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Abstract

Humans can effortlessly draw new categories from a single exemplar, a feat that
has long posed a challenge for generative models. However, this gap has started
to close with recent advances in diffusion models. This one-shot drawing task
requires powerful inductive biases that have not been systematically investigated.
Here, we study how different inductive biases shape the latent space of Latent
Diffusion Models (LDMs). Along with standard LDM regularizers (KL and vector
quantization), we explore supervised regularizations (including classification and
prototype-based representation) and contrastive inductive biases (using SimCLR
and redundancy reduction objectives). We demonstrate that LDMs with redundancy
reduction and prototype-based regularizations produce near-human-like drawings
(regarding both samples’ recognizability and originality) – better mimicking human
perception (as evaluated psychophysically). Overall, our results suggest that the
gap between humans and machines in one-shot drawings is almost closed.

1 Introduction

For cognitive scientists, human drawings offer a window into the brain, providing tangible insights
into its visual and motor internal processes [1]. For instance, drawings have been used in clinical
settings to screen for perceptual impairments following brain trauma or Alzheimer’s disease [2, 3], to
assess perceptual disorders in autistic individuals [4–6] or to investigate perceptual changes during
child development [7, 8] (see [1] for a recent review). Drawing tasks have also proven instrumental
for exploring how the brain generalizes to novel visual categories [9–11]. Cognitive psychologists
routinely use the one-shot drawing task to understand how human observers can reliably form new
object categories from just one exemplar [12, 13]. From a computational viewpoint, this task is
ill-defined because of the infinite number of possible sets of samples that could be associated with that
exemplar. Yet, humans can effortlessly produce drawings that are not only easily recognizable but
also original (i.e., sufficiently distinct from the reference exemplar) [12]. This remarkable capability
suggests that the brain leverages powerful representational inductive biases – yet to be discovered –
to form novel categories.

Computer scientists have started to make progress in identifying some of the inductive biases for
machine learning algorithms to learn from limited data. For one-shot classification tasks, a particularly
effective representational inductive bias is to design an embedding space where samples of the same
category, whether seen during training or not, cluster closely. This approach spans a wide range of
models ranging from representations learned via contrastive objective functions [14–16], prototype-
based representations [17, 18] or metric matching losses [19, 20]. Conversely, for one-shot generation
tasks, researchers have preferred architectural over representational inductive biases. For instance,
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novel architectures based on Generative Adversarial Networks (GANs) or Variational Auto-Encoders
(VAEs) have incorporated forms of spatial attention [21] or contextual integration [22–24]. Recent
advances in diffusion models [25, 26] make them particularly promising for one-shot generation tasks.
Indeed, clever conditioning on a context vector [24] or directly using guidance from the exemplar [27]
has led to powerful one-shot diffusion models [28]. Such a guidance mechanism has also proven
successful in Latent Diffusion Models (LDMs) [29], which use a Regularized AutoEncoder (RAE) to
compress input data and a diffusion model to learn the RAE’s latent distribution. These diffusion
models have started to close the gap with humans in the one-shot drawing task [30] (see section 2 for
related work on one-shot learning). While better conditioning mechanisms have driven improvements
in one-shot generative models, the potential of shaping their input space with representational
inductive biases inspired by one-shot classification remains largely unexplored. This raises the
question: “Do representational inductive biases from one-shot classification help narrow the gap with
humans in one-shot drawing tasks ?”

In this article, we use Latent Diffusion Models (LDMs [29]) to address this question. LDMs combine
the flexibility of the Regularized AutoEncoder (RAE), in which one can seamlessly include various
representational inductive biases in the latent space via regularization, with the high expressivity of
the diffusion model. Herein, we study the impact of 6 different regularizers corresponding to distinct
representational inductive biases. They are categorized into 3 groups. The first group, which serves
as a baseline, includes the KL and the vector quantization regularization approaches typically used
in LDMs [29]. The second group involves supervised regularizers: a classification loss that promotes
discriminative features mapping with categorical training labels and a prototype-based objective
function that clusters samples with their respective prototypes in an embedding space. The third
group features contrastive learning regularization schemes with the SimCLR and Barlow losses. The
SimCLR objective function keeps a sample and its augmented view close in the embedding space
but far apart from other samples’ views. In contrast, the Barlow loss ensures that features of similar
samples are decorrelated from those of dissimilar ones.

We compare those regularized LDMs against humans on the one-shot drawing task. Such a task
offers a leveled playfield in which humans and machines can create sketches that are directly
comparable using established evaluation frameworks [31, 30, 12] (see section 2 for related work).
More specifically, our comparison focuses on two metrics to evaluate the quality of sketches produced
by humans and machines – based on how distinct from the exemplar and how recognizable they
are [31] – and on the alignment between humans’ and machines’ perceptual strategies. For the latter,
we describe a novel method to generate importance maps highlighting category-diagnostic features
in LDMs. These maps are then directly compared against importance maps derived from human
observers obtained through psychophysics experiments. Our results show that LDMs using prototype-
based and redundancy-reduction (with the Barlow twin objective) regularization techniques are further
closing the gap with humans. These results are supported by both the sample’s similarity and the
feature importance maps alignment. Overall, our contributions can be summarized as follows:

• We introduce novel representational inductive biases in Latent Diffusion Models. In partic-
ular, we draw inspiration from losses that have proven effective in one-shot classification
tasks (with the prototype-based, Barlow and SimCLR objective functions) to regularize
the latent space of LDMs.

• We derive a novel explainability method to generate LDMs’ feature importance maps that
highlight category diagnostic features.

• We systematically compare the sketches and feature importance maps derived from humans
and machines, and we show that LDMs with prototype-based and Barlow regularization
significantly narrow the gap with humans on the one-shot drawing task.

Our work underscores the critical role of well-designed representational inductive biases in achieving
human-like performance in one-shot drawing tasks. It also sets the stage for developing generative
models that are better aligned with humans.

2 Related work

Representation learning for one-shot classification tasks: Learning representations that bring
unseen samples (from the query set) close to the exemplars (in the support set) has proven effective
in one-shot classification. The historical approach, called metric learning, aims at creating a feature
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space in which the distances between the query and support sets are preserved [20, 19, 32, 33].
However, the limited number of samples in the support set restricts these networks’ ability to
recognize novel classes. This limitation becomes more pronounced in the one-shot setting as the
support set contains only one sample (the exemplar). To address this, the field has shifted towards
prototype-based representations. Rather than trying to preserve the distances between query and
support samples, such networks learn an embedding space in which the query samples cluster near
the support samples [17, 34, 35]. Contrastive learning, a self-supervised learning approach, offers
another effective solution to mitigate sample scarcity by augmenting the training set. This method
learns an embedding space where positive pairs (a sample and its augmented version) are close
together, and distant from negative pairs (augmented views from different instances) [14, 15, 36–39].
Among alternative methods, the SimCLR algorithm [14] uses a cosine similarity between samples
whereas the Barlow-twins network [15] leverages the correlation matrix between features to dissociate
positive and negative pairs. In this article, we use the prototype-based [17], the SimCLR [14] and
the Barlow twins [15] objectives to regularize RAEs latent space. For additional mathematical details,
see section 4.1 for the prototype-based loss and section A.2.3 for SimCLR and Barlow.

Generative models for one-shot image generation tasks: Some of the main techniques involve
including information from the support set into the generative process, a method known as condition-
ing. For instance, the Neural Statistician uses a context vector containing summary statistics from
the support sets, which is then concatenated with a VAE latent space [22, 24, 40]. Similarly, GANs
leverage a compressed representation of the support set as a conditioning mechanism [23]. Such a
mechanism has also been used successfully to either condition [41–43, 29] or guide the denoising
process of diffusion models [27, 28] and latent diffusion models [29]. Here, we leverage LDMs
with classifier-free guided diffusion models [27]. Such a diffusion process has been shown to well
approximate human drawings in one-shot drawing tasks [30].

Human-machine comparison in one-shot drawing tasks: Cognitive scientists have developed
various methods to compare the generalization abilities of machines and brains on drawing tasks.
Lake et al. [44] introduced the Omniglot challenge in which both humans and machines are tasked
with drawing symbols from categories represented by a single exemplar (see [45] for a review on
the challenge). The authors evaluated the drawings’ recognizability in a visual Turing test where
humans (or classifiers) had to distinguish between human-drawn and machine-generated symbols [11].
Additional metrics, including classification uncertainty and semantic similarity, were also used to
compare drawings produced by humans and machines under different time constraints [46, 8]. While
these evaluation frameworks provide useful insights into a sample’s recognizability, they do not
measure how the diversity of model-generated samples compares to those created by humans. The
“originality vs. recognizability” framework [31] mitigates this issue by adding the originality metric.
An originality score quantifies the similarity between the original exemplar and its corresponding
variations (see section 5.1 for details on this evaluation framework). This evaluation framework has
been used to benchmark the generalization performance of mainstream generative models – Diffusion
models [47], GANs [48] and VAEs [49] – against humans in the one-shot drawing setting [30].
Although Diffusion models come closest to human performance, a noticeable gap remained in this
study. In this article, we use the “originality vs. recognizablility” framework from Boutin et al. [31] to
evaluate representational inductive biases in Latent Diffusion Models. In particular, we demonstrate
that effective biases in one-shot classification tasks also prove efficient in the one-shot drawing task.

3 Datasets

As done in previous work [31, 30, 11], we use the Omniglot [11] and the QuickDraw-FS [30] datasets
to compare humans and machines on the one-shot drawing task. These datasets, made of handwritten
symbols or drawings, offer a fair environment for comparing the generation abilities of humans and
machines [11, 46, 31, 30]. It is important to note that natural images generation is a task beyond
human capability, making it unsuitable for a fair comparison between humans and machines.

