

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GEOMETRY-GUIDED ADVERSARIAL PROMPT DETECTION VIA CURVATURE AND LOCAL INTRINSIC DIMENSION

Anonymous authors

Paper under double-blind review

ABSTRACT

Adversarial prompts are capable of jailbreaking frontier large language models (LLMs) and inducing undesirable behaviours, posing a significant obstacle to their safe deployment. Current mitigation strategies primarily rely on activating built-in defence mechanisms or fine-tuning LLMs, both of which are computationally expensive and can sacrifice model utility. In contrast, detection-based approaches are more efficient and practical for deployment in real-world applications. However, the fundamental distinctions between adversarial and benign prompts remain poorly understood. In this work, we introduce CurvaLID, a novel defence framework that efficiently detects adversarial prompts by leveraging their geometric properties. It is agnostic to the type of LLM, offering a unified detection framework across diverse adversarial prompts and LLM architectures. CurvaLID builds on the geometric analysis of text prompts to uncover their underlying differences. We theoretically extend the concept of curvature via the Whewell equation into an n -dimensional word embedding space, enabling us to quantify local geometric properties, including semantic shifts and curvature in the underlying manifolds. To further enhance our solution, we leverage Local Intrinsic Dimensionality (LID) to capture complementary geometric features of text prompts within adversarial subspaces. Our findings show that adversarial prompts exhibit distinct geometric signatures from benign prompts, enabling CurvaLID to achieve near-perfect classification and outperform state-of-the-art detectors in adversarial prompt detection. CurvaLID provides a reliable and efficient safeguard against malicious queries as a model-agnostic method that generalises across multiple LLMs and attack families.

1 INTRODUCTION

Frontier Large Language Models (LLMs) are widely used in real-world applications such as education, finance, and legal analysis (Yao et al., 2024). However, adversarial prompts exploit vulnerabilities of LLMs to produce unintended and harmful responses (Wallace et al., 2019; Shen et al., 2023; Deng et al., 2023a). Therefore, ensuring their safety against adversarial prompts is essential to prevent harmful outputs, such as bias, misinformation, or content inciting harassment.

Current defences against adversarial prompts rely on prompt engineering or adversarial training. Input perturbation techniques, like Intentionanalysis (Zhang et al., 2024a) and SmoothLLM (Robey et al., 2023), modify the prompt and examine whether the altered version can successfully trigger the LLM’s built-in safety mechanisms. The effectiveness of these methods depends on the degree of perturbation and robustness of the LLM’s safety alignment. Meanwhile, adversarial training approaches, which fine-tune models to resist adversarial inputs, often struggle to scale to larger LLMs. For example, Latent Adversarial Training (LAT) cannot be easily applied to LLMs exceeding 10 billion parameters (Sheshadri et al., 2024). Given that popular LLMs, such as GPT-3 and PaLM 2, have 175 billion and 340 billion parameters respectively, developing scalable defences for these large models is essential to ensure their reliability and safety (Anil et al., 2023; Brown, 2020).

Existing solutions are inherently tied to the internal architecture and safety alignment training of the targeted LLM, limiting their generality. They do not guarantee consistent performance across different adversarial prompts and varying models (Chao et al., 2023; Shen et al., 2023; Zhou et al., 2024b). In

parallel, Llama Guard Inan et al. (2023) and the constitutional classifier (Sharma et al., 2025) are trained to detect harmful adversarial prompts and block them from reaching the LLM. However, both approaches rely on human annotations to differentiate harmful from benign inputs. More importantly, the underlying distinctions between adversarial and benign prompts remain insufficiently understood, underscoring the need for defence strategies that are both generalizable and theoretically grounded.

In this work, we introduce CurvaLID, an LLM-agnostic framework designed to explore generalizable solutions by uncovering the fundamental geometric differences between adversarial and benign prompts. CurvaLID provides a defence mechanism that operates independently of the internal architecture of LLMs, ensuring its generality across diverse models. It enhances LLM safety by preemptively rejecting adversarial inputs.

First, we introduce PromptLID, a sentence-level Local Intrinsic Dimensionality (LID) measure that effectively captures the geometric properties of text prompts. PromptLID calculates LID using a sentence-level-defined local neighbourhood, unlike traditional approaches (Ma et al., 2018; Yin et al., 2024) that rely on token-level neighbourhoods, which are easily influenced by local noise and often dominated by stop words that provide limited semantic information. Prior work has applied LID to characterise adversarial subspaces in the vision domain (Ma et al., 2018) and to assess the truthfulness of LLM outputs using token-level estimation (Yin et al., 2024), but these methods are not agnostic to specific models or LLM architectures, limiting their generalizability. PromptLID addresses these issues by offering a sentence-level, model-agnostic characterization of prompt-level geometry, enabling more robust adversarial prompt detection.

Second, we develop TextCurv, a theoretical framework for defining curvature in an n -dimensional Euclidean space of word embeddings. By extending the curvature concept from the Whewell equation (Whewell, 1849), we prove that the angle between two tangent vectors is equivalent to the difference in their tangential angles. This provides the foundation for analyzing word-level geometry, enabling us to quantify curvature in text embeddings and capture semantic shifts.

Through extensive evaluations, we demonstrate that PromptLID effectively quantifies the high-dimensional local subspaces where adversarial prompts reside, while TextCurv captures curvature at the word level. Together, they complement each other in revealing semantic shifts and localized structural deviations in the text manifold, providing new insights into the fundamental differences between adversarial and benign prompts.

Our main contributions can be summarized as follows:

- We propose CurvaLID, a LLM-agnostic detection framework that leverages geometric distinctions between adversarial and benign prompts. By integrating TextCurv and PromptLID, CurvaLID efficiently and effectively detects adversarial prompts, ensuring safety across various LLMs.
- We provide theoretical insights into the design of two novel geometric measures leveraged by CurvaLID. TextCurv extends the Whewell equation to n -dimensional Euclidean space, enabling quantification of semantic shifts through word-level curvature. PromptLID analyses the local intrinsic dimensionality across entire prompts, capturing adversarial subspaces effectively.
- CurvaLID successfully detects about 99% of adversarial prompts, outperforming state-of-the-art defences by over 10% in attack success rate reduction across multiple LLMs and adversarial attacks. It is highly time-efficient, requiring only 0.25 GPU hours of training, whereas existing adversarial training methods have significantly higher computational costs, usually exceeding 100 GPU hours.

2 RELATED WORK

This section reviews prior research on adversarial attacks and defence mechanisms for LLMs, highlighting their objectives, underlying logic, and key characteristics.

Adversarial attacks on LLM. Adversarial attacks on LLMs involve crafted inputs designed to manipulate models into generating harmful content, like offensive language or dangerous instructions (Zou et al., 2023). These attacks range from a single input (zero-shot) to more complex, continuous dialogue scenarios (multi-shot) (Shen et al., 2023; Dong et al., 2023; Wang et al., 2023). This research focuses on zero-shot text prompt attacks, including techniques like text perturbation that adds gibberish or subtly alters input wording and social-engineered prompts that trick LLMs into harmful behaviour (Zou et al., 2023; Schwinn et al., 2023; Chu et al., 2024).

108 **Adversarial defences for LLM.** There are three primary defences against adversarial attacks on
 109 LLMs: input preprocessing, prompt engineering, and adversarial training. Input preprocessing
 110 perturbs inputs to disrupt adversarial prompts but may also affect benign ones, with effectiveness
 111 depending on perturbation level and targeted LLM (Cao et al., 2023; Robey et al., 2023; Yung et al.,
 112 2024). Prompt engineering augments self-defensive behaviour by adding prompts to expose harmful
 113 intent, though performance varies across models (Zhang et al., 2024a; Phute et al., 2023; Zhang
 114 et al., 2024b). Finally, adversarial training strengthens the LLM’s ability to reject harmful prompts by
 115 exposing models to adversarial cases during training (Xu et al., 2024b; Jain et al., 2023). However,
 116 this approach requires fine-tuning the LLM, making its success dependent on the specific model
 117 being protected, with most adversarial training methods confined to white-box models. Additionally,
 118 these methods often demand significant computational resources, with training times reaching up to
 119 128 GPU hours (Mazeika et al., 2024) or 12 GPU hours (Sheshadri et al., 2024), and generally exhibit
 120 varying effectiveness across different adversarial prompts and LLMs (Sheshadri et al., 2024; Ziegler
 121 et al., 2022; Ganguli et al., 2022). Note that our paper belongs to the field of adversarial prompt
 122 detection. Unlike existing methods such as perplexity filtering, which rely on LLMs for next-token
 123 probability, our method operates independently of the type of the LLM (Hu et al., 2023).

124 3 BACKGROUND AND TERMINOLOGY

125 This section provides a brief overview of the mathematical definitions of LID and curvature.

126 3.1 LOCAL INTRINSIC DIMENSION

127 Local Intrinsic Dimensionality (LID) measures the intrinsic dimensionality of the local neighbourhood
 128 around a reference sample (Houle, 2017). Compared to Global Intrinsic Dimension (GID) (Tulchinskii
 129 et al., 2024; Pope et al., 2021b), which measures the degree of the d -dimension of the global manifold
 130 of a data subset, LID focuses on the local neighbourhood of given points. Thus, LID is particularly
 131 useful in analyzing high-dimensional data with varying dimensionalities across the dataset.

132 **Definition 3.1** (Local Intrinsic Dimension (LID)). (Houle, 2017) LID is mathematically defined as:

$$133 \quad 134 \quad 135 \quad \text{LID}_F(r) = \frac{r \cdot F'(r)}{F(r)}.$$

136 We are interested in a function F that satisfies the conditions of a cumulative distribution function
 137 (CDF) and is continuously differentiable at r . The local intrinsic dimension at x is in turn defined as
 138 the limit, when the radius r tends to zero:

$$139 \quad 140 \quad 141 \quad \text{LID}_F^* \triangleq \lim_{r \rightarrow 0^+} \text{LID}_F(r).$$

142 We refer to the LID of a function F , or of a point x , whose induced distance distribution has F as its
 143 CDF. For simplicity, we use the term ‘LID’ to refer to the quantity LID_F^* .

144 LID_F^* is the theoretical definition, and in practice, has to be estimated (Levina & Bickel, 2004;
 145 Tempczyk et al., 2022). Estimation of LID requires a distance measure and a set of reference points
 146 to select nearest neighbors (NN). Following prior work (Gong et al., 2019; Ansuini et al., 2019;
 147 Pope et al., 2021a; Zhou et al., 2024a; Huang et al., 2024; 2025), we use Euclidean distance. The
 148 representation of a data point, along with the chosen reference points, significantly influences how
 149 LID is interpreted. In adversarial prompt detection, the representation and neighbourhood definition
 150 directly affect the ability to distinguish between clean and adversarial prompts. Among existing
 151 estimators, we use the Method of Moments (MoM) (Amsaleg et al., 2015) for its simplicity.

152 3.2 CURVATURE

153 The intuition of curvature is how quickly a curve changes direction. In geometry, we can visualise
 154 curvature through an osculating circle. Curvature can be measured at a given point by fitting a circle
 155 to the curve on which the point resides (Kline, 1998). The formal definition is as follows:

156 **Definition 3.2.** [Curvature measured by osculating circle] (Kline, 1998) The osculating circle at a
 157 point P on a curve is the circle tangent at P and passing through nearby points on the curve. Let R
 158 be its radius. The curvature κ is then defined as:

$$159 \quad 160 \quad 161 \quad \kappa = \frac{1}{R}.$$

162 For an arbitrary curve, one can extend the concept of curvature to the rate of tangential angular change
 163 with respect to arc length, which is known as the Whewell equation (Whewell, 1849). The tangential
 164 angular change refers to the change of angle of inclination of the tangent at the given point.

165 **Definition 3.3.** [Curvature by Whewell equation](Whewell, 1849) Let s be the arc length and
 166 tangential angle ϕ be the angle between the tangent to point P and the x-axis, for a given point P on
 167 a curve. The curvature κ is defined as:

$$\kappa = \frac{d\phi}{ds}.$$

170 Furthermore, in differential geometry, the curvature can be defined as the change of the unit tangent
 171 vector with respect to arc length (Shifrin, 2015; O’Neill, 2006).

173 **Definition 3.4.** [Curvature in differential geometry](Shifrin, 2015) Suppose curve α is parametrized
 174 by arc length s and $\mathbf{T}(s)$ is the unit tangent vector to the curve. We define curvature as

$$\kappa(s) = \|\mathbf{T}'(s)\| = \left\| \frac{d\mathbf{T}}{ds} \right\|.$$

178 Curvature is also defined and utilized in physics. The Frenet-Serret formulas relate curvature to
 179 torsion, tangent, normal, and binormal unit vectors (Frenet, 1852). In the Frenet-Serret formulas, the
 180 curvature describes the rotational speed along a curve, which is relevant in kinetics and trajectory
 181 applications (Huang et al., 2023). It is also used in autonomous driving, robotics, and quantum
 182 computing (Hallgarten et al., 2024; Alsing & Cafaro, 2023; Shabana, 2023).

184 4 GEOMETRIC ANALYSIS AND CURVALID

186 We aim to develop geometric measures that effectively characterise both benign and adversarial
 187 prompts at the prompt and word levels. These measures are then utilized for adversarial prompt
 188 detection, formulated as a binary classification task defined as follows.

189 Let $\mathcal{D} = \{(x^i, y^i)\}_{i=1}^n$ be a labelled dataset comprising n i.i.d. samples x^i , where each sample
 190 is associated with a label y^i . In this context, each input x^i represents a text prompt, with the
 191 corresponding label $y^i \in \{0, 1\}$ indicating whether the prompt is benign ($y^i = 0$), or adversarial
 192 ($y^i = 1$). Let $\mathcal{M}(x)$ denote the geometric measure applied to a prompt x , where $\mathcal{M}(x)$ is composed
 193 of two complementary components: the prompt-level measure $\text{PromptLID}(x)$ and the word-level
 194 measure $\text{TextCurv}(x)$. These measures are then utilized within an adversarial prompt detection
 195 algorithm, formalized as a classification problem where the objective is to minimize the empirical
 196 error between the ground-truth labels and the predictions:

$$\arg \min_{\theta} \mathbb{E}_{(x,y) \in \mathcal{D}} [\ell(h(\mathcal{M}(x)), y)],$$

199 where $\ell(\cdot)$ denotes the cross-entropy loss function, and $h(\mathcal{M}(x))$ is the classifier applied to the
 200 geometric measures $\mathcal{M}(x) = (\text{PromptLID}(x), \text{TextCurv}(x))$. Alternatively, the defender may use
 201 classical outlier detection methods without access to adversarial prompts during training. In both
 202 cases, the detector operates on the same geometric measures. Next, we formally define PromptLID
 203 and TextCurv , detailing how they explore geometric properties at the prompt and word levels,
 204 respectively. Finally, we provide an overview of CurvaLID, our adversarial prompt detection model.

205 4.1 PROMPTLID: LID ESTIMATION AT THE PROMPT-LEVEL

207 To characterise the prompt-level geometric properties of benign and adversarial prompts, we propose
 208 PromptLID , an LID estimation based on prompt representations obtained from a trained CNN. We
 209 first train a model g (CNN) to perform a k -class classification task, where the goal is to determine
 210 which benign dataset a given prompt belongs to. This involves learning a function $g : \mathcal{B} \rightarrow \mathcal{Q}$ to map
 211 the input space \mathcal{B} to the label space \mathcal{Q} . The label space is defined as $\mathcal{Q} = \{q_1, q_2, \dots, q_k\}$, where k
 212 is the number of types of benign datasets and is equal to the cardinality of \mathcal{Q} . Given a benign prompt
 213 dataset $\mathcal{B} = \{(b, q)^i\}_{i=1}^n$, where b is the benign prompt and q is its corresponding label, the model
 214 learns to classify each prompt into its respective dataset. The objective function used is categorical
 215 cross-entropy, as the task involves multi-class classification. The representation z_1 , derived from the
 penultimate dense layer, encodes the prompt as a single vector, which is then used to calculate the

Figure 1: Illustrative diagram of CurvaLID, which classifies benign and adversarial prompts using PromptLID and TextCurv.

PromptLID. The PromptLID expands on the MoM estimation (Amsaleg et al., 2015) of LID on the prompts’ representation in z_1 .

Definition 4.1. [PromptLID] The PromptLID of a prompt x is defined as:

$$\text{PromptLID} = -k \cdot \frac{\mu_k}{\mu_k - w^k},$$

where k is the number of nearest neighbors, μ_k is the mean distance from the prompt representation z_1 to its k -nearest neighbors, and w^k is the distance to the k -th neighbor.

Given that adversarial prompts often manipulate the high-dimensional space of word embeddings to target rarely encountered subspaces (Szegedy, 2013; Ma et al., 2018), they exhibit distinct geometric characteristics. Adversarial prompts are expected to exhibit higher PromptLID as they push the embeddings into regions of the feature space that are less well-defined and more complex than typical benign inputs. As shown in Section 5.2, PromptLID effectively captures this behaviour, highlighting its ability to distinguish between benign and adversarial prompts.

