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Abstract

Personalized federated learning is widely used for heterogeneous data distribu-
tions across clients. However, existing methods are difficult to measure and utilize
these heterogeneities accurately. To address this issue, in this paper, we propose a
novel and efficient method named FedDFQ which uses a customized Data Identity
Extraction Module (DIEM) to dynamically generate metric proxies that quantify
data heterogeneity across different local clients in a privacy-friendly manner. The
metric proxies are used to assess the contributions of global parameter aggrega-
tion and personalized gradient backpropagation for each local client. In addition,
we design a plug-and-play Automatic Gradient Accumulation Module (AGAM)
that regularizes personalized classification layers with re-balanced gradients. We
provide theoretical explanations and experimental results that validate the effec-
tiveness of the proposed FedDFQ. With comprehensive comparisons to existing
state-of-the-art approaches, FedDFQ outperforms them on two benchmark datasets
in different heterogeneous scenarios. The code can be accessed at :[URL].

1 Introduction

Federated Learning (FL) is a distributed machine learning paradigm that allows multiple participants
to cooperatively train models under the guidance of a central coordinator without sharing local data.
This approach is widely used in healthcare Hao et al. (2020); Zhang et al. (2021) and the financial
field Zheng et al. (2021); Liu et al. (2021). The traditional federated learning method such as
FedAvg McMahan et al. (2017) obtains a global model by averaging the parameters uploaded from
all clients, which is prone to be influenced by data heterogeneity and leads to significant performance
degradation. Despite new frameworks have been introduced that ensure consistency between local
and global optimization goals to obtain a more stable global model Li et al. (2019); Oh et al. (2021).
However, these attempts fail to escape the paradigm of aggregating local parameters and average
them to obtain global parameters, struggling with data heterogeneity, and the difference in data
distribution between different clients may lead to suboptimal model aggregation with performance
degradation (Yang et al., 2019).

Correspondingly, several personalized federated learning approaches have been put forward, which
aim to improve the adaptability of local clients for their corresponding preserved tasks Arivazhagan
et al. (2019); Fallah et al. (2020). For instance, FedRep Collins et al. (2021) separates the local
clients model into shared structures and personalized structures so that the shared part can represent
the global knowledge and the personal part is adapted to local data characteristics. However, existing
approaches to personalized federated learning suffer from several shortcomings: most only focus on
isolating the bias introduced by the heterogeneous distribution of other clients, rather than exploiting
complementary information in heterogeneous data. Others attempt to exploit complementary infor-
mation in heterogeneous data based on features from backbones with learnable parameters, which
suffer from biases at the initial and training stages. It impairs the generalization to the local client on
out-of-distribution samples.

To address these shortcomings, we propose a novel method, named FedDFQ, which quantifies the
degree of data divergence among each client and uses it to measure the contribution of individual
clients in this round. Specifically, we design a data representation extraction module to map local data
into high-dimension semantic space for security and privacy. Then metric proxies are constructed
through semantic relationships between mapped data to quantify heterogeneity across local clients.
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They are used to evaluate the contributions of global parameter aggregation and personalized gradient
backpropagation for each local client. In addition, we provide an efficient AGAM that regularizes
personalized classification layers with re-balanced gradients. Finally, FedDFQ achieves state-of-the-
art performance on two benchmark datasets and demonstrates significant potential with the increasing
of clients. Our contributions are summarized as follows:

• We propose a novel method for extracting the heterogeneous representations of data dis-
tribution without introducing data biases. The representations are assembled to generate
proxies that reflect the correlation of predictions of client models. We also prove that the
metric proxies can fit the distribution of predictions by the proposed method.

• We develop a novel gradient integration module that regularizes the classification layers with
gradients containing semantic relationships of heterogeneous data distributions, improving
the generalization of clients with out-of-distribution samples. The method is play-and-plug
and can be integrated into any existing federated learning paradigm.