Omniglot contains 1, 623 categories of handwritten characters from 50 different alphabets, with 20
samples per class [11]. This article uses a downsampled version of the dataset (size: 48× 48 pixels).
We train the models on a training set composed of all available symbols minus 3 symbols per alphabet
left aside for the test set (similar to [21]). All the results on the Omniglot dataset are in the Appendix
(see A.6).
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QuickDraw-FS is made from drawings of the Quick, Draw ! challenge [50]. In this challenge,
human participants are asked to produce drawings in less than 20 seconds when presented with an
object name. The categories are, therefore, made with semantically consistent samples that do not
necessarily represent the same visual concept (e.g., the "phone" object category might contain corded
phones, smartphones, phones with rotary dials, etc). The Quickraw-FS dataset mitigates this issue
with categories representing the same visual concepts (see A.1 for more details). This dataset is
ideally suited for purely visual one-shot generation tasks [30]. It contains 665 categories with 500
samples each. The training set is made of 550 randomly selected categories, and 115 are left aside
for the testing set. We downsampled the drawings to 48× 48 pixels to keep computational resources
manageable.

For each category in both datasets, we extract a ’prototypical’ sample, selected in the center of the
category cluster to condition the one-shot generative models (see A.1 for more details on the exemplar
selection).

4 One-shot Latent Diffusion Models

Figure 1: Latent Diffusion Models stack
a diffusion model (orange) on top of an
Auto-Encoder (green).

The one-shot image generation task involves synthesizing
variations of a visual concept not seen during training.
Let x ∈ RD denote the image variation and y ∈ RD the
exemplar. Latent Diffusion Models (LDMs) are composed
of 2 distinct stages: a first stage leverages a Regularized
AutoEncoder (RAE) that extracts a latent representation
z ∈ Rd (d ≪ D) for each image (see green boxes in
Fig. 1), and a second stage consisting of a diffusion model
that learns the latent distribution (orange boxes in Fig. 1).
In the one-shot setting, the diffusion model is conditioned
by zy, the latent representation of y. We call c the category
label of the training set (a one-hot vector).

4.1 Regularized Auto-Encoders (RAEs)

To describe the RAE, we use a probabilistic formulation in
which qϕ(z|x) is the recognition model (or the encoder),
and pθ(x|z) is the decoder. We train the RAEs by mini-
mizing LRAE (Eq. 1). In this equation, the first term is a
reconstruction loss (computed with a ℓ2 distance), and the second term (Lreg) covers a wide range
of regularization losses. Lreg includes the representational inductive biases we study in this article.
Those inductive biases fall into 3 groups: the standard LDM regularizers, the supervised regularizers,
and the contrastive regularizers.

min
θ,ϕ
LRAE s.t. LRAE = −Ez∼qϕ(.|x) [log pθ(x|z)] + βLreg(z) (1)

Standard regularizers (KL and VQ): The KL divergence in Eq. 2 forces each coordinate of
the latent vector to be distributed following a pre-determined distribution (e.g Gaussian distribution,
as in the VAE [49]). The vector quantized loss in Eq. 3 transforms the continuous latent code z
into a discrete code zq using the nearest entry in a codebook Z = {ei}Ki=1 with the quantization
operator: zq = nZ(z) (s.t. nZ : z→ argminei∥z−ei∥2 as in the VQ-VAE [51]). This quantization
operation being non-differentiable, backpropagation is achieved using a stop-gradient operation sg[·]
to provide a gradient estimator. We provide an extensive mathematical description of the VQ-VAE in
App. A.2.1.

LKL = KL(qϕ(z|x)||p(z)) (with p(z) = N (0, I)) VAE (2)

LV Q = (∥sg[z]− zq∥22 − ∥sg[zq]− z∥22) VQ-VAE (3)

Supervised regularizers (Classif. and Proto.): The classification regularizer forces discriminative
features by minimizing the cross-entropy between the true labels (c) and the softmax of the logits.
Here the logits are learned by a linear layer (hCLθ ) stacked on the latent space (Eq. 4). While the
classification loss is supervised by the true categorical labels, the prototype-based loss is supervised
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by the exemplars themselves (as in the Prototypical Net [17]). The prototype-based loss learns a
metric space in which classification can be performed by computing distances between the variations
and their corresponding exemplars (i.e., the prototypes)(see Eq. 5). Here, the metric space is linked to
the latent space of the RAE through a linear layer (hPRθ ). Intuitively, the prototype-based loss finds
an embedding space where the variations will be close (in terms of ℓ2 distance) from their prototypes.
See A.2.2 for more details.

LCL = CE(hCLθ (z), c) Classif. (4)

LPR = Ezy∼qϕ(.|y)
[
− log(softmax(

∥∥hPRθ (z)− hPRθ (zy)
∥∥
2
)
]

Proto. (5)

Contrastive regularizers (SimCLR and Barlow): Contrastive learning algorithms learn represen-
tations that are invariant under different distortions (i.e., data augmentations). Here we define two
data-augmentation operators, τA(·) and τB(·), that transform the variations x into xA = τA(x) and
xB = τB(x), respectively. We denote zA = qϕ(·|xA) and zB = qϕ(·|xB) the projection of xA and
xB into the RAE latent space, respectively. The SimCLR regularizer is based on the InfoNCE loss:
it maximizes the similarity between the representation of a sample and its augmented view while
minimizing the similarity with negative pairs (augmented views of different instances) [14]. The
Barlow regularizer (as in the Barlow twins [15]) forces the cross-correlation matrix between zA and
zB to be as close to the identity matrix as possible. This causes the embedding vectors of distorted
versions of samples to be similar while minimizing the redundancy between the components of these
vectors. Said differently, the SimCLR loss shapes the space based on the samples’ similarity, while
the Barlow operates on the correlation between the features of the samples. For conciseness, we have
included the mathematical derivations and details on the data augmentation we used in App. A.2.3.

We leverage standard convolutional architectures (from [52]) to parametrize both the encoder and the
decoder. The resulting autoencoder has a 1D bottleneck (d = 128 for QuickDraw-FS and d = 64 for
Omniglot). We refer the reader to App. A.3.1 for complete architectural and training details of the
RAE. In the rest of the article, we evaluate the impact of these regularizations by exploring the effect
of β (see Eq. 1) on LDMs.

4.2 Diffusion Model

The LDM second stage is a diffusion model that learns the data distribution in the latent space of
the RAE. Diffusion models progressively denoise a pure noise zT ∼ N (0, I) into a clean latent
representation z0 := z through a sequence of partially denoised variables {zi}Ti=1. The goal is then
to learn a transition probability pψ(zt−1|zt) that approximates a noise injection operator νt(.) so
that zt = νt(z0) =

√
ᾱtz0 +

√
1− ᾱtϵ (ᾱt is an hyperparameter of the diffusion schedule, and ϵ a

Gaussian noise). The Denoising Diffusion Probabilistic Model (DDPM) [47] reduces the learning
of pψ(zt−1|zt) to the optimization of a simple autoencoder ϵψ trained to predict the noise from a
degraded latent representation zt (see A.4 for mathematical justification):

argmin
ψ

Ez0∼qϕ(.|x)
zy∼qϕ(.|y)

[∥∥ϵψ(νt(z0), zy, t)− ϵ∥∥22
]

s.t. ϵ ∼ N (0, I) and t ∼ U(1, T ) (6)

In Eq. 6, zy denotes the latent representation of the exemplar y. Eq. 6 could be interpreted as a
denoising score matching objective [53], so the optimal model ϵψ∗ matches the following score
function:

∇zt
log pψ⋆(zt|zy) ≈ −

1√
1− ᾱt

ϵψ⋆(zt, zy) (7)

The autoencoder-like model ϵψ(., zy, t) is a 1D Unet conditioned on the time variable t and zy
(see A.4.3 for details on the architecture and the training of the Unet). Herein, we use a classifier-free
guided version of the DDPM [27] with the following score function:

∇zt
log pψ⋆,γ(zt|zy) = (1 + γ)∇zt

log pψ⋆(zt|zy)− γ∇zt
log pψ⋆(zt) (8)

This formulation introduces a guidance scale γ (we use γ=1) to tune how much the conditioning
signal influences the final score. Such a formulation has shown effective in one-shot settings [28, 30].
Note that each term on the RHS of Eq. 8 is computed with the same network ϵψ using Eq. 7. ϵψ is
simply conditioned on a non-informative signal to compute log pψ⋆(zt). We remind the reader that
the training of the diffusion model begins only after the RAE training is complete, and occurs exactly
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identically, regardless of the type of regularization used. The quality of images generated by the
diffusion model thus directly serves to compare the different regularizations. The code to train all
described models is available at http://anonymous.4open.science/r/LatentMatters-526B.

5 Results

5.1 Originality vs. Recognizabilty

To compare humans and machines in the one-shot drawing task, we first use the originality vs.
recognizability framework [31, 30]. This framework leverages 2 critic networks to evaluate the
samples produced during the testing phase. The recognizability is quantified using the classification
accuracy of a one-shot classifier [17], while the originality is measured using the average distance
between the variations and their corresponding exemplars. This distance is computed in the feature
space of a self-supervised model [14]. Importantly, both human-drawn and machine-generated
samples are evaluated using the same 2 critic networks. This ensures that any potential biases in
the critic networks are minimized, leading to a more balanced comparative analysis. Note that the
originality is normalized across all tested models to range between 0 and 1. Here, we use the same
originality vs. recognizability framework setting as that used in Boutin et al. [30]. Importantly, the
originality vs. recognizability plots should be interpreted based on how close the models are to the
human data point (grey star in Fig. 3), rather than focusing solely on their individual originality or
recognizability scores. In simple terms, a model that effectively mimics human drawings should
fall near the human data point. Note also that there is an inherent trade-off between originality and
recognizability: while recognizability assesses how likely the data point falls within the classifier
decision boundary, originality measures how ’diffuse’ the sample distribution is. Therefore a very
original agent (producing highly diverse samples) will tend to have a low recognizability as the
samples are likely to fall outside of the classifier decision boundary.