4.2 TEXTCURV: CURVATURE AT THE WORD-LEVEL

To characterise word-level geometric properties of benign and adversarial prompts, we analyse the curvature of word connections. The aim is to have curvature complement PromptLID by analyzing the word-level geometric properties of prompts, effectively identifying nearly all adversarial prompts. Specifically, curvature captures the relationships between words, revealing subtle semantic shifts based on word order, uncovering local geometric differences between benign and adversarial prompts.

Prior work shows that CNN activation creates a curved manifold, evidenced by the significantly higher intrinsic dimension estimated by Principal Component analysis (PCA) compared to the GID estimated by TwoNN on activation data (Abdi & Williams, 2010; Facco et al., 2017; Ansuini et al., 2019). However, curvature differences between benign and adversarial prompts remain unexplored. Thus, we examine these differences in convolution layers as potential classification features.

Our goal is to establish a definition of text curvature based on existing mathematical definitions, with the curvature capturing semantic shifts according to word sequence and the strength of these shifts. Word order plays a crucial role in semantic analysis, helping to accurately capture the local geometric properties of prompts. We focus on the representations of prompts in the convolutional layers of the model g as mentioned in Section 4.1, where the prompt data remains unflattened and in stacked lists of vectors at this stage, which can be viewed as word-level representation. Specifically, we extract the representations z_2 and z_3 from these convolutional layers for further analysis. This stage is critical, as it is where feature spaces are curved, according to prior research (Ansuini et al., 2019).

To capture semantic shifts between consecutive words in a prompt, we draw on Whewell’s equation, where the rate of directional change of a curve is represented by the tangential angular change. In NLP, this angular change is connected to the dot-product formula and cosine similarity, which indicate the semantic similarity or difference between two words (Mikolov, 2013; Levy et al., 2015). We assume that this theory also applies to modern word embeddings like GPT-2 and RoBERTa, and therefore, we define the rate of angular change in text curvature accordingly.

270 **Definition 4.2.** [Text Curvature: Rate of angular change] For any two consecutive word embeddings,
 271 denoted by \vec{u} and \vec{v} , the rate of angular change, $d\theta$, is defined as:
 272

$$273 \quad d\theta = \arccos \left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} \right).$$

$$274$$

275 However, the rate of angular change alone does not fully capture the semantic shift between words,
 276 as it overlooks the magnitude of the shift. In differential geometry, curvature is defined by the rate
 277 of change in the tangent vector's direction relative to the change in arc length. When two curves
 278 exhibit the same directional change, the curve achieving this change over a shorter arc length has a
 279 higher curvature. Similarly, in text curvature, given the same semantic shift as measured by our rate
 280 of angular change, the curvature should increase when the semantic change is more substantial.
 281

282 We focus on word vector magnitudes to capture the degree of semantic shift. Previous research
 283 suggests that magnitude reflects the semantic weight carried by each word and the tokenizers'
 284 understanding of that word within context (Schakel & Wilson, 2015; Reif et al., 2019). For example,
 285 common words tend to have smaller magnitudes due to their frequent use and limited semantic
 286 significance (Schakel & Wilson, 2015). Instead of summing vector norms to measure distance
 287 changes in curvature, which may seem intuitive and consistent with geometric principles, we sum
 288 the inverses of the vector norms. This approach is driven by the hypothesis that larger vector norms
 289 signify greater semantic importance, meaning that curvature should be inversely proportional to
 290 vector norms, capturing larger semantic shifts between words.

291 **Definition 4.3.** [Text Curvature] For any two consecutive word embeddings, denoted by \vec{u} and \vec{v} , the
 292 text curvature, denoted by $TextCurv$, is defined as:
 293

$$294 \quad TextCurv = \frac{d\theta}{\frac{1}{\|\vec{u}\|} + \frac{1}{\|\vec{v}\|}}.$$

$$295$$

296 The rate of angular change in $TextCurv$ is supported by Theorem 4.4, which links θ to difference in
 297 tangential angles. analysis of how word embedding norms relate to arc length is in Appendix A.2.

298 **Theorem 4.4.** *For two tangent vectors \vec{u} and \vec{v} in an n -dimensional Euclidean space, the angle θ
 299 between them is equivalent to the difference in their tangential angles.*

300 *Sketch of Proof.* We apply the Gram–Schmidt process to form an orthonormal basis for the tangent
 301 space, expressing \vec{u} and \vec{v} as linear combinations of its vectors. In this basis, the angle θ follows
 302 from their inner product. We compute the tangential angles of \vec{u} and \vec{v} from their projections, and by
 303 subtracting them show the difference equals θ . The full proof is in Appendix A.2. \square
 304

305 $TextCurv$ captures subtle word-level geometric shifts when adversarial modifications alter a prompt's
 306 semantic structure. Adversarial prompts often cause larger and more erratic curvature shifts as they
 307 introduce perturbations that disrupt the normal flow of meaning. By analyzing these shifts, $TextCurv$
 308 helps us identify adversarial inputs that deviate from the expected smoothness of benign prompts.
 309

310 4.3 CURVALID: ADVERSARIAL PROMPT CLASSIFICATION BY CURVATURE AND LID

312 CurvaLID is an adversarial prompt detection method that filters out adversarial prompts before
 313 they are input to LLMs, ensuring their safety. Since CurvaLID operates independently of LLMs, it
 314 provides a unified defensive performance across all LLMs. This differentiates it from existing SOTA
 315 defences like input perturbation, prompt engineering, and adversarial training, which show varying
 316 performance across different adversarial prompts and LLMs. Moreover, CurvaLID's evaluation is
 317 straightforward and standardised, avoiding the need for subjective human assessments or reliance on
 318 LLM judgments, which can raise robustness concerns (Chen et al., 2024; Raina et al., 2024).

319 CurvaLID involves four steps (see Figure 1, pseudo code in Appendix A.1). In Step 1, we use our
 320 trained model g (defined in Section 4.1) to classify different types of benign prompts, deriving the
 321 normal feature manifold. This is essential for amplifying the geometric and dimensional distinctions
 322 between benign and adversarial prompts. In Step 2, we extract the representations of benign and
 323 adversarial prompts from z_1 , z_2 , and z_3 . In Step 3, we compute the PromptLID and $TextCurv$ of
 324 each prompt using the representations from Step 2, capturing both sentence-level dimensionality

324
325 Table 1: We compare CurvaLID with SOTA defences. The best results are **boldfaced**. Results for
326 other LLMs and defences are provided in Appendix B.4.1.

327	LLM	defence	GCG	PAIR	DAN	AmpleGCG	SAP	MathAttack	RandomSearch
328	Vicuna-7B	No defence	86.0	98.0	44.5	98.0	69.0	24.0	94.0
329		SmoothLLM	5.5	52.0	13.0	4.2	44.6	22.0	48.5
330		Self-Reminder	9.5	48.0	35.5	11.5	25.2	22.0	6.0
331		Intentionanalysis	0.0	8.5	3.3	0.3	0.23	20.0	0.0
332		ICD	0.2	5.2	40.4	0.9	32.8	22.0	0.2
333		RTT3d	0.2	0.3	22.0	3.5	33.5	20.2	2.5
334		CurvaLID	0.0	0.0	0.0	1.1	0.0	0.0	0.0
335	LLaMA2-7B	No defence	12.5	19.0	2.0	81.0	9.5	11.7	90.0
336		SmoothLLM	0.0	11.0	0.2	0.2	1.2	11.2	0.0
337		Self-Reminder	0.0	8.0	0.3	0.0	0.0	11.1	0.0
338		Intentionanalysis	0.0	5.8	0.7	0.0	0.0	11.2	0.0
339		ICD	0.0	2.7	0.8	0.0	0.0	10.8	0.0
340		RTT3d	0.2	0.2	1.8	0.4	5.5	9.8	0.8
341		CurvaLID	0.0						
342	PaLM2	No defence	14.9	98.0	49.7	88.9	55.1	18.9	91.9
343		SmoothLLM	5.5	38.7	6.7	7.2	41.2	9.8	45.3
344		Self-Reminder	2.3	36.7	22.3	4.7	21.4	13.3	3.7
345		Intentionanalysis	0.0	2.3	1.3	0.9	0.0	9.7	0.0
346		ICD	0.1	4.9	34.2	0.2	33.9	9.3	0.0
347		RTT3d	0.1	0.1	25.5	3.3	25.0	10.2	2.8
348		CurvaLID	0.0						

349
350 and word-level curvature. In Step 4, we train a Multilayer Perceptron (MLP) to classify benign and
351 adversarial prompts based on the two mean TextCurv values and the PromptLID. The MLP performs
352 binary classification and filters out adversarial prompts before they reach the LLM.

353 5 EXPERIMENTS

354 In our evaluation, we assessed both the reduction in attack success rate and the prompt classification
355 accuracy of CurvaLID across a range of LLMs (Vicuna-7B-v1.1 (Chiang et al., 2023), LLaMA2-
356 7B-Chat (Touvron et al., 2023), GPT-3.5 (Brown, 2020), PaLM2 (Anil et al., 2023), and Gemma-2-
357 9B (Team et al., 2024)), and compared it against SOTA defences (SmoothLLM (Robey et al., 2023),
358 Self-Reminder (Xie et al., 2023), Intentionanalysis (Zhang et al., 2024a), In-Context Demonstration
359 (ICD) (Wei et al., 2023), RTT3d (Yung et al., 2024), and constrained SFT (Qi et al., 2025)). Our test
360 set has 3,540 prompts, comprising 1,200 benign and 2,340 adversarial prompts. For benign data, we
361 randomly sampled 300 from each of the Orca (Lian et al., 2023), MMLU (Hendrycks et al., 2020),
362 AlpacaEval (Li et al., 2023b), and TruthfulQA (TQA) datasets (Lin et al., 2021). The model g is
363 trained to classify these four benign datasets. For adversarial data, approximately 300 were randomly
364 sampled from each of SAP (Deng et al., 2023a), DAN (also known as the "In The Wild" dataset)
365 (Shen et al., 2023), MathAttack (Zhou et al., 2024b), and GCG (Zou et al., 2023), while around 200
366 prompts were randomly selected from PAIR (Chao et al., 2023), RandomSearch (Andriushchenko
367 et al., 2024), AmpleGCG (Liao & Sun, 2024), Persuasive Attack (Zeng et al., 2024), AutoDAN (Liu
368 et al., 2023), and DrAttack (Li et al., 2024). Dataset details are in Appendix B.1.5. Unless specified
369 otherwise, we use an 80/20 train-test split. CNN/MLP hyperparameters are in Appendix B.1.2 and
370 B.1.4. Results are averaged over 10 runs for reliability, and ablations are reported in Appendix B.2.

371 5.1 MAIN RESULTS

372 **Comparison of CurvaLID against baseline defences.** We compared CurvaLID with five existing
373 defences: SmoothLLM, Self-Reminder, Intentionanalysis, In-Context Demonstration (ICD), and
374 RTT3d. Evaluations are conducted across four LLMs: Vicuna-7B-v1.1, LLaMA2-7B-Chat, GPT-3.5,
375 and PaLM2, and against seven adversarial attacks, including GCG, PAIR, DAN, AmpleGCG, SAP,
376 MathAttack, and RandomSearch. In addition, we compared CurvaLID with the constrained SFT
377 defence (Qi et al., 2025), using the fine-tuned Gemma-2-9B model released by Qi et al. (2025). In our
378 approach, if a prompt is classified as a jailbreak prompt, it is rejected. The comparison against SOTA
379 defences across multiple LLMs, measured by ASR (%), is presented in Table 1. Appendix B.4.1

378
 379 Table 2: Performance metrics for CurvaLID on benign and adversarial datasets. Standard
 380 serial datasets across word embedding and CNN deviations are shown in parentheses.
 381

Class	Accuracy by Dataset				Class Acc.	Overall Acc.	F1
	Orca	MMLU	AlpEval	TQA			
Benign	0.968 (0.012)	1.000 (0.000)	0.983 (0.008)	0.986 (0.010)	0.984 (0.009)	0.992	0.992
	SAP	DAN	MathAtk	GCG	1.000		
Adv.	1.000 (0.000)	1.000 (0.000)	1.000 (0.000)	1.000 (0.000)	1.000		

(a) Confusion Matrix

(b) Avg token-level LID

(c) Average NN- distances

(d) Average PromptLID

400 Figure 2: (a) Confusion matrix from CurvaLID on English adversarial prompts (corresponds to
 401 Table 2). (b) Average token-level LID for benign and adversarial prompts. Blue bars show LID for
 402 original prompts; red bars show LID after removing stopwords and punctuation. (c) Average nearest
 403 neighbor distances, blue for benign and red for adversarial prompts. (d) Average PromptLID for
 404 benign and adversarial prompts. Error bars in (b)–(d) show standard deviation over 10 runs.
 405

406 provides detailed experimental results and covers filters like Circuit Breakers (Zou et al., 2024), Llama
 407 Guard (Inan et al., 2023), and perplexity filtering (Alon & Kamfonas, 2023). Experimental result
 408 shows that CurvaLID effectively identifies adversarial prompts and rejects them before querying
 409 the LLM. Notably, CurvaLID is model-agnostic and performs consistently across LLMs, achieving
 410 superior results over baseline defences in most scenarios.

411 **CurvaLID on adversarial prompts.** The experimental results in Table 2 demonstrate CurvaLID’s
 412 high performance. The model achieved an overall accuracy of 0.992, with perfect accuracy of 1.00
 413 (i.e., 100%) in identifying adversarial prompts and 0.984 accuracy in identifying benign prompts.
 414 Since adversarial prompts are detected before reaching the LLM, 1.00 accuracy implies a 0% attack
 415 success rate, effectively nullifying adversarial attempts. The corresponding confusion matrix is shown
 416 in Figure 2(a). Notably, CurvaLID remains robust even when the number of prompts per dataset is
 417 halved to 150, achieving an accuracy and F1 score of 0.988 (see Appendix B.2.12).

418 In addition to the four main adversarial datasets, which contain a substantial number of prompts
 419 and span a diverse range of attack strategies, we extended our experiments to PAIR, RandomSearch,
 420 AmpleGCG, Persuasive Attack, AutoDAN, DrAttack, and persona modulation attack. CurvaLID
 421 identified all adversarial attacks with near 0.99 accuracy (see Appendix B.2.1 and B.2.4). It also
 422 achieved over 0.9 accuracy on demonstration-based attacks, including In-Context Demonstration
 423 (Wei et al., 2023) and cipher-based attacks (Yuan et al., 2023) (see Appendix B.2.2), and 0.994
 424 accuracy on adversarial prompts written in nine non-English languages (see Appendix B.2.3). We
 425 also evaluated CurvaLID on benchmarks, namely HarmBench adversarial prompts (Mazeika et al.,
 426 2024), achieving near-zero ASR, and over-refusal benchmarks (Cui et al., 2024; Röttger et al., 2023),
 427 where CurvaLID reduced harmful prompt acceptance by up to 30% (see Appendix B.2.5- B.2.6).

5.2 ANALYSIS ON CURVALID

428 We analyse CurvaLID under three settings: (1) training only on benign prompts, (2) comparing
 429 token-level LID with PromptLID, and (3) testing TextCurv across word embeddings.
 430

432 **Using CurvaLID in one-class classification problems.** We modified step 4 of CurvaLID by replacing
 433 the supervised MLP with unsupervised outlier detection methods such as the local outlier factor
 434 (LOF) (Breunig et al., 2000) or isolation forest (Liu et al., 2008), which do not require training on
 435 adversarial prompts. Despite the absence of adversarial examples during training, LOF and isolation
 436 forest methods achieved comparable detection accuracy of around 0.9. Therefore, our framework is
 437 task-independent and can be applied to various problem settings. Full results are in Appendix B.2.13.

438 **Limitations of token-level LID.** We provide the motivation for PromptLID by examining why traditional
 439 token-level LID fails to effectively distinguish benign from adversarial prompts. Adversarial
 440 inputs often manipulate rarely encountered regions of the feature space using complex words and
 441 irregular combinations (Wallace et al., 2019; Ilyas et al., 2019; Ren et al., 2019). Prior work has
 442 shown that such perturbations lead representations into subspaces with distinct local dimensional
 443 properties, typically exhibiting high LID (Ma et al., 2018). Based on this, we hypothesize that each
 444 word in an adversarial prompt may induce a representation with elevated LID, and that by aggregating
 445 these token-level values (e.g., via averaging), it might be possible to detect adversarial prompts.

446 However, our analysis reveals that this token-level approach, computed with RoBERTa embeddings
 447 and treating each word as a data point within its prompt-based neighbourhood, is ineffective at
 448 separating benign and adversarial inputs. As shown in Figures 2(b) and Appendix B.3.3, average
 449 token-level LID across datasets centers around 10 with high variability, causing substantial overlap
 450 between benign and adversarial classes. To investigate further, we analysed the first five nearest-
 451 neighbor distances, which also showed minimal differences between prompt types (Figure 2(c)).
 452 Appendix B.3.2 indicates the most common neighbors are stop words and punctuation, suggesting
 453 token-level LID is dominated by non-informative tokens and insensitive to sequential structure.
 454 Removing stop words and punctuation lowered the standard deviation to 2.26 (Appendix B.3.3), but
 455 the distinction between benign and adversarial prompts remained weak. These results reaffirm the
 456 limitations of token-level LID for adversarial detection and further motivate using PromptLID.

