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ABSTRACT

Adversarial prompts are capable of jailbreaking frontier large language models
(LLMs) and inducing undesirable behaviours, posing a significant obstacle to their
safe deployment. Current mitigation strategies primarily rely on activating built-in
defence mechanisms or fine-tuning LLMs, both of which are computationally
expensive and can sacrifice model utility. In contrast, detection-based approaches
are more efficient and practical for deployment in real-world applications. How-
ever, the fundamental distinctions between adversarial and benign prompts remain
poorly understood. In this work, we introduce CurvaLID, a novel defence frame-
work that efficiently detects adversarial prompts by leveraging their geometric
properties. It is agnostic to the type of LLM, offering a unified detection framework
across diverse adversarial prompts and LLM architectures. CurvaLID builds on
the geometric analysis of text prompts to uncover their underlying differences. We
theoretically extend the concept of curvature via the Whewell equation into an
n-dimensional word embedding space, enabling us to quantify local geometric
properties, including semantic shifts and curvature in the underlying manifolds. To
further enhance our solution, we leverage Local Intrinsic Dimensionality (LID)
to capture complementary geometric features of text prompts within adversarial
subspaces. Our findings show that adversarial prompts exhibit distinct geometric
signatures from benign prompts, enabling CurvaLID to achieve near-perfect classi-
fication and outperform state-of-the-art detectors in adversarial prompt detection.
CurvaLID provides a reliable and efficient safeguard against malicious queries as a
model-agnostic method that generalises across multiple LLMs and attack families.

1 INTRODUCTION

Frontier Large Language Models (LLMs) are widely used in real-world applications such as education,
finance, and legal analysis (Yao et al., 2024). However, adversarial prompts exploit vulnerabilities of
LLMs to produce unintended and harmful responses (Wallace et al., 2019; Shen et al., 2023; Deng
et al., 2023a). Therefore, ensuring their safety against adversarial prompts is essential to prevent
harmful outputs, such as bias, misinformation, or content inciting physical harassment.

Current defences against adversarial prompts rely on prompt engineering or adversarial training.
Input perturbation techniques, like Intentionanalysis (Zhang et al., 2024a) and SmoothLLM (Robey
et al., 2023), modify the prompt and examine whether the altered version can successfully trigger
the LLM’s built-in safety mechanisms. The effectiveness of these methods depends on the degree
of perturbation and robustness of the LLM’s safety alignment. Meanwhile, adversarial training
approaches, which fine-tune models to resist adversarial inputs, often struggle to scale to larger LLMs.
For example, Latent Adversarial Training (LAT) cannot be easily applied to LLMs exceeding 10
billion parameters (Sheshadri et al., 2024). Given that popular LLMs, such as GPT-3 and PaLM 2,
have 175 billion and 340 billion parameters respectively, developing scalable defences for these large
models is essential to ensure their reliability and safety (Anil et al., 2023; Brown, 2020).

Existing solutions are inherently tied to the internal architecture and safety alignment training of the
targeted LLM, limiting their generality. They do not guarantee consistent performance across different
adversarial prompts and varying models (Chao et al., 2023; Shen et al., 2023; Zhou et al., 2024b). In
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parallel, Llama Guard Inan et al. (2023) and the constitutional classifier (Sharma et al., 2025) are
trained to detect harmful adversarial prompts and block them from reaching the LLM. However, both
approaches rely on human annotations to differentiate harmful from benign inputs. More importantly,
the underlying distinctions between adversarial and benign prompts remain insufficiently understood,
underscoring the need for defence strategies that are both generalizable and theoretically grounded.

In this work, we introduce CurvaLID, an LLM-agnostic framework designed to explore generalizable
solutions by uncovering the fundamental geometric differences between adversarial and benign
prompts. CurvaLID provides a defence mechanism that operates independently of the internal
architecture of LLMs, ensuring its generality across diverse models. It enhances LLM safety by
preemptively rejecting adversarial inputs.

First, we introduce PromptLID, a sentence-level Local Intrinsic Dimensionality (LID) measure that
effectively captures the geometric properties of text prompts. PromptLID calculates LID using a
sentence-level-defined local neighbourhood, unlike traditional approaches (Ma et al., 2018; Yin
et al., 2024) that rely on token-level neighbourhoods, which are easily influenced by local noise and
often dominated by stop words that provide limited semantic information. Prior work has applied
LID to characterise adversarial subspaces in the vision domain (Ma et al., 2018) and to assess the
truthfulness of LLM outputs using token-level estimation (Yin et al., 2024), but these methods are
not agnostic to specific models or LLM architectures, limiting their generalizability. PromptLID
addresses these issues by offering a sentence-level, model-agnostic characterization of prompt-level
geometry, enabling more robust adversarial prompt detection.

Second, we develop TextCurv, a theoretical framework for defining curvature in an n-dimensional
Euclidean space of word embeddings. By extending the curvature concept from the Whewell equation
(Whewell, 1849), we prove that the angle between two tangent vectors is equivalent to the difference
in their tangential angles. This provides the foundation for analyzing word-level geometry, enabling
us to quantify curvature in text embeddings and capture semantic shifts.

Through extensive evaluations, we demonstrate that PromptLID effectively quantifies the high-
dimensional local subspaces where adversarial prompts reside, while TextCurv captures curvature
at the word level. Together, they complement each other in revealing semantic shifts and localized
structural deviations in the text manifold, providing new insights into the fundamental differences
between adversarial and benign prompts.

Our main contributions can be summarized as follows:

• We propose CurvaLID, a LLM-agnostic detection framework that leverages geometric distinctions
between adversarial and benign prompts. By integrating TextCurv and PromptLID, CurvaLID
efficiently and effectively detects adversarial prompts, ensuring safety across various LLMs.

• We provide theoretical insights into the design of two novel geometric measures leveraged by
CurvaLID. TextCurv extends the Whewell equation to n-dimensional Euclidean space, enabling
quantification of semantic shifts through word-level curvature. PromptLID analyses the local
intrinsic dimensionality across entire prompts, capturing adversarial subspaces effectively.

• CurvaLID successfully detects about 99% of adversarial prompts, outperforming state-of-the-art
defences by over 10% in attack success rate reduction across multiple LLMs and adversarial attacks.
It is highly time-efficient, requiring only 0.25 GPU hours of training, whereas existing adversarial
training methods have significantly higher computational costs, usually exceeding 100 GPU hours.

2 RELATED WORK

This section reviews prior research on adversarial attacks and defence mechanisms for LLMs,
highlighting their objectives, underlying logic, and key characteristics.

Adversarial attacks on LLM. Adversarial attacks on LLMs involve crafted inputs designed to
manipulate models into generating harmful content, like offensive language or dangerous instructions
(Zou et al., 2023). These attacks range from a single input (zero-shot) to more complex, continuous
dialogue scenarios (multi-shot) (Shen et al., 2023; Dong et al., 2023; Wang et al., 2023). This
research focuses on zero-shot text prompt attacks, including techniques like text perturbation that
adds gibberish or subtly alters input wording and social-engineered prompts that trick LLMs into
harmful behaviour (Zou et al., 2023; Schwinn et al., 2023; Chu et al., 2024).
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Adversarial defences for LLM. There are three primary defences against adversarial attacks on
LLMs: input preprocessing, prompt engineering, and adversarial training. Input preprocessing
perturbs inputs to disrupt adversarial prompts but may also affect benign ones, with effectiveness
depending on perturbation level and targeted LLM (Cao et al., 2023; Robey et al., 2023; Yung et al.,
2024). Prompt engineering augments self-defensive behaviour by adding prompts to expose harmful
intent, though performance varies across models (Zhang et al., 2024a; Phute et al., 2023; Zhang
et al., 2024b). Finally, adversarial training strengthens the LLM’s ability to reject harmful prompts by
exposing models to adversarial cases during training (Xu et al., 2024b; Jain et al., 2023). However,
this approach requires fine-tuning the LLM, making its success dependent on the specific model
being protected, with most adversarial training methods confined to white-box models. Additionally,
these methods often demand significant computational resources, with training times reaching up to
128 GPU hours (Mazeika et al., 2024) or 12 GPU hours (Sheshadri et al., 2024), and generally exhibit
varying effectiveness across different adversarial prompts and LLMs (Sheshadri et al., 2024; Ziegler
et al., 2022; Ganguli et al., 2022). Note that our paper belongs to the field of adversarial prompt
detection. Unlike existing methods such as perplexity filtering, which rely on LLMs for next-token
probability, our method operates independently of the type of the LLM (Hu et al., 2023).

3 BACKGROUND AND TERMINOLOGY

This section provides a brief overview of the mathematical definitions of LID and curvature.

3.1 LOCAL INTRINSIC DIMENSION

Local Intrinsic Dimensionality (LID) measures the intrinsic dimensionality of the local neighbourhood
around a reference sample (Houle, 2017). Compared to Global Intrinsic Dimension (GID) (Tulchinskii
et al., 2024; Pope et al., 2021b), which measures the degree of the d-dimension of the global manifold
of a data subset, LID focuses on the local neighbourhood of given points. Thus, LID is particularly
useful in analyzing high-dimensional data with varying dimensionalities across the dataset.
Definition 3.1 (Local Intrinsic Dimension (LID)). (Houle, 2017) LID is mathematically defined as:

LIDF (r) =
r · F ′(r)

F (r)
.

We are interested in a function F that satisfies the conditions of a cumulative distribution function
(CDF) and is continuously differentiable at r. The local intrinsic dimension at x is in turn defined as
the limit, when the radius r tends to zero:

LID∗
F ≜ lim

r→0+
LIDF (r) .

We refer to the LID of a function F , or of a point x, whose induced distance distribution has F as its
CDF. For simplicity, we use the term ‘LID’ to refer to the quantity LID∗

F .

LID∗
F is the theoretical definition, and in practice, has to be estimated (Levina & Bickel, 2004;

Tempczyk et al., 2022). Estimation of LID requires a distance measure and a set of reference points
to select nearest neighbors (NN). Following prior work (Gong et al., 2019; Ansuini et al., 2019;
Pope et al., 2021a; Zhou et al., 2024a; Huang et al., 2024; 2025), we use Euclidean distance. The
representation of a data point, along with the chosen reference points, significantly influences how
LID is interpreted. In adversarial prompt detection, the representation and neighbourhood definition
directly affect the ability to distinguish between clean and adversarial prompts. Among existing
estimators, we use the Method of Moments (MoM) (Amsaleg et al., 2015) for its simplicity.

3.2 CURVATURE

The intuition of curvature is how quickly a curve changes direction. In geometry, we can visualise
curvature through an osculating circle. Curvature can be measured at a given point by fitting a circle
to the curve on which the point resides (Kline, 1998). The formal definition is as follows:
Definition 3.2. [Curvature measured by osculating circle] (Kline, 1998) The osculating circle at a
point P on a curve is the circle tangent at P and passing through nearby points on the curve. Let R
be its radius. The curvature κ is then defined as:

κ = 1
R .
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For an arbitrary curve, one can extend the concept of curvature to the rate of tangential angular change
with respect to arc length, which is known as the Whewell equation (Whewell, 1849). The tangential
angular change refers to the change of angle of inclination of the tangent at the given point.
Definition 3.3. [Curvature by Whewell equation](Whewell, 1849) Let s be the arc length and
tangential angle ϕ be the angle between the tangent to point P and the x-axis, for a given point P on
a curve. The curvature κ is defined as:

κ =
dϕ

ds
.

Furthermore, in differential geometry, the curvature can be defined as the change of the unit tangent
vector with respect to arc length (Shifrin, 2015; O’Neill, 2006).
Definition 3.4. [Curvature in differential geometry](Shifrin, 2015) Suppose curve α is parametrized
by arc length s and T(s) is the unit tangent vector to the curve. We define curvature as

κ(s) = ∥T′(s)∥ =

∥∥∥∥dTds
∥∥∥∥ .

Curvature is also defined and utilized in physics. The Frenet-Serret formulas relate curvature to
torsion, tangent, normal, and binormal unit vectors (Frenet, 1852). In the Frenet-Serret formulas, the
curvature describes the rotational speed along a curve, which is relevant in kinetics and trajectory
applications (Huang et al., 2023). It is also used in autonomous driving, robotics, and quantum
computing (Hallgarten et al., 2024; Alsing & Cafaro, 2023; Shabana, 2023).

4 GEOMETRIC ANALYSIS AND CURVALID

We aim to develop geometric measures that effectively characterise both benign and adversarial
prompts at the prompt and word levels. These measures are then utilized for adversarial prompt
detection, formulated as a binary classification task defined as follows.