In Fig. 3, we first evaluate how increasing the regularization weights (i.e. the β in Eq. 1) for each

Exemplars

No reg.

Proto.

Classif.

Barlow

SimCLR

KL

VQ

Figure 2: Samples from LDMs w/
different regularizers. The LDMs
correspond to the larger data points
in Fig. 3.

regularizer (taken separately) affects the similarity of LDM
samples to human drawings. To do so, we report the original-
ity and the recognizability values for LDM samples trained
with different β values (see data points in Fig. 3). We use
a parametric fit (least curve fitting methods [54]) to illus-
trate how increasing β affects these scores (see A.5 for more
details on the parametric fit computations). We observe a
similar concave shape for all curves. As β starts increasing,
the recognizability improves while the originality decreases
(except for VQ regularizer). Beyond a certain β value, the
recognizability declines, and the originality increases. In par-
ticular, the maximum recognizability values for KL and VQ
(obtained with βKL = 10−5 and βV Q = 5) match those of a
diffusion model trained in the pixel space and barely exceed
those of a non-regularized LDM (see Fig. 3a). Increasing
the weight of the prototype-based regularizer substantially
reduces the distance to human compared to the classifica-
tion regularizer (the minimal distance to human is 0.04 for
βPR = 5·102 vs. 0.15 for βCL = 5, see Fig. 3b). Among the
contrastive regularizers, Barlow regularization significantly
reduces the distance to human compared to the SimCLR one
(the minimal distance to human is 0.08 with βBAR = 30 vs.
0.12 with βSimCLR = 10−2, see Fig. 3c). A visual inspec-
tion of the samples tends to corroborate these results (see
Fig. 2 and A.7 for more samples). We observe similar trends
for all tested regularizers on the Omniglot dataset (see A.6).

Overall, our findings indicate that not all regularizers are created equal. For supervised regularizers
(see Fig. 3b), the prototype-based regularizer generates more recognizable samples compared to
the classification regularizer. This is expected since the classifier focuses on separating categories
in the training set, which may not be ideal for unseen categories in the one-shot setting [19, 17].
In contrast, the prototype-based regularizer clusters samples near their prototypes, leading to less
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a) b) c)

Figure 3: Effect of increasing the regularization weights on the originality vs recognizability
framework (QuickDraw-FS dataset). Each data point represents an LDM trained with different
values of regularization weights (β). The curves represent the parametric fits, oriented in the direction
of an increase of β. a): For the LDMs with “standard” regularizers, the β is applied on the KL (LKL
in Eq. 2) or on the VQ regularizers (LV Q in Eq. 3). b): For the supervised regularizers, the β is
applied on the CL (LCL in Eq. 4) or on the prototype-based regularizers (LPR in Eq. 5). c): For
the contrastive regularizers, the β is applied on the SimCLR (LSimCLR in Eq. 14) or on the Barlow
regularizers (LBar in Eq. 15). See A.5 for more information on the range of β we have explored for
each regularizer. Larger data points indicate models whose performance is closer to that of humans
for each type of regularization. For comparison, we include an LDM leveraging a non-regularized
RAE (hexagon marker) and a diffusion model trained directly on the pixel space (cross marker). The
human performance corresponds to the recognizability and originality computed on human drawings
(shown with a grey star).

overfitting and better transferability, which is valuable for few-shot tasks [55]. Our experiments
confirm that the prototype-based regularizer generalizes better for one-shot drawing. In Fig. 3c,
the Barlow regularization outperforms the SimCLR regularizer in recognizability, likely due to
Barlow’s effective feature disentangling [15]. These features transfer well to new datasets, making
Barlow more suitable for the one-shot drawing task. Overall, our results demonstrate that effective
representational inductive biases in few-shot learning also enhance performance in one-shot drawing.

We now study the effect of the regularizers when they are used in combination. In particular, we have
systematically explored the following combinations of regularizers Barlow + Prototype (Fig. 4a),
SimCLR. + Prototype (Fig. 4b), KL + Prototype (Fig. 4c), VQ + Prototype (Fig. 4d). We
observe that the Barlow + Prototype and the KL + Prototype combinations produced the most
human-like samples. Those regularizer’s combinations are particularly as in both cases the combined
recognizability is significantly higher compared to using each regularizer alone. This suggests that
clustering samples around their prototypes (using the Prototype regularizer) within a disentangled
space (achieved via the KL or Barlow regularizer) enhances generalization. In contrast, the VQ +
Prototype and the SimCLR + Prototype combinations show little to no improvements.

5.2 Comparing humans and LDM perceptual strategies

While the originality vs. recognizability framework allows us to compare human and machine
performances in the one-shot drawing task, it does not reveal the strategies each uses to generalize to
new categories. To address this, we aim to compare the visual strategies more directly via feature
importance maps. These maps emphasize the most salient features to recognize a drawing.
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a) b) c) d)

Figure 4: Combined effect of the regularization weights on the originality vs recognizability
framework (QuickDraw-FS dataset). Each data point represents an LDM trained with a combi-
nation of 2 different regularizers. All combinations include the prototype-based regularizers. The
curves represent the parametric fits, oriented in the direction of an increase of β. a): Barlow and
prototype-based regularizers applied either separately (plain lines) or in combination (dashed-line).
When applied in combinations, only the weight of the prototype-based regularizer is modified (with
β = 30 for Barlow). b): SimCLR and prototype-based regularizers. When applied in combina-
tions, only the weight of the prototype-based regularizer is modified, the SimCLR is set to β = 1.
c): KL and prototype-based regularizers. When applied in combinations, only the weight of the
prototype-based regularizer is modified, the KL is set to β = 1e− 3. d): VQ and prototype-based
regularizers. When applied in combinations, only the weight of the prototype-based regularizer is
modified, the VQ is set to β = 20. See caption in Fig. 3.

Previous research has demonstrated that by summing the absolute values of the diffusion scores
(∇zt log pψ(zt|zy)) throughout all diffusion steps, one can create heatmaps that highlight salient
features in a diffusion model’s generation process [30]. Here, we adapt this heuristic to make it
compatible with LDMs. This involves projecting each intermediate noisy state (zt) back to pixel
space using the RAE’s decoder (pθ(·|zt)). To do so, we use the chain rule, and we multiply each
diffusion score by the Jacobian of the RAE decoder w.r.t xt (denoted Jlog pθ(·|zt)(xt)). For each
variation x and its corresponding exemplar y, we can therefore compute a heatmap using Eq. 9
(see A.8.1 for mathematical details). Then, we average 10 of these heatmaps, obtained with the
same exemplar but for different variations belonging to the same category. This process allows us to
mitigate intra-class variations while focusing on category-specific features. We call this average the
feature importance map (see A.8.2 to visualize feature importance maps).

ϕ(x,y) =

T∑
i=0

∣∣∣Jlog pθ(·|zt)(xt)∇zt log pψ(zt|zy)
∣∣∣ with zy ∼ qϕ(·|y) (9)

We derived human feature importance maps using psychophysical data from Boutin et al. [30] (data
shared by the original authors). The authors collected human saliency maps through an online
psychophysics experiment based on a similar protocol to the ClickMe experiment [56]. In this
experiment, participants were presented with drawings and were asked to draw on regions important
for categorization (see App. S in [30] for more details on the experimental protocol). We averaged the
heatmaps across participants and drawings within the same category to obtain the feature importance
maps we compared with those of machines (see A.8.3 for visualizing feature importance maps).

In Fig 5, we compare humans and LDMs feature importance maps. For each regularizer, we select
the LDMs that produce the most human-like sketches (highlighted with larger data points in Fig. 3).
Note that we exclude the VQ-regularized LDM from this analysis because it produces irrelevant
feature importance maps, possibly due to the non-differentiability of the quantization process (see
Fig. A.15). In Fig. 5a, we showcase examples of the obtained feature importance maps for all other
LDMs’ regularizations (see also A.8.2) and for humans (see also A.8.3). We qualitatively observe
that the LDMs regularized with the Barlow and the prototype-based objectives tend to focus on
sparse features. This particular aspect seems to be shared with the human feature importance maps.
We compute the Spearman rank correlation to quantify the similarity between human and machine
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a) b)

Figure 5: Feature importance maps comparison. a) The visualizations include feature importance
maps for humans (top row) and LDMs (six bottom rows). All the maps are overlaid on exemplars.
Hot vs. cold pixels show image locations that are more vs. less important. Maps for humans were
computed using psychophysical data from Boutin et al. [30]. For the LDMs, they are obtained for each
category by averaging ϕ(x,y) (see Eq. 9) over 10 different image variations (x) belonging to the same
category. The models’ maps are computed on the more human-like LDMs for each regularization
(larger data points in Fig. 5). b) Spearman’s rank correlation coefficient between humans and LDMs
feature importance maps. The error bar is computed as the standard deviation of the Spearman
coefficients over all categories (25 in total). Stars indicate the p-value (⋆⋆⋆ : p < 10−3 and
⋆ : p < 5.10−2) of pair-wise statistical test between models (Wilcoxon signed-rank test, see A.8.4).
The black line corresponds to an LDM without any regularization. The dashed line is the human
consistency (0.88), it quantifies how much two populations of humans agree with each other on
feature importance maps (see A.8.3 for details on the human consistency computation).

feature importance maps (see Fig. 5b). To make sure that the correlation comparison between the
different LDMs is significant, we have computed pairwise statistical tests (Wilcoxon signed-rank
test, see A.8.4). Our results show that all considered regularizations correlate significantly more
with human feature importance maps than non-regularized LDMs. In addition, the prototype-based
regularizer produces the feature importance maps with the highest correlation with humans and is
significantly above all other tested regularizations (p < 10−3). In the human-alignment ranking, the
Barlow-regularized LDM follows the prototype-based LDM, also showing a significantly higher
Spearman correlation coefficient than KL, classification, SimCLR regularizers (p < 10−3). All
other pair-wise statistical tests (between KL, classification, SimCLR) are not significant enough to
draw a meaningful ranking.

