor hi that does not meet the condition 477

(h⊤i h
′
i −maxNk ̸=i h

⊤
i h

′
k < m), which is equivalent 478

to multiplying the loss by the indicator function 479

di = I{h⊤
i h′

i−maxNk ̸=i h
⊤
i h′

k<m}. 480

To adjust the weight term, we first set νB = 1. 481

Then, we modify wB
n,ij to an exponential form: 482

wmB
n,ij =

eh
′⊤
i h′

j/τ∑
k ̸=l e

h′⊤
k h′

l/τ
. 483

To adjust the ratio term, we set the loss to have a 484

static ratio r, by modifying wB
p,i to 485

wmB
p,i =

N∑
j ̸=i

wmB
n,ij =

r
∑N

j ̸=i e
h′⊤
i h′

j/τ∑
k ̸=l e

h′⊤
k h′

l/τ
, 486

which do not require gradients. Finally, the modi- 487

fied Barlow Twins can be represented as 488

LmB
i = di(−h⊤i w

mB
p,i h

′
i +

N∑
j ̸=i

h⊤i w
mB
n,ijhj). (6) 489
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La + νuLu,MHE La + νuLu,MHS
i LB LV

Gradient Dissipation 1

Weight
2νue2h

⊤
i hj∑

1≤k<l≤N e2h
⊤
k
hl

{
ν
u
/∥hi − hj∥2, else

0, j ̸= argmax
k ̸=i

h
⊤
i hk

2νBh′⊤
i h′

j

N2

4νV,1h⊤
i hj

D(N − 1)2

Ratio

∑
1≤k<l≤N e2h

⊤
k hl

νuN
∑N

k ̸=i e
2h⊤

i hk

2∥hi − hj∥2
νuN

N(I − (1− νB)Wdiag)

νB
∑N

k ̸=i h
′⊤
i h′

k

D(N − 1)2N−1

2νV,1
∑N

k ̸=i h
⊤
i hk

LmMHE
i LmMHS

i LmB
i LmV

i

Gradient Dissipation I{h⊤
i h′

i−maxN
k ̸=i

h⊤
i h′

k
<m}

Weight
eh

⊤
i hj/τ

τ
∑

1≤k<l≤N eh
⊤
k
hl/τ

{
1/∥hi − hj∥2, else

0, j ̸= argmax
k ̸=i

h
⊤
i hk

eh
′⊤
i h′

j/τ∑N
k ̸=l e

h′⊤
k

h′
l
/τ

eh
⊤
i hj/τ∑N

k ̸=l e
h⊤
k
hl/τ

Ratio r

Table 2: Three components of the ineffective optimization objectives before and after modifications.

The performance of all modified optimization ob-490

jectives is presented in Table 3, where it can be491

observed that they all exhibit performance compa-492

rable to that of effective contrastive losses.493

Type
BERTbase RoBERTabase

STS.Avg TR.Avg STS.Avg TR.Avg

Pretrained 56.70 85.34 56.57 83.20

Linfo
i 76.25 85.81 76.57 84.84

Larc
i 77.25 86.08 76.60 86.71

Lmpt
i 77.25 87.56 76.42 85.10

Lmet
i 78.38 87.94 77.38 85.74

LmMHE
i 78.40

+15.78
85.07
+ 0.72

76.91
+ 7.61

86, 28
+ 1.36

LmMHS
i 78.27

+ 5.54
85.42
− 0.46

76.37
+ 1.75

86.17
− 0.53

LmB
i 78.34

+12.74
85.28
+ 0.34

77.15
+ 7.64

85.98
+ 1.15

LmV
i 78.24

+12.71
85.40
+ 0.40

76.87
+ 7.32

86.11
+ 1.14

Table 3: Performance on SentEval Benchmark (Con-
neau and Kiela, 2018) of the four contrastive losses,
whose results are from their original paper, and the mod-
ified optimization objectives, whose results are the aver-
age value obtained from three runs. The values under-
neath indicate improvements compared to before modifi-
cation. “STS.Avg” represents the average of Spearman’s
correlation on seven STS tasks, and “TR.Avg” repre-
sents the average accuracy on seven transfer tasks.