• We conduct detailed experiments on two benchmark classification datasets. The proposed
FedDFQ outperforms other state-of-the-art methods with different heterogeneous scenarios
by large margins. Extensive results also demonstrate significant potential of the proposed
method with the increase in clients.

The rest of this paper is organized as follows. Section 2 reviews the related works and the architecture
of the proposed FedDFQ is described in Section 3. In Section 4, We present experimental results
compared to other state-of-the-art methods and ablation studies to validate the effectiveness of our
algorithm. Section 5 concludes this paper with remarks.

2 Related work

2.1 Federal learning with heterogeneous data

Federated learning aims to solve the problems of data privacy protection and data security, allowing
multiple participants to jointly train machine learning models without sharing raw data. Traditional
federated learning methods represented by FedAvg, construct global models by training the model
locally at the client and sending the updated model parameters to a central server for average aggre-
gation. However, these methods assume that the data distributions of all clients are independently
identically distributed (IID), leading to poor performance of the model on certain clients in the
presence of data heterogeneityYe et al. (2023). Therefore, Subsequent studies aim to optimize the
aggregation process of model parameters by quantifying the feature similarity of client datasets.
For example, FedProto proposed a prototype learning approach that allows clients to make person-
alized adjustments while maintaining global consistency Tan et al. (2022b). FedBABU enhances
the model’s adaptability under non-independently identically distributed (non-IID) data through an
adaptive weight assignment mechanism Oh et al. (2021). Besides, FedProx Li et al. (2020) introduces
the proximal term to restrict the updates of the local model that ensure similarity with the global
model. FedDyn Acar et al. (2021) regularizes the local client model to reduce parameter drift with
the global model and bring the local optima closer to the global optima. These methods not only
improve the model’s ability to adapt to local data features but also enhance the model’s generalization
performance in heterogeneous environments. However, the best performance for each local client
may not be an optimal solution for the global model.

2.2 Personalized federated learning

To overcome this limitation, the concept of personalized federated learning has been proposed,
aiming to improve the local adaptation and overall performance of the model by adapting to the
data distribution specific to each clientTan et al. (2022a). Ditto Li et al. (2021a) achieves better
personalized performance by introducing a regularization term, which enables the client model to
be locally fine-tuned while maintaining consistency with the global model. FedProto Tan et al.
(2022b) introduces prototypical regularization to constrain the local updates, mitigating the effect
of bias due to data distribution heterogeneity. FedPAC Xu et al. (2023b) leverages global semantic
knowledge to align local-global features for better representations and quantifies the benefit of
classifier combination for each client as a function of the combining weights, deriving an optimization
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problem for estimating optimal weights. FedRep Collins et al. (2021) separates the local clients model
into shared structures and personalized structures so that the shared part can represent the global
knowledge and the personal part is adapted to local data characteristics. Recently, FedHKD Chen
et al. (2023) applies prototype learning and knowledge distillation to train local clients for averaged
representations and hyper-knowledge, instead of uploading model parameters. LG-Mix Jiang et al.
(2024) utilizes the coverage rate of Neural Tangent Kernel to quantify the importance of local and
global updates and mix these importance indices to update parameters. However, these methods
neglect the utilization of interactions among clients with similar distributions to collaboratively train
personalized classifiers to reduce the variance of client models.

3 Method architecture

We propose an efficient method to improve federated learning in heterogeneous data distribution
scenarios. The overview of FedDFQ is shown in Figure 1. Specifically, we follow the design of one
server to multi-clients. The input image first passes the feature extraction layer and data identification
extraction in local clients, which aims to obtain abstract representations for classification and high-
dimension distribution vectors. Then we pack up the global parameters, personalized gradients,
and distribution vectors uploaded to the server. The distribution vectors generate metric proxies
that assess contributions for each client in this aggregation. Next, the server distributes the global
parameters re-balanced based on contributions in metric proxies. Finally, to further improve the
generalization of clients to out-of-distribution samples, we design an AGAM that regularizes the
classification layers with semantic-aware gradients for each client.

Figure 1: The architecture of FedDFQ.