457 We analyse PromptLID across benign and adversarial datasets. As shown in Figure 2(d), adversarial
 458 prompts exhibit a much higher average PromptLID compared to benign prompts, highlighting its
 459 effectiveness in distinguishing adversarial prompts. The distribution of PromptLID between benign
 460 and adversarial prompts can be found in Appendix B.2.26.

461 **Generalisation to different word embedding.** We analysed the average TextCurv of adversarial
 462 prompts in CurvaLID Step 2. To ensure TextCurv’s independence from the embedding model, we
 463 conducted curvature analysis using GPT-2 (Radford et al., 2019), BERT (Devlin, 2018), XLNet
 464 (Yang, 2019), and DistilBERT (Sanh, 2019). As shown in Table 3, adversarial prompts consistently
 465 exhibited at least 30% higher curvature than benign prompts across all embeddings. The TextCurv
 466 distribution for benign and adversarial prompts are in Appendix B.2.26. These findings support our
 467 hypothesis that words in adversarial prompts exhibit greater irregularity and complexity compared to
 468 those in benign prompts. More importantly, the results generalize across different embedding models,
 469 suggesting that adversarial and benign prompts differ fundamentally in their geometric properties.

470 We also demonstrated that CNN activation significantly amplifies TextCurv differences between
 471 benign and adversarial prompts. The mean TextCurv of adversarial prompts is at least 30% higher
 472 than that of benign prompts in both CNN layers. In contrast, when using only the word embedding,
 473 the mean TextCurv is 4.91 for benign prompts and 5.42 for adversarial prompts, a much smaller
 474 difference of 13%, less than half of that observed in the CNN layers (see Appendix B.2.25).

476 6 CONCLUSION

478 In this paper, we introduce CurvaLID, an adversarial prompt detection framework that filters out ad-
 479 versarial prompts before reaching LLMs to maintain their security. CurvaLID operates independently
 480 of LLMs, providing consistent performance across models. It achieves over 0.99 accuracy and reduces
 481 the ASR of tested adversarial prompts to near zero. CurvaLID leverages PromptLID and TextCurv,
 482 which analyse the geometric properties of prompts at the prompt and word level, respectively. These
 483 measures address limitations of word-level LID caused by stop words and punctuation, forming the
 484 foundation for CurvaLID’s robust performance in distinguishing benign and adversarial prompts.
 485 Future work includes evaluating CurvaLID on benign prompts in other languages to strengthen
 486 multilingual robustness and ensure fairness in low-resource settings.

486 REPRODUCIBILITY STATEMENT
487

488 The algorithm outline of CurvaLID is presented in Section 4.3, with corresponding pseudo code
489 in Appendix A.1. The definitions and methodologies of PromptLID and TextCurv are described
490 in Sections 4.1 and 4.2, respectively. Theoretical results and proofs are provided in Section 4 and
491 Appendix A.2. Experimental details are given in the first paragraph of Section 5 and Appendix B.1,
492 with dataset descriptions in Appendix B.1.5. Model parameters and architectural configurations
493 are reported in Appendices B.1.2 and B.1.4. The algorithm used in this research is included in the
494 supplementary material, and all data used will be released upon publication.

495 REFERENCES
496

497 Hervé Abdi and Lynne J Williams. Principal component analysis. *Wiley interdisciplinary reviews: 498 computational statistics*, 2(4):433–459, 2010.

500 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
501 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
502 *arXiv preprint arXiv:2303.08774*, 2023.

503 AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md.

506 Gabriel Alon and Michael Kamfonas. Detecting language model attacks with perplexity. *arXiv 507 preprint arXiv:2308.14132*, 2023.

508 Paul M Alsing and Carlo Cafaro. From the classical frenet-serret apparatus to the curvature
509 and torsion of quantum-mechanical evolutions. part i. stationary hamiltonians. *arXiv preprint 510 arXiv:2311.18458*, 2023.

512 Laurent Amsaleg, Oussama Chelly, Teddy Furion, Stéphane Girard, Michael E Houle, Ken-ichi
513 Kawarabayashi, and Michael Nett. Estimating local intrinsic dimensionality. In *KDD*, pp. 29–38,
514 2015.

515 Maksym Andriushchenko, Francesco Croce, and Nicolas Flammarion. Jailbreaking leading safety-
516 aligned llms with simple adaptive attacks. *arXiv preprint arXiv:2404.02151*, 2024.

517 Cem Anil, Esin Durmus, Mrinank Sharma, Joe Benton, Sandipan Kundu, Joshua Batson, Nina
518 Rimsky, Meg Tong, Jesse Mu, Daniel Ford, et al. Many-shot jailbreaking. *Anthropic, April*, 2024.

520 Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
521 Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. *arXiv 522 preprint arXiv:2305.10403*, 2023.

523 Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of
524 data representations in deep neural networks. *NeurIPS*, 32, 2019.

526 Anthropic. Claude-1, 2023a. URL <https://www.anthropic.com>. Large Language Model.

527 Anthropic. Claude-2, 2023b. URL <https://www.anthropic.com>. Large Language Model.

529 Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
530 Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
531 longtermism. *arXiv preprint arXiv:2401.02954*, 2024.

532 Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying density-
533 based local outliers. In *SIGMOD*, 2000.

535 Tom B Brown. Language models are few-shot learners. *arXiv preprint arXiv:2005.14165*, 2020.

536 Bochuan Cao, Yuanpu Cao, Lu Lin, and Jinghui Chen. Defending against alignment-breaking attacks
537 via robustly aligned llm. *arXiv preprint arXiv:2309.14348*, 2023.

539 Zhiyuan Chang, Mingyang Li, Yi Liu, Junjie Wang, Qing Wang, and Yang Liu. Play guessing game
with llm: Indirect jailbreak attack with implicit clues. *arXiv preprint arXiv:2402.09091*, 2024.

540 Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J Pappas, and Eric Wong.
 541 Jailbreaking black box large language models in twenty queries. *arXiv preprint arXiv:2310.08419*,
 542 2023.

543 Guiming Hardy Chen, Shunian Chen, Ziche Liu, Feng Jiang, and Benyou Wang. Humans or llms as
 544 the judge? a study on judgement biases. *arXiv preprint arXiv:2402.10669*, 2024.

545 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
 546 Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
 547 impressing gpt-4 with 90%* chatgpt quality. See <https://vicuna.lmsys.org> (accessed 14 April
 548 2023), 2(3):6, 2023.

549 Junjie Chu, Yugeng Liu, Ziqing Yang, Xinyue Shen, Michael Backes, and Yang Zhang. Comprehensive
 550 assessment of jailbreak attacks against llms. *arXiv preprint arXiv:2402.05668*, 2024.

551 Justin Cui, Wei-Lin Chiang, Ion Stoica, and Cho-Jui Hsieh. Or-bench: An over-refusal benchmark
 552 for large language models. *arXiv preprint arXiv:2405.20947*, 2024.

553 Boyi Deng, Wenjie Wang, Fuli Feng, Yang Deng, Qifan Wang, and Xiangnan He. Attack prompt
 554 generation for red teaming and defending large language models. *arXiv preprint arXiv:2310.12505*,
 555 2023a.

556 Yue Deng, Wenzuan Zhang, Sinno Jialin Pan, and Lidong Bing. Multilingual jailbreak challenges in
 557 large language models. *arXiv preprint arXiv:2310.06474*, 2023b.

558 Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv
 559 preprint arXiv:1810.04805*, 2018.

560 Yinpeng Dong, Huanran Chen, Jiawei Chen, Zhengwei Fang, Xiao Yang, Yichi Zhang, Yu Tian,
 561 Hang Su, and Jun Zhu. How robust is google’s bard to adversarial image attacks? *arXiv preprint
 562 arXiv:2309.11751*, 2023.

563 Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic di-
 564 mension of datasets by a minimal neighborhood information. *Scientific reports*, 7(1):12140,
 565 2017.

566 F Frenet. Sur les courbes à double courbure. *Journal de mathématiques pures et appliquées*, 17:
 567 437–447, 1852.

568 Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben
 569 Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red teaming language models to
 570 reduce harms: Methods, scaling behaviors, and lessons learned. *arXiv preprint arXiv:2209.07858*,
 571 2022.

572 Sixue Gong, Vishnu Naresh Boddeti, and Anil K Jain. On the intrinsic dimensionality of image
 573 representations. In *CVPR*, pp. 3987–3996, 2019.

574 Haizelabs. Haizelabs/llama3-jailbreak: A trivial programmatic llama 3 jailbreak. sorry zuck!, 2023.
 575 URL <https://github.com/haizelabs/llama3-jailbreak?v=2>. Version 2.

576 Marcel Hallgarten, Ismail Kisa, Martin Stoll, and Andreas Zell. Stay on track: A frenet wrapper to
 577 overcome off-road trajectories in vehicle motion prediction. In *IV*, pp. 795–802, 2024.

578 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 579 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint
 580 arXiv:2009.03300*, 2020.

581 Michael E Houle. Local intrinsic dimensionality i: an extreme-value-theoretic foundation for
 582 similarity applications. In *SISAP*, pp. 64–79, 2017.

583 Xiaomeng Hu, Pin-Yu Chen, and Tsung-Yi Ho. Gradient cuff: Detecting jailbreak attacks on large
 584 language models by exploring refusal loss landscapes. *arXiv preprint arXiv:2403.00867*, 2024.

594 Zhengmian Hu, Gang Wu, Saayan Mitra, Ruiyi Zhang, Tong Sun, Heng Huang, and Vishy Swami-
 595 nathan. Token-level adversarial prompt detection based on perplexity measures and contextual
 596 information. *arXiv preprint arXiv:2311.11509*, 2023.

597 Hanxun Huang, Ricardo JGB Campello, Sarah Monazam Erfani, Xingjun Ma, Michael E Houle, and
 598 James Bailey. Ldreg: Local dimensionality regularized self-supervised learning. *arXiv preprint*
 599 *arXiv:2401.10474*, 2024.

600 Hanxun Huang, Sarah Monazam Erfani, Yige Li, Xingjun Ma, and James Bailey. Detecting backdoor
 601 samples in contrastive language image pretraining. In *ICLR*, 2025.

602 Jianyu Huang, Zuguang He, Yutaka Arakawa, and Billy Dawton. Trajectory planning in frenet frame
 603 via multi-objective optimization. *IEEE Access*, 2023.

604 Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
 605 Madry. Adversarial examples are not bugs, they are features. *NeurIPS*, 32, 2019.

606 Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael
 607 Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, et al. Llama guard: Llm-based input-output
 608 safeguard for human-ai conversations. *arXiv preprint arXiv:2312.06674*, 2023.

609 Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami Somepalli, John Kirchenbauer, Ping-yeh
 610 Chiang, Micah Goldblum, Aniruddha Saha, Jonas Geiping, and Tom Goldstein. Baseline defenses
 611 for adversarial attacks against aligned language models. *arXiv preprint arXiv:2309.00614*, 2023.

612 Morris Kline. *Calculus: an intuitive and physical approach*. Courier Corporation, 1998.

613 Elizaveta Levina and Peter Bickel. Maximum likelihood estimation of intrinsic dimension. *NeurIPS*,
 614 17, 2004.

615 Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity with lessons learned
 616 from word embeddings. *Transactions of the association for computational linguistics*, 3:211–225,
 617 2015.

618 Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui Hsieh. Drattack: Prompt decom-
 619 position and reconstruction makes powerful llm jailbreakers. *arXiv preprint arXiv:2402.16914*,
 620 2024.

621 Xuan Li, Zhanke Zhou, Jianing Zhu, Jiangchao Yao, Tongliang Liu, and Bo Han. Deepinception:
 622 Hypnotize large language model to be jailbreaker. *arXiv preprint arXiv:2311.03191*, 2023a.

623 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
 624 Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
 625 models. https://github.com/tatsu-lab/alpaca_eval, 5 2023b.

626 Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and "Teknium".
 627 Openorca: An open dataset of gpt augmented flan reasoning traces. <https://huggingface.co/Open-Orca/OpenOrca>, 2023.

628 Zeyi Liao and Huan Sun. Amplegcn: Learning a universal and transferable generative model of
 629 adversarial suffixes for jailbreaking both open and closed llms. *arXiv preprint arXiv:2404.07921*,
 630 2024.

631 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 632 falsehoods. *arXiv preprint arXiv:2109.07958*, 2021.

633 Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In *ICDM*, 2008.

634 Xiaogeng Liu, Nan Xu, Muhaoo Chen, and Chaowei Xiao. Autodan: Generating stealthy jailbreak
 635 prompts on aligned large language models. *arXiv preprint arXiv:2310.04451*, 2023.

636 Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Grant Schoenebeck,
 637 Dawn Song, Michael E Houle, and James Bailey. Characterizing adversarial subspaces using local
 638 intrinsic dimensionality. *arXiv preprint arXiv:1801.02613*, 2018.

648 Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaee,
 649 Nathaniel Li, Steven Basart, Bo Li, et al. Harmbench: A standardized evaluation framework for
 650 automated red teaming and robust refusal. *arXiv preprint arXiv:2402.04249*, 2024.

651

652 Anay Mehrotra, Manolis Zampetakis, Paul Kassianik, Blaine Nelson, Hyrum Anderson, Yaron Singer,
 653 and Amin Karbasi. Tree of attacks: Jailbreaking black-box llms automatically. *arXiv preprint*
 654 *arXiv:2312.02119*, 2023.

655 Tomas Mikolov. Efficient estimation of word representations in vector space. *arXiv preprint*
 656 *arXiv:1301.3781*, 2013.

657

658 Barrett O'Neill. *Elementary differential geometry*. Elsevier, 2006.

659

660 Mansi Phute, Alec Helbling, Matthew Hull, Sheng Yun Peng, Sebastian Szyller, Cory Cornelius, and
 661 Duen Horng Chau. Llm self defense: By self examination, llms know they are being tricked. *arXiv*
 662 *preprint arXiv:2308.07308*, 2023.

663 Phil Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic
 664 dimension of images and its impact on learning. In *ICLR*, 2021a.

665

666 Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic
 667 dimension of images and its impact on learning. *arXiv preprint arXiv:2104.08894*, 2021b.

668

669 Xiangyu Qi, Ashwinee Panda, Kaifeng Lyu, Xiao Ma, Subhrajit Roy, Ahmad Beirami, Prateek Mittal,
 670 and Peter Henderson. Safety alignment should be made more than just a few tokens deep. In *ICLR*,
 671 2025.

672 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 673 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

674

675 Vyas Raina, Adian Liusie, and Mark Gales. Is llm-as-a-judge robust? investigating universal
 676 adversarial attacks on zero-shot llm assessment. *arXiv preprint arXiv:2402.14016*, 2024.

677

678 Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B Viegas, Andy Coenen, Adam Pearce, and
 679 Been Kim. Visualizing and measuring the geometry of bert. *NeurIPS*, 32, 2019.

680

681 Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. Generating natural language adversarial
 682 examples through probability weighted word saliency. In *ACL*, pp. 1085–1097, 2019.

683

684 Alexander Robey, Eric Wong, Hamed Hassani, and George J Pappas. Smoothllm: Defending large
 685 language models against jailbreaking attacks. *arXiv preprint arXiv:2310.03684*, 2023.

686

687 Paul Röttger, Hannah Rose Kirk, Bertie Vidgen, Giuseppe Attanasio, Federico Bianchi, and Dirk
 688 Hovy. Xtest: A test suite for identifying exaggerated safety behaviours in large language models.
 689 *arXiv preprint arXiv:2308.01263*, 2023.

690

691 V Sanh. Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. *arXiv preprint*
 692 *arXiv:1910.01108*, 2019.

693

694 Adriaan MJ Schakel and Benjamin J Wilson. Measuring word significance using distributed repre-
 695 sentations of words. *arXiv preprint arXiv:1508.02297*, 2015.

696

697 Leo Schwinn, David Dobre, Stephan Günemann, and Gauthier Gidel. Adversarial attacks and
 698 defenses in large language models: Old and new threats. In *NeurIPS Workshops*, pp. 103–117,
 699 2023.

700

701 Ahmed A Shabana. Instantaneous motion plane and zero-force axis and their relationship to frenet
 702 geometry. *Nonlinear Dynamics*, 111(17):15737–15748, 2023.

703

Rusheb Shah, Soroush Pour, Arush Tagade, Stephen Casper, Javier Rando, et al. Scalable and
 704 transferable black-box jailbreaks for language models via persona modulation. *arXiv preprint*
 705 *arXiv:2311.03348*, 2023.

702 Mrinank Sharma, Meg Tong, Jesse Mu, Jerry Wei, Jorrit Kruthoff, Scott Goodfriend, Euan Ong,
 703 Alwin Peng, Raj Agarwal, Cem Anil, et al. Constitutional classifiers: Defending against universal
 704 jailbreaks across thousands of hours of red teaming. *arXiv preprint arXiv:2501.18837*, 2025.