5 Related Work494

Contrastive Sentence Representation Learning495

is initially investigated by Gao et al. (2021) and Yan496

et al. (2021), followed by numerous efforts (2022a;497

2022b; 2022; 2023) that enhance the method’s per-498

formance on STS tasks. Beyond these performance-499

focused studies, Nie et al. (2023) explores the rea-500

sons for the success of contrastive SRL, identifying 501

the significance of gradient dissipation in optimiza- 502

tion. The distinction of our work lies in further 503

identifying other critical factors and making previ- 504

ously ineffective losses effective. 505

Similarities between Contrastive and Non- 506

contrastive Self-Supervised Learning are ex- 507

plored in numerous works (2022b; 2023) in Com- 508

puter Vision (CV). Zhang et al. (2022b) study the 509

similarities between the two methods from the 510

perspective of spectral embedding. Garrido et al. 511

(2023) point out that under certain assumptions, 512

the two methods are algebraically equivalent. Our 513

work makes non-contrastive SSL effective in SRL, 514

revealing that similar parallels also exist in NLP. 515

Gradients of Self-Supervised Learning are inves- 516

tigated in CV by Tao et al. (2022), which is similar 517

to our methods. The distinction of our work lies in 518

that we work in the field of NLP, and that we ex- 519

plore the impact of different gradient components 520

on optimizing the representation space. 521

6 Conclusion 522

In this paper, we propose a unified gradient 523

paradigm for four different optimization objectives 524

in SRL, which is determined by three components: 525

the gradient dissipation, the weight, and the ratio. 526

We uncover the roles these components play in 527

optimization and demonstrate their significance to 528

model performance. Based on these insights, we 529

succeed in making ineffective losses effective in 530

SRL. Our work advances the understanding of why 531

contrastive SSL can be effective in SRL and guides 532

the future design of new optimization objectives. 533
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Limitations534

First, our work currently focuses only on the impact535

of optimization objectives on model performance.536

This means that the results of this study cannot be537

applied to analyze the impact of model architecture538

on model performance. Secondly, modifying the539

gradient-equivalent form of optimization objectives540

results in significant differences in the form of op-541

timization objectives before and after modification.542

To ensure consistency in form, one should make543

modifications based on observations and experi-544

ence (see examples in Appendix E).545
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A Experiment Details810

A.1 Distribution of Representation Space811

In analyzing the role that each component plays in812

optimizing the representation space (Section 3.1),813

we assume that θii′ and θij′ follow normal distri- 814

butions N (µpos, σ
2
pos) and N (µneg, σ

2
neg), respec- 815

tively. These assumptions are consistent with the 816

phenomena observed in subsequent experiments 817

(Section 3.2). Specifically, Figure 5 demonstrates 818

that in the representation space, the distributions of 819

θii′ and θij′ closely approximate normal distribu- 820

tions, and the θii′ distribution in Figure 8c is within 821

the range of our assumptions. Furthermore, we 822

estimate µpos, µneg, σpos, and σneg during trained 823

with the baseline. The results are presented in Fig- 824

ure 9. From these results, it is evident that our as- 825

sumed ranges for µpos ([ π20 ,
π
2 ]) and µneg ([ π20 , π]) 826

adequately cover the actual scenarios that may oc- 827

cur. Furthermore, the values of σpos and σneg (0.05 828

and 0.10, respectively) are also close to the practi- 829

cal observations. 830

π
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Figure 9: Variations of estimated µpos, µneg, σpos, and
σneg across training steps when trained with baseline.

