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Abstract

Scaling language models improves perfor-
mance but comes with significant computa-
tional costs. This paper proposes UL2R, a
method that substantially improves existing
language models and their scaling curves with
a relatively tiny amount of extra compute. The
key idea is to continue training a state-of-the-
art large language model on a few more steps
with UL2’s mixture-of-denoiser objective.
We show that, with almost negligible extra
computational costs and no new sources of
data, we are able to substantially improve the
scaling properties of large language models on
downstream metrics. In this paper, we continue
training a baseline language model, PaLM,
with UL2R, introducing a new set of models
at 8B, 62B, and 540B scale which we call U-
PaLM. Impressively, at 540B scale, we show an
approximately 2x computational savings rate
where U-PaLM achieves the same performance
as the final PaLM 540B model at around half
its computational budget (i.e., saving∼4.4 mil-
lion TPUv4 hours). We further show that this
improved scaling curve leads to “emergent abil-
ities” on challenging BIG-Bench tasks—for
instance, U-PaLM does much better on some
tasks or demonstrates better quality at much
smaller scale (62B as opposed to 540B). Over-
all, we show that U-PaLM outperforms PaLM
on many few-shot setups, including reasoning
tasks with chain-of-thought (e.g., GSM8K),
multilingual tasks (MGSM, TydiQA), MMLU
and challenging BIG-Bench tasks.

1 Introduction

There has been significant interest in scaling of
language models [Rae et al., 2021, Chowdhery
et al., 2022, Brown et al., 2020]. Scaling has
inspired new research across multiple fronts, e.g.,
scaling laws [Kaplan et al., 2020, Hoffmann et al.,
2022, Tay et al., 2022a], emergent abilities [Wei

†Work completed while at Google.
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Figure 1: Compute (training flops) versus Quality
(average of 20+ NLP zero and few-shot tasks listed
in Appendix 11.2). The black dotted line shows the
path from initialization from a PaLM checkpoint and
training further with UL2R.

et al., 2022a, Ganguli et al., 2022], reasoning
capabilities [Wei et al., 2022b, Lewkowycz et al.,
2022], inter alia. Generally, scaling laws predict a
continued improvement in language model quality
as we continue to scale up the computational budget
(e.g., bigger models or more data). To date, most
large language models that form the basis of scaling
law research are trained almost exclusively as
left-to-right causal language models [Kaplan et al.,
2020, Hoffmann et al., 2022].

This paper proposes a new method to dra-
matically improve the scaling curves of large
language models on downstream performance with
a relatively tiny amount of additional computation
cost. The key idea is to continue training an existing
causal language model [Chowdhery et al., 2022]
with a mixture of new objectives—specifically, the
UL2 training objective mixture [Tay et al., 2022b].
This restoration is expected to only cost roughly
0.1% to 1% of the original training FLOPs and
requires no new data sources, making it highly
efficient and convenient. We call this approach
UL2R or UL2Restore.

The UL2 objective combines prefix language
modeling and long-short span corruption (e.g., infill-



ing) tasks [Raffel et al., 2019] that can be controlled
at inference time using a mode switching prompt.
Training a large language model with UL2 can be
interpreted as teaching it to leverage bidirectional
attention (i.e., PrefixLM) or leverage infilling-style
pretraining that have been the foundation of lan-
guage understanding (e.g., T5 [Raffel et al., 2019]).
To this end, we postulate that imbuing a state-of-the-
art large language model such as PaLM [Chowdhery
et al., 2022] with these diverse pretraining schemes
as a complement to the original language model ob-
jective, enables the model to perform significantly
better. Moreover, the UL2 objective enables new
prompting capabilities in PaLM which allows it to
perform infilling based prompting.

We show that adapting PaLM with UL2R not
only results in significantly better scaling laws on
well-established few-shot NLP tasks, but also, in
our scaling experiments on downstream few-shot
tasks, we show that UL2R is two times more
efficient (computation savings of approximately 2x)
at 540B scale - reaching the performance of the final
PaLM 540B model with only half the computation,
saving up to 4.4 million TPUv4 hours.