3.1 Data identity extraction module

To evaluate the data heterogeneity of different local clients and follow the objectives of federated
learning to protect the privacy and security of data, we propose the DIEM. Different from existing
methods that use abstract representations from local feature extractors to denote the data distribution,
these extractors with learnable parameters inevitably introduce undesirable data biases during the
model initialization and training stage, leading to performance degradation with out-of-distribution
samples.

The proposed method applies a no-parameter algorithm consisting of two data aggregation operations
at local clients. Specifically, we first aggregate and mean input data along the channel dimension to
obtain the 2D feature identifiers. Next, the second aggregation averages these 2D feature identifiers
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to generate the final data representation vectors. This approach not only captures the basic attributes
of the image data but also effectively represents the data distribution without introducing undesirable
biases from learnable parameters.

We assume that the input image 𝑥 with shape 𝐻×𝑊 ×𝐶 dimensions. Where 𝐻 denotes the height,𝑊
denotes the width, and 𝐶 denotes the channels of the image, respectively. The first data aggregations
can be formulated as:

Y =
1
𝐶

𝐶∑︁
𝑘=1

Xk, (1)

where X𝑘 ∈ R𝐻×𝑊 denote the single channel image. Next, we compute the vector x̄( 𝑗) for each
column 𝑗 of the matrix Y as follows equation 2:

x̄ 𝑗 =
1
𝐻

𝐻∑︁
𝑖=1

y𝑖 . (2)

3.2 Metric proxies

In the previous subsection, we detail the process of acquiring clients’ data identifiers. To better
understand the impact of data representations on local model aggregation, we aim to generate
metric proxies that adaptively assess the contributions of each local model from the perspective of
data distribution similarity. The most relative to data distribution is the predictions of the local
client, which can be used to measure data heterogeneities with other local clients. Therefore, the
heterogeneity can be formulated as follows:

𝑆(z𝑖 , z 𝑗 ) = Similarity(z𝑖 , z 𝑗 ) =
z𝑖 · z 𝑗

∥z𝑖 ∥∥z 𝑗 ∥
, (3)

where z ∈ R𝐶 denotes the class scores from classification layers with 𝐶 categories. We chose cosine
similarity as the metric to reflect and quantify the heterogeneity with other clients. However, directly
uploading predictions of local models conflicts with the objectives of federated learning. As an
alternative, we pack up the data identifiers aggregated by the DIEM and upload them to the server.
These data identifiers compose the metric proxies that indicate the quantified data heterogeneity of
different clients. The formula is:

𝑆(x̄𝑖 , x̄ 𝑗 ) = Similarity(x̄𝑖 , x̄ 𝑗 ) =
x̄𝑖 · x̄ 𝑗

∥x̄𝑖 ∥∥x̄ 𝑗 ∥
, (4)

where the z ∈ R𝑊 is the data identity. However, why results of the DIEM can be an alternative to
class scores? We present theoretical explanations to prove our algorithm. Because the similarity
matrices of class scores and data identifiers are consistent with dimensions 𝑁 × 𝐶 × 𝐶, where the
𝑁 and 𝐶 represent the number of clients and the number of categories, in the semantic space, there
is a matrix A with shape 𝑁 × 𝐶 × 𝐶 that the product of the matrix of data identifiers is equal to the
matrix of class scores according to the theory of matrix. The formula is:

𝑆(z̄𝑖 , z̄ 𝑗 ) = 𝛼𝑆(x̄𝑖 , x̄ 𝑗 ), (5)

where 𝛼 is the coefficient in the position (𝑖, 𝑗) of matrix A. Equally, the class score z is represented
as the product of data identifiers x and a weight metric W with shape 𝑊 × 𝐶 and addition of biases
𝑏. The formula is as follows:

z = W𝑇x + b. (6)

Therefore, the conversion between two similarity matrices can be represented by a formula:

𝑆(z𝑖 , z 𝑗 ) =
x𝑇
𝑖

WW𝑇x 𝑗 + b𝑇W𝑇x𝑖 + b𝑇W𝑇x 𝑗√︃
x𝑇
𝑖

WW𝑇x𝑖 + 2b𝑇W𝑇x𝑖 + b𝑇b ·
√︃

x𝑇
𝑗
WW𝑇x 𝑗 + 2b𝑇W𝑇x 𝑗 + b𝑇b

(7)

We theoretically prove that the similarity of data identifiers can represent the data heterogeneity of
different clients by linear projection. The specific reasoning process is detailed in the appendix.
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3.3 Parameter and gradient integration

To enhance the generalization of local models with out-of-distribution samples by leveraging hetero-
geneous data across clients, we propose aggregation modules that incorporate both global parameters
aggregation and personalized gradient accumulation perspectives according to metric proxies.

3.3.1 Global parameters aggregation

We aim to optimize the aggregation process by considering the heterogeneity of data across clients.
Instead of simply averaging the parameters, as done in traditional methods like FedAvg, which
disregards the data heterogeneity and results in significant performance degradation with out-of-
distribution samples. Depending on the metric proxies that quantify heterogeneity with cosine
similarity, the server aggregates the global parameters of clients. This approach allows FedDFQ to ef-
fectively utilize the heterogeneity of data across clients and mitigate the performance degradation typ-
ically observed in traditional aggregation methods. Here is the introduction to the algorithm process:
Algorithm 1: Feature Extraction Layer Parameter Aggregation (FELPA)
Input : The number of communication round 𝑇 , the number of clients 𝑁 , the distribution

representation F = {f𝑡0, f
𝑡
1, . . . , f

𝑡
𝑁−1} and global parameters

W𝑡 = {W𝑡
0,W

𝑡
1, . . . ,W

𝑡
𝑁−1} in the round 𝑡

1 begin
2 for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3 for 𝑖 = 0, 1, . . . , 𝑁 − 1 do
4 Generate the metric proxy:
5 # Preserved for client 𝑖
6 s𝑡

𝑖
= {𝑠𝑡0,𝑖 , 𝑠

𝑡
1,𝑖 , . . . , 𝑠

𝑡
𝑁−1,𝑖} = {f

𝑡
𝑖
× f𝑡0, f

𝑡
𝑖
× f𝑡1, . . . , f

𝑡
𝑁−1 × f𝑡0, }

7 Normalize the similarities {𝑠𝑡0,𝑖 , 𝑠
𝑡
1,𝑖 , . . . , 𝑠

𝑡
𝑁−1,𝑖}

8 Aggregate global parameters for clients 𝑖 based on the metric proxy:
9 W𝑡

𝑖
=
∑𝑁

𝑗=1 𝑠
𝑡
𝑗
·W𝑡

𝑗

10 Update parameters of local client 𝑖:
11 W𝑡−1

𝑖
←−W𝑡

𝑖

12 Collect re-balanced weight for 𝑁 clients:
13 W𝑡

𝑎𝑔𝑔 = 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛(W𝑡
0,W

𝑡
1, . . . ,W

𝑡
𝑁−1)

Output
:

Aggregated weight W𝑡
𝑎𝑔𝑔

3.3.2 Personalized gradients accumulation

To further improve the generalization of the proposed FedDFQ on out-of-distribution samples, we
design an AGAM that regularizes personalized classification layers with re-balanced gradients.
Specifically, the server utilizes metric proxies to re-scale the contribution of personalized gradients
from other clients and then distributes all weighted gradients to their corresponding clients. It is worth
noting that each client has its metric proxy, therefore, their gradient matrices are different, which en-
sures the personalization of local clients and leverages the heterogeneous gradient from other clients
to improve the model’s generalization. For local clients, they sequentially update the gradients of the
personalized layer based on the similarity between clients, using the loss function generated from the
train data as a criterion to measure the model performance. We finally select the gradients with mini-
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mal loss values to update the parameters of local models. Here is the detail of the algorithm process:
Algorithm 2: Automatic Gradient Accumulation
Input : The number of communication round 𝑇 , the number of clients 𝑁 , the number of client

gradients used in client 𝑖 𝐾𝑖 , the distribution representation F = {f𝑡0, f
𝑡
1, . . . , f