A.2 Details of the Empirical Study 831

In validating the conjectures, we randomly hold out 832

10% of the data for analyzing the representation 833

space. To obtain results in Figure 5 and Figure 8c, 834

we directly use the held-out data, and Figure 5 is 835

plotted through Kernel Density Estimation (KDE). 836

To obtain the results in Figure 7, Figure 8a, and 837

Figure 8b, we split the held-out data into batches 838

with size N = 128 and calculate the corresponding 839

values within each batch. 840

A.3 Training Details 841

Our implementation of training the representation 842

space is based on SimCSE (Gao et al., 2021), which 843

is currently widely used in research. Our experi- 844

ments are conducted using Python3.9.13 and Py- 845

torch1.12.1 on a single 32G NVIDIA V100 GPU. 846

Following Gao et al. (2021), we obtain sentence 847

11

https://doi.org/10.1007/s10579-005-7880-9
https://doi.org/10.1007/s10579-005-7880-9
https://doi.org/10.1007/s10579-005-7880-9
https://aclanthology.org/2023.emnlp-main.737
https://aclanthology.org/2023.emnlp-main.737
https://aclanthology.org/2023.emnlp-main.737
https://doi.org/10.18653/V1/2021.ACL-LONG.393
https://doi.org/10.18653/V1/2021.ACL-LONG.393
https://doi.org/10.18653/V1/2021.ACL-LONG.393
https://doi.org/10.18653/V1/2021.ACL-LONG.393
https://doi.org/10.18653/V1/2021.ACL-LONG.393
http://proceedings.mlr.press/v139/zbontar21a.html
http://proceedings.mlr.press/v139/zbontar21a.html
http://proceedings.mlr.press/v139/zbontar21a.html
https://doi.org/10.1609/AAAI.V36I10.21428
https://doi.org/10.1609/AAAI.V36I10.21428
https://doi.org/10.1609/AAAI.V36I10.21428
https://doi.org/10.1609/AAAI.V36I10.21428
https://doi.org/10.1609/AAAI.V36I10.21428
https://doi.org/10.18653/V1/2022.ACL-LONG.336
https://doi.org/10.18653/V1/2022.ACL-LONG.336
https://doi.org/10.18653/V1/2022.ACL-LONG.336
https://doi.org/10.18653/V1/2022.ACL-LONG.336
https://doi.org/10.18653/V1/2022.ACL-LONG.336
https://doi.org/10.18653/V1/2022.ACL-LONG.336
https://doi.org/10.18653/V1/2022.ACL-LONG.336


embeddings from the “[CLS]” token and apply848

an MLP layer solely during training. The embed-849

dings are trained with 1,000,000 sentences from850

Wikipedia, which are also collected by Gao et al.851

(2021), for one epoch. Note that, in validating the852

conjectures, we randomly hold out 10% of the data853

for analysis and only use 90% for training.854

A.4 Parameter Setting855

For experiments in Section 3.2, all experiments856

are conducted with BERTbase as the backbone and857

batch size = 128, learning rate = 1e-5.858

For the modified losses in Section 4, we first859

perform a grid search on batch size ∈ {64, 128, 256,860

512}, learning rate ∈ {5e-6, 1e-5, 3e-5, 5e-5} with861

m = 0.30, τ = 5e-2, and r = 1. Then, based on862

the best combination of batch size and learning rate863

from the first grid search, we perform the second864

grid search on m ∈ {0.27, 0.30, 0.33, 0.37}, τ ∈865

{1e-2, 3e-2, 5e-2}, and r ∈ {1.00, 1.25, 1.50, 1.75,866

2.00}. The results are presented in Table 4 and867

Table 5.868

bs lr m τ r

LmMHE
i 128 1e-5 0.30 5e-2 1.75

LmMHS
i 128 1e-5 0.30 - 1.75
LmB
i 128 1e-5 0.30 5e-2 1.50

LmV
i 128 1e-5 0.30 5e-2 1.50

Table 4: The hyperparameters used to to obtain the
results of modified losses in Table 3 when using
BERTbase (Devlin et al., 2019) as the backbone.

bs lr m τ r

LmMHE
i 512 1e-5 0.30 5e-2 1.25

LmMHS
i 512 1e-5 0.27 - 1.00
LmB
i 512 1e-5 0.37 5e-2 1.25

LmV
i 512 1e-5 0.37 5e-2 1.25

Table 5: The hyperparameters used to to obtain the
results of modified losses in Table 3 when using
RoBERTabase (Liu et al., 2019) as the backbone.