Let D = {(xi, yi)}ni=1 be a labelled dataset comprising n i.i.d. samples xi, where each sample
is associated with a label yi. In this context, each input xi represents a text prompt, with the
corresponding label yi ∈ {0, 1} indicating whether the prompt is benign (yi = 0), or adversarial
(yi = 1). Let M(x) denote the geometric measure applied to a prompt x, where M(x) is composed
of two complementary components: the prompt-level measure PromptLID(x) and the word-level
measure TextCurv(x). These measures are then utilized within an adversarial prompt detection
algorithm, formalized as a classification problem where the objective is to minimize the empirical
error between the ground-truth labels and the predictions:

argmin
θ

E(x,y)∈D[ℓ(h(M(x)), y)],

where ℓ(·) denotes the cross-entropy loss function, and h(M(x)) is the classifier applied to the
geometric measures M(x) = (PromptLID(x),TextCurv(x)). Alternatively, the defender may use
classical outlier detection methods without access to adversarial prompts during training. In both
cases, the detector operates on the same geometric measures. Next, we formally define PromptLID
and TextCurv, detailing how they explore geometric properties at the prompt and word levels,
respectively. Finally, we provide an overview of CurvaLID, our adversarial prompt detection model.

4.1 PROMPTLID: LID ESTIMATION AT THE PROMPT-LEVEL

To characterise the prompt-level geometric properties of benign and adversarial prompts, we propose
PromptLID, an LID estimation based on prompt representations obtained from a trained CNN. We
first train a model g (CNN) to perform a k-class classification task, where the goal is to determine
which benign dataset a given prompt belongs to. This involves learning a function g : B → Q to map
the input space B to the label space Q. The label space is defined as Q = {q1, q2, . . . , qk}, where k
is the number of types of benign datasets and is equal to the cardinality of Q. Given a benign prompt
dataset B = {(b, q)i}ni=1, where b is the benign prompt and q is its corresponding label, the model
learns to classify each prompt into its respective dataset. The objective function used is categorical
cross-entropy, as the task involves multi-class classification. The representation z1, derived from the
penultimate dense layer, encodes the prompt as a single vector, which is then used to calculate the
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Figure 1: Illustrative diagram of CurvaLID, which classifies benign and adversarial prompts using
PromptLID and TextCurv.

PromptLID. The PromptLID expands on the MoM estimation (Amsaleg et al., 2015) of LID on the
prompts’ representation in z1.

Definition 4.1. [PromptLID] The PromptLID of a prompt x is defined as:

PromptLID = −k · µk

µk−wk ,

where k is the number of nearest neighbors, µk is the mean distance from the prompt representation
z1 to its k-nearest neighbors, and wk is the distance to the k-th neighbor.

Given that adversarial prompts often manipulate the high-dimensional space of word embeddings to
target rarely encountered subspaces (Szegedy, 2013; Ma et al., 2018), they exhibit distinct geometric
characteristics. Adversarial prompts are expected to exhibit higher PromptLID as they push the
embeddings into regions of the feature space that are less well-defined and more complex than typical
benign inputs. As shown in Section 5.2, PromptLID effectively captures this behaviour, highlighting
its ability to distinguish between benign and adversarial prompts.

4.2 TEXTCURV: CURVATURE AT THE WORD-LEVEL

To characterise word-level geometric properties of benign and adversarial prompts, we analyse the
curvature of word connections. The aim is to have curvature complement PromptLID by analyzing
the word-level geometric properties of prompts, effectively identifying nearly all adversarial prompts.
Specifically, curvature captures the relationships between words, revealing subtle semantic shifts
based on word order, uncovering local geometric differences between benign and adversarial prompts.

Prior work shows that CNN activation creates a curved manifold, evidenced by the significantly
higher intrinsic dimension estimated by Principal Component analysis (PCA) compared to the GID
estimated by TwoNN on activation data (Abdi & Williams, 2010; Facco et al., 2017; Ansuini et al.,
2019). However, curvature differences between benign and adversarial prompts remain unexplored.
Thus, we examine these differences in convolution layers as potential classification features.

Our goal is to establish a definition of text curvature based on existing mathematical definitions, with
the curvature capturing semantic shifts according to word sequence and the strength of these shifts.
Word order plays a crucial role in semantic analysis, helping to accurately capture the local geometric
properties of prompts. We focus on the representations of prompts in the convolutional layers of the
model g as mentioned in Section 4.1, where the prompt data remains unflattened and in stacked lists
of vectors at this stage, which can be viewed as word-level representation. Specifically, we extract the
representations z2 and z3 from these convolutional layers for further analysis. This stage is critical,
as it is where feature spaces are curved, according to prior research (Ansuini et al., 2019).

To capture semantic shifts between consecutive words in a prompt, we draw on Whewell’s equation,
where the rate of directional change of a curve is represented by the tangential angular change. In
NLP, this angular change is connected to the dot-product formula and cosine similarity, which indicate
the semantic similarity or difference between two words (Mikolov, 2013; Levy et al., 2015). We
assume that this theory also applies to modern word embeddings like GPT-2 and RoBERTa, and
therefore, we define the rate of angular change in text curvature accordingly.
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Definition 4.2. [Text Curvature: Rate of angular change] For any two consecutive word embeddings,
denoted by u⃗ and v⃗, the rate of angular change, dθ, is defined as:

dθ = arccos

(
u⃗ · v⃗

∥u⃗∥∥v⃗∥

)
.

However, the rate of angular change alone does not fully capture the semantic shift between words,
as it overlooks the magnitude of the shift. In differential geometry, curvature is defined by the rate
of change in the tangent vector’s direction relative to the change in arc length. When two curves
exhibit the same directional change, the curve achieving this change over a shorter arc length has a
higher curvature. Similarly, in text curvature, given the same semantic shift as measured by our rate
of angular change, the curvature should increase when the semantic change is more substantial.

We focus on word vector magnitudes to capture the degree of semantic shift. Previous research
suggests that magnitude reflects the semantic weight carried by each word and the tokenizers’
understanding of that word within context (Schakel & Wilson, 2015; Reif et al., 2019). For example,
common words tend to have smaller magnitudes due to their frequent use and limited semantic
significance (Schakel & Wilson, 2015). Instead of summing vector norms to measure distance
changes in curvature, which may seem intuitive and consistent with geometric principles, we sum
the inverses of the vector norms. This approach is driven by the hypothesis that larger vector norms
signify greater semantic importance, meaning that curvature should be inversely proportional to
vector norms, capturing larger semantic shifts between words.
Definition 4.3. [Text Curvature] For any two consecutive word embeddings, denoted by u⃗ and v⃗, the
text curvature, denoted by TextCurv, is defined as:

TextCurv =
dθ

1
∥u⃗∥ + 1

∥v⃗∥
.

The rate of angular change in TextCurv is supported by Theorem 4.4, which links θ to difference in
tangential angles. analysis of how word embedding norms relate to arc length is in Appendix A.2.
Theorem 4.4. For two tangent vectors u⃗ and v⃗ in an n-dimensional Euclidean space, the angle θ
between them is equivalent to the difference in their tangential angles.

Sketch of Proof. We apply the Gram–Schmidt process to form an orthonormal basis for the tangent
space, expressing u⃗ and v⃗ as linear combinations of its vectors. In this basis, the angle θ follows
from their inner product. We compute the tangential angles of u⃗ and v⃗ from their projections, and by
subtracting them show the difference equals θ. The full proof is in Appendix A.2.

TextCurv captures subtle word-level geometric shifts when adversarial modifications alter a prompt’s
semantic structure. Adversarial prompts often cause larger and more erratic curvature shifts as they
introduce perturbations that disrupt the normal flow of meaning. By analyzing these shifts, TextCurv
helps us identify adversarial inputs that deviate from the expected smoothness of benign prompts.

4.3 CURVALID: ADVERSARIAL PROMPT CLASSIFICATION BY CURVATURE AND LID

CurvaLID is an adversarial prompt detection method that filters out adversarial prompts before
they are input to LLMs, ensuring their safety. Since CurvaLID operates independently of LLMs, it
provides a unified defensive performance across all LLMs. This differentiates it from existing SOTA
defences like input perturbation, prompt engineering, and adversarial training, which show varying
performance across different adversarial prompts and LLMs. Moreover, CurvaLID’s evaluation is
straightforward and standardised, avoiding the need for subjective human assessments or reliance on
LLM judgments, which can raise robustness concerns (Chen et al., 2024; Raina et al., 2024).

CurvaLID involves four steps (see Figure 1, pseudo code in Appendix A.1). In Step 1, we use our
trained model g (defined in Section 4.1) to classify different types of benign prompts, deriving the
normal feature manifold. This is essential for amplifying the geometric and dimensional distinctions
between benign and adversarial prompts. In Step 2, we extract the representations of benign and
adversarial prompts from z1, z2, and z3. In Step 3, we compute the PromptLID and TextCurv of
each prompt using the representations from Step 2, capturing both sentence-level dimensionality
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Table 1: We compare CurvaLID with SOTA defences. The best results are boldfaced. Results for
other LLMs and defences are provided in Appendix B.4.1.

LLM defence GCG PAIR DAN AmpleGCG SAP MathAttack RandomSearch

Vicuna-7B

No defence 86.0 98.0 44.5 98.0 69.0 24.0 94.0

SmoothLLM 5.5 52.0 13.0 4.2 44.6 22.0 48.5
Self-Reminder 9.5 48.0 35.5 11.5 25.2 22.0 6.0

Intentionanalysis 0.0 8.5 3.3 0.3 0.23 20.0 0.0
ICD 0.2 5.2 40.4 0.9 32.8 22.0 0.2

RTT3d 0.2 0.3 22.0 3.5 33.5 20.2 2.5
CurvaLID 0.0 0.0 0.0 1.1 0.0 0.0 0.0

LLaMA2-7B

No defence 12.5 19.0 2.0 81.0 9.5 11.7 90.0

SmoothLLM 0.0 11.0 0.2 0.2 1.2 11.2 0.0
Self-Reminder 0.0 8.0 0.3 0.0 0.0 11.1 0.0

Intentionanalysis 0.0 5.8 0.7 0.0 0.0 11.2 0.0
ICD 0.0 2.7 0.8 0.0 0.0 10.8 0.0

RTT3d 0.2 0.2 1.8 0.4 5.5 9.8 0.8
CurvaLID 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PaLM2

No defence 14.9 98.0 49.7 88.9 55.1 18.9 91.9

SmoothLLM 5.5 38.7 6.7 7.2 41.2 9.8 45.3
Self-Reminder 2.3 36.7 22.3 4.7 21.4 13.3 3.7

Intentionanalysis 0.0 2.3 1.3 0.9 0.0 9.7 0.0
ICD 0.1 4.9 34.2 0.2 33.9 9.3 0.0

RTT3d 0.1 0.1 25.5 3.3 25.0 10.2 2.8
CurvaLID 0.0 0.0 0.0 0.0 0.0 0.0 0.0

and word-level curvature. In Step 4, we train a Multilayer Perceptron (MLP) to classify benign and
adversarial prompts based on the two mean TextCurv values and the PromptLID. The MLP performs
binary classification and filters out adversarial prompts before they reach the LLM.

5 EXPERIMENTS

In our evaluation, we assessed both the reduction in attack success rate and the prompt classification
accuracy of CurvaLID across a range of LLMs (Vicuna-7B-v1.1 (Chiang et al., 2023), LLaMA2-
7B-Chat (Touvron et al., 2023), GPT-3.5 (Brown, 2020), PaLM2 (Anil et al., 2023), and Gemma-2-
9B (Team et al., 2024)), and compared it against SOTA defences (SmoothLLM (Robey et al., 2023),
Self-Reminder (Xie et al., 2023), Intentionanalysis (Zhang et al., 2024a), In-Context Demonstration
(ICD) (Wei et al., 2023), RTT3d (Yung et al., 2024), and constrained SFT (Qi et al., 2025)). Our test
set has 3,540 prompts, comprising 1,200 benign and 2,340 adversarial prompts. For benign data, we
randomly sampled 300 from each of the Orca (Lian et al., 2023), MMLU (Hendrycks et al., 2020),
AlpacaEval (Li et al., 2023b), and TruthfulQA (TQA) datasets (Lin et al., 2021). The model g is
trained to classify these four benign datasets. For adversarial data, approximately 300 were randomly
sampled from each of SAP (Deng et al., 2023a), DAN (also known as the "In The Wild" dataset)
(Shen et al., 2023), MathAttack (Zhou et al., 2024b), and GCG (Zou et al., 2023), while around 200
prompts were randomly selected from PAIR (Chao et al., 2023), RandomSearch (Andriushchenko
et al., 2024), AmpleGCG (Liao & Sun, 2024), Persuasive Attack (Zeng et al., 2024), AutoDAN (Liu
et al., 2023), and DrAttack (Li et al., 2024). Dataset details are in Appendix B.1.5. Unless specified
otherwise, we use an 80/20 train–test split. CNN/MLP hyperparameters are in Appendix B.1.2 and
B.1.4. Results are averaged over 10 runs for reliability, and ablations are reported in Appendix B.2.