𝑡
𝑁−1} and

personalized gradients G𝑡 = {G𝑡
0,G

𝑡
1, . . . ,G

𝑡
𝑁−1} in the round 𝑡

1 begin
2 for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3 Server calculates metric proxies for each client:
4 for 𝑖 = 0, 1, . . . , 𝑁 − 1 do
5 s𝑡

𝑖
= {𝑠𝑡0,𝑖 , 𝑠

𝑡
1,𝑖 , . . . , 𝑠

𝑡
𝑁−1,𝑖} = {f

𝑡
𝑖
× f𝑡0, f

𝑡
𝑖
× f𝑡1, . . . , f

𝑡
𝑁−1 × f𝑡0, }

6 Normalize the similarities and sort in ascending order.{𝑠𝑡0,𝑖 , 𝑠
𝑡
1,𝑖 , . . . , 𝑠

𝑡
𝑁−1,𝑖}

7 Re-scale gradients for each client:
8 G𝑡

𝑛𝑒𝑤,𝑖
= {G𝑡

0 × 𝑠
𝑡
0,𝑖 ,G

𝑡
1 × 𝑠

𝑡
1,𝑖 , . . . ,G

𝑡
𝑁−1 × 𝑠

𝑡
𝑁−1,𝑖}

9 Distribute gradients to corresponding clients:
10 client𝑖 ←− G𝑡

𝑛𝑒𝑤,𝑖

11 for each client 𝑖 ∈ [𝑁] in parallel do
12 for 𝑗 = 1, 2, . . . , 𝑘𝑖 − 1 do
13 try: G𝑡

𝑖, 𝑗−1 ←− G𝑡
𝑖, 𝑗−1 +G𝑡

𝑗

14 Compute loss on train set:
15 𝐿𝑡𝑒𝑚𝑝 = 𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑜𝑠𝑠(Pred, GT)
16 if 𝐿𝑡𝑒𝑚𝑝 < 𝐿𝑚𝑖𝑛 then
17 𝐿𝑚𝑖𝑛 = 𝐿𝑡𝑒𝑚𝑝

18 G𝑡
𝑖, 𝑗−1 ←− G𝑡

𝑖, 𝑗

19 else
20 G𝑡

𝑖, 𝑗
←− G𝑡

𝑖, 𝑗−1

Output
:

Updated model parameter W𝑖 for each client

4 Experiments

4.1 Experimental setup

Datasets. We use two widely used bechmark datasets CIFAR-10 Krizhevsky & Hinton (2009) and
Fashion MNIST Xiao et al. (2017). Specifically, CIFAR-10 contains 60,000 color images of 32x32
size with 10 categories divided into 50,000 for training and 10,000 for testing. FashionMNIST
consists of 60,000 training images and 10,000 testing images of 28x28 resolution with 10 categories.
We utilize the Dirichlet distribution to model a non-independent identically distributed (non-IID) data
partitioning strategy Yurochkin et al. (2019). Sample indices in the dataset are iteratively assigned to
each client to ensure that each client has a minimum amount of data. By modeling the distribution of
each client’s data using the Dirichlet distribution, we can concentrate the data in specific categories,
resulting in a non-uniform data distribution.

4.2 Experimental results

We compare our FedDFQ with other state-of-the-art methods with 50 and 100 clients on CIFAR-10
and FashionMNIST datasets. The results are shown in Table 1, we can observe that the traditional
FL method FedAvg is suppressed by the local training by a large margin, which suffers from the
heterogeneous data distribution. The FedDFQ outperforms the local training method, demonstrating
that FedDFQ not only addresses the issue of data heterogeneity but also improves the robustness and
generalization of local client models. In addition, compared with other FL approaches including
new-optimization-based and personalization FL, FedDFQ achieves state-of-the-art performance on
two benchmark classification datasets with 50 and 100 clients.
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Table 1: The Performance Of FedDFQ And Other Methods On Two Benchmark Datasets.