705 Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. "do anything now":
 706 Characterizing and evaluating in-the-wild jailbreak prompts on large language models. *arXiv
 707 preprint arXiv:2308.03825*, 2023.

708 Abhay Sheshadri, Aidan Ewart, Phillip Guo, Aengus Lynch, Cindy Wu, Vivek Hebbar, Henry
 709 Sleight, Asa Cooper Stickland, Ethan Perez, Dylan Hadfield-Menell, et al. Targeted latent
 710 adversarial training improves robustness to persistent harmful behaviors in llms. *arXiv preprint
 711 arXiv:2407.15549*, 2024.

712 Theodore Shifrin. Differential geometry: a first course in curves and surfaces. *University of Georgia*,
 713 pp. 24, 2015.

714 C Szegedy. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.

715 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
 716 Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
 717 Gemma 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*,
 718 2024.

719 MosaicML NLP Team. Introducing mpt-30b: Raising the bar for open-source foundation models,
 720 2023. URL www.mosaicml.com/blog/mpt-30b. Accessed: 2023-06-22.

721 Piotr Tempczyk, Rafał Michaluk, Lukasz Garncarek, Przemysław Spurek, Jacek Tabor, and Adam
 722 Golinski. Lidl: Local intrinsic dimension estimation using approximate likelihood. In *ICML*, pp.
 723 21205–21231, 2022.

724 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 725 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 726 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

727 Eduard Tulchinskii, Kristian Kuznetsov, Laida Kushnareva, Daniil Cherniavskii, Sergey Nikolenko,
 728 Evgeny Burnaev, Serguei Barannikov, and Irina Piontkovskaya. Intrinsic dimension estimation for
 729 robust detection of ai-generated texts. *NeurIPS*, 36, 2024.

730 Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Universal adversarial
 731 triggers for attacking and analyzing nlp. *arXiv preprint arXiv:1908.07125*, 2019.

732 Jiongxiao Wang, Zichen Liu, Keun Hee Park, Zhuojun Jiang, Zhaoheng Zheng, Zhuofeng Wu, Muhan
 733 Chen, and Chaowei Xiao. Adversarial demonstration attacks on large language models. *arXiv
 734 preprint arXiv:2305.14950*, 2023.

735 Xunguang Wang, Daoyuan Wu, Zhenlan Ji, Zongjie Li, Pingchuan Ma, Shuai Wang, Yingjiu Li, Yang
 736 Liu, Ning Liu, and Juergen Rahmel. Selfdefend: Llms can defend themselves against jailbreaking
 737 in a practical manner. *arXiv preprint arXiv:2406.05498*, 2024.

738 Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training fail?
 739 *NeurIPS*, 36, 2024.

740 Zeming Wei, Yifei Wang, Ang Li, Yichuan Mo, and Yisen Wang. Jailbreak and guard aligned
 741 language models with only few in-context demonstrations. *arXiv preprint arXiv:2310.06387*, 2023.

742 William Whewell. *On the intrinsic equation of a curve, and its application*. Printed at the Pitt Press
 743 by JW Parker, 1849.

744 Yueqi Xie, Jingwei Yi, Jiawei Shao, Justin Curl, Lingjuan Lyu, Qifeng Chen, Xing Xie, and Fangzhao
 745 Wu. Defending chatgpt against jailbreak attack via self-reminders. *Nature Machine Intelligence*, 5
 746 (12):1486–1496, 2023.

747 Zhangchen Xu, Fengqing Jiang, Luyao Niu, Jinyuan Jia, Bill Yuchen Lin, and Radha Poovendran.
 748 Safedecoding: Defending against jailbreak attacks via safety-aware decoding. *arXiv preprint
 749 arXiv:2402.08983*, 2024a.

756 Zihao Xu, Yi Liu, Gelei Deng, Yuekang Li, and Stjepan Picek. A comprehensive study of jailbreak
 757 attack versus defense for large language models. In *Findings of ACL*, pp. 7432–7449, 2024b.
 758

759 Zhilin Yang. Xlnet: Generalized autoregressive pretraining for language understanding. *arXiv*
 760 preprint *arXiv:1906.08237*, 2019.

761 Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. A survey on large
 762 language model (llm) security and privacy: The good, the bad, and the ugly. *High-Confidence*
 763 Computing, pp. 100211, 2024.

764 Fan Yin, Jayanth Srinivasa, and Kai-Wei Chang. Characterizing truthfulness in large language model
 765 generations with local intrinsic dimension. In *ICML*, 2024.

766 Zheng-Xin Yong, Cristina Menghini, and Stephen H Bach. Low-resource languages jailbreak gpt-4.
 767 *arXiv preprint arXiv:2310.02446*, 2023.

768 Jiahao Yu, Xingwei Lin, Zheng Yu, and Xinyu Xing. Gptfuzzer: Red teaming large language models
 769 with auto-generated jailbreak prompts. *arXiv preprint arXiv:2309.10253*, 2023.

770 Youliang Yuan, Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Pinjia He, Shuming Shi, and
 771 Zhaopeng Tu. Gpt-4 is too smart to be safe: Stealthy chat with llms via cipher. *arXiv preprint*
 772 *arXiv:2308.06463*, 2023.

773 Canaan Yung, Hadi Mohaghegh Dolatabadi, Sarah Erfani, and Christopher Leckie. Round trip trans-
 774 lation defence against large language model jailbreaking attacks. *arXiv preprint arXiv:2402.13517*,
 775 2024.

776 Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
 777 Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. *arXiv preprint*
 778 *arXiv:2210.02414*, 2022.

779 Yi Zeng, Hongpeng Lin, Jingwen Zhang, Diyi Yang, Ruoxi Jia, and Weiyan Shi. How johnny can
 780 persuade llms to jailbreak them: Rethinking persuasion to challenge ai safety by humanizing llms.
 781 *arXiv preprint arXiv:2401.06373*, 2024.

782 Yuqi Zhang, Liang Ding, Lefei Zhang, and Dacheng Tao. Intention analysis prompting makes large
 783 language models a good jailbreak defender. *arXiv preprint arXiv:2401.06561*, 2024a.

784 Ziyang Zhang, Qizhen Zhang, and Jakob Foerster. Parden, can you repeat that? defending against
 785 jailbreaks via repetition. *arXiv preprint arXiv:2405.07932*, 2024b.

786 Yuning Zhou, Henry Badgery, Matthew Read, James Bailey, and Catherine Davey. Dda: Dimen-
 787 sionality driven augmentation search for contrastive learning in laparoscopic surgery. In *MIDL*,
 788 2024a.

789 Zihao Zhou, Qiufeng Wang, Mingyu Jin, Jie Yao, Jianan Ye, Wei Liu, Wei Wang, Xiaowei Huang,
 790 and Kaizhu Huang. Mathattack: Attacking large language models towards math solving ability. In
 791 *AAAI*, pp. 19750–19758, 2024b.

792 Daniel Ziegler, Seraphina Nix, Lawrence Chan, Tim Bauman, Peter Schmidt-Nielsen, Tao Lin, Adam
 793 Scherlis, Noa Nabeshima, Benjamin Weinstein-Raun, Daniel de Haas, et al. Adversarial training
 794 for high-stakes reliability. *NeurIPS*, 35:9274–9286, 2022.

795 Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson. Universal
 796 and transferable adversarial attacks on aligned language models. *arXiv preprint arXiv:2307.15043*,
 797 2023.

798 Andy Zou, Long Phan, Justin Wang, Derek Duenas, Maxwell Lin, Maksym Andriushchenko, J Zico
 799 Kolter, Matt Fredrikson, and Dan Hendrycks. Improving alignment and robustness with circuit
 800 breakers. *NeurIPS*, 37:83345–83373, 2024.

801

802

803

804

805

806

807

808

809

810 A PSEUDOCODE AND THEORETICAL PROOFS FOR CURVALID
811812 This section includes the pseudocode and supplementary theoretical proofs for CurvaLID.
813814 A.1 PSEUDOCODE FOR CURVALID
815816 Algorithm 1 presents the pseudocode for CurvaLID.
817818 **Algorithm 1** CurvaLID819 **Input:** Datasets $\mathcal{D}_b, \mathcal{D}_a$ (benign and adversarial prompts)820 **Step 1: Data Preparation**

- Load datasets \mathcal{D}_b and \mathcal{D}_a .
- Compute word embeddings E_b and E_a for \mathcal{D}_b and \mathcal{D}_a .

823 **Step 2: Preprocessing**

- Pad sequences to uniform length L_{\max} .
- Standardize embeddings to zero mean and unit variance.

825 **Step 3: Train CNN for Benign Classification**

- Train a CNN \mathcal{G} on \mathcal{D}_b to extract prompt-level representations z_1 .

827 **Step 4: Compute PromptLID and TextCurv**

- Calculate PromptLID on z_1 .
- Extract intermediate layer outputs z_2, z_3 , and calculate TextCurv.

830 **Step 5: Train the Detection Model**

- Combine PromptLID and TextCurv as features.
- Train an MLP \mathcal{H} for binary classification of benign vs adversarial prompts.

834 A.2 THEORETICAL FOUNDATIONS AND MATHEMATICAL JUSTIFICATION OF TEXTCURV

835 We begin by addressing the reference of *TextCurv* to Whewell’s equation, specifically focusing on
836 how embedding angles relate to tangential angles. Our objective is to demonstrate that the angle
837 between two word embedding vectors corresponds to the difference in their tangential angles (i.e.,
838 the numerator in Whewell’s equation). To this end, we prove that for two tangent vectors, \vec{u} and
839 \vec{v} , in n -dimensional Euclidean space, the angle θ between them is equivalent to the difference in
840 their tangential angles. The following proof establishes this equivalence, showing that the angular
841 difference between two vectors directly corresponds to the difference in their tangential angles.
842

843 **Theorem** For two tangent vectors \vec{u} and \vec{v} in n -dimensional Euclidean space, the angle θ between
844 them is equivalent to the difference in their tangential angles.
845

846 **Proof of Theorem**847 **Step 1: Angle in n -Dimensional Space**848 The angle θ between two vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$ is defined as:
849

$$850 \cos \theta = \frac{\vec{u} \cdot \vec{v}}{851 \|\vec{u}\| \|\vec{v}\|},$$

853 **Step 2: Tangential Angles and Plane Reduction**

- **Tangential Angles:** Tangential angles describe the orientation of vectors within the specific
855 2D plane they span. These are defined relative to a chosen reference axis in that plane.
856
- **Plane Spanned by \vec{u} and \vec{v} :** Any two vectors in n -dimensional space span a **2D subspace**
857 (a plane). This means the interaction between \vec{u} and \vec{v} (e.g., the angle θ) is fully determined
858 by their projections into this plane.
- **Orthonormal Basis for the Plane:** Using the Gram-Schmidt process, construct an orthonormal
859 basis $\{\vec{e}_1, \vec{e}_2\}$:
 - Normalize \vec{u} to define \vec{e}_1 :

$$860 \vec{e}_1 = \frac{\vec{u}}{861 \|\vec{u}\|}.$$

864 - Define \vec{e}_2 as orthogonal to \vec{e}_1 and lying in the same plane:
 865

$$\vec{e}_2 = \frac{\vec{v} - (\vec{v} \cdot \vec{e}_1)\vec{e}_1}{\|\vec{v} - (\vec{v} \cdot \vec{e}_1)\vec{e}_1\|}.$$

866 **Step 3: Expressing \vec{u} and \vec{v} in the Orthonormal Basis**

867 In the orthonormal basis $\{\vec{e}_1, \vec{e}_2\}$:

$$\vec{u} = \|\vec{u}\|\vec{e}_1,$$

868 and:

$$\vec{v} = a\vec{e}_1 + b\vec{e}_2,$$

869 where:

$$a = \vec{v} \cdot \vec{e}_1, \quad b = \vec{v} \cdot \vec{e}_2.$$

870 **Step 4: Computing $\cos \theta$**

871 The angle θ between \vec{u} and \vec{v} is:

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}.$$

872 Substituting:

$$\vec{u} \cdot \vec{v} = \|\vec{u}\|a, \quad \|\vec{v}\| = \sqrt{a^2 + b^2}.$$

873 Thus:

$$\cos \theta = \frac{a}{\sqrt{a^2 + b^2}}.$$

874 **Step 5: Computing $\sin \theta$**

875 The magnitude of the cross product $\|\vec{u} \times \vec{v}\|$ in the 2D plane is related to $\sin \theta$ by:

$$\|\vec{u} \times \vec{v}\| = \|\vec{u}\|\|\vec{v}\| \sin \theta.$$

876 Substituting:

$$\|\vec{u} \times \vec{v}\| = \|\vec{u}\|\|b\|.$$

877 Thus:

$$\sin \theta = \frac{|b|}{\sqrt{a^2 + b^2}}.$$

878 **Step 6: Computing $\tan \theta$**

879 The tangent of θ is:

$$\tan \theta = \frac{\sin \theta}{\cos \theta}.$$

880 Substituting:

$$\tan \theta = \frac{\frac{|b|}{\sqrt{a^2 + b^2}}}{\frac{a}{\sqrt{a^2 + b^2}}}.$$

881 Simplify:

$$\tan \theta = \frac{|b|}{a}.$$

882 Thus:

$$\theta = |\arctan(b/a)|.$$

883 **Step 7: Relating θ to the Tangential Angles**

884 In the 2D plane:

885 - The tangential angle of \vec{u} relative to \vec{e}_1 is:

$$\alpha_{\vec{u}} = 0 \quad (\vec{u} \text{ lies entirely along } \vec{e}_1).$$

886 - The tangential angle of \vec{v} is:

$$\alpha_{\vec{v}} = \arctan(b/a).$$

918 The difference in tangential angles is:
 919

$$920 |\alpha_{\vec{u}} - \alpha_{\vec{v}}| = |\arctan(b/a)|.$$

921 Thus, the geometric angle θ between \vec{u} and \vec{v} satisfies:
 922

$$923 \theta = |\alpha_{\vec{u}} - \alpha_{\vec{v}}|.$$

925 This completes the proof. \square
 926

927 Now we investigate the relationship between word embedding vector norms and the change of arc
 928 length. We start with the goal of approximating the arc length Δs between two consecutive word
 929 embeddings, \vec{u} and \vec{v} , in a high-dimensional space. Arc length is classically defined as the integral of
 930 the norm of the tangent vector along the curve. For discrete data points, this is approximated as a
 931 sum of the Euclidean distances between points.

932 1. Discrete Approximation of Arc Length

933 Given consecutive embeddings \vec{u} and \vec{v} , the arc length between these points can be approximated as:
 934

$$935 \Delta s = \|\vec{u} - \vec{v}\|.$$

936 However, directly using $\|\vec{u} - \vec{v}\|$ would treat the embeddings purely as geometric points and ignore
 937 their semantic significance as encoded by the vector magnitudes.

938 2. Semantic Weight and Embedding Norms

940 In NLP, the norm of a word embedding, $\|\vec{u}\|$, encodes the semantic “weight” or importance of a
 941 word within its context (Schakel & Wilson, 2015; Reif et al., 2019). Larger norms indicate that the
 942 embedding carries more semantic information, while smaller norms suggest less significance.

943 For two consecutive embeddings, \vec{u} and \vec{v} , their combined semantic importance is proportional to
 944 their norms:
 945

$$946 \text{Semantic Importance} \propto \|\vec{u}\| + \|\vec{v}\|.$$

947 3. Inverse Proportionality and Arc Length

948 To align with the geometric principle in Whewell’s equation that relates curvature (κ) and arc length
 949 (Δs) as:
 950

$$951 \kappa \propto \frac{1}{\Delta s},$$

952 we posit that arc length (Δs) should *decrease* when the semantic importance ($\|\vec{u}\| + \|\vec{v}\|$) increases.
 953

954 This motivates the choice of the *inverse relationship*:

$$955 \Delta s \propto \frac{1}{\|\vec{u}\| + \|\vec{v}\|}.$$

958 4. Sum of Inverse Norms as Arc Length

959 While $\|\vec{u}\| + \|\vec{v}\|$ represents the combined semantic importance of two embeddings, directly using
 960 it in the denominator would contradict the inverse proportionality between Δs and κ . Instead, we
 961 take the *inverse of the norms individually*, which ensures the arc length is smaller for larger semantic
 962 weights.

963 Thus, the arc length approximation becomes:
 964

$$965 \Delta s \propto \frac{1}{\|\vec{u}\|} + \frac{1}{\|\vec{v}\|}.$$

968 The reasoning is that embeddings with larger norms (higher semantic significance) should have
 969 smaller contributions to the overall arc length, reflecting the sharper semantic transitions between
 970 significant words.