A.5 Evaluation Protocol869

In Section 3.2 and Section 4, we adopt a widely870

used evaluation protocol, SentEval toolkit (Con-871

neau and Kiela, 2018), to evaluate the perfor-872

mance of SRL. SentEval includes two types of873

tasks: the Semantic Textual Similarity (STS) tasks874

and the Transfer tasks (TR). The STS task quan- 875

tifies the semantic similarity between two sen- 876

tences with a score ranging from 0 to 5 and 877

takes Spearman’s correlation as the metric for 878

performance. There are seven STS datasets in- 879

cluded for evaluation: STS 2012-2016 (2012; 2013; 880

2014; 2015; 2016), STS Benchmark (2017), and 881

SICK Relatedness (2014). The TR task mea- 882

sures the performance of embeddings in the down- 883

stream classification task and takes Accuracy as 884

the metric. There are also seven datasets in- 885

cluded for the evaluation of TR task: MR (2005), 886

CR (2004), SUBJ (2004), MPQA (2005), SST- 887

2 (2013), TREC (2000), MRPC (2005). Note that 888

in Section 3.2, we only use STS Benchmark valida- 889

tion set for evaluation, and it is conventional to use 890

only this dataset when comparing the performance 891

under different hyperparameters (Gao et al., 2021). 892

B Illustrations of the Role of Each 893

Component 894
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Figure 10: Average values of gradient dissipation term
under different µpos-µneg pairs for InfoNCE and MPT

We first present the results of experimenting the 895

gradient dissipation term for InfoNCE and MET 896

(refer to Section 3.1) in Figure 11a. 897

Then, we provide three illustrations in Figure 11 898

to facilitate an intuitive understanding of the roles 899

played by different components in optimizing the 900

representation space. In the diagram, black dots 901

represent the anchor, gray dots represent the posi- 902

tions of the anchor after optimization, green dots 903

represent positive samples, and red dots represent 904

negative samples. Among the negative samples, 905

the lighter the shade of red, the harder the negative 906

sample is. 907

C Proof of Lemma 1 908

For the anchor point hi, let us denote the angle 909

between it and the positive sample h′i as θii′ , and 910

the angle between it and the negative sample h′j as 911

θij′ . Let α represent the dihedral angle between 912

the planes Ohih
′
i and Ohih

′
j . Under the influence 913

of the optimization direction λ(rh′i − h′j), the new 914

12



(a) The gap between the anchor-positive and anchor-negative
distances is larger in the representation space trained without
gradient dissipation (left) compared to that with gradient dis-
sipation (right).

(b) When not amplified by the weight term, the contribution of
the hardest negative samples to the optimization direction is
minimal (left). Once amplified by the weight term, the hardest
negative samples dominate the optimization direction (right).

(c) When the ratio term does not meet the conditions in
Lemma 1, anchor-positive distance increases after optimiza-
tion. When the conditions are met, anchor-positive distance
decreases after optimization.

Figure 11: Illustrations for the role in optimization of
each component.