In addition to competitive performance across a
range of well-established NLP [Wang et al., 2019],
multilingual [Clark et al., 2020a, Shi et al., 2022],
and reasoning [Cobbe et al., 2021] benchmarks,
we also study the impact of UL2R on a suite of
challenging BigBench tasks from Wei et al. [2022a].
Notably, a subset of tasks are described as ‘emer-
gent‘ because PaLM’s performance remains flat up
to model scale of 62B and only becomes better than
non-random at 540B scale. On these set of tasks,
we find that UL2R enables (1) doing significantly
better at tasks that PaLM struggles at (e.g., navigate,
geometric shapes, hyperbaton) and (2) elicits
emergent behavior at a smaller scale such as 62B
or 8B (e.g., crass ai, vitaminc fact verification). On
top of that, U-PaLM strongly outperforms PaLM
on some challenging BigBench tasks.

Emergence within the context of large language
models is a nascent research area. As the Nobel
prize-winning physicist Philip Anderson put
it, ‘More is different.‘ [Anderson, 1972] which
describes unpredictable phenomena at different
scales. In our context and with mixture-of-denoisers
in UL2, we would like to think of this phenomena
as ‘More is different, but different can also more’
since different pretraining objectives can improve
language model quality or elicit new emergent

abilities. This work shows that diversity and richer
training paradigms can be key to learning new
capabilities that were previously hard to acquire
with only causal language modeling.

Finally, in addition to emergent task performance
and overall improved scaling curves, we show that
U-PaLM is also practically more useful since it is
equipped with a secondary mode of prompting, i.e.,
bidirectional infilling. Specifically, UL2R enables a
secondary capability for prompting U-PaLM which
can be used to fill in more than one blanks in the in-
put prompt. Interestingly, we find that only a small
amount of UL2R (e.g., 0.1% tokens or FLOPs) is suf-
ficient to imbue the model with this new capability.

2 U-PaLM

This section introduces the technical details of U-
PaLM (i.e., PaLM + UL2R). U-PaLM is initialized
from PaLM and leverages the same architecture.
This section describes the training procedures of
UL2R and how they are applied to continue training
PaLM. We refer the reader to Section 10 in the Ap-
pendix for a comprehensive review of related work.

2.1 Training Data

To keep things consistent, we train this model with
the same data mixture as PaLM and do not rely on
additional sources of data (labeled or unlabeled).

There are three main reasons for this choice.
Firstly, we did not want to introduce new tokens to
our training process which could conflate findings.
Secondly, we did not want to over-index on scaling
studies that only measure impact on upstream cross
entropy [Hernandez et al., 2022] which claims
that repeating data in small quantities could be
dis-proportionally harmful. Since the empirical
results we obtained are strong, we postulate that
repeating tokens could perhaps be not harmful at
smaller quantities after all. This is also backed by
the continued training of PaLM 62B in [Chowdhery
et al., 2022] which showed that repeated data could
result in small gains, albeit not as strong as fresh to-
kens. Thirdly, we consider our data transformation
(via UL2) on the training data sufficiently unique
and therefore prevents us from explicitly training on
the same data with the exact objective or suffering
from any memorization issues.

2.2 Prefix Language Model Architecture

We train U-PaLM using the prefix language model
(PrefixLM) architecture, also sometimes known as



a non-causal decoder-only model. The PrefixLM
architecture keeps a non-causal mask in its prefix
(or inputs) and applies bidirectional attention to
input tokens.

In this architecture, we use a total combined
sequence length of 2048 (e.g., PaLM’s sequence
length) which is then split to 1024 inputs and 1024
targets. In the original UL2 paper and infrastructure,
an artifact of its preprocessing pipeline applies
padding tokens first before combining inputs
and targets. For decoder-only language models,
this is inefficient since we would end up with a
concatenation of [prefix] [prefix’s padding]
[target].

In this work, we optimize the Prefix padding by
forcing the model to concatenate prefix and target
before applying any additional padding. Packing,
trimming and padding is then subsequently applied
later after the prefix has been concatenated with
the targets. Through this prefix optimization, we are
able to improve example-level sample efficiency
of the model.

2.3 Loss Objectives

This section describes the setting for the UL2
mixture-of-denoisers that we use in UL2R. The
UL2 mixture-of-denoiser objective comprises of
three types of denoisers.