971

972 B SUPPLEMENTARY INFORMATION FOR EXPERIMENTS
973974 The appendix is organized into four sections. B.1 provides supplementary information about Cur-
975 vaLID. B.2 focuses on ablation studies, presenting experiments to analyse various aspects of Cur-
976 vaLID’s performance. B.3 presents supplementary information on LID analysis. Finally, B.4
977 evaluates the performance of other SOTA defences, comparing them to CurvaLID. All experiments
978 were conducted on a system with a single Nvidia H100 GPU, 8 CPU cores, and 128 GB of RAM.
979980 B.1 SUPPLEMENTARY INFORMATION ABOUT CURVALID
981982 This section includes time and space complexity of CurvaLID, and also the experimental settings for
983 CurvaLID analysis.
984985 B.1.1 TIME AND SPACE COMPLEXITY OF CURVALID
986987 The time complexity for PromptLID is $\mathcal{O}(np)$, where n is the number of prompts and p is the
988 dimensionality of the prompt embeddings. In our implementation, we use the representation layer
989 of the CNN to obtain the embeddings. For TextCurv, the time complexity is $\mathcal{O}(nmd)$, where m
990 is the number of words in a prompt and d is the word embedding dimensionality. In our case,
991 we use RoBERTa embeddings for word representations. Therefore, the overall time complexity is
992 $\mathcal{O}(n(p + md))$.
993994 The space complexity for PromptLID is $\mathcal{O}(np)$, as we store n prompts, each with p dimensions. For
995 TextCurv, the space complexity is $\mathcal{O}(nz)$, where z represents the dimensionality of the trained CNN
996 layers used in our computations. Consequently, the space complexity is $\mathcal{O}(n(p + z))$.
997998 B.1.2 CNN HYPERPARAMETER SELECTION
9991000 We conducted a preliminary study for the CNN hyperparameter selection to determine the optimal
1001 architecture based on overall CurvaLID detection accuracy, training time, and stability. Stability was
1002 evaluated by measuring the average CurvaLID accuracy across 10 random seeds. The study involved
1003 experimenting with the following parameters:
10041005 **Number of convolutional layers:** Tested configurations with 1 to 5 layers.
1006 **Activation functions:** Evaluated ReLU, ELU, tanh, sigmoid, and softplus.
1007 **Kernel sizes:** Tested kernel sizes ranging from 2 to 5.
1008 **Number of parameters:** Adjusted the dense layer sizes to 64, 128, and 256 units.
1009 **Epochs:** Tested training with 10, 20, 30, 40, 50 epochs.
1010 **Batch sizes:** Evaluated sizes of 16, 32, 64, and 128.
1011 **Optimizers:** Compared Adam and SGD.
10121013 The experimental results are shown in Table 4. We observe that the parameter tuning of the CNN does
1014 not significantly impact the overall detection accuracy, as the accuracy generally fluctuates around
1015 0.98 to 0.99. Notably, the selected CNN extracts features from 1,000 prompts in under 0.5 seconds,
1016 demonstrating its efficiency.
10171018 B.1.3 DETAILED PARAMETERS AND SPECIFICS OF THE CNN ARCHITECTURE FOR
1019 CLASSIFYING BENIGN PROMPTS IN CURVALID STEP 1
10201021 The CNN architecture consists of an input layer and two 1D convolutional layers. The first Conv1D
1022 layer applies 32 filters with a kernel size of 3 and a ReLU activation function, while the second
1023 Conv1D layer increases the number of filters to 64, again using a kernel size of 3 and ReLU activation.
1024 The output from the convolutional layers is flattened before passing through a fully connected layer
1025 with 128 units and ReLU activation. Finally, the network includes an output layer with four units
and a softmax activation to classify the input into four distinct categories: Orca, MMLU, AlphEval,
1026 and TQA. The model is compiled using the Adam optimizer, categorical cross-entropy loss, and
1027 accuracy as the evaluation metric. Training is conducted over 20 epochs with a batch size of 32 and a
1028 validation split of 20%.
1029

Table 4: Performance metrics for CNN hyperparameter selection.

Hyperparameter	Overall Accuracy	Time (min)
No. of Conv. Layers		
1	0.962	13.2
2	0.992	14.6
3	0.992	14.6
4	0.974	15.8
5	0.993	15.7
Activation Function		
ReLU	0.992	14.8
ELU	0.993	15.1
tanh	0.977	15.1
Sigmoid	0.975	14.5
Softplus	0.991	14.8
Kernel Size		
2	0.942	14.8
3	0.992	14.9
4	0.988	14.8
5	0.982	15.0
Dense Layer Size		
64	0.958	14.8
128	0.990	15.2
256	0.992	15.6
Epochs		
10	0.943	14.2
20	0.991	14.9
30	0.989	15.3
40	0.990	15.5
50	0.988	15.3
Batch Size		
16	0.990	15.6
32	0.991	14.8
64	0.988	14.7
128	0.982	14.2
Optimizer		
Adam	0.990	15.2
SGD	0.981	15.8

B.1.4 DETAILED PARAMETERS AND SPECIFICS OF THE MLP ARCHITECTURE FOR CLASSIFYING BENIGN AND ADVERSARIAL PROMPTS IN CURVALID STEP 4

The MLP architecture consists of two fully connected layers and an output layer. The first layer contains 256 neurons with ReLU activation, followed by a batch normalization and dropout layer with a rate of 0.5 to prevent overfitting. A second layer, with 128 neurons and ReLU activation, is followed by another batch normalization and dropout layer. The final output layer uses softmax activation with two units corresponding to the binary classification of benign and adversarial prompts. The model is compiled using the Adam optimizer, a learning rate of 0.001, and categorical cross-entropy as the loss function, and it is trained over 150 epochs with early stopping to prevent overfitting.

1080

B.1.5 EXPERIMENTAL SETTINGS FOR SECTION 5.1

1081

1082 We use a total of 3,540 testing prompts, comprising 1,200 benign and 2,340 adversarial prompts.

1083

1084 For benign prompts, we randomly sampled 300 prompts from each of Orca, MMLU, AlphacaEval
1085 and TruthfulQA.

1086

1086 For adversarial prompts:

1087

- **SAP**: We gathered 320 SAP200 prompts by randomly selecting 40 prompts from each of the 8 adversarial goals.
- **DAN**: We randomly sampled 350 prompts from the adversarial examples uploaded on their GitHub, covering roughly half of their total prompt set.
- **MathAttack**: We used all 300 adversarial prompts provided on their GitHub.
- **GCG**: We followed their default parameter settings—learning rate = 0.01, batch size = 512, top-k = 256, temperature = 1—to generate a universal adversarial suffix. All 349 adversarial behaviours listed in their GitHub were used.
- **PAIR**: We generated 171 adversarial prompts using PAIR. Their implementation targets 50 adversarial goals per LLM, but does not always succeed in producing a prompt for each goal under the default configuration.
- **RandomSearch**: We retrieved prompts directly from their GitHub and randomly selected 200 unique adversarial prompts, as many were duplicates across LLMs.
- **AmpleGCG**: With author permission, we accessed their adversarial prompts and randomly sampled 200 prompts from the set.
- **Persuasive Attack**: We included 150 prompts uploaded by the authors on Hugging Face.
- **AutoDAN**: We included 150 prompts generated per the authors’ GitHub instructions for each targeted LLM.
- **DrAttack**: We tested 150 adversarial prompts generated following the configuration provided in their GitHub.

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134 B.2 ABLATION STUDIES
11351136 This section presents ablation studies for CurvaLID, covering its performance across various ad-
1137 versarial prompts, baseline comparisons, and effectiveness under different training conditions and
1138 parameter settings. The section is organized as follows:1139

- 1140 • **B.2.1 to B.2.7:** Performance of CurvaLID across various adversarial prompts.
- 1141 • **B.2.8 to B.2.11:** Baseline comparisons against CurvaLID.
- 1142 • **B.2.12 to B.2.24:** Performance of CurvaLID under different training conditions and parame-
1143 ter settings.
- 1144 • **B.2.25 to B.2.27:** Ablation studies on the contributions of TextCurv and PromptLID.

11451146 B.2.1 PERFORMANCE METRICS FOR CURVALID IN PAIR, RANDOMSEARCH, AMPLEGCG,
1147 PERSUASIVE ATTACK, AUTODAN, DRATTACK
11481149 Table 5 shows the performance metrics for CurvaLID in PAIR, RandomSearch, AmpleGCG, Persua-
1150 sive Attack, AutoDAN, and DrAttack. Note that due to the abundance of each dataset, we are testing
1151 these adversarial datasets against benign datasets individually, i.e., four benign datasets against each
1152 adversarial dataset.1153 We obtained 100 prompts from each of the four benign datasets. The six adversarial datasets
1154 (PAIR, RandomSearch, AmpleGCG, Persuasive Attack, AutoDAN, and DrAttack) follow the same
1155 configuration described in Appendix B.1.5.1156 Table 5: Performance metrics for CurvaLID in PAIR, RandomSearch, AmpleGCG, Persuasive Attack,
1157 AutoDAN, and DrAttack.
11581159

Adv. Dataset	PAIR	RandomSearch	AmpleGCG	Persuasive Attack	AutoDAN	DrAttack	Avg.
Benign Acc.	0.973	1	0.975	0.952	0.973	0.975	0.975
Adv. Acc.	1	1	0.976	1	1	1	0.996
Overall Acc.	0.983	1	0.975	0.962	0.978	0.980	0.986
F1 Score	0.986	1	0.987	0.974	0.986	0.987	0.985

11651166 B.2.2 CURVALID ON DEMONSTRATION-BASED ATTACKS
11671168 While our focus was on single-shot adversarial prompts, CurvaLID naturally extends to demonstra-
1169 tion-based attacks due to its model-agnostic design. Operating independently of the target LLM, it is
1170 unaffected by prior demonstrations or context instructions. Any geometric anomaly within the prompt
1171 can be detected and filtered before reaching the LLM, effectively mitigating the attack. It also goes
1172 the same for multi-turn jailbreaks as CurvaLID can compute the geometric features per turn.1173 We conducted additional experiments on In-Context Demonstration and cipher-based attacks (Wei
1174 et al., 2023; Yuan et al., 2023). For the former, we tested 400 adversarial prompts using the setup
1175 from Appendix B.2.1. For the cipher-based attack, we used 400 prompts from the official GitHub
1176 repository. The detailed results are shown in Table 6 below:
11771178 Table 6: Performance metrics for CurvaLID on in-context demonstration and cipher-based attacks.
11791180

Attack Type	Benign Accuracy	Adversarial Accuracy	Overall Accuracy
In-Context Demonstration Attack	0.9894	0.973	0.9812
Cipher-based Attack	0.9400	0.910	0.9250

11831184 B.2.3 CURVALID ON NON-ENGLISH ADVERSARIAL PROMPTS
11851186 Table 7 demonstrates CurvaLID’s effectiveness in detecting non-English adversarial prompts by
1187 evaluating it on nine languages from the MultiJail dataset (Deng et al., 2023b). We randomly sampled
1188 300 prompts from each of the nine languages—Chinese (zh), Italian (it), Vietnamese (vi), Arabic (ar),

Korean (ko), Thai (th), Bengali (bn), Swahili (sw), and Javanese (jv)—and tested them individually against 400 benign prompts, adjusted to avoid class imbalance. The benign prompts were sampled by gathering 100 entries from each of four different benign datasets. CurvaLID achieved an overall accuracy and F1 score of 0.994, highlighting its robust ability to detect adversarial prompts across a diverse range of languages.

Table 7: Performance metrics for CurvaLID on non-English adversarial datasets.

Adv. Dataset	zh	it	vi	ar	ko	th	bn	sw	jv	Avg
Benign Acc.	0.975	1.000	1.000	1.000	1.000	1.000	1.000	0.975	1.000	0.994
Adv. Acc.	1.000	0.984	0.984	1.000	1.000	1.000	0.984	1.000	0.984	0.993
Overall Acc.	0.988	0.994	0.994	1.000	1.000	1.000	0.994	0.988	0.994	0.994
F1 Score	0.987	0.994	0.994	1.000	1.000	1.000	0.994	0.987	0.994	0.994

B.2.4 CURVALID ON PERSONA MODULATION

We evaluate CurvaLID against persona modulation attacks, following the setup in Shah et al. (Shah et al., 2023). We generated 200 attack prompts and randomly sampled 200 benign prompts from our benign dataset, as described in Section 5. The experiment setup follows our main evaluation in Section 5.1.

The results, reported in Table 8, show that CurvaLID achieves close to perfect detection accuracy on both benign and persona modulation prompts, demonstrating its robustness.

Table 8: CurvaLID accuracy on benign prompts and persona modulation attacks.

Method	Benign	Persona Modulation
CurvaLID	0.985	0.995

B.2.5 CURVALID ON HARBENCH

We evaluated HarmBench (Mazeika et al., 2024) and tested GCG, AutoDAN, TAP, DirectRequest, and DAN on LLaMA2-7B and Vicuna-7B with 300 prompts each. We also re-evaluated baseline defences (SmoothLLM, Intentionanalysis, Self-Reminder) on these HarmBench prompts.

As shown in Table 9, CurvaLID achieved near-zero attack success rates and matched or outperformed these baselines.

Table 9: ASR (%) of HarmBench attacks under CurvaLID and baseline defences.

LLM	defence	GCG	AutoDAN	TAP	DirectRequest	DAN	Average
LLaMA-7B	SmoothLLM	0.5	80.33	0	0	0.5	16.27
	Intentionanalysis	0	0.33	0	0	1.67	0.40
	Self-Reminder	0	0.33	0	0	2.5	0.57
	CurvaLID	1.33	0	0	0	0	0.266
Vicuna-7B	SmoothLLM	9.67	91.5	0	0	19.67	24.168
	Intentionanalysis	0.33	11.0	1.5	0	9.5	4.47
	Self-Reminder	9.33	92.0	7.33	0	57.5	33.23
	CurvaLID	2.5	3.67	2.33	0	0	1.7

B.2.6 EVALUATION ON OR-BENCH AND XSTEST

We evaluated CurvaLID on over-refusal benchmarks, namely OR-Bench and XSTest (Cui et al., 2024; Röttger et al., 2023). We tested on Vicuna-7B and LLaMA-2-7B and measured its effect

on acceptance and rejection rates. We sampled 200 prompts each from the OR-Bench-Hard and OR-Bench-Toxic splits, and similarly from XSTest-Safe and XSTest-Unsafe. As shown in Tables 10 and 11, CurvaLID preserved LLaMA-2-7B’s strong rejection behaviour. For Vicuna-7B, CurvaLID reduced harmful acceptance by up to 30%, with only a modest increase (about 10%) in benign rejections, suggesting it can enhance safety without substantially impacting utility.

Table 10: CurvaLID performance on OR-Bench.

Dataset	Metric	Model	defence	Rate (%)
OR-Bench-Hard	Rejection	LLaMA-2-7B	No defence	85.5
		CurvaLID	CurvaLID	91.0
		Vicuna-7B	No defence	52.5
OR-Bench-Toxic	Acceptance	LLaMA-2-7B	No defence	0.5
		CurvaLID	CurvaLID	0.0
		Vicuna-7B	No defence	33.5
			CurvaLID	1.5

Table 11: CurvaLID performance on XSTest.

Dataset	Metric	Model	defence	Rate (%)
XSTest-Safe	Rejection	LLaMA-2-7B	No defence	52.0
		CurvaLID	CurvaLID	59.5
		Vicuna-7B	No defence	12.5
XSTest-Unsafe	Acceptance	LLaMA-2-7B	No defence	0.5
		CurvaLID	CurvaLID	0.0
		Vicuna-7B	No defence	24.5
			CurvaLID	2.0

B.2.7 EVALUATION OF BASELINE METHODS ON BENIGN PROMPTS

We conducted an evaluation of baseline methods on benign prompts. Specifically, we compared CurvaLID with SmoothLLM, Self-Reminder, Intentionanalysis, ICD, and RTT3d on both Vicuna-7B and LLaMA2-7B. For the benign dataset, we randomly sampled 200 questions from MMLU. We use MMLU because unlike input-perturbation defences such as SmoothLLM and Intentionanalysis, CurvaLID operates as a detection algorithm without modifying the input or the internal mechanisms of the LLM. Thus, MMLU allows for a fair and consistent benchmark across all methods, as it consists of multiple-choice questions with clear-cut right or wrong answers.

To ensure fairness in measurement, if CurvaLID incorrectly flags a benign MMLU prompt as adversarial, we count the resulting LLM output as incorrect. The results are presented in Table 12 below. We observe that CurvaLID has minimal impact on benign performance. However, we also find that most competing defences similarly maintain high accuracy on MMLU, showing no significant degradation in utility.

Table 12: Accuracy on benign MMLU questions under different defence methods. We compare the utility impact of CurvaLID and baseline defences (SmoothLLM, Self-Reminder, Intentionanalysis, ICD, RTT3d) on Vicuna-7B and LLaMA2-7B. Accuracy is measured as the percentage of correctly answered MMLU prompts. “Original” refers to performance without any defence applied.