position of the anchor point after movement is de-915

noted as hni . Although all embeddings lie on a916

hypersphere, to simplify the proof process, we or-917

thogonally project all embeddings onto the tangent918

plane at the anchor hi (as shown in Figure 12). In919

this case, the length of line hih′i is equal to sin(θii′),920

the length of line hih
′
j is equal to sin(θij′), and921

the angle ∠h′ihih
′
j is α. This simplification is rea-922

sonable because the optimization of the anchor hi923

on the hypersphere can in fact be considered as924

optimization on the tangent plane, which is then925

projected back onto the hypersphere. For the opti-926

mization direction λ(rh′i − h′j), we also project it927

onto the tangent plane, where −λh′j corresponds928

to the line hic, and λrh′i corresponds to line chni .929

Then, to ensure that the anchor-positive distance930

does not increase after optimization (i.e., hni h
′
i ≤931

hih
′
i), we assume hni h

′
i = hih

′
i = sin(θii′),932

thereby obtaining the necessary boundary condi-933

Situation 1 Situation 2
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Figure 12: Illustrations of the proof to Lemma 1

tion that satisfies the requirement. Specifically, by 934

deriving the relationship between r and the other el- 935

ements at this time, we can obtain the lower bound 936

of r that satisfies the requirements. To this end, we 937

add an auxiliary point b on the line chni , such that 938

the quadrilateral bhni h
′
ihi forms a rhombus (two 939

possible situations when adding the auxiliary point 940

are given in Figure 12), and we denote the length 941

of the line bc as x. By applying the cosine theorem, 942

we can obtain the following: under Situation 1, we 943

have 944

x1 =− λ sin(θij′) cos(α) 945

+
√
sin2(θii′)− λ2 sin2(θij′) sin

2(α); 946

under Situation 2, we have 947

x2 =λ sin(θij′) cos(α) 948

−
√
sin2(θii′)− λ2 sin2(θij′) sin

2(α). 949

At this point, we can express r as follows: 950

r =
sin(θii′)− x1
λ sin(θii′)

=
sin(θii′) + x2
λ sin(θii′)

951

=
1

λ
+

sin θij′ cosα

sin θii′
−

√
1

λ2
−

sin2 θij′ sin
2 α

sin2 θii′
, 952

which is the lower bound of r that satisfies the 953

requirements, thus proving Lemma 1. 954

D Gradients of Optimization Objectives 955

D.1 Gradients of effective Objectives 956

In this section, we provide the derivation process of 957

gradients in Section 2. The gradient of Linfo
i w.r.t 958
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hi is959

∂Linfo
i

∂hi
=

∂

∂hi

− log
eh

⊤
i h′

i/τ∑N
j=1 e

h⊤
i h′

j/τ

960

=
∂(log

∑N
j=1 e

h⊤
i h′

j/τ )

∂hi
− ∂h⊤i h

′
i/τ

∂hi
961

=
∂
∑N

j=1 e
h⊤
i h′

j/τ/∂hi∑N
j=1 e

h⊤
i h′

j/τ
− h′i

τ
962

=

∑N
j=1 e

h⊤
i h′

j/τh′j

τ
∑N

j=1 e
h⊤
i h′

j/τ
− h′i

τ
963

=

∑N
j ̸=i e

h⊤
i h′

j/τ (h′j − h′i)

τ
∑N

j=1 e
h⊤
i h′

j/τ
.964

The gradient of Larc
i w.r.t hi is965

∂Larc
i

∂hi
=

∂

∂hi

− log
e

cos(θii′+u)

τ

e
cos(θii′+u)

τ +
N∑
j ̸=i

e
h⊤
i

h′
j

τ

966

=
∂ log(ecos(θii′+u)/τ +

∑N
j ̸=i e

h⊤
i h′

j/τ )

∂hi
967

− ∂ cos(θii′ + u)/τ

∂hi
968

=
∂(ecos(θii′+u)/τ +

∑N
j ̸=i e

h⊤
i h′

j/τ )/∂hi

ecos(θii′+u)/τ +
∑N

j ̸=i e
h⊤
i h′

j/τ
969

+
sin(θii′ + u)

τ
· ∂(θii

′ + u)

∂hi
970

=
ecos(θii′+u)/τ · sin(θii′+u)

sin(θii′ )
h′i

τ(ecos(θii′+u)/τ +
∑N

j ̸=i e
h⊤
i h′

j/τ )
971

+

∑N
j ̸=i e

h⊤
i h′

j/τh′j

τ(ecos(θii′+u)/τ +
∑N

j ̸=i e
h⊤
i h′

j/τ )
972

− sin(θii′ + u)