6 Conclusion

In this article, we used Latent Diffusion Models (LDMs) to study the effect of representational
inductive biases for one-shot drawing tasks. We explore 6 different regularizers: KL, vector
quantization, classification, prototype-based, SimCLR and Barlow regularizers. We analyzed the
human/LDMs alignment from two (independent) perspectives: their performance relative to humans
on the one-shot drawing task (with the recognizability vs. originality framework in section 5.1) and
the similarity of the underlying visual strategies (with the feature importance maps in 5.2). Overall,
we observe a clear alignment between the 2 analyses on the following points:

• All regularized LDMs have an optimal regularization weight (β) where they are more aligned
with humans than their non-regularized counterparts.
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• The prototype-based regularizer is showing the best matches with human performance and
attentional strategy.

• In the one-shot drawing tasks, the samples’ human-likeness could be further improved by
combining the prototype-based regularizer with either the KL or the Barlow regularizers.

In conclusion, we observe that all representational inductive biases “are not created equal”. However,
some of them (prototype-based and Barlow regularizers) do narrow the gap with humans in the
one-shot drawing task.

7 Limitations

In this article, we tested six representational inductive biases, a small number considering the extensive
range available in the representation-learning literature. This field encompasses hundreds of inductive
biases that have proven successful in one-shot classification tasks. Therefore, other representational
inductive biases might align better with human performance, both in terms of sample similarity and
visual strategy. Our goal wasn’t to test all possible biases but to demonstrate that some of them can
significantly narrow the gap with humans in one-shot drawing tasks.

Another limitation of this article lies in the recognizability vs. originality framework we are using
to evaluate the drawings. This framework leverages 2 critic networks to evaluate the sample’s
originality and recognizability. There’s no guarantee these networks align with human perceptual
judgments. Thus, the recognizability and originality scores might not reflect human perception
accurately. However, since both human and model outputs are evaluated using the same pre-trained
critic networks, the comparison remains fair.

8 Discussion

It is noteworthy that the KL and VQ regularizers, commonly used to train LDMs on natural images
(as in StableDiffusion [29]) are not the best-performing regularizers in the one-shot drawing task. Our
study indicates that the prototype-based and the Barlow regularizers, not tested yet on LDMs trained
on natural images, hold a significant potential for enhancing their one-shot ability. From a single
image of a new vehicle prototype or of a new fashion item design, a generative model trained with
these regularizers could produce relevant variations – an ability that current commercial applications
still struggle with (see Fig. A.8.5).

Interestingly, the 2 inductive biases that align most closely with humans are directly related to
prominent neuroscience theories. The prototype-based objectives provide an instantiation of the
prototype theory of recognition and memory [57–61], suggesting that humans use prototype similarity
to recognize novel objects. Similarly, the Barlow regularization is inspired by Barlow’s redundancy
reduction theory [62, 63], which posits that the brain encodes statistically independent features to
eliminate redundancy (and minimize energy consumption). The effectiveness of these regularizations
provides hints that the brain may use similar inductive biases to generalize to new categories. In
terms of brain inspiration, although we use LDMs to model humans’ one-shot generation abilities,
we do not claim that these neural networks constitute a realistic model of brain processes. It is indeed
unlikely that humans generate samples by iteratively denoising random noise. More biologically
plausible generative models might further help to obtain better models of human behavior (e.g.,
see [64–68]).

With this paper, we highlight how specific representational inductive biases, included in the input
space of generative models, can help bridge the gap with human capabilities. We believe these biases
will allow advanced models to generalize and create as effectively as humans do, leading to exciting
advancements in technology and creativity.
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A Appendix/Supplementary Information

A.1 QuickDraw-FS dataset

The QuickDraw-FS dataset is built from the samples of the Quick, Draw ! challenge [50]. In this
online experiment (https://quickdraw.withgoogle.com), participants have to draw an object
when presented with the category name. The resulting dataset is made of 345 object categories, with
approximately 150, 000 drawings per category. The experimental protocol of the Quick, Draw !
challenge forces the participants to produce drawings that are semantically related to the category
name, but those drawings do not necessarily represent the same visual concepts. For example, the
“alarm clock” category includes digital and analogic types of alarm clocks, which represent 2 different
visual concepts (see Fig.A.1). This property makes the original Quick, Draw ! dataset not optimal for
purely visual one-shot generation tasks.

alarm clock drums grass moustache

telephone power outlet

Figure A.1: Examples of distinct visual concepts belonging to the same object category in the Quick,
Draw ! dataset.

To mitigate this issue, previous work has proposed the QuickDraw-FS dataset. In this dataset, new
categories are formed based on the visual similarity of the drawings (see Appendix A in [30]). The
authors have used clustering techniques in the latent space of the contrastive learning algorithms to
compute the infer the new categories. The resulting dataset is made of categories representing one
single visual concept. Using this dataset, one can extract a “prototype” exemplar – at the center of
the cluster – to exemplify the category visual concepts. We include examples of drawing variations
and their corresponding exemplars in Fig. A.2.

Figure A.2: Illustration of the samples and the corresponding exemplars for 4 categories of the
QuickDraw-FS dataset. The small image located on the top represents the exemplars of the different
visual concepts. The 5× 5 grid of drawings represents the corresponding visual concepts (randomly
sampled in the cluster.
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A.2 Regularized AutoEncoders

A.2.1 VQ-VAE

Let us define a codebook Z = {ei}Ki=1 made of K elements (also called codewords). Each codeword
has a dimension s : ei ∈ Rs. The Vector-Quantized Variational AutoEncoder (VQ-VAE) [51] can
be decomposed into 3 stages: i) an encoder qϕ(z|x) mapping the input data x to a continuous latent
vector z ∈ Rd, ii) a discretizing operator denoted nZ(z) which transforms z into a discretized latent
vector zq , and iii) a decoder pθ(x|zq) mapping zq to a reconstructed image x. The discrete latent code
zq is calculated using a nearest-neighbor look-up in the codebook Z (see Eq. 10). Said differently,
each element of the continuous latent vector zi is replaced by the nearest ej in the codebook (here the
i index corresponds to the i-th coordinate of z):

zqi = nZ(zi) = argmin
ej∈Z

∥zi − ej∥ (10)

zq could then be transformed into a discretized vector by mapping each codeword with its corre-
sponding address in the codebook (ej → j). Note that this quantization process is equivalent to
defining a posterior distribution following a K-way categorical distribution [51].

To learn the resulting networks, one naive way would be to minimize the following loss function :

argmin
ϕ,θ,Z

LV QV AE with LV QV AE = −Ezq∼nZ(qϕ(.|x)) [log pθ(x|zq)] (11)

Eq. 11 is a reconstruction loss in which the information first flows through the quantized encoder, (i.e.
nZ(qϕ(.|x))), to then produce a reconstructed image (i.e. log(pθ(x|z)).
However, Eq. 11 cannot be directly optimized as it has no real gradient (the argmin function is not
derivable). To minimize this loss function, the gradient is then approximated using a straight-through
estimator [36]. The straight-through estimator involves copying the gradients from the decoder
input to the encoder output. We refer the reader to line 5 in Algo. 1 for practical implementation
of the straight-through gradient estimator. Intuitively, since z is supposed to be very close to zq,
the gradient contains meaningful information for how the encoder has to change to minimize the
reconstruction loss. During inference, the nearest embedding zq is computed using Eq. 10 and then
fed to the decoder. Due to the straight-through operation, the codebook Z does not receive any
gradient information from the reconstruction term. Therefore, the codebook is learned with the
simplest dictionary learning algorithm that involves minimizing the ℓ2 distance between the quantized
vector zq and the continuous one z (i.e. ∥z − zq∥22). This quantity cannot be directly minimized
because there is no gradient flowing from zq to z. To mitigate this issue, it is replaced with the
estimator term ∥sg[zq]− z∥22 + ∥zq − sg[z]∥22. The full VQ-VAE loss is described in Eq. 12: :

LV QV AE = −Ezq∼nZ(qϕ(.|x)) [log pθ(x|zq)] + βV Q(∥sg[zq]− z∥22 + ∥zq − sg[z]∥22) (12)

The following pseudo-code illustrates how the VQ-VAE is usually implemented (see Algo. 1). We
follow a similar implementation:

Algorithm 1: VQVAE pseudo-code
Input: dataset D, model parameters π = (θ, ϕ,Z)

1 for x in D do
2 z = qϕ(z|x) # encode
3 zq = nZ(z) # quantize
4 Lreg = ∥sg[zq]− z∥22 + ∥zq − sg[z]∥22 # Quantization loss, sg[.] = stop gradient
5 zq = z+ sg[zq − z] # straight-through gradient estimator
6 x̃ = pθ(x|zq) # decode
7 L = ∥x− x̃∥22 + Lreg
8 π ← ∂L

∂π

A.2.2 Prototype-based regularization

Prototypical networks focus on learning an embedding space where data points cluster around a
single prototype representation for each class. A prototype is originally defined as the mean vector of
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the embedded support points belonging to its class [17]. In the one-shot setting, the support set is
reduced to one single sample. Therefore here the prototype and the exemplar are the same.