5.1 MAIN RESULTS

Comparison of CurvaLID against baseline defences. We compared CurvaLID with five existing
defences: SmoothLLM, Self-Reminder, Intentionanalysis, In-Context Demonstration (ICD), and
RTT3d. Evaluations are conducted across four LLMs: Vicuna-7B-v1.1, LLaMA2-7B-Chat, GPT-3.5,
and PaLM2, and against seven adversarial attacks, including GCG, PAIR, DAN, AmpleGCG, SAP,
MathAttack, and RandomSearch. In addition, we compared CurvaLID with the constrained SFT
defence (Qi et al., 2025), using the fine-tuned Gemma-2-9B model released by Qi et al. (2025). In our
approach, if a prompt is classified as a jailbreak prompt, it is rejected. The comparison against SOTA
defences across multiple LLMs, measured by ASR (%), is presented in Table 1. Appendix B.4.1
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Table 2: Performance metrics for CurvaLID
on benign and adversarial datasets. Standard
deviations are shown in parentheses.

Class Accuracy by Dataset Class Acc. Overall Acc. F1

Benign
Orca MMLU AlpEval TQA

0.984

0.992 0.9920.968 1.000 0.983 0.986

(0.012) (0.000) (0.008) (0.010) (0.009)

Adv.
SAP DAN MathAtk GCG

1.000
1.000 1.000 1.000 1.000

(0.000) (0.000) (0.000) (0.000) (0.000)

Table 3: Average TextCurv of benign and adver-
sarial datasets across word embedding and CNN
layers. Percentage in parentheses shows the in-
crease in TextCurv for adversarial prompts.

Word Embedding Conv Layer 1 Conv Layer 2
Benign Adv. Benign Adv.

RoBERTa 0.626 0.881 (+40.7%) 0.325 0.446 (+37.2%)
GPT-2 0.805 1.11 (+37.9%) 0.389 0.546 (+40.4%)
BERT 0.428 0.590 (+37.9%) 0.199 0.264 (+32.7%)
XLNet 0.296 0.431 (+45.6%) 0.199 0.264 (+32.7%)
DistilBERT 0.386 0.557 (+44.3%) 0.225 0.322 (+43.1%)

(a) Confusion Matrix (b) Avg token-level LID (c) Average NN-
distances

(d) Average PromptLID

Figure 2: (a) Confusion matrix from CurvaLID on English adversarial prompts (corresponds to
Table 2). (b) Average token-level LID for benign and adversarial prompts. Blue bars show LID for
original prompts; red bars show LID after removing stopwords and punctuation. (c) Average nearest
neighbor distances, blue for benign and red for adversarial prompts. (d) Average PromptLID for
benign and adversarial prompts. Error bars in (b)–(d) show standard deviation over 10 runs.

provides detailed experimental results and covers filters like Circuit Breakers (Zou et al., 2024), Llama
Guard (Inan et al., 2023), and perplexity filtering (Alon & Kamfonas, 2023). Experimental result
shows that CurvaLID effectively identifies adversarial prompts and rejects them before querying
the LLM. Notably, CurvaLID is model-agnostic and performs consistently across LLMs, achieving
superior results over baseline defences in most scenarios.

CurvaLID on adversarial prompts. The experimental results in Table 2 demonstrate CurvaLID’s
high performance. The model achieved an overall accuracy of 0.992, with perfect accuracy of 1.00
(i.e., 100%) in identifying adversarial prompts and 0.984 accuracy in identifying benign prompts.
Since adversarial prompts are detected before reaching the LLM, 1.00 accuracy implies a 0% attack
success rate, effectively nullifying adversarial attempts. The corresponding confusion matrix is shown
in Figure 2(a). Notably, CurvaLID remains robust even when the number of prompts per dataset is
halved to 150, achieving an accuracy and F1 score of 0.988 (see Appendix B.2.12).

In addition to the four main adversarial datasets, which contain a substantial number of prompts,
we extended our experiments to PAIR, RandomSearch, AmpleGCG, Persuasive Attack, AutoDAN,
DrAttack, and persona modulation attack. CurvaLID identified all adversarial attacks with near 0.99
accuracy (see Appendix B.2.1 and B.2.4). It also achieved over 0.9 accuracy on demonstration-based
attacks, including In-Context Demonstration (Wei et al., 2023) and cipher-based attacks (Yuan et al.,
2023) (see Appendix B.2.2), and 0.994 accuracy on adversarial prompts written in nine non-English
languages (see Appendix B.2.3). We also evaluated CurvaLID on benchmarks, namely HarmBench
adversarial prompts (Mazeika et al., 2024), achieving near-zero ASR, and over-refusal benchmarks
(Cui et al., 2024; Röttger et al., 2023), where CurvaLID reduced harmful prompt acceptance by up to
30% (see Appendix B.2.5- B.2.6).

5.2 ANALYSIS ON CURVALID

We analyse CurvaLID under three settings: (1) training only on benign prompts, (2) comparing
token-level LID with PromptLID, and (3) testing TextCurv across word embeddings.
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Using CurvaLID in one-class classification problems. We modified step 4 of CurvaLID by replacing
the supervised MLP with unsupervised outlier detection methods such as the local outlier factor
(LOF) (Breunig et al., 2000) or isolation forest (Liu et al., 2008), which do not require training on
adversarial prompts. Despite the absence of adversarial examples during training, LOF and isolation
forest methods achieved comparable detection accuracy of around 0.9. Therefore, our framework is
task-independent and can be applied to various problem settings. Full results are in Appendix B.2.13.

Limitations of token-level LID. We provide the motivation for PromptLID by examining why tradi-
tional token-level LID fails to effectively distinguish benign from adversarial prompts. Adversarial
inputs often manipulate rarely encountered regions of the feature space using complex words and
irregular combinations (Wallace et al., 2019; Ilyas et al., 2019; Ren et al., 2019). Prior work has
shown that such perturbations lead representations into subspaces with distinct local dimensional
properties, typically exhibiting high LID (Ma et al., 2018). Based on this, we hypothesize that each
word in an adversarial prompt may induce a representation with elevated LID, and that by aggregating
these token-level values (e.g., via averaging), it might be possible to detect adversarial prompts.

However, our analysis reveals that this token-level approach, computed with RoBERTa embeddings
and treating each word as a data point within its prompt-based neighbourhood, is ineffective at
separating benign and adversarial inputs. As shown in Figures 2(b) and Appendix B.3.3, average
token-level LID across datasets centers around 10 with high variability, causing substantial overlap
between benign and adversarial classes. To investigate further, we analysed the first five nearest-
neighbor distances, which also showed minimal differences between prompt types (Figure 2(c)).
Appendix B.3.2 indicates the most common neighbors are stop words and punctuation, suggesting
token-level LID is dominated by non-informative tokens and insensitive to sequential structure.
Removing stop words and punctuation lowered the standard deviation to 2.26 (Appendix B.3.3), but
the distinction between benign and adversarial prompts remained weak. These results reaffirm the
limitations of token-level LID for adversarial detection and further motivate using PromptLID.

We analyse PromptLID across benign and adversarial datasets. As shown in Figure 2(d), adversarial
prompts exhibit a much higher average PromptLID compared to benign prompts, highlighting its
effectiveness in distinguishing adversarial prompts. The distribution of PromptLID between benign
and adversarial prompts can be found in Appendix B.2.26.

Generalisation to different word embedding. We analysed the average TextCurv of adversarial
prompts in CurvaLID Step 2. To ensure TextCurv’s independence from the embedding model, we
conducted curvature analysis using GPT-2 (Radford et al., 2019), BERT (Devlin, 2018), XLNet
(Yang, 2019), and DistilBERT (Sanh, 2019). As shown in Table 3, adversarial prompts consistently
exhibited at least 30% higher curvature than benign prompts across all embeddings. The TextCurv
distribution for benign and adversarial prompts are in Appendix B.2.26. These findings support our
hypothesis that words in adversarial prompts exhibit greater irregularity and complexity compared to
those in benign prompts. More importantly, the results generalize across different embedding models,
suggesting that adversarial and benign prompts differ fundamentally in their geometric properties.

We also demonstrated that CNN activation significantly amplifies TextCurv differences between
benign and adversarial prompts. The mean TextCurv of adversarial prompts is at least 30% higher
than that of benign prompts in both CNN layers. In contrast, when using only the word embedding,
the mean TextCurv is 4.91 for benign prompts and 5.42 for adversarial prompts, a much smaller
difference of 13%, less than half of that observed in the CNN layers (see Appendix B.2.25).

6 CONCLUSION

In this paper, we introduce CurvaLID, an adversarial prompt detection framework that filters out ad-
versarial prompts before reaching LLMs to maintain their security. CurvaLID operates independently
of LLMs, providing consistent performance across models. It achieves over 0.99 accuracy and reduces
the ASR of tested adversarial prompts to near zero. CurvaLID leverages PromptLID and TextCurv,
which analyse the geometric properties of prompts at the prompt and word level, respectively. These
measures address limitations of word-level LID caused by stop words and punctuation, forming the
foundation for CurvaLID’s robust performance in distinguishing benign and adversarial prompts.
Future work includes evaluating CurvaLID on benign prompts in other languages to strengthen
multilingual robustness and ensure fairness in low-resource settings.
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REPRODUCIBILITY STATEMENT

The algorithm outline of CurvaLID is presented in Section 4.3, with corresponding pseudo code
in Appendix A.1. The definitions and methodologies of PromptLID and TextCurv are described
in Sections 4.1 and 4.2, respectively. Theoretical results and proofs are provided in Section 4 and
Appendix A.2. Experimental details are given in the first paragraph of Section 5 and Appendix B.1,
with dataset descriptions in Appendix B.1.5. Model parameters and architectural configurations
are reported in Appendices B.1.2 and B.1.4. The algorithm used in this research is included in the
supplementary material, and all data used will be released upon publication.
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A PSEUDOCODE AND THEORETICAL PROOFS FOR CURVALID

This section includes the pseudocode and supplementary theoretical proofs for CurvaLID.

A.1 PSEUDOCODE FOR CURVALID

Algorithm 1 presents the pseudocode for CurvaLID.

Algorithm 1 CurvaLID
Input: Datasets Db, Da (benign and adversarial prompts)
Step 1: Data Preparation
- Load datasets Db and Da.
- Compute word embeddings Eb and Ea for Db and Da.
Step 2: Preprocessing
- Pad sequences to uniform length Lmax.
- Standardize embeddings to zero mean and unit variance.
Step 3: Train CNN for Benign Classification
- Train a CNN G on Db to extract prompt-level representations z1.
Step 4: Compute PromptLID and TextCurv
- Calculate PromptLID on z1.
- Extract intermediate layer outputs z2, z3, and calculate TextCurv.
Step 5: Train the Detection Model
- Combine PromptLID and TextCurv as features.
- Train an MLP H for binary classification of benign vs adversarial prompts.

A.2 THEORETICAL FOUNDATIONS AND MATHEMATICAL JUSTIFICATION OF TEXTCURV

We begin by addressing the reference of TextCurv to Whewell’s equation, specifically focusing on
how embedding angles relate to tangential angles. Our objective is to demonstrate that the angle
between two word embedding vectors corresponds to the difference in their tangential angles (i.e.,
the numerator in Whewell’s equation). To this end, we prove that for two tangent vectors, u⃗ and
v⃗, in n-dimensional Euclidean space, the angle θ between them is equivalent to the difference in
their tangential angles. The following proof establishes this equivalence, showing that the angular
difference between two vectors directly corresponds to the difference in their tangential angles.

Theorem For two tangent vectors u⃗ and v⃗ in n-dimensional Euclidean space, the angle θ between
them is equivalent to the difference in their tangential angles.

Proof of Theorem

Step 1: Angle in n-Dimensional Space

The angle θ between two vectors u⃗, v⃗ ∈ Rn is defined as:

cos θ =
u⃗ · v⃗

∥u⃗∥∥v⃗∥
,

Step 2: Tangential Angles and Plane Reduction

• Tangential Angles: Tangential angles describe the orientation of vectors within the specific
2D plane they span. These are defined relative to a chosen reference axis in that plane.

• Plane Spanned by u⃗ and v⃗: Any two vectors in n-dimensional space span a 2D subspace
(a plane). This means the interaction between u⃗ and v⃗ (e.g., the angle θ) is fully determined
by their projections into this plane.

• Orthonormal Basis for the Plane: Using the Gram-Schmidt process, construct an orthonor-
mal basis {e⃗1, e⃗2}:
- Normalize u⃗ to define e⃗1:

e⃗1 =
u⃗

∥u⃗∥
.
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- Define e⃗2 as orthogonal to e⃗1 and lying in the same plane:

e⃗2 =
v⃗ − (v⃗ · e⃗1)e⃗1

∥v⃗ − (v⃗ · e⃗1)e⃗1∥
.

Step 3: Expressing u⃗ and v⃗ in the Orthonormal Basis

In the orthonormal basis {e⃗1, e⃗2}:
u⃗ = ∥u⃗∥e⃗1,

and:
v⃗ = ae⃗1 + be⃗2,

where:
a = v⃗ · e⃗1, b = v⃗ · e⃗2.