• Regular denoising whereby the noise is sampled
as spans, replaced with sentinel tokens. This is also
the standard span corruption task used in Raffel
et al. [2019]. Spans are typically uniformly sam-
pled with a mean of 3 and a corruption rate of 15%.

• Extreme denoising whereby the noise is increased
to relatively ‘extreme‘ amounts in either a huge
percentage of the original text or being very long
in nature. Spans are typically uniformly sampled
with a mean length of 32 OR a corruption rate of
up to 50%.

• Sequential denoising whereby the noise is always
sampled from the start of the text to a randomly
sampled point in the text. This is also known as
the PrefixLM objective (not to be confused with
the architecture).

We kept this simple since many ablations were
already explored in Tay et al. [2022b]. We kept the
original 7 denoisers as the initial version but later
found that a mixture of only three tasks, e.g., 50%
PrefixLM, 25% Long (extreme) span corruption,
and 25% regular span corruption to be quite simple

and efficient for the setup of continued training. We
kept the original mode prompting tokens in the orig-
inal UL2 design. We used [S2S] for S-denoisers
(PrefixLM), [NLU] for R-denosiers and [NLG] for
X-denoisers. The 540B U-PaLM model was mainly
trained with 50% S-denoiser (PrefixLM), 25%
R-denoisers, and 25% X-denoisers.

2.4 Training

We train the 540B model for a total of 20k steps with
a batch size of 32. We mildly ablate these settings in
early experiments with 62B and 8B models but keep
them capped within a certain ballpark (e.g., 128
batch size for 50k steps). As a result, this is more
similar to ‘finetuning’ as compared to full pretrain-
ing. The number of additional tokens is therefore
very negligible compared to the original pretraining
run often coming in at around or less than 0.1% ad-
ditional compute. The total number of extra tokens
we train on for the 540B model is approximately 1.3
billion which constitutes 0.16% extra computation,
as the original PaLM model was pretrained on
780B tokens. We use a cosine learning rate decay
schedule that anneals the learning rate from 10−4 to
10−6. Notably, we also tried a low constant learning
rate and found them to perform quite identically.
Our U-PaLM 8B and 62B models are trained using
64 TPUv4 chips. Training an U-PaLM 540B model
only consumes 512 TPUv4 chips and finishes in
about 5 days which is considered to be lightweight.

3 Experiments

3.1 Improved
Scaling Properties on Few-shot Learning

In this experiment, we show improved scaling
curves from small amounts of UL2R training on
top of both PaLM 8B and PaLM 540B. We use
downstream metrics and few-shot evaluation since
(1) this is closer to usability of these models and
(2) loss with UL2 and causal language modeling is
not comparable. We initialized and trained multiple
U-PaLM models using different PaLM intermediate
checkpoints. On the 8B model, we repeated this
7 times at different intervals. Given that the 540B
model was more computationally demanding, we
only managed to fit 3 points. For evaluation, we use
the average score of NLU and NLG tasks from the
GPT-3 suite [Brown et al., 2020]. In total we use
26 tasks (e.g., TriviaQA, NaturalQuestions, Super-
GLUE, PIQA, OpenbookQA, ANLI etc). Detailed
scores for Figure 2 can be found in the Appendix.
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Figure 2: Computation cost (training flops) [Dehghani et al., 2021] versus Quality (average of 20+ NLP zero and
few-shot tasks). The dotted line shows the path from initialization from a PaLM checkpoint and training further with
UL2R. These plots also present pairs of PaLM and U-PaLM models with comparable/similar performance along
with the ratio of PaLM computation cost vs the corresponding U-PaLM computation cost. For example, PaLM 540B
trained for ∼ 2500 zFLOPs (right most point) took ∼ 2.35 times of the computation cost of U-PaLM 540B trained
for∼1075 zFLOPs, while both models are comparable in terms of performance on zero/few shot on NLP tasks.
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Figure 3: Break down scores of individual zero-shot and one-shot NLP tasks for PaLM and U-PaLM 540B trained
for 780B tokens. U-PaLM outperforms PaLM 540B and achieves SOTA on 21 out of 26 tasks.