To achieve the desired embedding space for the autoencoder we regularize the reconstruction loss
with a protoype-based loss. The loss uses the pairwise ℓ2 distance between samples and prototype to
derive a probability distribution:

LPR = Ezy∼qϕ(.|y)
[
− log(softmax(

∥∥hPRθ (z)− hPRθ (zy)
∥∥
2
)
]

(13)

In Eq. 13, hPRθ (zy) represents the projection of the prototype in the embedding space while hPRθ (z)
represents the projections of the sample. See Algo. 2 for more details on the exact implementation of
the prototype-based regularized RAE.

Algorithm 2: Prototype-based regularizer pseudo-code
Input: dataset D = (x,y), model parameters π = (θ, ϕ) # x: variations and y: exemplars

1 for (x,y) in D do
2 z = qϕ(z|x) # encode variations
3 zy = qϕ(zy|xy) # encode exemplar
4 d =

∥∥hPRθ (z)− hPRθ (zy)
∥∥
2

# pair-wise distance beteen projected z and zy
5 LPR = − log(softmax(d))
6 x̃ = pθ(x|z) # decode
7 L = ∥x− x̃∥22 + LPR
8 π ← ∂L

π

A.2.3 Constrastive regularizers

Maths and Algorithms: Contrastive learning algorithms learn representations that are invariant
under different distortions (i.e. data augmentations). Here we use two data-augmentation operators,
τA(·) and τB(·), that transform the variations x into xA = τA(x) and xB = τB(x), respectively.
We denote zA and zB the latent space projection of xA and xB, respectively (i.e. qϕ(zA|xA) and
qϕ(z

B|xB)). Here, we use two different types of contrastive regularizations that are LSimCLR (see
Eq. 14) and LBar (see Eq. 15)

LSimCLR(zA, zB) = EzA,zB

[
−
∑
b

sim(hIθ(z
A
b ), hIθ(z

B
b ))i+

∑
b

log
(∑
b′ ̸=b

exp(sim(hIθ(z
A
b ), hIθ(z

B
b′))i)

)]
(14)

LBar(zA, zB) = EzA,zB

[∑
i

(
1− sim(hBθ (z

A
·,i), h

B
θ (z

B
·,i))b

)2
+

λ
∑
i

∑
j ̸=i

(
sim(hBθ (z

A
·,i), h

B
θ (z

B
·,j))b

)2]
(15)

with sim(x,y)i =
⟨x,y⟩i
∥x∥2∥y∥2

(16)

In these equations, b indexes the sample in a batch, i indexes the vector component of the embeddings,
hIθ(z) and hBθ (z) are linear probe stacked on the RAE latent space. In the Barlow regularizer, we use
λ = 5× 10−3. For both networks, the linear probe projects in a space of size 128.

This is important to observe that the scalar product in Eq. 14 is computed along the vector component
dimension whereas this is computed along the batch dimension in Eq. 15. Said differently, in Eq. 14
sim computes a square matrix of size (batch size, batch size) (this is a pair-wise similarity matrix
between samples) while it is of dimension (feature space dimension, feature space dimension) in
Eq. 15 (this is a correlation matrix between vector’s coordinate). We refer the reader to Algo. 3 and
Algo. 4 for the pseudo-code of the SimCLR and the Barlow regularizers, respectively.
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Algorithm 3: SimCLR regularizer pseudo-code
Input: dataset D = {x}, model parameters π = (θ, ϕ) # x: variations

1 for (x,y) in D do
2 xA = τA(x) # augment x in xA

3 xB = τB(x) # augment x in xB

4 zA = qϕ(zA|xA) # encode xA

5 zB = qϕ(zB|xB) # encode xB

6 Lreg = LSimCLR(zA, zB) # see Eq. 14
7 x̃ = pθ(x|zA) # decode
8 L = ∥x− x̃∥22 + Lreg
9 π ← ∂L

π

Algorithm 4: Barlow regularizer pseudo-code
Input: dataset D = {x}, model parameters π = (θ, ϕ) # x: variations

1 for (x,y) in D do
2 xA = τA(x) # augment x in xA

3 xB = τB(x) # augment x in xB

4 zA = qϕ(zA|xA) # encode xA

5 zB = qϕ(zB|xB) # encode xB

6 Lreg = LBar(zA, zB) # see Eq. 15
7 x̃ = pθ(x|zA) # decode
8 L = ∥x− x̃∥22 + Lreg
9 π ← ∂L

π

Augmentations: The augmentations we use are the same for both regularizers (i.e. τA(·) and
τB(·)), they are randomly picked among the following transformations:

• Random resized crop: with a scale parameter ranging from (0.1, 0.9) and a ratio parameter
ranging from (0.8, 1.2). The scale parameter tunes the upper and lower bound of the cropped
area, and the ratio parameter defines the lower and upper bound for the aspect of the ratio of
the crop.

• Random affine transformation: with a rotation parameter varying from (−15◦ to 15◦),
a translation (from −5 pixels to 5 pixels), a zoom (with a ratio from 0.75 to 1.25) and a
shearing (from −10◦ to 10◦)

• Random perspective transformation: apply a scale distortion with a certain probability
to simulate 3D transformations. The scale distortion we have chosen is 0.5, and it is applied
to the image with a probability of 50%
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A.3 RAEs training and architectures

A.3.1 RAEs architectures

For the encoder, qϕ(z|x), and decoder, pθ(x|z), we leverage similar architectures than those proposed
in Ghosh et al. [52]. In Table 1 we detail the exact architecture of the RAE encoder and decoder.

Network Layer Input Shape Output Shape Param #
Conv2d [1, 48, 48] [16, 24, 24] 256

BatchNorm2d [16, 24, 24] [16, 24, 24] 32
ReLU [16, 24, 24] [16, 24, 24] –

Conv2d [16, 24, 24] [32, 12, 12] 8,192
BatchNorm2d [32, 12, 12] [32, 12, 12] 64

ReLU [32, 12, 12] [32, 12, 12] –
Conv2d [32, 12, 12] [64, 7, 7] 32,768

Encoder : qϕ(z|x) BatchNorm2d [64, 7, 7] [64, 7, 7] 128
ReLU [64, 7, 7] [64, 7, 7] –

Conv2d [64, 7, 7] [128, 3, 3] 131,072
BatchNorm2d [128, 3, 3] [128, 3, 3] 256

ReLU [128, 3, 3] [128, 3, 3] –
Linear [128, 3, 3] [d] 147,584 (d = 128)

ConvTranspose2d [d, 1, 1] [128, 6, 6] 1,179,648 (d = 128)
BatchNorm2d [128, 6, 6] [128, 6, 6] 256

ReLU [128, 6, 6] [128, 6, 6] –
ConvTranspose2d [128, 6, 6] [64, 12, 12] 131,072

BatchNorm2d [64, 12, 12] [64, 12, 12] 128
ReLU [64, 12, 12] [64, 12, 12] –

ConvTranspose2d [64, 12, 12] [32, 24, 24] 32,768
BatchNorm2d [32, 24, 24] [32, 24, 24] 64

Decoder : pθ(x|z) ReLU [32, 24, 24] [32, 24, 24] –
ConvTranspose2d [32, 24, 24] [16, 48, 48] 8,192

BatchNorm2d [16, 48, 48] [16, 48, 48] 32
ReLU [16, 48, 48] [16, 48, 48] –

ZeroPad2d [16, 48, 48] [16, 49, 49] –
Conv2d [16, 49, 49] [1, 48, 48] 257
Sigmoid [1, 48, 48] [1, 48, 48] –

Table 1: The base architecture for all the autoencoders.

Note that for Omniglot and QuickDraw, we have chosen different latent-space sizes (denoted d). For
Omniglot d = 64 and for QuickDraw, d = 128.

A.3.2 RAEs training details

We train the model using the Mean Squared Error loss with a batch size of 128 for the reconstruction,
along with different regularizations to study its effects. For both datasets, we use the Adam opti-
mizer [69] with a weight decay of 10−5 and a learning rate of 10−4. The RAEs on the QuickDraw
dataset were trained for 200 epochs and 300 epochs on the Omniglot dataset. Note that when trained
on the Omniglot dataset, we use a learning rate scheduler in which the learning rate is divided by 4
every 70 epoch.
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A.4 Latent Diffusion models

In this section, we describe the mathematics behind the latent diffusion models. The following
mathematical derivations are mostly derived from Sohl-Dickstein et al. [26], Song and Ermon
[25], Ho et al. [47], Rombach et al. [29] and are adapted to match the one-shot generation task and the
notations of this paper. Those mathematical derivations are not necessary to understand this article
but we include them to make it self-contained.

Herein, we consider a pretrained Regularized AutoEncoder, with an encoder qϕ(z|x) and decoder
pθ(x|z) that map the input x ∈ RD to a latent representation z ∈ Rd (d ≪ D) and inversely,
respectively. In the following, we will call indifferently z or z0 the latent variable corresponding to
the input x. We will also call zy the latent variable associated with the exemplar y. The goal of a
diffusion model in a one-shot latent diffusion algorithm is to learn the conditional probability of z0
given the latent representation of the exemplar zy , we call this probability distribution pψ(z0|zy).

A.4.1 Diffusion process and noising operator in latent diffusion process

Diffusion models learn the transformation of a pure noise, called zT ∈ Rd, into a fully denoised latent
representation z0 ∈ Rd. This transformation is progressive, through a sequence of partially denoised
latent representations {zi}T−1

i=1 ∈ Rd×(T−1). In this sequence zt+1 is therefore sligthly more noisy
than zt. The idea behind the diffusion model is to learn the transition probability pψ(zt−1|zt, zy).
To do so, diffusion models introduce a tractable noising process r(zt|zt−1) that gradually injects
noise in the latent representation. An illustration of such a directed graphical model is shown in
Fig. A.3.