Method CIFAR-10 FashionMNIST
50 clients 100 clients 50 clients 100 clients

LocalOnly 87.97 86.63 97.34 94.92
FedAvg McMahan et al. (2017) 54.58 54.41 80.36 75.81
SCAFFOLD Karimireddy et al. (2020) 55.53 39.24 79.59 78.91
Ditto Li et al. (2021a) 87.89 86.28 96.96 94.57
FedAMP Huang et al. (2021) 87.84 86.54 97.32 95.76
FedBN Li et al. (2021b) 56.24 54.31 80.41 83.17
FedFomo Zhang et al. (2020) 87.45 86.02 97.30 95.57
FedRep Collins et al. (2021) 89.99 88.32 97.29 95.25
FedBABU Oh et al. (2021) 90.49 88.43 97.22 95.49
FedProto Tan et al. (2022b) 88.49 87.08 97.51 96.03
FedCP Zhang et al. (2023b) 90.06 89.06 97.50 95.81
FedDBE Zhang et al. (2024) 79.15 72.67 83.89 86.10
FedGH Yi et al. (2023) 87.83 86.58 97.33 95.87
FedPAC Xu et al. (2023a) 81.79 60.90 91.77 94.70
GPFL Zhang et al. (2023a) 85.21 86.43 97.26 95.84
FedDFQ 90.68 89.80 98.15 96.94

4.3 Ablation study

The FedDFQ algorithm consists of the DIEM, FELPA, and AGAM. We conduct ablation comparison
experiments to validate the effectiveness of these components with 50 clients on the CIFAR-10 dataset
and FashionMNIST datasets. The results are illustrated in Tabel 2, in which the Local means only
local model training is performed; FELPA means only the FELPA is used; AGAM means only the
AGAM is used; w/o DIEM means the average strategy is applied to aggregate parameters; DIEM
means only the DIEM is used; All denotes three modules are all used.

Table 2: Ablation results of the proposed FedDFQ.

Dataset Local FELPA AGAM w/o DIEM DIEM All
CIFAR-10 88.07 85.18 88.09 72.66 75.79 90.46
FashionMNIST 97.32 90.42 97.46 90.12 90.93 98.15

The experimental results prove the effectiveness of the three components in FedDFQ. Specifically, we
can observe that the local training only achieves 88.07% and 97.32% Acc on CIFAR-10 and Fashion-
MNIST datasets. After integrating the FELPA and AGAM, FedDFQ outperforms other designs by
a large margin, because the AGAM is prone to fall into the local optimal solution and FELPA causes
semantic gaps that significantly hinder classification layers from adapting aggregated parameters
from other heterogeneous clients. The feature extraction layer can aggregate the parameters of other
clients to provide momentum support for model parameter updating and help the AGAM jump out
of the local optimal solution. Then the DIEM is integrated into FedAvg (DIEM) and outperforms
vanilla FL (w/o DIEM) by 3.13 % Acc and 0.71% Acc on CIFAR-10 and FashionMNIST datasets.

In addition, we visualize the relationship between communication rounds and accuracy by line
graphs. As shown in Figure 2, the accuracy improvement curve of the design that incorporates all
modules (represented by the green line) exhibits a smoother trend when compared to other methods,
which proves that the components in FedDFQ keep the consistency optimization goals between
local and global levels and lead to a more stable training process. In more detail, the green line in
Figure 2a is significantly ahead compared to Figure 2b, indicating that our method outperforms other
approaches, particularly in handling more complex data distributions.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) CIFAR-10 (b) FashionMNIST

Figure 2: The Convergence curves of FedDFQ and other state-of-the-art methods on CIFAR-10 and
FashionMNIST datasets.