Model	Original	CurvaLID	SmoothLLM	Self-Reminder	Intentionanalysis	ICD	RTT3d
Vicuna-7B	46.0	48.0	40.0	46.0	50.0	48.0	39.5
LLaMA-2-7B	48.5	45.5	42.5	49.0	45.0	44.5	44.5

B.2.8 BASELINE CLASSIFICATION ACCURACY USING ROBERTA EMBEDDINGS AND MLP

Table 13 presents the classification accuracy and performance metrics using RoBERTa embeddings as input to MLP. The MLP consists of a single hidden layer with 128 units, trained for a maximum of

1296 300 iterations. The classification results show a benign class accuracy of 0.893, an adversarial class
 1297 accuracy of 0.953, and an overall accuracy of 0.923.
 1298

1299 Table 13: Classification accuracy and performance metrics using RoBERTa embeddings as input to
 1300 MLP

Class	Dataset Accuracy				Class Acc.	Overall Acc.	F1
Benign	Orca	MMLU	AlpEval	TQA	0.893	0.923	0.924
	0.872	0.899	0.893	0.905			
Adv.	SAP	DAN	MWP	GCG	0.953		
	0.9400	0.962	0.885	1.000			

1308 B.2.9 BASELINE CLASSIFICATION ACCURACY USING CURVALID WITHOUT PROMPTLID AND 1309 TEXTCURV

1311 To investigate the importance of the geometric features PromptLID and TextCurv in CurvaLID, we
 1312 conducted an ablation study by removing Step 3 in CurvaLID (Figure 1). Specifically, we skipped
 1313 the calculation of PromptLID and TextCurv, and directly fed the CNN representations from Step 2
 1314 into the MLP in Step 4 for binary classification. The goal is to assess the standalone performance of
 1315 the CNN and MLP setup in CurvaLID, serving as a baseline without geometric information.

1316 The results are presented in Table 14. Although the model performs reasonably well, its overall
 1317 accuracy and F1 score drop by 7% compared to the full CurvaLID with PromptLID and TextCurv.
 1318 This highlights the critical contribution of the geometric features in capturing topological differences
 1319 between benign and adversarial prompts and improving classification robustness.

1320 Table 14: Classification accuracy and performance metrics using CurvaLID without PromptLID and
 1321 TextCurv (i.e., Step 3 removed). CNN representations are directly used as input to the MLP.

Class	Dataset Accuracy				Class Acc.	Overall Acc.	F1
Benign	Orca	MMLU	AlpEval	TQA	0.895	0.920	0.922
	0.920	0.850	0.900	0.910			
Adv.	SAP	DAN	MWP	GCG	0.947		
	1.000	0.952	0.845	0.992			

1330 B.2.10 ASR OF B.2.8 AND B.2.9 BASELINE CLASSIFICATIONS

1332 We investigated the two baselines mentioned in B.2.8 and B.2.9 against seven types of adversarial
 1333 prompts, including GCG, PAIR, DAN, AmpleGCG, SAP, MathAttack, and RandomSearch. Here
 1334 we name the baseline in B.2.8 as "RoBERTa+MLP" and the baseline in B.2.9 as "CNN+MLP". In
 1335 our approach, if a prompt is classified as a jailbreak prompt, it is rejected. The comparison against
 1336 baseline defences across multiple LLMs, measured by ASR (%), is presented in Table 15.

1337 The RoBERTa+MLP and CNN+MLP baselines perform poorly, particularly on PAIR, DAN, and
 1338 MathAttack, where ASR remains high across all LLMs. These results highlight the importance of
 1339 TextCurv and PromptLID in CurvaLID for enabling robust classification and significantly reducing
 1340 ASR of adversarial prompts across LLMs.

1341 B.2.11 EMBEDDING SOURCE ABLATION: CNN AND SBERT

1343 CurvaLID employs a single lightweight CNN to produce both word-level (TextCurv) and sentence-
 1344 level (PromptLID) representations from one input. To examine sensitivity to the sentence-embedding
 1345 source, we replaced the CNN-derived sentence embeddings with the widely used SBERT model
 1346 all-MiniLM-L6-v2 when computing PromptLID. Table 16 presents the comparison between
 1347 CNN-based and the pretrained LLM embedding sentence embeddings for PromptLID and CurvaLID.
 1348 It shows that the pretrained LLM embedding approach yields similar performance to our original
 1349 CurvaLID configuration. Therefore, we conclude that the pretrained LLM embedding does not offer
 a performance advantage in this setting.

Table 15: Comparison of CurvaLID with baseline defences in multiple LLMs, measured by ASR (%) on seven adversarial prompt types.

LLM	defence	GCG	PAIR	DAN	AmpleGCG	SAP	MathAttack	RandomSearch
Vicuna-7B	No defence	86.0	98.0	44.5	98.0	69.0	24.0	94.0
	RoBERTa + MLP	0.0	12.2	3.6	2.5	4.25	11.5	0.2
	CNN + MLP	0.2	16.4	4.1	2.9	0.0	15.0	0.7
	CurvaLID	0.0	0.0	0.0	1.1	0.0	0.0	0.0
LLaMA2-7B	No defence	12.5	19.0	2.0	81.0	9.5	11.7	90.0
	RoBERTa + MLP	0.0	2.9	0.0	0.0	1.1	7.8	0.0
	CNN + MLP	0.0	5.5	3.1	0.1	0.0	9.8	0.4
	CurvaLID	0.0						
GPT-3.5	No defence	12.0	48.0	6.33	82.0	0.9	10.5	73.0
	RoBERTa + MLP	0.0	0.3	1.2	0.2	0.0	5.1	0.0
	CNN + MLP	0.0	0.6	2.1	0.3	0.0	2.9	0.1
	CurvaLID	0.0						
PaLM2	No defence	14.9	98.0	49.7	88.9	55.1	18.9	91.9
	RoBERTa + MLP	0.0	18.7	3.2	0.68	5.9	11.0	0.0
	CNN + MLP	0.1	7.8	4.8	1.2	0.0	8.4	0.0
	CurvaLID	0.0						

Table 16: Comparison between CNN-based and pretrained LLM (MiniLM) sentence embeddings for PromptLID and CurvaLID. The first two columns report PromptLID-only performance (sentence reps from CNN or MiniLM). The last two columns report the full CurvaLID with PromptLID computed from the respective embeddings.

Metric	PromptLID (CNN only)	PromptLID (MiniLM only)	CurvaLID (PromptLID from CNN)	CurvaLID (PromptLID from MiniLM)
Benign Accuracy	0.987	0.945	0.984	0.955
Adversarial Accuracy	0.932	1.000	1.000	1.000
Overall Accuracy	0.958	0.967	0.992	0.973
F1 Score	0.958	0.960	0.992	0.967

B.2.12 ACCURACY OF CURVALID WITH LESS DATA

Table 17 shows the performance of CurvaLID when trained with less data. We trained and tested CurvaLID with 150 prompts from each dataset, halving the number of prompts used from the main result. All other parameters remained the same.

We observe that training CurvaLID with less data has a minimal impact on overall detection accuracy, as both the overall accuracy and F1 score only decreased from 0.992 to 0.988. This demonstrates the efficiency of CurvaLID in leveraging geometric features, enabling it to maintain high performance even with limited training data. Such robustness underscores CurvaLID’s potential for deployment in scenarios where access to large, labelled datasets is constrained, making it practical for real-world applications with data scarcity.

Table 17: Classification Accuracy and Performance Metrics for CurvaLID on Benign and Adversarial Datasets with 150 Data from Each Dataset.

Class	Dataset Accuracy				Class Acc.	Overall Acc.	F1
Benign	Orca	MMLU	AlpEval	TQA	0.992	0.988	0.988
	0.9565	1.000	1.000	1.000			
Adv.	SAP	DAN	MathAtk	GCG	0.983		
	1.000	0.966	1.000	0.969			

B.2.13 PERFORMANCE METRICS FOR CURVALID WITH REPLACING MLP BY LOCAL OUTLIER FACTOR OR ISOLATION FOREST

The parameters of the local outlier factor is as follows: n_neighbours=30, metric='chebyshev', leaf_size=10, and p=1.

1404

For isolation forest, the contamination is set as auto.

1405

1406

We are testing 1900 prompts in total, with 100 prompts randomly sampled from each of SAP, DAN, MathAttack, GCG, PAIR, AmpleGCG and RandomSearch, and 300 prompts from each of Orca, MMLU, AlphacaEval and TruthfulQA. The experimental results are shown in Tables 18 and 19

1407

1408

We observe that the accuracy and F1 score of CurvaLID, when using Local Outlier Factor and Isolation Forest, drop from 0.992 to approximately 0.9. Despite this decrease, it is important to note that this version of CurvaLID operates as a one-class classification model, which inherently simplifies the classification task by focusing on distinguishing a single class. The ability of CurvaLID to maintain a decent performance under these constraints highlights its robustness and adaptability, suggesting its potential for handling future and previously unseen adversarial attacks in dynamic real-world settings.

1414

1415

1416

1417

Table 18: Performance metrics for CurvaLID with replacing MLP by local outlier factor

1418

1419

1420

1421

1422

1423

1424

Metric	Benign	Adversarial	Overall
Accuracy	0.953	0.840	0.909
F1 Score	0.927	0.878	0.903

1425

1426

1427

1428

1429

1430

1431

Table 19: Performance metrics for CurvaLID with replacing MLP by isolation forest

1432

1433

1434

1435

1436

1437

B.2.14 CURVALID WITH PROMPTLID OR TEXTCURV ONLY

1438

1439

1440

1441

1442

We demonstrate that both PromptLID and TextCurv are crucial for achieving optimal performance in CurvaLID. When using only PromptLID as the input feature, the model achieves an accuracy of 0.95. However, combining PromptLID and TextCurv boosts the accuracy to over 0.99, showcasing the complementary nature of these features. This improvement highlights how TextCurv captures additional geometric properties that PromptLID alone cannot, enabling a more comprehensive distinction between benign and adversarial prompts.

1443

1444

1445

1446

1447

1448

1449

1450

1451

Table 20 illustrated the performance of CurvaLID if we only use LID or TextCurv as our features.

1452

1453

1454

1455

1456

1457

Table 20: Ablation study comparing LID and TextCurv for benign and adversarial prompt classification.

	PromptLID	TextCurv (1st Conv. Layer)	TextCurv (2nd Conv. Layer)	TextCurv (Both Conv. Layers)
Benign Acc.	0.987	0.690	0.738	0.960
Adv. Acc.	0.932	0.833	0.809	0.884
Overall Acc.	0.958	0.783	0.783	0.777
F1 Score	0.958	0.781	0.782	0.776

B.2.15 ACCURACY OF CURVALID IN DIFFERENT EMBEDDINGS

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

We tested CurvaLID using different word embeddings, including popular ones like GPT-2, BERT, XLNet, and DistilBERT. The experimental results show that CurvaLID performs similarly with around 0.99 overall accuracy, regardless of the word embedding used. Therefore, CurvaLID’s classification performance is independent of the specific word embedding used, demonstrating its robustness and adaptability for deployment across different LLMs with varying word embedding representations.

1470

1471

1472

1473

1474

1475

Table 21 shows the accuracy of CurvaLID in different embeddings. The experimental result shows that CurvaLID maintains a high classification accuracy under different word embeddings.

1458
 1459 Table 21: Performance of CurvaLID with Different Word Embeddings. The table summarizes
 1460 the classification accuracy and F1 scores for benign and adversarial prompts using various word
 1461 embeddings.

Word Embedding	Benign Prompt Accuracy	Adv. Prompt Accuracy	Overall Accuracy	F1
RoBERTa	0.984	1.000	0.992	0.992
GPT-2	0.973	1.000	0.986	0.986
BERT	0.987	1.000	0.994	0.993
XLNet	0.991	0.989	0.990	0.990
DistilBERT	0.970	0.992	0.982	0.980

1470 B.2.16 REDUCTION IN ASR OF VICUNA-7B-v1.5 AFTER APPLYING CURVALID

1471
 1472 We measured the reduction in ASR after CurvaLID identified and filtered out the adversarial attacks
 1473 in Vicuna-7B-v1.5, using the same settings specified in the respective original adversarial prompt
 1474 papers. As shown in Table 22, CurvaLID successfully reduced the ASR of most attacks to zero,
 1475 outperforming the studied SOTA defences. The experimental results demonstrate that CurvaLID is
 1476 highly applicable to real-world LLMs, effectively safeguarding them by detecting adversarial prompts
 1477 before they are processed. Moreover, CurvaLID outperforms SOTA defences, further highlighting its
 1478 effectiveness and reliability.

1479 Table 22: Attack success rates (ASR) in percentage after CurvaLID in vicuna-7b-v1.5.

	SAP	DAN	MathAttack	GCG	PAIR	RandomSearch	AmpleGCG
Vanilla	69	41	56	95	98	95	97.5
CurvaLID	0	0	0	0	0	0	2.4

1485 1486 B.2.17 REPLACEMENT OF CNN IN CURVALID STEP 1 WITH TRANSFORMER AND RNN 1487 MODELS

1488
 1489 We experimented with replacing the CNN architecture (Step 1 of CurvaLID) with Transformer and
 1490 RNN models. The experimental results are shown in Table 23. While both Transformer and RNN
 1491 achieved comparable detection accuracy (0.98 versus CNN’s 0.992), they required almost two to
 1492 three times longer training times. Hence, employing CNN in Step 1 of CurvaLID proves to be the
 1493 optimal choice, maintaining high detection accuracy while ensuring relatively low training time. This
 1494 demonstrates CurvaLID’s computational efficiency and practicality. Details of the Transformer and
 1495 RNN configurations are provided below.

1496
 1497 **Transformer:** The transformer has an input layer, a multi-head attention layer with 4 heads and a
 1498 key dimension of 64, followed by layer normalization, a dense layer with 128 units, dropout (rate of
 1499 0.1), and a final layer normalization. The model then flattens the output, adds another dense layer
 1500 with 128 units, and concludes with a softmax output layer for classification into 4 classes.

1501
 1502 **RNN:** The RNN model begins with an input layer, followed by two stacked LSTM layers with 64
 1503 units each (the first LSTM layer returns sequences, while the second does not). After the LSTM
 1504 layers, there is a dense layer with 128 units and a ReLU activation, followed by a softmax output
 1505 layer for classification into 4 classes. The model is compiled with the Adam optimizer and categorical
 1506 cross-entropy loss.

1507 Table 23: Comparison of CurvaLID Architectures

Metric	CNN (Original Setting)	Transformer	RNN
Detection accuracy	0.992	0.984	0.989
Overall training time (min)	14.58	39.01	25.10

1512 **B.2.18 PERFORMANCE OF CURVALID ON ADVERSARIAL PROMPTS WITH REORDERED WORD**
 1513 **SEQUENCES**

1515 We utilized GPT-4-o to reorder the words in every sentence of the adversarial prompts while preserving
 1516 their semantic meaning. The experimental results, presented in Table 24, demonstrate that CurvaLID
 1517 maintains robust performance, achieving an overall accuracy of 0.984 in detecting these adversarial
 1518 prompts with altered word order. It is important to note, however, that reordering the words in
 1519 adversarial prompts may potentially disrupt their effectiveness as attacks, as the content and intent of
 1520 the original prompts could be compromised.

1521 Table 24: Performance metrics for CurvaLID on adversarial prompts with reordered word sequences.

Class	Dataset Accuracy				Class Acc.	Overall Acc.	F1
Benign	Orca	MMLU	AlpEval	TQA	0.981	0.984	0.984
	0.993	0.983	0.973	0.973			
Adv.	SAP	DAN	MathAtk	GCG	0.987		
	0.983	0.963	1.000	1.000			

1529 **B.2.19 PERFORMANCE OF CURVALID ON REORDERED PERSUASIVE SOCIAL-ENGINEERED**
 1530 **ADVERSARIAL PROMPTS**

1532 In this section, we evaluate CurvaLID on PAIR, DAN, and Persuasive attacks, all of which are
 1533 social-engineered persuasive attacks designed to preserve both semantic meaning and adversarial
 1534 intent while varying structure (Chao et al., 2023; Shen et al., 2023; Zeng et al., 2024). To introduce
 1535 linguistic variations, we utilized GPT-4-o to reorder the words in each sentence of the adversarial
 1536 prompts while maintaining their semantic meaning. The experimental setup remains the same as
 1537 described in B.2.1, with the addition of 300 DAN prompts. The experimental results, presented
 1538 in Table 25, show that CurvaLID consistently achieved over 96% detection accuracy across all
 1539 three attack types and maintained a 0% attack success rate on Vicuna. These findings highlight the
 1540 robustness of our method, even against sophisticated and linguistically varied prompts specifically
 1541 crafted to bypass defences. This robustness underscores CurvaLID’s potential for deployment in
 1542 real-world scenarios, where adversarial prompts are likely to exploit linguistic diversity to evade
 1543 detection.