Figure A.3: The directed graphical model considered in this work. Dotted and plain arrows represent
the forward (i.e. noise injection) and the reverse processes (i.e. noise removal), respectively. zy and
z0 are the latent representations of the exemplar image y and the image x, respectively (exemplified
with skull drawings). zi corresponds to the sequence of partially corrupted latent representations.
zy and z0 are obtained using the RAE encoder qϕ(z|x) and can be mapped to the input space
using the RAE decoder pθ(x|z). The ‘dummy’ distributions located on top of the zi variables,
illustrate the noise injection process, starting from an ‘informative’ multimodal distribution to a fully
‘uninformative’ Gaussian distribution.

Here we describe, in mathematical terms, the noise injection process :

r(z1:T |z0) =
T∏
t=1

r(zt|zt−1) with r(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI) s.t. {βt ∈ (0, 1)}Ti=1

(17)

In Eq. 17, βt tunes the step size of the diffusion process. Using the successive product of Gaussian,
this process could be reduced to a tractable noising operator νt(.) that injects the right amount of
noise at time t to obtain zt from z0:
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zt =
√
αtzt−1 +

√
1− αtϵ with ϵ ∼ N (0, I)

=
√
αtαt−1zt−2

√
1− αtαt−1ϵ

= ...

=
√
ᾱtz0 +

√
1− ᾱtϵ = νt(z0) with αt = 1− βt and ᾱt =

t∏
i=1

αt (18)

One could then express the probablity of zt given z0 in a closed form:

r(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I) (19)

The denoising probabilistic process, recovering the latent representation z0 from noise, could be
parametrized as follows:

pψ(z0:T |zy) = pψ(zT |zy)
T∏
t=1

pψ(zt−1|zt, zy) (20)

with
{
pψ(zt−1|zt, zy) = N (zt;µψ(zt, t, zy), σ

2
t I)

pψ(zT |zy) = s(zT ) = N (0, I)

A.4.2 Loss of the Denoising Diffusion Probabilistic Model in the Latent Diffusion case

As in VAEs [49], the Evidence Lower Bound of the diffusion model could be recovered using Jensen’s
inequality [47]:

Ez0∼r(z0) log pψ(z0|zy) = Ez0∼r(z0) log
( ∫

pψ(z0:T |zy)dz1:T
)

= Ez0∼r(z0) log
( ∫

r(z1:T |z0)
pψ(z0:T |zy)
r(z1:T |z0)

dz1:T
)

= Ez0∼r(z0) log

(
Ez1:T∼r(z1:T |z0)

[pψ(z0:T |zy)
r(z1:T |z0)

])

≤ Ez0:T∼r(z0:T ) log
(pψ(z0:T |zy)
r(z1:T |z0)

)
= −LV LB

The Variational Lower Bound could be written as a sum of KL terms [26]:

LV LB = Er
[
log

r(z1:T |z0)
pψ(z0:T |zy)

]
= Er

[
log

∏T
t=1 r(zt|zt−1)

p(zT |zy)
∏T
t=1 pψ(zt−1|zt, zy)

]
using Eq. (17) and (20)

= Er
[
− log pψ(zT |zy) +

T∑
t=1

log
r(zt|zt−1)

pψ(zt−1|zt, zy)

]
= Er

[
− log pψ(zT |zy) +

T∑
t=2

log
r(zt|zt−1)

pψ(zt−1|zt, zy)
+ log

r(z1|z0)
rθ(z0|z1, zy)

]
= Er

[
− log pψ(zT |zy) +

T∑
t=2

log
( r(zt−1|zt, z0)
pψ(zt−1|zt, zy)

· r(zt|z0)
r(zt−1|z0)

)
+ log

r(z1|z0)
pψ(z0|z1, zy)

]
= Er

[
− log pψ(zT |zy) +

T∑
t=2

log
r(zt−1|zt, z0)
pψ(zt−1|zt, zy)

+

T∑
t=2

r(zt|z0)
r(zt−1|z0)

+ log
r(z1|z0)

pψ(z0|z1, zy)

]
= Er

[
− log pψ(zT |zy) +

T∑
t=2

log
r(zt−1|zt, z0)
pψ(zt−1|zt, zy)

+
r(zT |z0)
r(z1|z0)

+ log
r(z1|z0)

pψ(z0|z1, zy)

]
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= Er
[
log

r(zT |z0)
pψ(zT |zy)

+

T∑
t=2

log
r(zt−1|zt, z0)
pψ(zt−1|zt, zy)

− log pψ(z0|z1, zy)
]

= Er

[
KL
[
r(zT |z0)||pψ(zT |zy)

]
+

T∑
t=2

KL
[
r(zt−1|zt, z0)||pψ(zt−1|zt, zy)

]
− (21)

log pψ(z0|z1, zy)

]

=

T∑
t=0

Lt with


L0 = −Er

[
log pψ(z0|z1, zy)

]
Lt = Er

[
KL
[
r(zt−1|zt, z0)||pψ(zt−1|zt, zy)

]]
LT = Er

[
KL
[
r(zT |z0)||zψ(zT |zy)

]] (22)

In the previous equations, Er is a shortcut notation for Ez0:T∼r(z0:T ). Note that in the optimization
process, LT could be ignored because it doesn’t depend on the model parameter ψ, this is a pure
non-informative Gaussian distribution (see Eq. 22). L0 is modeled by Ho et al. [47] using a separate
neural network. Lt is a KL between 2 Gaussians distributions, so it could be calculated with a closed
form:

r(zt−1|zt, z0) = N (zt−1; µ̃t(zt, z0), β̃tI) with


µ̃t(zt, z0) =

√
ᾱt−1βt
1− ᾱt

z0 +

√
ᾱt(1− ᾱt−1)

1− ᾱt
zt

β̃t =
1− ᾱt−1

1− ᾱt
βt

(23)

With µ̃t(zt, z0) and β̃tI the mean and the variance of r(zt−1|zt, z0), respectively. Using Eq. 18 we
can express z0 in a convenient way:

z0 =
1√
ᾱ
(zt −

√
1− ᾱtϵ) (24)

Therefore on can simplify µ̃t(zt, z0) in Eq. 23:

µ̃t(zt, z0) = µ̃t =
1
√
αt

(
zt −

1− αt√
1− ᾱt

ϵ
)

(25)

Similarly, we can re-parameterize pψ(zt−1|zt, zy) because zt is available as input at training time:

µψ(zt, t) =
1
√
αt

(
zt −

1− αt√
1− ᾱt

ϵψ(zt, t)
)

(26)

One can apply the closed form formula of the KL between 2 gaussians distributions to compute Lt in
Eq. 22:

Lt = Er

[
1

2 ∥σ2
t ∥

2
2

∥µ̃t(zt, z0)− µψ(zt, t)∥22

]

= Er

[
1

2 ∥σ2
t ∥

2
2

∥∥∥∥ 1
√
αt

(
zt −

1− αt√
1− ᾱt

ϵ
)
− 1
√
αt

(
zt −

1− αt√
1− ᾱt

ϵψ(zt, t)
)∥∥∥∥2

2

]
with Eqs. 25 and 26

= Er

[
(1− αt)2

2αt(1− ᾱt) ∥σ2
t ∥

2
2

∥∥ϵ− ϵψ(√ᾱtz0 +√1− ᾱtϵ, t)∥∥22
]

(27)

With further simplification of Eq. 27 [47]:

Lt = Er
[ ∥∥ϵ− ϵψ(√ᾱtz0 +√1− ᾱtϵ, t)∥∥22

]
(28)

= Er
[
∥ϵ− ϵψ(zt, t)∥22

]
(29)
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A.4.3 Architecture and Training

The DDPM model we leverage is a 1D-UNet to perform the diffusion process over the latent
embeddings. The architecture of the UNet is described in Table 2:

Network Layer Input Shape Output Shape Param #
Blocks

Linear din dout din ∗ dout + dout
Block_MLP GroupNorm dout dout 2 ∗ dout

SiLU dout dout –

Residual RMSNorm_MLP din din din
MyAttention din din din ∗ 512 + 2 ∗ din

SiLU dt dt –
Linear dt 2 ∗ dout 2 ∗ dout(dt + 1)

ResnetBlock Block_MLP din dout dout(din + 3)
Block_MLP dout dout dout(dout + 3)

Identity dout dout –

ModuleList2

ResnetBlock (din, din, dt) din 2 ∗ din(dt + din + 4)
ResnetBlock (din, din, dt) din 2 ∗ din(dt + din + 4)

Residual din din 515 ∗ din
Linear din dout din ∗ dout + dout

Unet

Time Embedding

SinusoidalPosEmb [128] [128] –
Linear [128] [128] 16,512
GELU [128] [128] –
Linear [128] [128] 16,512

Downscale

Linear [512] [2048] 1,050,624
ModuleList2 [2048,128] [1024] 21,011,456
ModuleList2 [1024,128] [512] 5,787,136
ModuleList2 [512,128] [256] 1,713,920
ResnetBlock [256,128] [256] 198,656

Bottleneck Residual [256] [256] 131840
ResnetBlock [256, 128] [256] 198656
ModuleList2 [256,128] [512] 1,316,608
ModuleList2 [512,128] [1024] 4,730,368

Upscale ModuleList2 [1024,128] [2048] 17,849,344
ResnetBlock+Linear [2048,128] [2048] 21,514,240

Linear [2048] [256] 524,544
Table 2: The neural architecture of the diffusion model used for all experiments unless stated otherwise
(the parameter count is shown for the latent size of Quickdraw-FS experiments, ie d = 128).