Step 4: Computing cos θ

The angle θ between u⃗ and v⃗ is:

cos θ =
u⃗ · v⃗

∥u⃗∥∥v⃗∥
.

Substituting:
u⃗ · v⃗ = ∥u⃗∥a, ∥v⃗∥ =

√
a2 + b2.

Thus:
cos θ =

a√
a2 + b2

.

Step 5: Computing sin θ

The magnitude of the cross product ∥u⃗× v⃗∥ in the 2D plane is related to sin θ by:

∥u⃗× v⃗∥ = ∥u⃗∥∥v⃗∥ sin θ.

Substituting:
∥u⃗× v⃗∥ = ∥u⃗∥|b|.

Thus:

sin θ =
|b|√

a2 + b2
.

Step 6: Computing tan θ

The tangent of θ is:

tan θ =
sin θ

cos θ
.

Substituting:

tan θ =

|b|√
a2+b2

a√
a2+b2

.

Simplify:

tan θ =
|b|
a
.

Thus:
θ = | arctan(b/a)|.

Step 7: Relating θ to the Tangential Angles

In the 2D plane:

- The tangential angle of u⃗ relative to e⃗1 is:

αu⃗ = 0 (u⃗ lies entirely along e⃗1).

- The tangential angle of v⃗ is:
αv⃗ = arctan(b/a).
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The difference in tangential angles is:

|αu⃗ − αv⃗| = | arctan(b/a)|.

Thus, the geometric angle θ between u⃗ and v⃗ satisfies:

θ = |αu⃗ − αv⃗|.

This completes the proof.

Now we investigate the relationship between word embedding vector norms and the change of arc
length. We start with the goal of approximating the arc length ∆s between two consecutive word
embeddings, u⃗ and v⃗, in a high-dimensional space. Arc length is classically defined as the integral of
the norm of the tangent vector along the curve. For discrete data points, this is approximated as a
sum of the Euclidean distances between points.

1. Discrete Approximation of Arc Length

Given consecutive embeddings u⃗ and v⃗, the arc length between these points can be approximated as:

∆s = ∥u⃗− v⃗∥.

However, directly using ∥u⃗− v⃗∥ would treat the embeddings purely as geometric points and ignore
their semantic significance as encoded by the vector magnitudes.

2. Semantic Weight and Embedding Norms

In NLP, the norm of a word embedding, ∥u⃗∥, encodes the semantic “weight" or importance of a
word within its context (Schakel & Wilson, 2015; Reif et al., 2019). Larger norms indicate that the
embedding carries more semantic information, while smaller norms suggest less significance.

For two consecutive embeddings, u⃗ and v⃗, their combined semantic importance is proportional to
their norms:

Semantic Importance ∝ ∥u⃗∥+ ∥v⃗∥.

3. Inverse Proportionality and Arc Length

To align with the geometric principle in Whewell’s equation that relates curvature (κ) and arc length
(∆s) as:

κ ∝ 1

∆s
,

we posit that arc length (∆s) should decrease when the semantic importance (∥u⃗∥+ ∥v⃗∥) increases.

This motivates the choice of the inverse relationship:

∆s ∝ 1

∥u⃗∥+ ∥v⃗∥
.

4. Sum of Inverse Norms as Arc Length

While ∥u⃗∥+ ∥v⃗∥ represents the combined semantic importance of two embeddings, directly using
it in the denominator would contradict the inverse proportionality between ∆s and κ. Instead, we
take the inverse of the norms individually, which ensures the arc length is smaller for larger semantic
weights.

Thus, the arc length approximation becomes:

∆s ∝ 1

∥u⃗∥
+

1

∥v⃗∥
.

The reasoning is that embeddings with larger norms (higher semantic significance) should have
smaller contributions to the overall arc length, reflecting the sharper semantic transitions between
significant words.
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B SUPPLEMENTARY INFORMATION FOR EXPERIMENTS

The appendix is organized into four sections. B.1 provides supplementary information about Cur-
vaLID. B.2 focuses on ablation studies, presenting experiments to analyse various aspects of Cur-
vaLID’s performance. B.3 presents supplementary information on LID analysis. Finally, B.4
evaluates the performance of other SOTA defences, comparing them to CurvaLID. All experiments
were conducted on a system with a single Nvidia H100 GPU, 8 CPU cores, and 128 GB of RAM.

B.1 SUPPLEMENTARY INFORMATION ABOUT CURVALID

This section includes time and space complexity of CurvaLID, and also the experimental settings for
CurvaLID analysis.

B.1.1 TIME AND SPACE COMPLEXITY OF CURVALID

The time complexity for PromptLID is O(np), where n is the number of prompts and p is the
dimensionality of the prompt embeddings. In our implementation, we use the representation layer
of the CNN to obtain the embeddings. For TextCurv, the time complexity is O(nmd), where m
is the number of words in a prompt and d is the word embedding dimensionality. In our case,
we use RoBERTa embeddings for word representations. Therefore, the overall time complexity is
O(n(p+md)).

The space complexity for PromptLID is O(np), as we store n prompts, each with p dimensions. For
TextCurv, the space complexity is O(nz), where z represents the dimensionality of the trained CNN
layers used in our computations. Consequently, the space complexity is O(n(p+ z)).

B.1.2 CNN HYPERPARAMETER SELECTION

We conducted a preliminary study for the CNN hyperparameter selection to determine the optimal
architecture based on overall CurvaLID detection accuracy, training time, and stability. Stability was
evaluated by measuring the average CurvaLID accuracy across 10 random seeds. The study involved
experimenting with the following parameters:

Number of convolutional layers: Tested configurations with 1 to 5 layers.
Activation functions: Evaluated ReLU, ELU, tanh, sigmoid, and softplus.
Kernel sizes: Tested kernel sizes ranging from 2 to 5.
Number of parameters: Adjusted the dense layer sizes to 64, 128, and 256 units.
Epochs: Tested training with 10, 20, 30, 40, 50 epochs.
Batch sizes: Evaluated sizes of 16, 32, 64, and 128.
Optimizers: Compared Adam and SGD.

The experimental results are shown in Table 4. We observe that the parameter tuning of the CNN does
not significantly impact the overall detection accuracy, as the accuracy generally fluctuates around
0.98 to 0.99. Notably, the selected CNN extracts features from 1,000 prompts in under 0.5 seconds,
demonstrating its efficiency.

B.1.3 DETAILED PARAMETERS AND SPECIFICS OF THE CNN ARCHITECTURE FOR
CLASSIFYING BENIGN PROMPTS IN CURVALID STEP 1

The CNN architecture consists of an input layer and two 1D convolutional layers. The first Conv1D
layer applies 32 filters with a kernel size of 3 and a ReLU activation function, while the second
Conv1D layer increases the number of filters to 64, again using a kernel size of 3 and ReLU activation.
The output from the convolutional layers is flattened before passing through a fully connected layer
with 128 units and ReLU activation. Finally, the network includes an output layer with four units
and a softmax activation to classify the input into four distinct categories: Orca, MMLU, AlphEval,
and TQA. The model is compiled using the Adam optimizer, categorical cross-entropy loss, and
accuracy as the evaluation metric. Training is conducted over 20 epochs with a batch size of 32 and a
validation split of 20%.
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Table 4: Performance metrics for CNN hyperparameter selection.

Hyperparameter Overall Accuracy Time (min)
No. of Conv. Layers

1 0.962 13.2

2 0.992 14.6

3 0.992 14.6

4 0.974 15.8

5 0.993 15.7

Activation Function
ReLU 0.992 14.8

ELU 0.993 15.1

tanh 0.977 15.1

Sigmoid 0.975 14.5

Softplus 0.991 14.8

Kernel Size
2 0.942 14.8

3 0.992 14.9

4 0.988 14.8

5 0.982 15.0

Dense Layer Size
64 0.958 14.8

128 0.990 15.2

256 0.992 15.6

Epochs
10 0.943 14.2

20 0.991 14.9

30 0.989 15.3

40 0.990 15.5

50 0.988 15.3

Batch Size
16 0.990 15.6

32 0.991 14.8

64 0.988 14.7

128 0.982 14.2

Optimizer
Adam 0.990 15.2

SGD 0.981 15.8

B.1.4 DETAILED PARAMETERS AND SPECIFICS OF THE MLP ARCHITECTURE FOR
CLASSIFYING BENIGN AND ADVERSARIAL PROMPTS IN CURVALID STEP 4

The MLP architecture consists of two fully connected layers and an output layer. The first layer
contains 256 neurons with ReLU activation, followed by a batch normalization and dropout layer with
a rate of 0.5 to prevent overfitting. A second layer, with 128 neurons and ReLU activation, is followed
by another batch normalization and dropout layer. The final output layer uses softmax activation with
two units corresponding to the binary classification of benign and adversarial prompts. The model is
compiled using the Adam optimizer, a learning rate of 0.001, and categorical cross-entropy as the
loss function, and it is trained over 150 epochs with early stopping to prevent overfitting.
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B.1.5 EXPERIMENTAL SETTINGS FOR SECTION 5.1

We use a total of 3,540 testing prompts, comprising 1,200 benign and 2,340 adversarial prompts.

For benign prompts, we randomly sampled 300 prompts from each of Orca, MMLU, AlphacaEval
and TruthfulQA.

For adversarial prompts:

• SAP: We gathered 320 SAP200 prompts by randomly selecting 40 prompts from each of
the 8 adversarial goals.

• DAN: We randomly sampled 350 prompts from the adversarial examples uploaded on their
GitHub, covering roughly half of their total prompt set.

• MathAttack: We used all 300 adversarial prompts provided on their GitHub.
• GCG: We followed their default parameter settings—learning rate = 0.01, batch size = 512,

top-k = 256, temperature = 1—to generate a universal adversarial suffix. All 349 adversarial
behaviours listed in their GitHub were used.

• PAIR: We generated 171 adversarial prompts using PAIR. Their implementation targets 50
adversarial goals per LLM, but does not always succeed in producing a prompt for each
goal under the default configuration.

• RandomSearch: We retrieved prompts directly from their GitHub and randomly selected
200 unique adversarial prompts, as many were duplicates across LLMs.

• AmpleGCG: With author permission, we accessed their adversarial prompts and randomly
sampled 200 prompts from the set.

• Persuasive Attack: We included 150 prompts uploaded by the authors on Hugging Face.
• AutoDAN: We included 150 prompts generated per the authors’ GitHub instructions for

each targeted LLM.
• DrAttack: We tested 150 adversarial prompts generated following the configuration pro-

vided in their GitHub.
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B.2 ABLATION STUDIES

This section presents ablation studies for CurvaLID, covering its performance across various ad-
versarial prompts, baseline comparisons, and effectiveness under different training conditions and
parameter settings. The section is organized as follows:

• B.2.1 to B.2.7: Performance of CurvaLID across various adversarial prompts.
• B.2.8 to B.2.11: Baseline comparisons against CurvaLID.
• B.2.12 to B.2.24: Performance of CurvaLID under different training conditions and parame-

ter settings.
• B.2.25 to B.2.27: Ablation studies on the contributions of TextCurv and PromptLID.

B.2.1 PERFORMANCE METRICS FOR CURVALID IN PAIR, RANDOMSEARCH, AMPLEGCG,
PERSUASIVE ATTACK, AUTODAN, DRATTACK

Table 5 shows the performance metrics for CurvaLID in PAIR, RandomSearch, AmpleGCG, Persuas-
sive Attack, AutoDAN, and DrAttack. Note that due to the abundance of each dataset, we are testing
these adversarial datasets against benign datasets individually, i.e., four benign datasets against each
adversarial dataset.

We obtained 100 prompts from each of the four benign datasets. The six adversarial datasets
(PAIR, RandomSearch, AmpleGCG, Persuasive Attack, AutoDAN, and DrAttack) follow the same
configuration described in Appendix B.1.5.

Table 5: Performance metrics for CurvaLID in PAIR, RandomSearch, AmpleGCG, Persuasive Attack,
AutoDAN, and DrAttack.

Adv. Dataset PAIR RandomSearch AmpleGCG Persuasive Attack AutoDAN DrAttack Avg.
Benign Acc. 0.973 1 0.975 0.952 0.973 0.975 0.975

Adv. Acc. 1 1 0.976 1 1 1 0.996

Overall Acc. 0.983 1 0.975 0.962 0.978 0.980 0.986

F1 Score 0.986 1 0.987 0.974 0.986 0.987 0.985

B.2.2 CURVALID ON DEMONSTRATION-BASED ATTACKS

While our focus was on single-shot adversarial prompts, CurvaLID naturally extends to demonstration-
based attacks due to its model-agnostic design. Operating independently of the target LLM, it is
unaffected by prior demonstrations or context instructions. Any geometric anomaly within the prompt
can be detected and filtered before reaching the LLM, effectively mitigating the attack.