1544 Table 25: Performance of CurvaLID on reordered social-engineered attacks

Adversarial attack	PAIR	DAN	Persuasive Attack
Benign accuracy	0.951	0.971	0.966
Adversarial accuracy	0.988	1.000	0.962
Overall accuracy	0.962	0.983	0.964
Attack success rate on Vicuna-7B-v1.5	0	0	0

1552 **B.2.20 DIFFERENCES IN PROMPTLID AND TEXTCURV BETWEEN BENIGN AND ADVERSARIAL**
 1553 **PROMPTS UNDER LINGUISTIC REORDERING**

1555 We conducted an experiment to investigate the differences in PromptLID and TextCurv between
 1556 benign and adversarial prompts after reordering the adversarial prompts. To introduce linguistic
 1557 variations, we utilized GPT-4-o to reorder the words in each sentence of the adversarial prompts
 1558 while preserving their semantic meaning. For the benign prompts, we tested 100 samples each from
 1559 Orca, MMLU, AlpacaEval, and TQA datasets. Similarly, for the adversarial prompts, we tested 100
 1560 samples each from PAIR, DAN, and Persuasive attacks (Chao et al., 2023; Shen et al., 2023; Zeng
 1561 et al., 2024). Table 26 highlights the geometric differences between benign and adversarial prompts,
 1562 demonstrating the effectiveness of our method in capturing these variations. Notably, even after
 1563 linguistic reordering of the prompts, both PromptLID and TextCurv continue to exhibit significant
 1564 distinctions between benign and adversarial prompts. This ensures that the performance of CurvaLID
 1565 remains unaffected by such reordering, further underscoring the robustness and reliability of these
 1566 geometric measures in differentiating adversarial inputs.

1566 Table 26: Geometric differences in TextCurv and PromptLID between benign and adversarial prompts.
 1567 The percentages in parentheses indicate the relative increase in adversarial prompts compared to
 1568 benign prompts, calculated as $(\text{Adversarial} - \text{Benign})/\text{Benign} \times 100$.
 1569

Geometric Measures	TextCurv@Conv Layer 1		TextCurv@Conv Layer 2		PromptLID@Dense Layer	
	Benign	Adversarial	Benign	Adversarial	Benign	Adversarial
Average Value	0.644	0.813 (+26.3%)	0.341	0.425 (+24.6%)	3.546	18.223 (+413.8%)

1574 B.2.21 CURVALID WITH SEPARATED BENIGN TRAINING AND TESTING DATA

1576 We conducted an ablation study by training CurvaLID on two benign datasets and testing it on the
 1577 remaining two. Specifically, we trained CurvaLID using only Orca and MMLU as benign data and
 1578 evaluated it on AlpacaEval and TQA. The results, shown in Table 27, demonstrate an overall detection
 1579 accuracy of 0.982, just one percentage point lower than when trained on all four benign datasets.
 1580 These findings indicate that CurvaLID’s performance remains robust and is not overly optimistic,
 1581 even when tested on unseen benign datasets. This suggests that the geometric features captured by
 1582 PromptLID and TextCurv generalise well across different benign datasets, and the small number of
 1583 errors largely arises from benign prompts with unfamiliar formatting or structure.

1584 Table 27: CurvaLID with different training and testing benign datasets

Data class	Accuracy by dataset				Overall accuracy	F1 score
	AlpacaEval	TQA				
Benign	0.963	0.9194			0.9412	
Adversarial	SAP	DAN	MathAttack	GCG	1	
	1	1	1	1		

1592 B.2.22 CURVALID WITH LONG TEXT LENGTH BENIGN PROMPTS

1594 We conducted an additional experiment to evaluate CurvaLID’s performance on benign prompts
 1595 with longer text lengths. Specifically, we calculated the median text length of benign prompts
 1596 (106 characters in our experiment), removed all benign prompts with fewer than the median, and
 1597 reevaluated CurvaLID’s performance. The results, presented in Table 28 below, show that this
 1598 adjustment had minimal effect on detection accuracy. The overall accuracy was 0.990, compared to
 1599 0.992 when all benign prompts (without filtering by text length) were included. This confirms that
 1600 text length has minimal impact on CurvaLID’s performance, highlighting its robustness and ability
 1601 to generalize across prompts of varying lengths. Such adaptability makes CurvaLID particularly
 1602 well-suited for real-world applications, where input lengths can vary significantly.

1603 Table 28: CurvaLID on benign prompts over 106 characters

Data class	Accuracy by dataset				Overall accuracy	F1 score
	Orca	MMLU	AlpacaEval	TQA		
Benign	0.922	1.000	1.000	1.000	0.981	
Adversarial	SAP	DAN	MathAttack	GCG	1.000	
	1.000	1.000	1.000	1.000		

1611 B.2.23 CURVALID WITH NON-STANDARD BENIGN PROMPTS

1613 We conducted an experiment to evaluate CurvaLID’s performance on non-standard benign samples.
 1614 Specifically, we utilized GPT-4-o to introduce spelling errors by replacing one word in each sentence
 1615 of all benign prompts with a misspelled variant. The experimental results are presented in Table 29
 1616 below.

1617 Our findings reveal that the detection accuracy by dataset exhibited minimal changes, and the overall
 1618 accuracy remained almost identical to the original experiment, which involved benign prompts
 1619 without spelling errors. These results demonstrate that introducing spelling errors has a negligible
 impact on CurvaLID’s performance, reaffirming its robustness in handling non-standard text inputs.

1620 Table 29: CurvaLID on benign prompts with spelling errors
1621

Data class	Accuracy by dataset				Accuracy by class	Overall accuracy	F1 score
	Orca	MMLU	AlpacaEval	TQA			
Benign	0.957	0.983	1.000	1.000	0.985	0.990	0.990
Adversarial	SAP	DAN	MathAttack	GCG	0.995		
	0.990	0.990	1.000	1.000			

1628 B.2.24 CURVALID ON HELD-OUT DATASETS (OUT-OF-DISTRIBUTION DATA) AND
1629 PROMPT-LENGTH ROBUSTNESS
1630

1631 We performed two additional robustness evaluations. First, we ran a held-out dataset study across
1632 four benign and four adversarial datasets (200 prompts per dataset). For each run, CurvaLID was
1633 trained on seven datasets and evaluated on the remaining one. Table 30 reports per-dataset accuracy
1634 on the held-out sets, showing consistently strong performance (around 0.9), indicating solid out-of-
1635 distribution generalisation. The lowest performing dataset is PAIR (0.875 accuracy). PAIR attacks are
1636 social-engineering adversarial prompts with high human readability; unlike gradient-based attacks
1637 such as GCG or AmpleGCG, which often introduce unnatural or gibberish token patterns, PAIR
1638 prompts are fluent, coherent, and unconstrained by artificial token structures. As a result, they closely
1639 resemble natural conversational text rather than template-based jailbreaks, producing less curvature
1640 irregularity and weaker geometric signals. This explains the small number of prediction errors on this
1641 dataset.

1642 Table 30: CurvaLID detection accuracy and false positive rate (FPR) on held-out datasets for OOD
1643 evaluation.

Dataset	Orca	MMLU	AlpacaEval	TruthfulQA	GCG	PAIR	DAN	AmpleGCG
Accuracy	0.955	0.940	0.945	0.995	1.000	0.875	1.000	1.000
FPR	0.045	0.060	0.055	0.005	0.000	0.125	0.000	0.000

1649 Second, we assessed robustness to prompt length by training on prompts shorter than 106 characters
1650 (the median benign length) and testing on longer prompts. As summarized in Table 31, the overall
1651 accuracy drops by only 0.05, suggesting minimal sensitivity to prompt length.

1653 Table 31: CurvaLID performance under OOD evaluation on prompt length.
1654

Model	Benign Acc.	Adv. Acc.	Overall Acc.
CurvaLID trained with shorter prompts	0.911	0.965	0.938
CurvaLID	0.984	1.000	0.992

1660 B.2.25 AMPLIFICATION OF TEXTCURV DIFFERENCES THROUGH CNN ACTIVATION
1661

1662 We investigated how TextCurv differs between benign and adversarial prompts across CNN layers in
1663 CurvaLID. As shown in Table 32, we observe that CNN activation significantly amplifies the curvature
1664 gap: the mean TextCurv of adversarial prompts is at least 30% higher than that of benign prompts in
1665 both convolutional layers. In contrast, when calculated using only the word embeddings, the difference
1666 is notably smaller—4.91 for benign prompts versus 5.42 for adversarial prompts—amounting to a
1667 13% increase, less than half of the gap observed in the CNN layers. All results are averaged over 10
1668 independent runs using different random seeds. The experimental settings remain consistent with
1669 those described in Appendix B.1.5.

1670 B.2.26 ANALYSIS OF PROMPTLID AND TEXTCURV DISTRIBUTIONS
1671

1672 Figures 3, 4, and 5 illustrate the distributions of PromptLID and TextCurv for benign and adversarial
1673 prompts. The experiment setting follows B.1.5 and the word embedding used is RoBERTa. Figure
3 demonstrates that adversarial prompts exhibit a significantly wider range of PromptLID values

1674 Table 32: Mean TextCurv values of benign and adversarial prompts based on word embeddings only
 1675 and across CNN layer representations in CurvaLID.

1677	Word Embedding	Embedding Only		Conv Layer 1		Conv Layer 2	
		1678 Benign	1678 Adv.	1678 Benign	1678 Adv.	1679 Benign	1679 Adv.
1679	RoBERTa	4.91	5.42 (+13.0%)	0.626	0.881 (+40.7%)	0.325	0.446 (+37.2%)

1697 Figure 3: Distribution of PromptLID values for benign (blue) and adversarial (red) prompts, showing
 1698 the number of data points across different PromptLID ranges.

1700 compared to benign prompts, with higher average values. This suggests that adversarial prompts
 1701 tend to reside in more complex and sparse regions of the feature space. Figures 4 and 5 display the
 1702 distributions of TextCurv across the first and second convolution layers, respectively. In both layers,
 1703 adversarial prompts show consistently higher curvature values, reflecting their tendency to cause
 1704 greater geometric distortions at the word level. These results highlight the ability of PromptLID and
 1705 TextCurv to distinguish adversarial prompts based on their unique geometric properties, reinforcing
 1706 their utility in adversarial prompt detection.

1708 B.2.27 EFFECTIVENESS OF GLOBAL INTRINSIC DIMENSION IN ADVERSARIAL PROMPT 1709 DETECTION.

1710 Global intrinsic dimension (GID) is another plausible approach for the word-level representation. It
 1711 can avoid aggregating the LID for each word by assessing the GID for each word within the prompt
 1712 and output a single value. We use the MLE-based estimate from Tulchinskii et al. (Tulchinskii et al.,
 1713 2024). However, as shown in Figure 6, GID shows no clear distinction between benign and adversarial
 1714 datasets. Instead, it strongly correlates with prompt length, with Pearson and Spearman correlation
 1715 coefficients of 0.92 and 0.98, respectively. Even after removing stop words and punctuation, the
 1716 results were similar, with a Pearson correlation coefficient of 0.9, highlighting the limitations of GID
 1717 in detecting adversarial prompts.

1719 B.2.28 ADAPTIVE ATTACK ATTEMPTS AGAINST CURVALID

1720 To evaluate CurvaLID under an adaptive attacker model, we conducted preliminary experiments in
 1721 which the adversary explicitly attempts to minimise both PromptLID and TextCurv while preserving
 1722 jailbreak intent. We used a brute-force gradient-based search procedure with the assistance of
 1723 GPT-4.1 to iteratively propose low PromptLID and TextCurv perturbations that remain semantically
 1724 adversarial.

1725 In practice, this adaptive objective proved extremely difficult to optimise. Although the minimisation
 1726 procedure occasionally lowered CurvaLID’s confidence scores, the resulting prompts failed to bypass
 1727 the internal safety mechanisms of the underlying LLMs, meaning the attack no longer achieved its

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

Figure 4: Distribution of TextCurv values in the first convolution layer for benign (blue) and adversarial (red) prompts, indicating the number of data points for each TextCurv range.

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

Figure 5: Distribution of TextCurv values in the second convolution layer for benign (blue) and adversarial (red) prompts, indicating the number of data points for each TextCurv range.

1769

1770

1771

1772

1773

1774

primary goal of causing harmful behaviour. In other words, prompts that were successfully optimised to reduce geometric signals systematically lost their jailbreak effectiveness, while prompts that preserved adversarial intent retained high PromptLID and TextCurv values. These findings suggest that simultaneously reducing PromptLID and TextCurv while still executing a successful jailbreak is non-trivial for current attack methods.

B.2.29 PER-DATASET ROC/AUROC FOR EXPERIMENT IN SECTION 5.1

1775

1776

1777

1778

1779

1780

1781

Figure 6: Comparison of average prompt length and global intrinsic dimension (GID) across datasets.

Table 33: Per-dataset accuracy and AUROC for CurvaLID in the main experiment (Section 5.1).

Dataset	Orca	MMLU	AlpacaEval	TQA	SAP	DAN	MathAtk	GCG
Accuracy	0.968	1.000	0.983	0.986	1.000	1.000	1.000	1.000
AUROC	0.983	1.000	0.992	0.993	0.992	0.992	0.992	0.992

1836 B.3 LID ANALYSIS
18371838 This section includes supplementary information on LID analysis.
18391840 B.3.1 LID ESTIMATION USING METHOD OF MOMENTS
18411842 This section provides the pseudo code for estimating LID by the Method of Moments, see Algorithm
1843 B.3.1. Note that this is different from PromptLID in Definition 4.1.
18441845 **Algorithm 2** LID Estimation using Method of Moments
18461847 **Input:** Dataset, Reference points, Number of neighbors k
18481849 **For each data point in Dataset:**
1850

- Compute pairwise distances r between the data point and all points in Reference.
- Sort distances in ascending order and store them as a .
- Compute the mean of the first $k - 1$ nearest distances:

1852
$$m = \frac{1}{k-1} \sum_{i=1}^{k-1} a_i.$$

1853
1854

- Estimate LID for the data point:

1855
$$\text{LID} = \frac{m}{a_k - m}.$$

1856
1857

Output: LID values for all data points.

1859

1860

1861 B.3.2 TOP 10 MOST COMMON NEAREST-NEIGHBORS FOR DIFFERENT PROMPTS IN DIFFERENT
1862 DATASETS
18631864 Table 34 shows the top 10 most common nearest-neighbors for different prompts in different datasets.
1865 The results reveal that the common nearest neighbors in the representation space are predominantly
1866 stop words and punctuation. This indicates that word-level LID fails to account for the sequential
1867 structure of text and relies on conjunctions, articles, and punctuation. Consequently, these findings
1868 highlight the limitations of word-level LID in effectively detecting adversarial prompts.
18691870 Table 34: Top 10 most common nearest neighbors for each dataset. The angle brackets ($<>$) are
1871 used to specify punctuation and newline characters in the tokenizer. The visible space symbol ($_$)
1872 represents a space preceding a word or punctuation.

Dataset	Top 10 most common nearest neighbors
SAP	$_$ to, $_$ and, $_$ the, $<>$, $_$ a, $_$ of, $<>$, $_$ <">, $_$ that, $_$ your
DAN	$<>$, $<>$, $<\text{newline}>$, $_$ the, $_$ and, $_$ to, $_$ you, $_$ will, $_$ not, $_$ is
MathAttack	$_$ the, $<>$, $_$ of, $_$ he, $<>$, $_$ to, $_$ and, $_$ she, $_$ is, $_$ a
GCG	$_$ text, $_$ to, $_$ use, $_$ ized, $<}>$, $_$ mar, $_$ dt, $_$ a, $<}>$, $_$ Guide
Orca	$_$ the, $<>$, $<>$, $<\text{newline}>$, $_$ and, $_$ a, $_$ of, $_$ to, $_$ is, $_$ in
MMLU	$_$ the, $<>$, $<>$, $_$ of, $_$ a, $_$ to, $_$ that, $_$ and, $_$ in, $_$ was
AlpacaEval	$_$ the, $_$ a, $_$ to, $<>$, $_$ of, $_$ and, $_$ I, $<>$, $_$ for, $<?>$
TQA	$_$ the, $<?>$, $_$ a, $_$ you, $_$ is, $_$ of, $_$ that, $_$ to, $_$ if, $_$ in

1884

1885

1886 B.3.3 AVERAGE LID AND STANDARD DEVIATION OF PROMPTS WITH AND WITHOUT STOP
1887 WORDS AND PUNCTUATION
18881889 Table 35 shows the average LID and standard deviation of prompts with and without stop words and
punctuation.

1890 Table 35: Comparison of Average LID and Standard Deviation (SD) of Prompts with and without
 1891 Stop Words and Punctuation

1893 Data Type	1894 Dataset	1895 With Stop Words and Punctuation		1896 Without Stop Words and Punctuation	
		1897 Avg. LID	1898 SD	1899 Avg. LID	1900 SD
1895 Benign	1896 Orca	1897 9.77	1898 2.52	1899 6.08	1900 1.91
	1896 MMLU	1897 9.23	1898 2.86	1899 5.64	1900 1.76
	1896 AlpacaEval	1897 13.14	1898 104.58	1899 4.07	1900 2.26
	1896 TQA	1897 6.29	1898 3.40	1899 3.93	1900 0.65
1901 Adversarial	1902 SAP	1903 12.10	1904 0.55	1905 7.27	1906 0.46
	1902 DAN	1903 24.52	1904 244.72	1905 7.18	1906 1.18
	1902 MWP	1903 8.98	1904 1.44	1905 4.14	1906 1.28
	1902 GCG	1903 8.35	1904 0.40	1905 6.18	1906 0.41

1904 Table 36: Top 10 Most Common Nearest Neighbor Words for each dataset after removing stop words
 1905 and punctuation. The symbol `_` represents a space preceding a word or punctuation.