The architectures of the diffusion models for both the Quickdraw-FS and Omniglot datasets are kept
identical. The only difference is that the diffusion model is applied on a latent space of size d = 128
for QuickDraw and of size d = 64 for Omniglot. The models are trained on a batch size of 128 using
the DDPM scheduler for 1000 time steps. βT linearly spanning between 1.5× 10−3 and 1.95× 10−2

and trained for 1000 epochs. The model is optimized using the AdamW optimizer [70] with an initial
learning rate of 10−4. Then we use a scheduler in which the learning rate is divided by 10 every 200
epochs.
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A.5 Impact of the regularization on the QuickDraw-FS dataset

Herein we systematically vary the β parameter in Eq. 1 for each type of regularization and we
evaluate its effect using the originality vs. recognizability framework. To visualize this effect while
maintaining the order of the hyper-parameters, we use the parametric fit method described in [54].
This technic involves 2 simultaneous parametric fit: i) a polynomial fit (degree 2) between the
hyperparameters and the originality values (shown in Fig. A.4b, Fig. A.5b, Fig. A.6b, Fig. A.8b
and Fig. A.9b) and ii) another a polynomial fit (degree 2) between the hyperparameters and the
recognizability values (shown in Fig. A.4c, Fig. A.5c, Fig. A.6c, Fig. A.8c and Fig. A.9c). Those
2 fits could then be combined to create an oriented parametric fit between the originality and the
recognizability (shown in Fig. A.4a, Fig. A.5a, Fig. A.6a, Fig. A.8a and Fig. A.9a). In these curves,
the “chevron” indicates the direction in which the value of the β hyperparameter is increased. We
have included the range of β we have explored in the caption of each type of regularized LDM. We
use the notation [a : b :: c] to express that we explored from a to b with a step of c.

A.5.1 Impact of the KL regularization

Herein we evaluate a LDM leveraging a RAE trained with the following loss (with LKL) in Eq. 2:

min
θ,ϕ
LRAE s.t. LRAE = −Ez∼qϕ(.|x) [log pθ(x|z)] + βKLLKL(z) (30)

a) b) c)

Figure A.4: Impact of the βKL hyperparameter on the originality vs. recognizability. Each data
point corresponds to a LDM trained with a different value of βKL in Eq. 30. Herein we have explored
the following βKL range : [10−6 :10−2 ::10−1] and 0.05 and [0.1:0.5::0.1].

A.5.2 Impact of the VQ regularization

Herein we evaluate a LDM leveraging a RAE trained with the following loss (with LV Q) in Eq. 3:

min
θ,ϕ
LRAE s.t. LRAE = −Ez∼qϕ(.|x) [log pθ(x|z)] + βV QLV Q(z) (31)
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a) b) c)

Figure A.5: Impact of the βV Q hyperparameter on the originality vs. recognizability. Each data
point corresponds to a LDM trained with a different value of βV Q in Eq. 31. Herein we have explored
the following βV Q range : [1, 2, 5] and [10 :50::10] and 100.

A.5.3 Impact of the CL regularization

Herein we evaluate a LDM leveraging a RAE trained with the following loss (with LCL) in Eq. 4:

min
θ,ϕ
LRAE s.t. LRAE = −Ez∼qϕ(.|x) [log pθ(x|z)] + βCLLCL(z) (32)

a) b) c)

Figure A.6: Impact of the βCL hyperparameter on the originality vs. recognizability. Each data
point corresponds to a LDM trained with a different value of βCL in Eq. 32. Herein we have explored
the following βCL range : [0.7:0.9::0.1] and [1 :10 ::1] and [10 :40::10].

A.5.4 Impact of the prototype-based regularization

Herein we evaluate a LDM leveraging a RAE trained with the following loss (with LPR) in Eq. 5:

min
θ,ϕ
LRAE s.t. LRAE = −Ez∼qϕ(.|x) [log pθ(x|z)] + βPRLPR(z) (33)

26



a) b) c)

Figure A.7: Impact of the βPR hyperparameter on the originality vs. recognizability. Each
data point corresponds to a LDM trained with a different value of βPR in Eq. 33. Herein we have
explored the following βPR range : [10−4 :10−1 ::10−1] and [0.25:0.75::0.25] and [1.0:10::1] and
[15 :30::5] and [100, 200, 500].

A.5.5 Impact of the SimCLR regularization

Herein we evaluate a LDM leveraging a RAE trained with the following loss (with LSimCLR) in
Eq. 14:

min
θ,ϕ
LRAE s.t. LRAE = −Ez∼qϕ(.|x) [log pθ(x|z)] + βSimCLRLSimCLR(z) (34)

a) b) c)

Figure A.8: Impact of the βSimCLR hyperparameter on the originality vs. recognizability. Each
data point corresponds to a LDM trained with a different value of βSimCLR in Eq. 34. Herein we
have explored the following βSimCLR range : [10−4 :10−1 ::10−1] and [1 :10 ::1].

A.5.6 Impact of the Barlow regularization

Herein we evaluate a LDM leveraging a RAE trained with the following loss (with LBAR) in Eq. 15:

min
θ,ϕ
LRAE s.t. LRAE = −Ez∼qϕ(.|x) [log pθ(x|z)] + βBARLBAR(z) (35)
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a) b) c)

Figure A.9: Impact of the βBAR hyperparameter on the originality vs. recognizability. Each
data point corresponds to a LDM trained with a different value of βBAR in Eq. 35. Herein we have
explored the following βBAR range : [1 :10 ::1] and [15 :30::5] and [50, 100, 200].

A.6 Impact of the regularization on the Omniglot dataset dataset

a) b) c)

Figure A.10: Effect of increasing the regularization weights on the originality vs recognizability
framework (Omniglot dataset). Each data point represents an LDM trained with different values
of regularization weights (β). The curves represent the parametric fits, oriented in the direction
of an increase of β. a): For the LDMs with “standard” regularizers, the β is applied on the KL
(LKL in Eq. 2). b): For the supervised regularizations, the β is applied on the CL (LCL in Eq. 4)
or on the prototype-based regularizations (LPR in Eq. 5). c): For the contrastive regularizations,
the β is applied on the SimCLR (LSimCLR in Eq. 14) or on the Barlow regularizations (LBar in
Eq. 15). See A.5 for more information on the range of β we have explored for each regularization.
Larger data points indicate models whose performance is closer to that of humans for each type of
regularization. For comparison, we include a LDM leveraging a non-regularized RAE (hexagon
marker) and a diffusion model trained directly on the pixel space (cross marker). The human
performance corresponds to the recognizability and originality of human drawings (shown with a
grey star)

28



Here we present a curve similar to Fig. 3 but for LDMs trained on the Omniglot dataset. We were
unable to train a VQ-VAE with reasonable performance on this dataset, so we have excluded the
VQ-regularized LDM from Fig. A.10. We believe this issue is due to improper hyperparameter
tuning as the same regularizer works reasonably well on the QuickDraw-FQ dataset. We are actively
working to resolve this problem.

Except for the VQ regularizer, we observe that all other regularizers follow a similar trend to those
trained on the QuickDraw-FS dataset. In particular, the prototype-based and the Barlow regularizers
outperform all others.

A.7 Samples generated by the one-shot LDMs

Here we showcase the images generated by one-shot LDMs. The exemplars used to condition the
LDMs are present in top line in the red frame. We randomly chose 10 exemplars from 115 possible
options in the QuickDraw-FS test set. All images below the red frame represent samples of the
corresponding visual concept generated by the LDM. We use the same 10 exemplars for all the LDMs
for easy comparison. All shown exemplar corresponds to the LDMs, for each regularizer, showing
the shortest distance to humans. They correspond to larger data points in Fig. 3.

Figure A.11: Samples generated by a LDM without regularzation. For this LDM, β is set to 0.
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a) b)

Figure A.12: Samples generated by LDMs with standard regularizer. a) KL regularizer (obtained
with βKL = 10−5). b) VQ regularizer (obtained with βV Q = 5).

a) b)

Figure A.13: Samples generated by LDMs with supervised regularizers. a) classification
regularizer (obtained with βCL = 5). b) prototype-based regularizer (obtained with βPR = 5 · 102).
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a) b)

Figure A.14: Samples generated by LDMs with contrastive regularizer. a) SimCLR regularizer
(obtained with βSimCLR = 10−2). b) Barlow regularizer (obtained with βBAR = 30).
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A.8 LDM feature importance maps

A.8.1 Mathematics behind the feature importance maps

We remind that pθ(x|z) is the decoder of the RAE, and that pψ(zt−1|zt, zy) is the transition proba-
bility learned by the diffustion model. To make the mathematical derivations more concise, we define
the following function :

pθ : Rd −→ RD and pψ : Rd −→ Rd (36)
z 7−→ x = log pθ(·|z) zt 7−→ zt−1 = log pψ(·|zt, zy) (37)

To project each intermediate noisy state zt into the pixel, we feed them into the decoder. The resulting
projection is xt = pθ,ψ(zt) = pθ ◦ pψ(zt)
For each time step of the diffusion process, the importance feature map quantifies how the absolute
value of pθ,ψ(zt) changes when one varies zt. ϕ(x,y) describes the accumulation, over all time
steps, of these “local feature map”:

ϕ(x,y) =

T∑
t=0

∣∣∣∂pθ,ψ(zt)
∂zt

∣∣∣ (38)

=

T∑
t=0

∣∣∣∂pθ ◦ pψ(zt)
∂zt

∣∣∣ (39)

=

T∑
t=0

∣∣∣∂pθ
∂xt

(pψ(zt))
∂pψ
∂zt

(zt)
∣∣∣ (40)

=

T∑
t=0

∣∣∣Jpθ (xt)∇ztpψ(zt)
∣∣∣ (41)

(42)

with Jpθ (xt) the Jacobian of the function pθ w.r.t xt computed in pψ(zt). If we trade the functional
notations for probabilistic ones we have:

ϕ(x,y) =

T∑
t=0

∣∣∣Jlog pθ(·|zt)(xt)∇zt log pψ(·|zt, zy)
∣∣∣ (43)
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A.8.2 Example of LDM feature importance maps

The LDMs’ feature importance maps have been computed on 25 different categories, for each of
the six different regularization methods discussed in the paper. The feature maps were calculated
by taking the average of n = 10 misalignment maps ϕ(x,y) as defined in Eq. 9. All shown feature
importance maps correspond to the LDMs, for each regularizer, showing the shortest distance to
humans. They correspond to larger data points in Fig. 3.

a) b)

Figure A.15: Feature importance maps for LDMs with standard regularizer. a) KL regularizer
(obtained with βKL = 10−5). b) VQ regularizer (obtained with βV Q = 5).

a) b)

Figure A.16: Feature importance maps for LDMs with supervised regularizer. a) classification
regularizer (obtained with βCL = 5). b) prototype-based regularizer (obtained with βPR = 5 · 102).
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a) b)

Figure A.17: Feature importance maps for LDMs with contrastive regularizer. a) SimCLR
regularizer (obtained with βSimCLR = 10−2). b) Barlow regularizer (obtained with βBAR = 30).