4.4 Analysis study

We analyze the proposed FedDFQ on the CIFAR-10 dataset under different numbers of clients. As
shown in Figure 3, our method surpasses the locally trained model when the number of clients is 50,
75, and 100. Furthermore, as the number of clients increases, our method demonstrates even more
significant advantages. This demonstrates that our approach not only addresses data heterogeneity
but also learns from similar data distributions in other clients to enhance the generalization capability
of the local model.

Figure 3: The performance of FedDFQ compared to local training strategy with different numbers
of clients.

To validate the robustness of FedDFQ, we select three types of data distribution to construct hetero-
geneous datasets. The distribution is detailed as follows:

• d1 denotes Dirichlet distribution to partition the dataset. It starts by determining the number
of categories𝐾 and selecting a parameter vectorα (such as𝛼𝑖 = 1). Samples are drawn from
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Dirichlet (α) to obtain a probability vector θ, where the elements sum to 1, representing
the proportion of each category.

• d2 is pathological distribution, which is a Non-IID, and unbalanced data set partitioning
mode. There are 50 clients in the test, and the data set of each client covers two categories,
but the sample quantity of these two categories is greatly different. Data set partitioning
is achieved by creating an index array according to category allocation rules. Each client
allocates a fixed number of categories, and category allocation follows a certain logical
order.

• d3 is a Non-IID data set partitioning mode, with a total of 50 clients, and each client’s
data set covers all 10 categories, but the number of samples in different categories varies
significantly between clients. Data set partitioning is also achieved by creating indexed
arrays and assigning them according to class allocation rules, ensuring that each client
covers all classes, but the sample number for each class is unevenly distributed.

Figure 4: Performance of FedDFQ under different data distributions.

As illustrated in Figure 4, we can observe that although our method exhibits fluctuations in perfor-
mance under different distributions, it consistently outperforms other methods. This demonstrates
that FedDFQ is capable of adapting to heterogeneous data with different distributions, and the local
model possesses stronger robustness and generalization capability.

5 Conclusion and future work

In this paper, we propose a novel personalized federated learning method named FedDFQ including
IDEM, FELPA, and AGAM modules. Specifically, the IDEM measures and quantifies data hetero-
geneity for each client to generate metric proxies, which re-scale the contributions of local clients in
the current rounds. FELPA aggregates weighted parameters of feature extractors according to metric
proxies from each client. To further utilize the homogeneity in heterogeneous clients, AGAM is
designed to regularize personalized classification layers with weight gradients, improving the gener-
alization of local models. Besides, we conduct extensive experiments and provide theoretical proof
to validate the effectiveness of our FedDFQ, and our method achieves state-of-the-art performance
on two benchmark datasets.

Future work includes developing more refined methods for extracting distributed features and con-
ducting experimental analyses on more datasets.
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A Appendix

A.1 metric proxies theory proof

𝑆(z𝑖 , z 𝑗 ) =
x𝑇
𝑖

WW𝑇x 𝑗 + b𝑇W𝑇x𝑖 + b𝑇W𝑇x 𝑗√︃
x𝑇
𝑖

WW𝑇x𝑖 + 2b𝑇W𝑇x𝑖 + b𝑇b ·
√︃

x𝑇
𝑗
WW𝑇x 𝑗 + 2b𝑇W𝑇x 𝑗 + b𝑇b

(8)

When W is the identity matrix and b is the zero vector,

𝑆(z𝑖 , z 𝑗 ) =
x𝑇
𝑖

x 𝑗√︃
x𝑇
𝑖

x𝑖 ·
√︃

x𝑇
𝑗
x 𝑗

= 𝑆(x𝑖 , x 𝑗 ) (9)

To further verify the correlation between 𝑆(z𝑖 , z 𝑗 ) and 𝑆(x𝑖 , x 𝑗 ), we collect 𝑆(z𝑖 , z 𝑗 ) and 𝑆(x𝑖 , x 𝑗 )
data through experiments and calculate their Pearson correlation coefficient to demonstrate their
significant correlation.