We conducted additional experiments on In-Context Demonstration and cipher-based attacks (Wei
et al., 2023; Yuan et al., 2023). For the former, we tested 400 adversarial prompts using the setup
from Appendix B.2.1. For the cipher-based attack, we used 400 prompts from the official GitHub
repository. The detailed results are shown in Table 6 below:

Table 6: Performance metrics for CurvaLID on in-context demonstration and cipher-based attacks.

Attack Type Benign Accuracy Adversarial Accuracy Overall Accuracy
In-Context Demonstration Attack 0.9894 0.973 0.9812
Cipher-based Attack 0.9400 0.910 0.9250

B.2.3 CURVALID ON NON-ENGLISH ADVERSARIAL PROMPTS

Table 7 demonstrates CurvaLID’s effectiveness in detecting non-English adversarial prompts by
evaluating it on nine languages from the MultiJail dataset (Deng et al., 2023b). We randomly sampled
300 prompts from each of the nine languages—Chinese (zh), Italian (it), Vietnamese (vi), Arabic (ar),
Korean (ko), Thai (th), Bengali (bn), Swahili (sw), and Javanese (jv)—and tested them individually
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against 400 benign prompts, adjusted to avoid class imbalance. The benign prompts were sampled
by gathering 100 entries from each of four different benign datasets. CurvaLID achieved an overall
accuracy and F1 score of 0.994, highlighting its robust ability to detect adversarial prompts across a
diverse range of languages.

Table 7: Performance metrics for CurvaLID on non-English adversarial datasets.

Adv. Dataset zh it vi ar ko th bn sw jv Avg
Benign Acc. 0.975 1.000 1.000 1.000 1.000 1.000 1.000 0.975 1.000 0.994

Adv. Acc. 1.000 0.984 0.984 1.000 1.000 1.000 0.984 1.000 0.984 0.993

Overall Acc. 0.988 0.994 0.994 1.000 1.000 1.000 0.994 0.988 0.994 0.994

F1 Score 0.987 0.994 0.994 1.000 1.000 1.000 0.994 0.987 0.994 0.994

B.2.4 CURVALID ON PERSONA MODULATION

We evaluate CurvaLID against persona modulation attacks, following the setup in Shah et al. (Shah
et al., 2023). We generated 200 attack prompts and randomly sampled 200 benign prompts from
our benign dataset, as described in Section 5. The experiment setup follows our main evaluation in
Section 5.1.

The results, reported in Table 8, show that CurvaLID achieves close to perfect detection accuracy on
both benign and persona modulation prompts, demonstrating its robustness.

Table 8: CurvaLID accuracy on benign prompts and persona modulation attacks.

Method Benign Persona Modulation

CurvaLID 0.985 0.995

B.2.5 CURVALID ON HARMBENCH

We evaluated HarmBench (Mazeika et al., 2024) and tested GCG, AutoDAN, TAP, DirectRequest,
and DAN on LLaMA2-7B and Vicuna-7B with 300 prompts each. We also re-evaluated baseline
defences (SmoothLLM, Intentionanalysis, Self-Reminder) on these HarmBench prompts.

As shown in Table 9, CurvaLID achieved near-zero attack success rates and matched or outperformed
these baselines.

Table 9: ASR (%) of HarmBench attacks under CurvaLID and baseline defences.

LLM defence GCG AutoDAN TAP DirectRequest DAN Average

LLaMA-7B

SmoothLLM 0.5 80.33 0 0 0.5 16.27

Intentionanalysis 0 0.33 0 0 1.67 0.40

Self-Reminder 0 0.33 0 0 2.5 0.57

CurvaLID 1.33 0 0 0 0 0.266

Vicuna-7B

SmoothLLM 9.67 91.5 0 0 19.67 24.168

Intentionanalysis 0.33 11.0 1.5 0 9.5 4.47

Self-Reminder 9.33 92.0 7.33 0 57.5 33.23

CurvaLID 2.5 3.67 2.33 0 0 1.7

B.2.6 EVALUATION ON OR-BENCH AND XSTEST

We evaluated CurvaLID on over-refusal benchmarks, namely OR-Bench and XSTest (Cui et al.,
2024; Röttger et al., 2023). We tested on Vicuna-7B and LLaMA-2-7B and measured its effect
on acceptance and rejection rates. We sampled 200 prompts each from the OR-Bench-Hard and
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OR-Bench-Toxic splits, and similarly from XSTest-Safe and XSTest-Unsafe. As shown in Tables 10
and 11, CurvaLID preserved LLaMA-2-7B’s strong rejection behaviour. For Vicuna-7B, CurvaLID
reduced harmful acceptance by up to 30%, with only a modest increase (about 10%) in benign
rejections, suggesting it can enhance safety without substantially impacting utility.

Table 10: CurvaLID performance on OR-Bench.

Dataset Metric Model defence Rate (%)

OR-Bench-Hard Rejection
LLaMA-2-7B

No defence 85.5
CurvaLID 91.0

Vicuna-7B
No defence 52.5
CurvaLID 60.5

OR-Bench-Toxic Acceptance
LLaMA-2-7B

No defence 0.5
CurvaLID 0.0

Vicuna-7B
No defence 33.5
CurvaLID 1.5

Table 11: CurvaLID performance on XSTest.

Dataset Metric Model defence Rate (%)

XSTest-Safe Rejection
LLaMA-2-7B

No defence 52.0
CurvaLID 59.5

Vicuna-7B
No defence 12.5
CurvaLID 25.0

XSTest-Unsafe Acceptance
LLaMA-2-7B

No defence 0.5
CurvaLID 0.0

Vicuna-7B
No defence 24.5
CurvaLID 2.0

B.2.7 EVALUATION OF BASELINE METHODS ON BENIGN PROMPTS

We conducted an evaluation of baseline methods on benign prompts. Specifically, we compared
CurvaLID with SmoothLLM, Self-Reminder, Intentionanalysis, ICD, and RTT3d on both Vicuna-7B
and LLaMA2-7B. For the benign dataset, we randomly sampled 200 questions from MMLU. We
use MMLU because unlike input-perturbation defences such as SmoothLLM and Intentionanalysis,
CurvaLID operates as a detection algorithm without modifying the input or the internal mechanisms
of the LLM. Thus, MMLU allows for a fair and consistent benchmark across all methods, as it
consists of multiple-choice questions with clear-cut right or wrong answers.

To ensure fairness in measurement, if CurvaLID incorrectly flags a benign MMLU prompt as
adversarial, we count the resulting LLM output as incorrect. The results are presented in Table 12
below. We observe that CurvaLID has minimal impact on benign performance. However, we also find
that most competing defences similarly maintain high accuracy on MMLU, showing no significant
degradation in utility.

Table 12: Accuracy on benign MMLU questions under different defence methods. We compare the
utility impact of CurvaLID and baseline defences (SmoothLLM, Self-Reminder, Intentionanalysis,
ICD, RTT3d) on Vicuna-7B and LLaMA2-7B. Accuracy is measured as the percentage of correctly
answered MMLU prompts. “Original” refers to performance without any defence applied.

Model Original CurvaLID SmoothLLM Self-Reminder Intentionanalysis ICD RTT3d

Vicuna-7B 46.0 48.0 40.0 46.0 50.0 48.0 39.5
LLaMA-2-7B 48.5 45.5 42.5 49.0 45.0 44.5 44.5

B.2.8 BASELINE CLASSIFICATION ACCURACY USING ROBERTA EMBEDDINGS AND MLP

Table 13 presents the classification accuracy and performance metrics using RoBERTa embeddings
as input to MLP. The MLP consists of a single hidden layer with 128 units, trained for a maximum of
300 iterations. The classification results show a benign class accuracy of 0.893, an adversarial class
accuracy of 0.953, and an overall accuracy of 0.923.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 13: Classification accuracy and performance metrics using RoBERTa embeddings as input to
MLP

Class Dataset Accuracy Class Acc. Overall Acc. F1

Benign Orca MMLU AlpEval TQA 0.893
0.923 0.9240.872 0.899 0.893 0.905

Adv. SAP DAN MWP GCG 0.953
0.9400 0.962 0.885 1.000

B.2.9 BASELINE CLASSIFICATION ACCURACY USING CURVALID WITHOUT PROMPTLID AND
TEXTCURV

To investigate the importance of the geometric features PromptLID and TextCurv in CurvaLID, we
conducted an ablation study by removing Step 3 in CurvaLID (Figure 1). Specifically, we skipped
the calculation of PromptLID and TextCurv, and directly fed the CNN representations from Step 2
into the MLP in Step 4 for binary classification. The goal is to assess the standalone performance of
the CNN and MLP setup in CurvaLID, serving as a baseline without geometric information.

The results are presented in Table 14. Although the model performs reasonably well, its overall
accuracy and F1 score drop by 7% compared to the full CurvaLID with PromptLID and TextCurv.
This highlights the critical contribution of the geometric features in capturing topological differences
between benign and adversarial prompts and improving classification robustness.

Table 14: Classification accuracy and performance metrics using CurvaLID without PromptLID and
TextCurv (i.e., Step 3 removed). CNN representations are directly used as input to the MLP.

Class Dataset Accuracy Class Acc. Overall Acc. F1

Benign Orca MMLU AlpEval TQA 0.895
0.920 0.9220.920 0.850 0.900 0.910

Adv. SAP DAN MWP GCG 0.947
1.000 0.952 0.845 0.992

B.2.10 ASR OF B.2.8 AND B.2.9 BASELINE CLASSIFICATIONS

We investigated the two baselines mentioned in B.2.8 and B.2.9 against seven types of adversarial
prompts, including GCG, PAIR, DAN, AmpleGCG, SAP, MathAttack, and RandomSearch. Here
we name the baseline in B.2.8 as "RoBERTa+MLP" and the baseline in B.2.9 as "CNN+MLP". In
our approach, if a prompt is classified as a jailbreak prompt, it is rejected. The comparison against
baseline defences across multiple LLMs, measured by ASR (%), is presented in Table 15.

The RoBERTa+MLP and CNN+MLP baselines perform poorly, particularly on PAIR, DAN, and
MathAttack, where ASR remains high across all LLMs. These results highlight the importance of
TextCurv and PromptLID in CurvaLID for enabling robust classification and significantly reducing
ASR of adversarial prompts across LLMs.

B.2.11 EMBEDDING SOURCE ABLATION: CNN AND SBERT

CurvaLID employs a single lightweight CNN to produce both word-level (TextCurv) and sentence-
level (PromptLID) representations from one input. To examine sensitivity to the sentence–embedding
source, we replaced the CNN-derived sentence embeddings with the widely used SBERT model
all-MiniLM-L6-v2 when computing PromptLID. Table 16 presents the comparison between
CNN-based and the pretrained LLM embedding sentence embeddings for PromptLID and CurvaLID.
It shows that the pretrained LLM embedding approach yields similar performance to our original
CurvaLID configuration. Therefore, we conclude that the pretrained LLM embedding does not offer
a performance advantage in this setting.
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Table 15: Comparison of CurvaLID with baseline defences in multiple LLMs, measured by ASR (%)
on seven adversarial prompt types.

LLM defence GCG PAIR DAN AmpleGCG SAP MathAttack RandomSearch

Vicuna-7B

No defence 86.0 98.0 44.5 98.0 69.0 24.0 94.0

RoBERTa + MLP 0.0 12.2 3.6 2.5 4.25 11.5 0.2
CNN + MLP 0.2 16.4 4.1 2.9 0.0 15.0 0.7
CurvaLID 0.0 0.0 0.0 1.1 0.0 0.0 0.0

LLaMA2-7B

No defence 12.5 19.0 2.0 81.0 9.5 11.7 90.0

RoBERTa + MLP 0.0 2.9 0.0 0.0 1.1 7.8 0.0
CNN + MLP 0.0 5.5 3.1 0.1 0.0 9.8 0.4
CurvaLID 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GPT-3.5

No defence 12.0 48.0 6.33 82.0 0.9 10.5 73.0

RoBERTa + MLP 0.0 0.3 1.2 0.2 0.0 5.1 0.0
CNN + MLP 0.0 0.6 2.1 0.3 0.0 2.9 0.1
CurvaLID 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PaLM2

No defence 14.9 98.0 49.7 88.9 55.1 18.9 91.9

RoBERTa + MLP 0.0 18.7 3.2 0.68 5.9 11.0 0.0
CNN + MLP 0.1 7.8 4.8 1.2 0.0 8.4 0.0
CurvaLID 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 16: Comparison between CNN-based and pretrained LLM (MiniLM) sentence embeddings for
PromptLID and CurvaLID. The first two columns report PromptLID-only performance (sentence reps
from CNN or MiniLM). The last two columns report the full CurvaLID with PromptLID computed
from the respective embeddings.