τ sin(θii′)
h′i973

=

∑N
j ̸=i e

h⊤
i h′

j/τ (h′j −
sin(θii′+u)
sin(θii′ )

h′i)

τ(ecos(θii′+u)/τ +
∑N

j ̸=i e
h⊤
i h′

j/τ )
.974

The gradient of Ltri
i w.r.t hi is975

∂Ltri
i

∂hi
=I{−d(hi,h′

i)+d(hi,h′
j)<m}976

×
(
∂d(hi, h

′
i)

∂hi
−

∂d(hi, h
′
j)

∂hi

)
,977

where j = argmink ̸=i d(hi, h
′
k). Therefore, The 978

gradient of Lmpt
i w.r.t hi is 979

∂Lmpt
i

∂hi
= I{h⊤

i h′
i−h⊤

i h′
j<m}(h

′
j − h′i), 980

and the gradient of Lmet
i w.r.t hi is 981

∂Lmet
i

∂hi
=I{∥hi−h′

i∥2−∥hi−h′
j∥<m} 982

×

(
h′j

∥hi − h′j∥2
− h′i

∥hi − h′i∥

)
. 983

D.2 Gradients of Ineffective Objectives 984

In this section, we provide the gradients of objec- 985

tives in Section 4.The gradient of La w.r.t hi is 986

∂La

∂hi
= − 2

N
h′i, (7) 987

the gradient of Lu,MHE w.r.t hi is 988

∂Lu,MHE

∂hi
=

∑N
j ̸=i 2e

2h⊤
i hjhj∑

1≤k<l≤N e2h
⊤
k hl

, (8) 989

and the gradient of Lu,MHS w.r.t hi is 990

∂Lu,MHS

∂hi
=

1

∥hi − hj∥2
hj , (9) 991

where j = argminj ̸=i ∥hi − hj∥. 992

The gradients of LB and LV w.r.t hi have been 993

derived by Tao et al. (2022): 994

∂LB

∂hi
=

2

N
(−Ah′i + νB

N∑
j ̸=i

h′⊤i h′j
N

hj), (10) 995

where A = I − (1 − νB)CB
diag, and CB

diag is the 996

diagonal matrix of CB, and 997

∂LV

∂hi
=

2

N
(−h′i + νV

N∑
j ̸=i

h⊤i hj
N

hj), (11) 998

where νV = 2νV,1N2

D(N−1)2
. Note that the original Bar- 999

low Twins adopts a batch normalization, and VI- 1000

CReg adopts a de-center operation, which is differ- 1001

ent from the commonly used l2 normalization in 1002

SRL. But Tao et al. (2022) verify that these opera- 1003

tions have a similar effect in training, therefore we 1004

use l2 normalization for all losses for consistency. 1005

14



One more thing to note is that the gradients of1006

ineffective losses are mapped into the following1007

form:1008

∂Li

∂hi
= GD(·)