A.8.3 Example of Human feature importance maps

For comparison, feature importance maps have also been computed for humans for the same 25
categories. For humans, the feature importance maps are heatmaps representing the likelihood of a
pixel being selected by a participant as part of the ClickMe-QuickDraw experiment (further details
on the experiment provided in App. S of Boutin et al. [30]). The same image used to calculate the
misalignment maps for the LDMs is presented to the participants during the CliCkMe-QuickDraw
experiment.

Figure A.18: Feature Importance maps for humans

Human consistency: To evaluate how humans agree with each other on the feature importance
maps, we computed the human consistency. To do so we use a bootstrapping technique. For each
category, we divided the participants into 2 populations (randomly selected), obtaining approximately
25 annotations (heatmaps) coming from different participants for each category. We then average
those annotations within the same population (and the same category) to form population-wise feature
importance maps. We finally compute the human consistency with the Spearman correlation between
those population-wise feature importance maps. We obtain a spearman of 0.8845 (p < 5.10−2).
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A.8.4 Pair-wise statistical test for importance feature maps

To verify the statistical significance between the human/machine correlation we have obtained for
all types of regularized LDMs we use a pair-wise statistical test. In particular, we compute the
Wilcoxon signed-rank test between all pairs of LDMs. This test is non-parametric and does not
consider the “Gaussianity” of the underlying population. The null hypothesis of this test (that could
not be rejected when the p-value is over 0.05) is that the two tested populations are sampled from the
same distribution. The alternative hypothesis (validated when the p-value is below 0.05) is that the
first population ( columns of the Table A.8.4) is stochastically greater than the second population
(rows of the Table A.8.4). All p-values, for all pairwise statistical tests are shown in Table A.8.4.

Barlow SimCLR Classif. KL VQ No reg.
Proto. 5.4× 10−4 5.9× 10−6 6.03× 10−5 1.2× 10−6 2.3× 10−7 4.7× 10−7

Barlow 9.5× 10−4 9.5× 10−4 1.8× 10−4 2.3× 10−7 2.3× 10−7

SimCLR 2.3× 10−1 5.2× 10−2 4.7× 10−7 4.7× 10−7

Classif 2.9× 10−1 2.3× 10−7 2.3× 10−7

KL 2.3× 10−7 4.5× 10−6

VQ 9.9× 10−1

Importantly those statistical tests have been computed on the Spearman correlation vector (one
Spearman value per category) between the feature importance maps of the best-performing models
(those indicated with bigger data points in Fig. 3) and those of humans.

A.8.5 Illustration of the limited one-shot ability of Dall-e

Herein we illustrate how current Latent Diffusion Models tend to fail at producing faithful variations
when prompted with a single image. We showcase some of the generations made by Dall-e 3 when
conditioned on a single image of a self-balancing bike. The self-balancing bike is a particularly
interesting use case as it represents an ’unusual’ vehicle that is unlikely to belong to the Dall-e 3
training database. You can observe that Dall-e generates images missing some of the key concepts of
the self-balancing bike (i.e. one-wheel).

Exemplar Variations

Figure A.19: Examples of variations generated by Dall-e 3 when prompted with a single image of a
self-balancing bike
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A.8.6 Potential limitations

In this article, we tested six representational inductive biases, a small number considering the extensive
range available in the representation-learning literature. This field encompasses hundreds of inductive
biases that have proven successful in one-shot classification tasks. Therefore, other representational
inductive biases might align better with human performance, both in terms of sample similarity and
visual strategy. Our goal wasn’t to test all possible biases but to demonstrate that some of them can
significantly narrow the gap with humans in one-shot drawing tasks.

Another limitation of this article lies in the recognizability vs. originality framework we are using
to evaluate the drawings. This framework leverages 2 critic networks to evaluate the sample’s
originality and recognizability. There’s no guarantee these networks align with human perceptual
judgments. Thus, the recognizability and originality scores might not reflect human perception
accurately. However, since both human and model outputs are evaluated using the same pre-trained
critic networks, the comparison remains fair.

Our approach leveraged two-stage generative models: the first stage compresses information and
shapes the latent distribution with representational inductive biases (the RAE), and the second stage
learns this latent distribution (the diffusion model). This type of architecture takes longer to train
because it requires two separate training procedures. However, this limitation could be overcome
by using an end-to-end training procedure for Latent Diffusion Models, which could streamline the
process [71].

A.8.7 Computational Resources

All the experiments of this paper have been performed using Quadro-RTX600 GPUs with 16 GB
memory. The training time for the RAE is approximately 24 hours and 72 hours for the Diffusion
model (96 hours overall). Note that as we have explored a large range of hyperparameters for all
types of regularization, our paper is relatively extensive in terms of computations (600 models have
been trained overall, but just a small part of them have been used in this article).

A.8.8 Broader Impact

This work does not present any foreseeable negative societal consequences. We think the societal
impact of this work is positive. It might help the neuroscience community to evaluate the different
mechanisms that allow human-level generalization and then better understand the brain.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claim is that representational inductive biases in LDMs help to close
the gap with humans on the one-shot drawing task. This claim is experimentally verified in
Fig. 3 and Fig. 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations in the supplementary information (see
section A.8.6). There are 3 main limitations. First, the originality vs. recognizability
framework might not be aligned with human perceptual judgment. Second, the long training
time of 2-stages latent diffusion models prevents the wide adoption of the representational
inductive biases we propose in this paper. Third, we have tested a limited number of
regularizers, so other regularization techniques might be even better aligned with humans.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .

Justification: We do not have theoretical results. This article is mainly experimental.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the Appendix and the main text, we have extensively described the ex-
periments we have run. In particular, in section A.2 we describe the models we use as
well as their hyperparameters. We go even further by releasing the code to reproduce our
experiments: http://anonymous.4open.science/r/LatentMatters-526B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The databases we use are already in open access. The code we used to train the
LDMs is available on an anonymous GitHub link (http://anonymous.4open.science/
r/LatentMatters-526B). We cannot release the human data we have leveraged because
we did not collect them. We invite interested people to send mail to the authors of [30] if
they are interested in human data (the authors are open to sharing their data).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in the supplemental material (appended to
the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We extensively describe the databases we use as well as hyperparameter
training details in section A.2 and section A.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: We report error bars and pair-wise statistical tests on Fig. 5 (see A.8.4). Note
that we did not compute error bars for Fig. 3 as our analysis relies on a fit made on tens of
models.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In the Appendix (see App. A.8.7) we describe the type of hardware we use to
train the models, the training time for each model, and the total number of runs we spent to
publish this paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We believe we conform with the NeurIPS code of ethics in every aspect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have included a broader impact section in App. A.8.8, but we do not
foresee any notable societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We don’t think our work poses a significant risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: We use the Quickdraw database (under CC BY 4.0 license). We also used
Omniglot, which is under the MIT license. We credit the creator of these assets by citing
them when we introduced the databases.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our only new asset is the code that allows us to run all our experiments. This
code is available publicly and is under the MIT license.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We have not conducted any psychophysics experiments. However, we use
human data collected by other researchers. The protocol to collect those data is extensively
in their article (appendix S of [30]).

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We have not conducted any psychophysical experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

43


	Introduction
	Related work
	Datasets
	One-shot Latent Diffusion Models
	Regularized Auto-Encoders (RAEs)
	Diffusion Model

	Results
	Originality vs. Recognizabilty
	Comparing humans and LDM perceptual strategies

	Conclusion
	Limitations
	Discussion
	Appendix/Supplementary Information
	QuickDraw-FS dataset
	Regularized AutoEncoders
	VQ-VAE
	Prototype-based regularization
	Constrastive regularizers

	RAEs training and architectures
	RAEs architectures
	RAEs training details

	Latent Diffusion models
	Diffusion process and noising operator in latent diffusion process
	Loss of the Denoising Diffusion Probabilistic Model in the Latent Diffusion case
	Architecture and Training

	Impact of the regularization on the QuickDraw-FS dataset
	Impact of the KL regularization
	Impact of the VQ regularization
	Impact of the CL regularization
	Impact of the prototype-based regularization
	Impact of the SimCLR regularization
	Impact of the Barlow regularization

	Impact of the regularization on the Omniglot dataset dataset
	Samples generated by the one-shot LDMs
	LDM feature importance maps
	Mathematics behind the feature importance maps
	Example of LDM feature importance maps
	Example of Human feature importance maps
	Pair-wise statistical test for importance feature maps
	Illustration of the limited one-shot ability of Dall-e
	Potential limitations
	Computational Resources
	Broader Impact