Metric
PromptLID
(CNN only)

PromptLID
(MiniLM only)

CurvaLID
(PromptLID from CNN)

CurvaLID
(PromptLID from MiniLM)

Benign Accuracy 0.987 0.945 0.984 0.955
Adversarial Accuracy 0.932 1.000 1.000 1.000

Overall Accuracy 0.958 0.967 0.992 0.973
F1 Score 0.958 0.960 0.992 0.967

B.2.12 ACCURACY OF CURVALID WITH LESS DATA

Table 17 shows the performance of CurvaLID when trained with less data. We training and tested
CurvaLID with 150 prompts from each dataset, halving the number of prompts used from the main
result. All other parameters remained the same.

We observe that training CurvaLID with less data has a minimal impact on overall detection accuracy,
as both the overall accuracy and F1 score only decreased from 0.992 to 0.988. This demonstrates the
efficiency of CurvaLID in leveraging geometric features, enabling it to maintain high performance
even with limited training data. Such robustness underscores CurvaLID’s potential for deployment in
scenarios where access to large, labelled datasets is constrained, making it practical for real-world
applications with data scarcity.

Table 17: Classification Accuracy and Performance Metrics for CurvaLID on Benign and Adversarial
Datasets with 150 Data from Each Dataset.

Class Dataset Accuracy Class Acc. Overall Acc. F1

Benign Orca MMLU AlpEval TQA 0.992
0.988 0.9880.9565 1.000 1.000 1.000

Adv. SAP DAN MathAtk GCG 0.983
1.000 0.966 1.000 0.969

B.2.13 PERFORMANCE METRICS FOR CURVALID WITH REPLACING MLP BY LOCAL OUTLIER
FACTOR OR ISOLATION FOREST

The parameters of the local outlier factor is as follows: n_neighbors=30, metric=’chebyshev’,
leaf_size=10, and p=1.
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For isolation forest, the contamination is set as auto.

We are testing 1900 prompts in total, with 100 prompts randomly sampled from each of SAP, DAN,
MathAttack, GCG, PAIR, AmpleGCG and RandomSearch, and 300 prompts from each of Orca,
MMLU, AlphacaEval and TruthfulQA. The experimental results are shown in Tables 18 and 19

We observe that the accuracy and F1 score of CurvaLID, when using Local Outlier Factor and
Isolation Forest, drop from 0.992 to approximately 0.9. Despite this decrease, it is important to
note that this version of CurvaLID operates as a one-class classification model, which inherently
simplifies the classification task by focusing on distinguishing a single class. The ability of CurvaLID
to maintain a decent performance under these constraints highlights its robustness and adaptability,
suggesting its potential for handling future and previously unseen adversarial attacks in dynamic
real-world settings.

Table 18: Performance metrics for CurvaLID with replacing MLP by local outlier factor

Metric Benign Adversarial Overall
Accuracy 0.953 0.840 0.909

F1 Score 0.927 0.878 0.903

Table 19: Performance metrics for CurvaLID with replacing MLP by isolation forest

Metric Benign Adversarial Overall
Accuracy 0.910 0.902 0.907

F1 Score 0.953 0.833 0.903

B.2.14 CURVALID WITH PROMPTLID OR TEXTCURV ONLY

We demonstrate that both PromptLID and TextCurv are crucial for achieving optimal performance
in CurvaLID. When using only PromptLID as the input feature, the model achieves an accuracy of
0.95. However, combining PromptLID and TextCurv boosts the accuracy to over 0.99, showcasing
the complementary nature of these features. This improvement highlights how TextCurv captures
additional geometric properties that PromptLID alone cannot, enabling a more comprehensive
distinction between benign and adversarial prompts.

Table 20 illustrated the performance of CurvaLID if we only use LID or TextCurv as our features.

Table 20: Ablation study comparing LID and TextCurv for benign and adversarial prompt classifica-
tion.

PromptLID TextCurv
(1st Conv. Layer)

TextCurv
(2nd Conv. Layer)

TextCurv
(Both Conv. Layers)

Benign Acc. 0.987 0.690 0.738 0.960

Adv. Acc. 0.932 0.833 0.809 0.884

Overall Acc. 0.958 0.783 0.783 0.777

F1 Score 0.958 0.781 0.782 0.776

B.2.15 ACCURACY OF CURVALID IN DIFFERENT EMBEDDINGS

We tested CurvaLID using different word embeddings, including popular ones like GPT-2, BERT,
XLNet, and DistilBERT. The experimental results show that CurvaLID performs similarly with around
0.99 overall accuracy, regardless of the word embedding used. Therefore, CurvaLID’s classification
performance is independent of the specific word embedding used, demonstrating its robustness and
adaptability for deployment across different LLMs with varying word embedding representations.

Table 21 shows the accuracy of CurvaLID in different embeddings. The experimental result shows
that CurvaLID maintains a high classification accuracy under different word embeddings.
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Table 21: Performance of CurvaLID with Different Word Embeddings. The table summarizes
the classification accuracy and F1 scores for benign and adversarial prompts using various word
embeddings.

Word Embedding Benign Prompt Accuracy Adv. Prompt Accuracy Overall Accuracy F1
RoBERTa 0.984 1.000 0.992 0.992

GPT-2 0.973 1.000 0.986 0.986

BERT 0.987 1.000 0.994 0.993

XLNet 0.991 0.989 0.990 0.990

DistilBERT 0.970 0.992 0.982 0.980

B.2.16 REDUCTION IN ASR OF VICUNA-7B-V1.5 AFTER APPLYING CURVALID

We measured the reduction in ASR after CurvaLID identified and filtered out the adversarial attacks
in Vicuna-7B-v1.5, using the same settings specified in the respective original adversarial prompt
papers. As shown in Table 22, CurvaLID successfully reduced the ASR of most attacks to zero,
outperforming the studied SOTA defences. The experimental results demonstrate that CurvaLID is
highly applicable to real-world LLMs, effectively safeguarding them by detecting adversarial prompts
before they are processed. Moreover, CurvaLID outperforms SOTA defences, further highlighting its
effectiveness and reliability.

Table 22: Attack success rates (ASR) in percentage after CurvaLID in vicuna-7b-v1.5.

SAP DAN MathAttack GCG PAIR RandomSearch AmpleGCG
Vanilla 69 41 56 95 98 95 97.5

CurvaLID 0 0 0 0 0 0 2.4

B.2.17 REPLACEMENT OF CNN IN CURVALID STEP 1 WITH TRANSFORMER AND RNN
MODELS

We experimented with replacing the CNN architecture (Step 1 of CurvaLID) with Transformer and
RNN models. The experimental results are shown in Table 23. While both Transformer and RNN
achieved comparable detection accuracy (0.98 versus CNN’s 0.992), they required almost two to
three times longer training times. Hence, employing CNN in Step 1 of CurvaLID proves to be the
optimal choice, maintaining high detection accuracy while ensuring relatively low training time. This
demonstrates CurvaLID’s computational efficiency and practicality. Details of the Transformer and
RNN configurations are provided below.

Transformer: The transformer has an input layer, a multi-head attention layer with 4 heads and a
key dimension of 64, followed by layer normalization, a dense layer with 128 units, dropout (rate of
0.1), and a final layer normalization. The model then flattens the output, adds another dense layer
with 128 units, and concludes with a softmax output layer for classification into 4 classes.

RNN: The RNN model begins with an input layer, followed by two stacked LSTM layers with 64
units each (the first LSTM layer returns sequences, while the second does not). After the LSTM
layers, there is a dense layer with 128 units and a ReLU activation, followed by a softmax output
layer for classification into 4 classes. The model is compiled with the Adam optimizer and categorical
cross-entropy loss.

Table 23: Comparison of CurvaLID Architectures

Metric CNN (Original Setting) Transformer RNN
Detection accuracy 0.992 0.984 0.989

Overall training time (min) 14.58 39.01 25.10
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B.2.18 PERFORMANCE OF CURVALID ON ADVERSARIAL PROMPTS WITH REORDERED WORD
SEQUENCES

We utilized GPT-4-o to reorder the words in every sentence of the adversarial prompts while preserving
their semantic meaning. The experimental results, presented in Table 24, demonstrate that CurvaLID
maintains robust performance, achieving an overall accuracy of 0.984 in detecting these adversarial
prompts with altered word order. It is important to note, however, that reordering the words in
adversarial prompts may potentially disrupt their effectiveness as attacks, as the content and intent of
the original prompts could be compromised.

Table 24: Performance metrics for CurvaLID on adversarial prompts with reordered word sequences.

Class Dataset Accuracy Class Acc. Overall Acc. F1

Benign Orca MMLU AlpEval TQA 0.981
0.984 0.9840.993 0.983 0.973 0.973

Adv. SAP DAN MathAtk GCG 0.987
0.983 0.963 1.000 1.000

B.2.19 PERFORMANCE OF CURVALID ON REORDERED PERSUASIVE SOCIAL-ENGINEERED
ADVERSARIAL PROMPTS

In this section, we evaluate CurvaLID on PAIR, DAN, and Persuasive attacks, all of which are
social-engineered persuasive attacks designed to preserve both semantic meaning and adversarial
intent while varying structure (Chao et al., 2023; Shen et al., 2023; Zeng et al., 2024). To introduce
linguistic variations, we utilized GPT-4-o to reorder the words in each sentence of the adversarial
prompts while maintaining their semantic meaning. The experimental setup remains the same as
described in B.2.1, with the addition of 300 DAN prompts. The experimental results, presented
in Table 25, show that CurvaLID consistently achieved over 96% detection accuracy across all
three attack types and maintained a 0% attack success rate on Vicuna. These findings highlight the
robustness of our method, even against sophisticated and linguistically varied prompts specifically
crafted to bypass defences. This robustness underscores CurvaLID’s potential for deployment in
real-world scenarios, where adversarial prompts are likely to exploit linguistic diversity to evade
detection.

Table 25: Performance of CurvaLID on reordered social-engineered attacks

Adversarial attack PAIR DAN Persuasive Attack
Benign accuracy 0.951 0.971 0.966

Adversarial accuracy 0.988 1.000 0.962

Overall accuracy 0.962 0.983 0.964

Attack success rate on Vicuna-7B-v1.5 0 0 0

B.2.20 DIFFERENCES IN PROMPTLID AND TEXTCURV BETWEEN BENIGN AND ADVERSARIAL
PROMPTS UNDER LINGUISTIC REORDERING

We conducted an experiment to investigate the differences in PromptLID and TextCurv between
benign and adversarial prompts after reordering the adversarial prompts. To introduce linguistic
variations, we utilized GPT-4-o to reorder the words in each sentence of the adversarial prompts
while preserving their semantic meaning. For the benign prompts, we tested 100 samples each from
Orca, MMLU, AlpacaEval, and TQA datasets. Similarly, for the adversarial prompts, we tested 100
samples each from PAIR, DAN, and Persuasive attacks (Chao et al., 2023; Shen et al., 2023; Zeng
et al., 2024). Table 26 highlights the geometric differences between benign and adversarial prompts,
demonstrating the effectiveness of our method in capturing these variations. Notably, even after
linguistic reordering of the prompts, both PromptLID and TextCurv continue to exhibit significant
distinctions between benign and adversarial prompts. This ensures that the performance of CurvaLID
remains unaffected by such reordering, further underscoring the robustness and reliability of these
geometric measures in differentiating adversarial inputs.
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Table 26: Geometric differences in TextCurv and PromptLID between benign and adversarial prompts.
The percentages in parentheses indicate the relative increase in adversarial prompts compared to
benign prompts, calculated as (Adversarial − Benign)/Benign × 100.

Geometric Measures TextCurv@Conv Layer 1 TextCurv@Conv Layer 2 PromptLID@Dense Layer
Benign Adversarial Benign Adversarial Benign Adversarial

Average Value 0.644 0.813 (+26.3%) 0.341 0.425 (+24.6%) 3.546 18.223 (+413.8%)

B.2.21 CURVALID WITH SEPARATED BENIGN TRAINING AND TESTING DATA

We conducted an ablation study by training CurvaLID on two benign datasets and testing it on the
remaining two. Specifically, we trained CurvaLID using only Orca and MMLU as benign data and
evaluated it on AlpacaEval and TQA. The results, shown in Table 27, demonstrate an overall detection
accuracy of 0.982, just one percentage point lower than when trained on all four benign datasets.
These findings indicate that CurvaLID’s performance remains robust and is not overly optimistic,
even when tested on unseen benign datasets. This suggests that the geometric features captured by
PromptLID and TextCurv generalize well across different benign datasets, reinforcing the adaptability
of CurvaLID in scenarios where access to a comprehensive set of benign data may be limited.