Table 3: Statistics Collected On CIFAR-10 Will Be
Open Sourced Along With The Source Code

Average Value Variance
𝑆(z𝑖 , z 𝑗 ) 0.999619387 0.000000171
𝑆(x𝑖 , x 𝑗 ) 0.473363243 0.600071219

Plug the resulting statistics into equation 10.

𝑟 =

1
𝑛

∑𝑛
𝑖=1 (𝑋𝑖 − �̄�) (𝑌𝑖 − 𝑌 )√︃

1
𝑛

∑𝑛
𝑖=1 (𝑋𝑖 − �̄�)2 ·

√︃
1
𝑛

∑𝑛
𝑖=1 (𝑌𝑖 − 𝑌 )2

= 0.728315558 (10)

Through the experimental data, we can see that there is a strong correlation between 𝑆(z𝑖 , z 𝑗 ) and
𝑆(x𝑖 , x 𝑗 )

A.2 Experiment details setup and result visualization

A.2.1 MODELS

In the experiment, we used a 3-layer convolutional neural network(CifarCNN) for the CIFAR-10
dataset and a 2-layer convolutional neural network(MNISTCNN) for the FashionMNIST dataset.
The specific network structure is as follows.

CifarCNN(
(conv1): Conv2d(3, 16, kernel_size=(5, 5), stride=(1, 1))
(relu1): ReLU()
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0,

dilation=1, ceil_mode=False)
(conv2): Conv2d(16, 32, kernel_size=(5, 5),

stride=(1, 1), padding=(1, 1))
(relu2): ReLU()
(conv3): Conv2d(32, 64, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(relu3): ReLU()
(fc1): Linear(in_features=576, out_features=128, bias=True)
(fc): Linear(in_features=128, out_features=10, bias=True)

)

MNISTCNN(
(conv1): Sequential(
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(0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU(inplace=True)
(2): MaxPool2d(kernel_size=(2, 2), stride=(2, 2),

padding=0, dilation=1, ceil_mode=False)
)
(conv2): Sequential(

(0): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU(inplace=True)
(2): MaxPool2d(kernel_size=(2, 2), stride=(2, 2),

padding=0, dilation=1, ceil_mode=False)
)
(fc1): Sequential(

(0): Linear(in_features=1024, out_features=512, bias=True)
(1): ReLU(inplace=True)

)
(fc): Linear(in_features=512, out_features=10, bias=True)

)

A.2.2 Experimental Detailed Settings

Our experiments are conducted on the NVIDIA GeForce RTX 3060Ti GPUs. We set the number of
local training rounds to 5 for the clients and the number of global communication rounds to 100. All
the clients participate in the training. The batch size is kept at 64 and the learning rate is 0.01 with
SGD optimizer Ruder (2016) during local training stages.

A.2.3 Additional Experimental Results

We use line plots to show the specific performance of different methods in the CIFAR-10 dataset.
As shown in Figure 6a. It is worth mentioning that we put all the clients into training, the purpose
of which is to see how FedDFQ performance changes in a multi-client situation. We can observe
that our method exhibits a smoother trend when compared to other methods with 50 and 100 clients,
which proves that the components in FedDFQ keep the consistency optimization goals between
local and global levels and lead to a more stable training process. In addition, under the same
number of iterations, our method achieves a higher accuracy, demonstrating its superiority in terms
of convergence.

(a) 50 clients (b) 100 clients

Figure 5: Test Accuracy Under Different Training Methods And Different Clients

In our experiments, we compare homogeneous and heterogeneous distributions on the FashionMNIST
dataset. As shown in Figure 6. Our FedDFQ outperforms other methods both in iid. and no-iid
conditions. Furthermore, the final accuracy of FedDFQ on no-iid data suppresses other designs With
a significant advantage, demonstrating our method can learn generalized information from gathered
parameters and gradients, and lead to the superiority of adaptability to heterogeneous data.
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(a) iid (b) no-iid

Figure 6: Test accuracy with different training methods and different data distributions
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