N∑
j ̸=i

W(·)(hj − R(·)h′i), (12)1009

which uses hj instead of h′j in Equation 4. Since1010

hj and h′j are mathematically equivalent with re-1011

spect to hi, we consider Equation 4 and 12 to be1012

consistent and only present Equation 4 in the main1013

body of the paper.1014

E Modifications to Ineffective Losses1015

We offer two methods of modification: (1) modi-1016

fying the gradient-equivalent form of the optimiza-1017

tion objective, which is the method to modify Bar-1018

low Twins in Section 4, and (2) directly modifying1019

the optimization objective itself.1020

For VICReg, we use the first method for mod-1021

ification as we do for Barlow Twins. Based on1022

gradients, the optimization objective of VICReg is1023

equivalent to1024

LeV
i = −h⊤i w

V
p,ih

′
i + νV

N∑
j ̸=i

h⊤i w
V
n,ijhj ,1025

where wV
p,i = 2I

N , wV
n,ij =

2h⊤
i hjI

N2 , and both1026

of them do not require gradient. To adjust the1027

gradient dissipation term, we stop the gradient1028

of anchor hi that does not meet the condition1029

(h⊤i h
′
i −maxNk ̸=i h

⊤
i h

′
k < m), which is equivalent1030

to multiplying the loss by the indicator function1031

di = I{h⊤
i h′

i−maxNk ̸=i h
⊤
i h′

k<m}.1032

To adjust the weight term, we first set νV = 1.1033

Then, we modify wV
n,ij to an exponential form:1034

wmV
n,ij =

eh
⊤
i hj/τ∑

k ̸=l e
h⊤
k hl/τ

.1035

To adjust the ratio term, we set the loss to have a1036

static ratio r, by modifying wV
p,i to1037

wmV
p,i =

N∑
j ̸=i

wmV
n,ij =

r
∑N

j ̸=i e
h⊤
i hj/τ∑

k ̸=l e
h⊤
k hl/τ

,1038

which do not require gradients. Finally, the modi-1039

fied VICReg can be represented as1040

LmV
i = di(−h⊤i w

mV
p,i h

′
i +

N∑
j ̸=i

h⊤i w
mV
n,ijhj). (13)1041

For alignment and uniformity, we use the sec- 1042

ond method for modification. To adjust the gra- 1043

dient dissipation term, we stop the gradient of an- 1044

chor hi that does not meet the condition (h⊤i h
′
i − 1045

maxNk ̸=i h
⊤
i h

′
k < m) as before. As for the weight 1046

term, since the weight term of (La + νuLu,MHS) 1047

does not require adjustment, we only adjust the 1048

weight term for (La + νuLu,MHE). Specifically, 1049

We set νu = 1 and introduce a temperature param- 1050

eter τ to Lu,MHE: 1051

Lu,mMHE = log
2
∑

1≤k<l≤N e−∥hk−hl∥22/(2τ)

N(N − 1)
. 1052

To adjust the ratio term, we modify both of them 1053

to have a static ratio r by prepending a coefficient 1054

to the alignment: 1055

La,mMHE
i =

r
∑N

j ̸=i e
h⊤
i hj/τ

2τ
∑

1≤k<l≤N eh
⊤
k hl/τ︸ ︷︷ ︸

no gradient

∥hi − h′i∥22, 1056

La,mMHS
i =

r

2maxj ̸=i ∥hi − hj∥2︸ ︷︷ ︸
no gradient

∥hi − h′i∥22. 1057

Finally, the modified losses can be represented as 1058

LmMHE
i = di(La,mMHE

i + Lu,mMHE), (14) 1059

LmMHS
i = di(La,mMHS

i + Lu,MHS
i ). (15) 1060

In order to verify the correctness of the modifi- 1061

cation, we present the gradients of all the modified 1062

losses here. The gradient of LmMHE
i w.r.t hi is 1063

LmMHE
i

∂hi
= di

∑N
j ̸=i e

h⊤
i hj/τ (hj − rh′i)

τ
∑

1≤k<l≤N eh
⊤
k hl/τ

. (16) 1064

The gradient of LmMHS
i w.r.t hi is 1065

LmMHE
i

∂hi
= di

(hj − rh′i)

∥hi − hj∥2
, (17) 1066

where j = argmink ̸=i ∥hi − hk∥2. The gradient 1067

of LmB
i w.r.t hi is 1068

LmB
i

∂hi
= di

∑N
j ̸=i e

h′⊤
i h′

j/τ (hj − rh′i)∑N
k ̸=l e

h′⊤
k h′

l/τ
. (18) 1069

The gradient of LmV
i w.r.t hi is 1070

LmV
i

∂hi
= di

∑N
j ̸=i e

h⊤
i hj/τ (hj − rh′i)∑N
k ̸=l e

h⊤
k hl/τ

. (19) 1071
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