Table 27: CurvaLID with different training and testing benign datasets

Data class Accuracy by dataset Accuracy by class Overall accuracy F1 score

Benign AlpacaEval TQA 0.9412
0.982 0.980.963 0.9194

Adversarial SAP DAN MathAttack GCG 1
1 1 1 1

B.2.22 CURVALID WITH LONG TEXT LENGTH BENIGN PROMPTS

We conducted an additional experiment to evaluate CurvaLID’s performance on benign prompts
with longer text lengths. Specifically, we calculated the median text length of benign prompts
(106 characters in our experiment), removed all benign prompts with fewer than the median, and
reevaluated CurvaLID’s performance. The results, presented in Table 28 below, show that this
adjustment had minimal effect on detection accuracy. The overall accuracy was 0.990, compared to
0.992 when all benign prompts (without filtering by text length) were included. This confirms that
text length has minimal impact on CurvaLID’s performance, highlighting its robustness and ability
to generalize across prompts of varying lengths. Such adaptability makes CurvaLID particularly
well-suited for real-world applications, where input lengths can vary significantly.

Table 28: CurvaLID on benign prompts over 106 characters

Data class Accuracy by dataset Accuracy by class Overall accuracy F1 score

Benign Orca MMLU AlpacaEval TQA 0.981
0.990 0.9900.922 1.000 1.000 1.000

Adversarial SAP DAN MathAttack GCG 1.000
1.000 1.000 1.000 1.000

B.2.23 CURVALID WITH NON-STANDARD BENIGN PROMPTS

We conducted an experiment to evaluate CurvaLID’s performance on non-standard benign samples.
Specifically, we utilized GPT-4-o to introduce spelling errors by replacing one word in each sentence
of all benign prompts with a misspelled variant. The experimental results are presented in Table 29
below.

Our findings reveal that the detection accuracy by dataset exhibited minimal changes, and the overall
accuracy remained almost identical to the original experiment , which involved benign prompts
without spelling errors. These results demonstrate that introducing spelling errors has a negligible
impact on CurvaLID’s performance, reaffirming its robustness in handling non-standard text inputs.
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Table 29: CurvaLID on benign prompts with spelling errors

Data class Accuracy by dataset Accuracy by class Overall accuracy F1 score

Benign Orca MMLU AlpacaEval TQA 0.985
0.990 0.9900.957 0.983 1.000 1.000

Adversarial SAP DAN MathAttack GCG 0.995
0.990 0.990 1.000 1.000

B.2.24 CURVALID ON HELD-OUT DATASETS (OUT-OF-DISTRIBUTION DATA) AND
PROMPT-LENGTH ROBUSTNESS

We performed two additional robustness evaluations. First, we ran a held-out dataset study across four
benign and four adversarial datasets (200 prompts per dataset). For each run, CurvaLID was trained on
seven datasets and evaluated on the remaining one. Table 30 reports per-dataset accuracy on the held-
out sets, showing consistently high performance (around 0.9), indicating strong out-of-distribution
generalization.

Table 30: CurvaLID detection accuracy on held-out datasets for OOD evaluation.

Dataset Orca MMLU AlpacaEval TruthfulQA GCG PAIR DAN AmpleGCG

Accuracy 0.955 0.94 0.945 0.995 1.0 0.875 1.0 1.0

Second, we assessed robustness to prompt length by training on prompts shorter than 106 characters
(the median benign length) and testing on longer prompts. As summarized in Table 31, the overall
accuracy drops by only 0.05, suggesting minimal sensitivity to prompt length.

Table 31: CurvaLID performance under OOD evaluation on prompt length.

Model Benign Acc. Adv. Acc. Overall Acc.

CurvaLID trained with shorter prompts 0.911 0.965 0.938
CurvaLID 0.984 1.000 0.992

B.2.25 AMPLIFICATION OF TEXTCURV DIFFERENCES THROUGH CNN ACTIVATION

We investigated how TextCurv differs between benign and adversarial prompts across CNN layers in
CurvaLID. As shown in Table 32, we observe that CNN activation significantly amplifies the curvature
gap: the mean TextCurv of adversarial prompts is at least 30% higher than that of benign prompts in
both convolutional layers. In contrast, when calculated using only the word embeddings, the difference
is notably smaller—4.91 for benign prompts versus 5.42 for adversarial prompts—amounting to a
13% increase, less than half of the gap observed in the CNN layers. All results are averaged over 10
independent runs using different random seeds. The experimental settings remain consistent with
those described in Appendix B.1.5.

Table 32: Mean TextCurv values of benign and adversarial prompts based on word embeddings only
and across CNN layer representations in CurvaLID.

Word Embedding Embedding Only Conv Layer 1 Conv Layer 2
Benign Adv. Benign Adv. Benign Adv.

RoBERTa 4.91 5.42 (+13.0%) 0.626 0.881 (+40.7%) 0.325 0.446 (+37.2%)

B.2.26 ANALYSIS OF PROMPTLID AND TEXTCURV DISTRIBUTIONS

Figures 3, 4, and 5 illustrate the distributions of PromptLID and TextCurv for benign and adversarial
prompts. The experiment setting follows B.1.5 and the word embeeding used is RoBERTa. Figure
3 demonstrates that adversarial prompts exhibit a significantly wider range of PromptLID values
compared to benign prompts, with higher average values. This suggests that adversarial prompts
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Figure 3: Distribution of PromptLID values for benign (blue) and adversarial (red) prompts, showing
the number of data points across different PromptLID ranges.

Figure 4: Distribution of TextCurv values in the first convolution layer for benign (blue) and
adversarial (red) prompts, indicating the number of data points for each TextCurv range.

tend to reside in more complex and sparse regions of the feature space. Figures 4 and 5 display the
distributions of TextCurv across the first and second convolution layers, respectively. In both layers,
adversarial prompts show consistently higher curvature values, reflecting their tendency to cause
greater geometric distortions at the word level. These results highlight the ability of PromptLID and
TextCurv to distinguish adversarial prompts based on their unique geometric properties, reinforcing
their utility in adversarial prompt detection.

B.2.27 EFFECTIVENESS OF GLOBAL INTRINSIC DIMENSION IN ADVERSARIAL PROMPT
DETECTION.

Global intrinsic dimension (GID) is another plausible approach for the word-level representation. It
can avoid aggregating the LID for each word by assessing the GID for each word within the prompt
and output a single value. We use the MLE-based estimate from Tulchinskii et al. (Tulchinskii et al.,
2024). However, as shown in Figure 6, GID shows no clear distinction between benign and adversarial
datasets. Instead, it strongly correlates with prompt length, with Pearson and Spearman correlation
coefficients of 0.92 and 0.98, respectively. Even after removing stop words and punctuation, the
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Figure 5: Distribution of TextCurv values in the second convolution layer for benign (blue) and
adversarial (red) prompts, indicating the number of data points for each TextCurv range.

Figure 6: Comparison of average prompt length and global intrinsic dimension (GID) across datasets.

results were similar, with a Pearson correlation coefficient of 0.9, highlighting the limitations of GID
in detecting adversarial prompts.
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B.3 LID ANALYSIS

This section includes supplementary information on LID analysis.

B.3.1 LID ESTIMATION USING METHOD OF MOMENTS

This section provides the pseudo code for estimating LID by the Method of Moments, see Algorithm
B.3.1.

Algorithm 2 LID Estimation using Method of Moments
Input: Dataset, Reference points, Number of neighbors k
For each data point in Dataset:
- Compute pairwise distances r between the data point and all points in Reference.
- Sort distances in ascending order and store them as a.
- Compute the mean of the first k − 1 nearest distances:

m =
1

k − 1

k−1∑
i=1

ai.

- Estimate LID for the data point:
LID =

m

ak −m
.

Output: LID values for all data points.

B.3.2 TOP 10 MOST COMMON NEAREST-NEIGHBORS FOR DIFFERENT PROMPTS IN DIFFERENT
DATASETS

Table 33 shows the top 10 most common nearest-neighbors for different prompts in different datasets.
The results reveal that the common nearest neighbors in the representation space are predominantly
stop words and punctuation. This indicates that word-level LID fails to account for the sequential
structure of text and relies on conjunctions, articles, and punctuation. Consequently, these findings
highlight the limitations of word-level LID in effectively detecting adversarial prompts.

Table 33: Top 10 most common nearest neighbors for each dataset. The angle brackets (<>) are
used to specify punctuation and newline characters in the tokenizer. The visible space symbol ( )
represents a space preceding a word or punctuation.

Dataset Top 10 most common nearest neighbors
SAP to, and, the, <.>, a, of, <,>, <">, that, your

DAN <,>, <.>, <newline>, the, and, to, you, will, not, is

MathAttack the, <,>, of, he, <.>, to, and, she, is, a

GCG text, tto, use, ized, <}>, mar, dt, a, <’>, Guide

Orca the, <,>, <.>, <newline>, and, a, of, to, is, in

MMLU the, <,>, <.>, of, a, to, that, and, in, was

AlpacaEval the, a, to, <,>, of, and, I, <.>, for, <?>

TQA the, <?>, a, you, is, of, that, to, if, in

B.3.3 AVERAGE LID AND STANDARD DEVIATION OF PROMPTS WITH AND WITHOUT STOP
WORDS AND PUNCTUATION

Table 34 shows the average LID and standard deviation of prompts with and without stop words and
punctuation.
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Table 34: Comparison of Average LID and Standard Deviation (SD) of Prompts with and without
Stop Words and Punctuation

Data Type Dataset With Stop Words and Punctuation Without Stop Words and Punctuation
Avg. LID SD Avg. LID SD

Benign

Orca 9.77 2.52 6.08 1.91

MMLU 9.23 2.86 5.64 1.76

AlpacaEval 13.14 104.58 4.07 2.26

TQA 6.29 3.40 3.93 0.65

Adversarial

SAP 12.10 0.55 7.27 0.46

DAN 24.52 244.72 7.18 1.18

MWP 8.98 1.44 4.14 1.28

GCG 8.35 0.40 6.18 0.41

Table 35: Top 10 Most Common Nearest Neighbor Words for each dataset after removing stop words
and punctuation. The symbol represents a space preceding a word or punctuation.

Dataset Top 10 most common nearest neighbors
SAP Remember, write, goal, mission, act, suicide, Use, phrases, use, refer

DAN PT, D, G, AN, Chat, answer, AI, responses, response, respond

MathAttack many, much, would, apples, money, 20, sold, 5, bought, day

GCG use, mar, text, dt, end, ate, c, package, ized, t

Orca answer, à, º, question, à¦, one, following, said, s, Answer

MMLU mortgage, acre, state, contract, deed, would, question, statute, action, s

AlpacaEval drinks, gathering, interested, give, time, home, br, trying, dishes, guests

TQA say, ks, Oz, established, famous, primed, mirror, es, principle, power

B.3.4 TOP 10 MOST COMMON NEAREST NEIGHBOR WORDS AFTER REMOVING STOP WORDS
AND PUNCTUATION

Table 35 shows the top 10 most common Nearest Neighbor words after removing stop words
and punctuation. The experimental result demonstrates that word-level LID is insufficient for
distinguishing between benign and adversarial prompts, even after the removal of stop words and
punctuation.
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B.4 PERFORMANCE OF OTHER SOTA DEFENCES

To ensure a comprehensive evaluation, we organize this section into two parts. In Section B.4.1, we
present results from running SOTA defences on our local environment, providing a consistent and fair
comparison against CurvaLID. In Section B.4.2, we summarize the reported performances of other
SOTA defences cited from their respective papers, offering a broader context across different LLMs.

B.4.1 EVALUATION OF SOTA DEFENCES

In this subsection, we first present the results of evaluating five baseline defences—SmoothLLM
(Robey et al., 2023), Self-Reminder (Xie et al., 2023), Intentionanalysis (Zhang et al., 2024a), In-
Context Demonstration defence (ICD) (Wei et al., 2023), and RTT3d (Yung et al., 2024)—alongside
our proposed CurvaLID. We evaluated these methods across four LLMs: Vicuna-7B-v1.1 (Chiang
et al., 2023), Llama2-7B-Chat (Touvron et al., 2023), GPT-3.5 (Brown, 2020), and PaLM2 (Anil
et al., 2023), and against seven different types of adversarial prompts: GCG (Zou et al., 2023),
PAIR (Chao et al., 2023), DAN (Shen et al., 2023), AmpleGCG (Liao & Sun, 2024), SAP (Deng
et al., 2023a), MathAttack (Zhou et al., 2024b), and RandomSearch (Andriushchenko et al., 2024).
The experiment setting follows B.1.5 and the word embedding used for CurvaLID is RoBERTa.
The experimental results, measured by ASR (%), are reported in Tables 36. CurvaLID consistently
outperforms the baseline defences across most scenarios. We emphasize that all results are obtained
through independent evaluation under a unified experimental setup.

Table 36: We compare CurvaLID with state-of-the-art defences, including SmoothLLM (Robey et al.,
2023), Self-Reminder (Xie et al., 2023), Intentionanalysis (Zhang et al., 2024a), ICD (Wei et al.,
2023), and RTT3d (Yung et al., 2024). The best results are boldfaced.