1907 Dataset	1908 Top 10 most common nearest neighbors
1909 SAP	1910 <code>_Remember, _write, _goal, _mission, _act, _suicide, _Use, _phrases, _use, _refer</code>
1911 DAN	1912 <code>_PT, _D, G, AN, _Chat, _answer, _AI, _responses, _response, _respond</code>
1913 MathAttack	1914 <code>_many, _much, _would, _apples, _money, _20, _sold, _5, _bought, _day</code>
1915 GCG	1916 <code>_use, _mar, _text, dt, end, ate, c, package, ized, _t</code>
1917 Orca	1918 <code>_answer, à, °, _question, à!, _one, _following, _said, s, _Answer</code>
1919 MMLU	1920 <code>_mortgage, acre, _state, _contract, _deed, _would, _question, _statute, _action, s</code>
1921 AlpacaEval	1922 <code>_drinks, _gathering, _interested, _give, _time, _home, br, _trying, _dishes, _guests</code>
1923 TQA	1924 <code>_say, ks, _Oz, _established, _famous, _primed, _mirror, es, _principle, _power</code>

1925 B.3.4 TOP 10 MOST COMMON NEAREST NEIGHBOR WORDS AFTER REMOVING STOP WORDS 1926 AND PUNCTUATION

1927 Table 36 shows the top 10 most common Nearest Neighbor words after removing stop words
 1928 and punctuation. The experimental result demonstrates that word-level LID is insufficient for
 1929 distinguishing between benign and adversarial prompts, even after the removal of stop words and
 1930 punctuation.

1944
1945

B.4 PERFORMANCE OF OTHER SOTA DEFENCES

1946
1947
1948
1949
1950

To ensure a comprehensive evaluation, we organize this section into two parts. In Section B.4.1, we present results from running SOTA defences on our local environment, providing a consistent and fair comparison against CurvaLID. In Section B.4.2, we summarize the reported performances of other SOTA defences cited from their respective papers, offering a broader context across different LLMs.

1951
1952

B.4.1 EVALUATION OF SOTA DEFENCES

1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964

In this subsection, we first present the results of evaluating five baseline defences—SmoothLLM (Robey et al., 2023), Self-Reminder (Xie et al., 2023), Intentionanalysis (Zhang et al., 2024a), In-Context Demonstration defence (ICD) (Wei et al., 2023), and RTT3d (Yung et al., 2024)—alongside our proposed CurvaLID. We evaluated these methods across four LLMs: Vicuna-7B-v1.1 (Chiang et al., 2023), Llama2-7B-Chat (Touvron et al., 2023), GPT-3.5 (Brown, 2020), and PaLM2 (Anil et al., 2023), and against seven different types of adversarial prompts: GCG (Zou et al., 2023), PAIR (Chao et al., 2023), DAN (Shen et al., 2023), AmpleGCG (Liao & Sun, 2024), SAP (Deng et al., 2023a), MathAttack (Zhou et al., 2024b), and RandomSearch (Andriushchenko et al., 2024). The experiment setting follows B.1.5 and the word embedding used for CurvaLID is RoBERTa. The experimental results, measured by ASR (%), are reported in Tables 37. CurvaLID consistently outperforms the baseline defences across most scenarios. We emphasize that all results are obtained through independent evaluation under a unified experimental setup.

1965
1966
1967
1968

Table 37: We compare CurvaLID with state-of-the-art defences, including SmoothLLM (Robey et al., 2023), Self-Reminder (Xie et al., 2023), Intentionanalysis (Zhang et al., 2024a), ICD (Wei et al., 2023), and RTT3d (Yung et al., 2024). The best results are **boldfaced**.

LLM	defence	GCG	PAIR	DAN	AmpleGCG	SAP	MathAttack	RandomSearch
Vicuna-7B	No defence	86.0	98.0	44.5	98.0	69.0	24.0	94.0
	SmoothLLM	5.5	52.0	13.0	4.2	44.6	22.0	48.5
	Self-Reminder	9.5	48.0	35.5	11.5	25.2	22.0	6.0
	Intentionanalysis	0.0	8.5	3.3	0.3	0.23	20.0	0.0
	ICD	0.2	5.2	40.4	0.9	32.8	22.0	0.2
	RTT3d	0.2	0.3	22.0	3.5	33.5	20.2	2.5
	CurvaLID	0.0	0.0	0.0	1.1	0.0	0.0	0.0
LLaMA2-7B	No defence	12.5	19.0	2.0	81.0	9.5	11.7	90.0
	SmoothLLM	0.0	11.0	0.2	0.2	1.2	11.2	0.0
	Self-Reminder	0.0	8.0	0.3	0.0	0.0	11.1	0.0
	Intentionanalysis	0.0	5.8	0.7	0.0	0.0	11.2	0.0
	ICD	0.0	2.7	0.8	0.0	0.0	10.8	0.0
	RTT3d	0.2	0.2	1.8	0.4	5.5	9.8	0.8
	CurvaLID	0.0						
GPT-3.5	No defence	12.0	48.0	6.33	82.0	0.9	10.5	73.0
	SmoothLLM	0.0	4.9	0.3	0.7	0.0	10.9	0.0
	Self-Reminder	0.0	0.9	2.5	0.3	0.1	11.2	0.0
	Intentionanalysis	0.0	0.9	0.8	0.3	0.0	10.0	0.0
	ICD	0.0	0.7	0.9	0.4	0.4	9.9	0.0
	RTT3d	0.3	0.2	0.8	0.2	0.7	7.6	0.0
	CurvaLID	0.0						
PaLM2	No defence	14.9	98.0	49.7	88.9	55.1	18.9	91.9
	SmoothLLM	5.5	38.7	6.7	7.2	41.2	9.8	45.3
	Self-Reminder	2.3	36.7	22.3	4.7	21.4	13.3	3.7
	Intentionanalysis	0.0	2.3	1.3	0.9	0.0	9.7	0.0
	ICD	0.1	4.9	34.2	0.2	33.9	9.3	0.0
	RTT3d	0.1	0.1	25.5	3.3	25.0	10.2	2.8
	CurvaLID	0.0						

1992

1993
1994
1995
1996
1997

We also evaluated constrained SFT (Qi et al., 2025), using the fine-tuned Gemma-2-9B model released by the authors on GitHub and HuggingFace. The experimental results are shown in Table 38. We observe that constrained SFT is effective in mitigating attacks that rely on gibberish prefixes or suffixes, such as GCG and AmpleGCG, but fails to defend against social-engineering-based attacks like PAIR, DAN, and SAP. Most importantly, CurvaLID outperforms the constrained SFT defence across all adversarial attack types.

Table 38: Comparison of defences on Gemma-2-9B, measured by ASR (%).

1998	LLM	defence	GCG	PAIR	DAN	AmpleGCG	SAP	MathAttack	RandomSearch
1999		No defence	90.2	23.8	80.0	81.3	44.5	22.8	94.5
2000	Gemma-2-9B	Constrained SFT	22.5	28.5	83.5	29.2	78.8	22.0	90.0
2001		CurvaLID	0.0	0.0	0.0	2.1	0.0	0.0	0.0

B.4.2 REPORTED PERFORMANCE OF EXISTING DEFENCES

We summarize the reported performances of other SOTA defences cited from their respective papers across different LLMs, focusing on their ability to reduce the ASR of adversarial prompts and compare this to CurvaLID’s unified performance. CurvaLID outperforms the studied defences and maintains consistent performance across all LLMs. While we primarily compare four key defences in this subsection—SmoothLLM (Robey et al., 2023), Intentionanalysis (Zhang et al., 2024a), RTT3d (Yung et al., 2024), and LAT (Sheshadri et al., 2024)—which are considered SOTA or represent some of the most recent developments, we also experimented with other defences like Gradient Cuff (Hu et al., 2024), SELFDEFEND (Wang et al., 2024), SafeDecoding (Xu et al., 2024a), Circuit Breakers (Zou et al., 2024), Llama Guard (Inan et al., 2023), and perplexity-based filtering (Alon & Kamfonas, 2023).

Given the computational and time constraints associated with replicating results and testing across multiple LLMs, we have cited the performance figures for these defences from their respective papers. This approach ensures fairness, as different studies report varying results for these defences when replicating them against different adversarial prompts and across different models. Therefore, we rely on the original reported performances to provide a balanced and consistent comparison. Note that since the results for these defences are primarily based on English adversarial prompts in their respective papers, our analysis here is focused solely on English prompts.

defences based on input perturbation demonstrate mixed results depending on the LLM and the nature of the adversarial attack. For instance, Intentionanalysis reduces the ASR to between 0.03% and 8.34%, but it struggles with models like Vicuna-7B and MPT-30B-Chat, where the ASR for the SAP attack can reach nearly 20%. Similarly, while SmoothLLM can reduce the ASR to nearly 0% in various LLMs, it fails against PAIR attacks, showing ASRs of 46% in Vicuna-13B and 24% in GPT-4. RTT3d, as the first defence against MathAttack, managed to mitigate 40% of MathAttack in GPT4, but it failed to reduce the ASR to under 10%. LAT achieves near-zero ASR for models like Llama2-7B-Chat and Llama3-8B-Instruct. However, its reliance on a white-box setting and its testing on models with fewer than 10 billion parameters limit its broader applicability.

In the remainder of this subsection, we present the defensive performance of the SOTA defences. The performance figures for all defences are directly cited from their original papers due to the computational and time constraints involved in replicating results and testing across various LLMs. This approach ensures consistency and fairness in comparison, as the results reported by different studies often vary when replicating these defences on different adversarial prompts and models. By relying on the figures from the original sources, we aim to provide an accurate and balanced reflection of each defence’s performance.

The following are the experimental settings and performances of the seven defences we studied. Note that it includes various LLMs, namely Vicuna (Chiang et al., 2023), Llama-2 (Touvron et al., 2023), Llama-3 (AI@Meta, 2024), GPT-3.5 (Brown, 2020), GPT-4 (Achiam et al., 2023), PaLM2 (Anil et al., 2023), Claude-1 (Anthropic, 2023a), Claude-2 (Anthropic, 2023b), ChatGLM-6B (Zeng et al., 2022), MPT-30B-Chat (Team, 2023), DeepSeek-67B-Chat (Bi et al., 2024). It also includes various adversarial prompts, namely, GCG (Zou et al., 2023), PAIR (Chao et al., 2023), DAN (Shen et al., 2023), AmpleGCG (Liao & Sun, 2024), SAP (Deng et al., 2023a), MathAttack (Zhou et al., 2024b), RandomSearch (Andriushchenko et al., 2024), Prefill (Haizelabs, 2023), Many-Shot (Anil et al., 2024), AutoDAN (Liu et al., 2023), TAP (Mehrotra et al., 2023), Jailbroken (Wei et al., 2024), LRL (Yong et al., 2023), DrAttack (Li et al., 2024), Puzzler (Chang et al., 2024), MultiJail (Deng et al., 2023b), DeepInception (Li et al., 2023a), and Template (Yu et al., 2023).

SmoothLLM Detailed experimental settings are referred to (Robey et al., 2023). The experimental results are shown in Table 39.

2052 Table 39: ASR comparison of different LLMs against adversarial prompts under SmoothLLM defence.
 2053 Results are directly cited from the original paper. A dash (-) indicates that experiments were not
 2054 conducted for this setting in the original paper.

LLM	Adversarial Prompt			
	GCG	PAIR	RandomSearch	AmpleGCG
Vicuna-13B-v1.5	0.8	46	44	2
Llama-2-7B-chat	0.1	8	0	0
GPT-3.5	0.8	2	0	0
GPT-4	0.8	24	0	0
PaLM-2	0.9	-	-	-
Claude-1	0.3	-	-	-
Claude-2	0.3	-	-	-

2067 **Latent Adversarial Training** Detailed experimental settings are referred to (Sheshadri et al., 2024).
 2068 The experimental results are shown in Table 40.

2070 Table 40: ASR comparison of different LLMs against adversarial prompts under LAT defence.
 2071 Results are directly cited from the original paper.

LLM	Adversarial Prompt				
	PAIR	Prefill	AutoPrompt	GCG	Many-Shot
Llama2-7B-chat	0.025	0.029	0.006	0.007	0
Llama3-8B-instruct	0.0033	0.0068	0	0.009	0

2078 **Gradient Cuff** Detailed experimental settings are referred to (Hu et al., 2024). The experimental
 2079 results are shown in Table 41.

2080 Table 41: ASR comparison of different LLMs against adversarial prompts under Gradient Cuff
 2081 defence. Results are directly cited from the original paper.

LLM	Adversarial Prompt					
	GCG	AutoDAN	PAIR	TAP	Base64	RL
Llama2-7B-chat	0.012	0.158	0.23	0.05	0.198	0.054
Vicuna-7B-v1.5	0.108	0.508	0.306	0.354	0	0.189

2088 **Intentionanalysis** Detailed experimental settings are referred to (Zhang et al., 2024a). The experi-
 2089 mental results are shown in Table 42.

2091 Table 42: ASR comparison of different LLMs against adversarial prompts under Intentionanalysis
 2092 defence. Results are directly cited from the original paper. A dash (-) indicates that experiments were
 2093 not conducted for this setting in the original paper.

LLM	Adversarial Prompt				
	DAN	SAP200	DeepInception	GCG	AutoDAN
ChatGLM-6B	5.48	6.12	0	1	2
LLaMA2-7B-Chat	0.13	0	0	0	0
Vicuna-7B-v1.1	3.42	0.31	0	0	10.5
Vicuna-13B-v1.1	0.94	1.12	0	0	3.5
MPT-30B-Chat	5.38	19.2	4.78	4	-
DeepSeek-67B-Chat	3.78	1.56	7.57	2	-
GPT-3.5	0.64	0	0	0	-

2104 **SELFDEFEND** Detailed experimental settings are referred to (Wang et al., 2024). The experimental
 2105 results are shown in Table 43.

Table 43: ASR comparison of different LLMs against adversarial prompts under SELFDEFEND defence. Results are directly cited from the original paper.

LLM	Adversarial Prompt							
	DAN	GCG	AutoDAN	PAIR	TAP	DrAttack	Puzzler	MultiJail
GPT-3.5	0.007	0.18	0.31	0.29	0.02	0.71	0.22	0.203
GPT-4	0.002	0	0.01	0.1	0.08	0.04	0.26	0.012

RTT3d Detailed experimental settings are referred to (Yung et al., 2024). The experimental results are shown in Table 44.

Table 44: ASR comparison of different LLMs against adversarial prompts under RTT3d defence. Results are directly cited from the original paper. A dash (-) indicates that experiments were not conducted for this setting in the original paper.

LLM	Adversarial Prompt			
	PAIR	GCG	SAP	MathAttack
GPT-3.5	-	-	0.06	9.8
GPT-4	0.265	-	-	-
Llama-2-13B-Chat	0.043	0.17	-	-
Vicuna-13B-v1.5	0.26	0.15	-	-
PaLM-2	0.13	-	-	-

SafeDecoding Detailed experimental settings are referred to (Xu et al., 2024a). The experimental results are shown in Table 45.

Table 45: ASR comparison of different LLMs against adversarial prompts under SafeDecoding defence. Results are directly cited from the original paper.

LLM	Adversarial Prompt					
	GCG	AutoDAN	PAIR	DeepInception	SAP30	Template
Vicuna-7B	0.04	0	0.04	0	0.09	0.05
Llama2-7B-Chat	0	0	0.04	0	0	0

Circuit Breakers Detailed experimental settings are referred to (Zou et al., 2024). The experimental results are shown in Table 46.

Table 46: Comparison between CurvaLID and Circuit Breakers on LLaMA-3-8B. Results are reported in terms of ASR (%).

LLM	defence	Adversarial Prompt					
		GCG	PAIR	DAN	AmpleGCG	SAP	RandomSearch
LLaMA-3-8B	Circuit Breakers	2	3.33	0	2.5	0	0
	CurvaLID	0	0	0	2.5	0	0

Llama Guard Detailed experimental settings are referred to (Inan et al., 2023). The experimental results are shown in Table 47.

Table 47: Comparison of LLaMA Guard 3 and CurvaLID. Results are reported in terms of ASR (%).

defence	PAIR	DAN	SAP	AutoDAN	GCG	AmpleGCG	MMLU	AlpacaEval
LLaMA Guard 3	0	0	0	0	0	0	0.09	0.01
CurvaLID	0	0	0	0	0	0.025	0	0.02

Perplexity-based filtering Detailed experimental settings are referred to (Alon & Kamfonas, 2023). The experimental results are shown in Table 48.

2160 Table 48: Comparison of Perplexity Filtering and CurvaLID. Results are reported in terms of ASR
 2161 (%).

2162

defence	GCG	AmpleGCG	DAN	AutoDAN	SAP	PAIR	Persuasive Attack
Perplexity Filtering	0	0	0.475	0.38	1	0.624	0.76
CurvaLID	0	0.015	0	0	0	0	0

2163

C LLM USAGE

2164

2165 This research directly concerns LLMs, and all experiments necessarily involved their usage. In
 2166 addition, we used LLMs in a limited capacity to aid and polish the writing of this paper.

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213