LLM defence GCG PAIR DAN AmpleGCG SAP MathAttack RandomSearch

Vicuna-7B

No defence 86.0 98.0 44.5 98.0 69.0 24.0 94.0

SmoothLLM 5.5 52.0 13.0 4.2 44.6 22.0 48.5
Self-Reminder 9.5 48.0 35.5 11.5 25.2 22.0 6.0

Intentionanalysis 0.0 8.5 3.3 0.3 0.23 20.0 0.0
ICD 0.2 5.2 40.4 0.9 32.8 22.0 0.2

RTT3d 0.2 0.3 22.0 3.5 33.5 20.2 2.5
CurvaLID 0.0 0.0 0.0 1.1 0.0 0.0 0.0

LLaMA2-7B

No defence 12.5 19.0 2.0 81.0 9.5 11.7 90.0

SmoothLLM 0.0 11.0 0.2 0.2 1.2 11.2 0.0
Self-Reminder 0.0 8.0 0.3 0.0 0.0 11.1 0.0

Intentionanalysis 0.0 5.8 0.7 0.0 0.0 11.2 0.0
ICD 0.0 2.7 0.8 0.0 0.0 10.8 0.0

RTT3d 0.2 0.2 1.8 0.4 5.5 9.8 0.8
CurvaLID 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GPT-3.5

No defence 12.0 48.0 6.33 82.0 0.9 10.5 73.0

SmoothLLM 0.0 4.9 0.3 0.7 0.0 10.9 0.0
Self-Reminder 0.0 0.9 2.5 0.3 0.1 11.2 0.0

Intentionanalysis 0.0 0.9 0.8 0.3 0.0 10.0 0.0
ICD 0.0 0.7 0.9 0.4 0.4 9.9 0.0

RTT3d 0.3 0.2 0.8 0.2 0.7 7.6 0.0
CurvaLID 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PaLM2

No defence 14.9 98.0 49.7 88.9 55.1 18.9 91.9

SmoothLLM 5.5 38.7 6.7 7.2 41.2 9.8 45.3
Self-Reminder 2.3 36.7 22.3 4.7 21.4 13.3 3.7

Intentionanalysis 0.0 2.3 1.3 0.9 0.0 9.7 0.0
ICD 0.1 4.9 34.2 0.2 33.9 9.3 0.0

RTT3d 0.1 0.1 25.5 3.3 25.0 10.2 2.8
CurvaLID 0.0 0.0 0.0 0.0 0.0 0.0 0.0

We also evaluated constrained SFT(Qi et al., 2025), using the fine-tuned Gemma-2-9B model released
by the authors on GitHub and HuggingFace. The experimental results are shown in Table 37. We
observe that constrained SFT is effective in mitigating attacks that rely on gibberish prefixes or
suffixes, such as GCG and AmpleGCG, but fails to defend against social-engineering-based attacks
like PAIR, DAN, and SAP. Most importantly, CurvaLID outperforms the constrained SFT defence
across all adversarial attack types.
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Table 37: Comparison of defences on Gemma-2-9B, measured by ASR (%).

LLM defence GCG PAIR DAN AmpleGCG SAP MathAttack RandomSearch

Gemma-2-9B
No defence 90.2 23.8 80.0 81.3 44.5 22.8 94.5

Constrained SFT 22.5 28.5 83.5 29.2 78.8 22.0 90.0
CurvaLID 0.0 0.0 0.0 2.1 0.0 0.0 0.0

B.4.2 REPORTED PERFORMANCE OF EXISTING DEFENCES

We summarize the reported performances of other SOTA defences cited from their respective papers
across different LLMs, focusing on their ability to reduce the ASR of adversarial prompts and
compare this to CurvaLID’s unified performance. CurvaLID outperforms the studied defences and
maintains consistent performance across all LLMs. While we primarily compare four key defences in
this subsection—SmoothLLM (Robey et al., 2023), Intentionanalysis (Zhang et al., 2024a), RTT3d
(Yung et al., 2024), and LAT (Sheshadri et al., 2024)—which are considered SOTA or represent some
of the most recent developments, we also experimented with other defences like Gradient Cuff (Hu
et al., 2024), SELFDEFEND (Wang et al., 2024), SafeDecoding (Xu et al., 2024a), Circuit Breakers
(Zou et al., 2024), Llama Guard (Inan et al., 2023), and perplexity-based filtering (Alon & Kamfonas,
2023).

Given the computational and time constraints associated with replicating results and testing across
multiple LLMs, we have cited the performance figures for these defences from their respective papers.
This approach ensures fairness, as different studies report varying results for these defences when
replicating them against different adversarial prompts and across different models. Therefore, we
rely on the original reported performances to provide a balanced and consistent comparison. Note
that since the results for these defences are primarily based on English adversarial prompts in their
respective papers, our analysis here is focused solely on English prompts.

defences based on input perturbation demonstrate mixed results depending on the LLM and the
nature of the adversarial attack. For instance, Intentionanalysis reduces the ASR to between 0.03%
and 8.34%, but it struggles with models like Vicuna-7B and MPT-30B-Chat, where the ASR for the
SAP attack can reach nearly 20%. Similarly, while SmoothLLM can reduce the ASR to nearly 0%
in various LLMs, it fails against PAIR attacks, showing ASRs of 46% in Vicuna-13B and 24% in
GPT-4. RTT3d, as the first defence against MathAttack, managed to mitigate 40% of MathAttack in
GPT4, but it failed to reduce the ASR to under 10%. LAT achieves near-zero ASR for models like
Llama2-7B-Chat and Llama3-8B-Instruct. However, its reliance on a white-box setting and its testing
on models with fewer than 10 billion parameters limit its broader applicability.

In the remainder of this subsection, we present the defensive performance of the SOTA defences.
The performance figures for all defences are directly cited from their original papers due to the
computational and time constraints involved in replicating results and testing across various LLMs.
This approach ensures consistency and fairness in comparison, as the results reported by different
studies often vary when replicating these defences on different adversarial prompts and models. By
relying on the figures from the original sources, we aim to provide an accurate and balanced reflection
of each defence’s performance.

The following are the experimental settings and performances of the seven defences we studied.
Note that it includes various LLMs, namely Vicuna (Chiang et al., 2023), Llama-2 (Touvron et al.,
2023), Llama-3 (AI@Meta, 2024), GPT-3.5 (Brown, 2020), GPT-4 (Achiam et al., 2023), PaLM2
(Anil et al., 2023), Claude-1 (Anthropic, 2023a), Claude-2 (Anthropic, 2023b), ChatGLM-6B (Zeng
et al., 2022), MPT-30B-Chat (Team, 2023), DeepSeek-67B-Chatand (Bi et al., 2024). It also includes
various adversarial prompts, namely, GCG (Zou et al., 2023), PAIR (Chao et al., 2023), DAN (Shen
et al., 2023), AmpleGCG (Liao & Sun, 2024), SAP (Deng et al., 2023a), MathAttack (Zhou et al.,
2024b), RandomSearch (Andriushchenko et al., 2024), Prefill (Haizelabs, 2023), Many-Shot (Anil
et al., 2024), AutoDAN (Liu et al., 2023), TAP (Mehrotra et al., 2023), Jailbroken (Wei et al., 2024),
LRL (Yong et al., 2023), DrAttack (Li et al., 2024), Puzzler (Chang et al., 2024), MultiJail (Deng
et al., 2023b), DeepInception (Li et al., 2023a), and Template (Yu et al., 2023).

SmoothLLM Detailed experimental settings are referred to (Robey et al., 2023). The experimental
results are shown in Table 38.
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Table 38: ASR comparison of different LLMs against adversarial prompts under SmoothLLM defence.
Results are directly cited from the original paper. A dash (-) indicates that experiments were not
conducted for this setting in the original paper.

LLM Adversarial Prompt
GCG PAIR RandomSearch AmpleGCG

Vicuna-13B-v1.5 0.8 46 44 2

Llama-2-7B-chat 0.1 8 0 0

GPT-3.5 0.8 2 0 0

GPT-4 0.8 24 0 0

PaLM-2 0.9 - - -

Claude-1 0.3 - - -

Claude-2 0.3 - - -

Latent Adversarial Training Detailed experimental settings are referred to (Sheshadri et al., 2024).
The experimental results are shown in Table 39.

Table 39: ASR comparison of different LLMs against adversarial prompts under LAT defence.
Results are directly cited from the original paper.

LLM Adversarial Prompt
PAIR Prefill AutoPrompt GCG Many-Shot

Llama2-7B-chat 0.025 0.029 0.006 0.007 0

Llama3-8B-instruct 0.0033 0.0068 0 0.009 0

Gradient Cuff Detailed experimental settings are referred to (Hu et al., 2024). The experimental
results are shown in Table 40.

Table 40: ASR comparison of different LLMs against adversarial prompts under Gradient Cuff
defence. Results are directly cited from the original paper.

LLM Adversarial Prompt
GCG AutoDAN PAIR TAP Base64 LRL

Llama2-7B-chat 0.012 0.158 0.23 0.05 0.198 0.054

Vicuna-7B-v1.5 0.108 0.508 0.306 0.354 0 0.189

Intentionanalysis Detailed experimental settings are referred to (Zhang et al., 2024a). The experi-
mental results are shown in Table 41.

Table 41: ASR comparison of different LLMs against adversarial prompts under Intentionanalysis
defence. Results are directly cited from the original paper. A dash (-) indicates that experiments were
not conducted for this setting in the original paper.

LLM Adversarial Prompt
DAN SAP200 DeepInception GCG AutoDAN

ChatGLM-6B 5.48 6.12 0 1 2

LLaMA2-7B-Chat 0.13 0 0 0 0

Vicuna-7B-v1.1 3.42 0.31 0 0 10.5

Vicuna-13B-v1.1 0.94 1.12 0 0 3.5

MPT-30B-Chat 5.38 19.2 4.78 4 -

DeepSeek-67B-Chat 3.78 1.56 7.57 2 -

GPT-3.5 0.64 0 0 0 -

SELFDEFEND Detailed experimental settings are referred to (Wang et al., 2024). The experimental
results are shown in Table 42.
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Table 42: ASR comparison of different LLMs against adversarial prompts under SELFDEFEND
defence. Results are directly cited from the original paper.

LLM Adversarial Prompt
DAN GCG AutoDAN PAIR TAP DrAttack Puzzler MultiJail

GPT-3.5 0.007 0.18 0.31 0.29 0.02 0.71 0.22 0.203

GPT-4 0.002 0 0.01 0.1 0.08 0.04 0.26 0.012

RTT3d Detailed experimental settings are referred to (Yung et al., 2024). The experimental results
are shown in Table 43.

Table 43: ASR comparison of different LLMs against adversarial prompts under RTT3d defence.
Results are directly cited from the original paper. A dash (-) indicates that experiments were not
conducted for this setting in the original paper.

LLM Adversarial Prompt
PAIR GCG SAP MathAttack

GPT-3.5 - - 0.06 9.8

GPT-4 0.265 - - -

Llama-2-13B-Chat 0.043 0.17 - -

Vicuna-13B-v1.5 0.26 0.15 - -

PaLM-2 0.13 - - -

SafeDecoding Detailed experimental settings are referred to (Xu et al., 2024a). The experimental
results are shown in Table 44.

Table 44: ASR comparison of different LLMs against adversarial prompts under SafeDecoding
defence. Results are directly cited from the original paper.

LLM Adversarial Prompt
GCG AutoDAN PAIR DeepInception SAP30 Template

Vicuna-7B 0.04 0 0.04 0 0.09 0.05

Llama2-7B-Chat 0 0 0.04 0 0 0

Circuit Breakers Detailed experimental settings are referred to (Zou et al., 2024). The experimental
results are shown in Table 45.

Table 45: Comparison between CurvaLID and Circuit Breakers on LLaMA-3-8B. Results are reported
in terms of ASR (%).

LLM defence Adversarial Prompt

GCG PAIR DAN AmpleGCG SAP RandomSearch

LLaMA-3-8B
Circuit Breakers 2 3.33 0 2.5 0 0

CurvaLID 0 0 0 2.5 0 0

Llama Guard Detailed experimental settings are referred to (Inan et al., 2023). The experimental
results are shown in Table 46.

Table 46: Comparison of LLaMA Guard 3 and CurvaLID. Results are reported in terms of ASR (%).

defence PAIR DAN SAP AutoDAN GCG AmpleGCG MMLU AlpacaEval

LLaMA Guard 3 0 0 0 0 0 0 0.09 0.01
CurvaLID 0 0 0 0 0 0.025 0 0.02

Perplexity-based filtering Detailed experimental settings are referred to (Alon & Kamfonas, 2023).
The experimental results are shown in Table 47.
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Table 47: Comparison of Perplexity Filtering and CurvaLID. Results are reported in terms of ASR
(%).

defence GCG AmpleGCG DAN AutoDAN SAP PAIR Persuasive Attack

Perplexity Filtering 0 0 0.475 0.38 1 0.624 0.76
CurvaLID 0 0.015 0 0 0 0 0

C LLM USAGE

This research directly concerns LLMs, and all experiments necessarily involved their usage. In
addition, we used LLMs in a limited capacity to aid and polish the writing of this paper.
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