Figure 2 shows that U-PaLM substantially
outperforms the original PaLM models both at 8B
scale and 540B scale. Note that the dotted lines
represent a pathway before and after UL2R training,
we show that UL2R training improves the scaling
curve of PaLM substantially, i.e., UL2R provides a
more compute-efficient performance improvement
compared to training the original PaLM models for
longer with the standard causal language modeling
objective.

8B versus 540B Generally, UL2R consistently
improves the underlying PaLM models. Neverthe-
less, we observe different behaviors on the 8B and
540B models. The gap seems to narrow as the perfor-
mance of PaLM 8B starts to plateau, i.e., the largest
gains are near to the middle of training. As for 540B,
the gain continues to grow even at 780B tokens. We
believe that this is due to the fact that PaLM 540B
still has significant headroom beyond 780B tokens.

Savings Rate At a certain stage of training, we
have an option to continue training for K more steps

using the standard causal language modeling objec-
tive OR applying UL2R for a small amount of steps.
Here we discuss the counterfactual savings rate of
choosing UL2R as opposed to continue training
with caussal language modeling. For the 540B
model, the saving rates at the middle checkpoint
is approximately 2x. This is equivalent to about 4.4
million TPUv4 hours for the 540B model. For the
8B model, the saving rate tend to be lowest at both
the start and convergence of the model. It seems
to be higher at middle stages of training (relative
to convergence) which shows that the utility of
UL2R changes with respect to the amount of causal
language modeling training already done. For the
540B model, since the PaLM model was not trained
to convergence and the number of tokens to param-
eters ratio is relatively low, the savings rate could
still be increasing even beyond 2.35x. Overall, the
amount of savings is quite proportionate to the point
of training and stage of convergence of the model
and can probably be predicted by standard scaling
laws [Kaplan et al., 2020, Hoffmann et al., 2022].



Table 1: List of challenging tasks in the BigBench emergent suite (BBES) and corresponding scores of PaLM 540B
and U-PaLM 540B. All results are reported with standard 5-shot prompting.

task task /reasoning type PaLM 540B U-PaLM 540B

navigate arithmetic, logical 55.3 67.0 (+21.2%)
strategyqa multi-step 73.9 78.3 (+6.0%)
crass_ai commonsense 97.7 100 (+2.4%)
logical_sequence commonsense 92.3 86.5 (-6.7%)
vitaminc_fact_verification contextual, commonsense 70.2 73.9 (+5.3%)
understanding_fables commonsense 75.7 78.4 (+3.6%)
identify_odd_metaphor analogical 87.2 87.5 (+0.3%)
hyperbaton contextual QA 54.2 59.9 (+10.5%)
causal_judgment causal and commonsense 65.3 68.4 (+4.7 %)
english_proverbs commonsense, contextual QA 91.2 87.5 (-4.2%)
geometric_shapes algorithmic, visual 44.0 49.3 (+12.0%)
physics_questions logical, physics, math 7.6 12.5 (+64.5%)
snarks commmonsense 69.1 86.1 (+24.6%)
analogical_similarity analogical 36.5 37.5 (+2.7%)
international_phonetic_alphabet_nli reading comprehension 65.9 68.0 (+3.2%)
movie_dialog_same_or_different commonsense, reading compre. 64.8 68.8 (+6.2%)
timedial commonsense, logical 78.3 81.2 (+3.7%)
question_selection reading comprehension 54.8 59.8 (+9.1%)
logical_fallacy_detection logical reasoning 80.3 81.4 (+1.4%)
unit_interpretation arithmetic, logical 47.0 51.0 (+8.5%)
language_identification multilingual 36.0 38.9 (+8.1%)

average (21 tasks) - 64.3 67.7 (+5.3%)
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Figure 4: Scaling plots on BIG-Bench emergent suite (BBES) for different sizes of PaLM, U-PaLM, Gopher, and
GPT-3 as a function of training FLOPs. Scores are normalized scores where zero denotes more or less random
performance. X-axis is in log-scale.

Breakdown on individual tasks Figure 3
reports the individual scores on each zero and
one-shot task in the mixture. We show that U-PaLM
540B outperforms PaLM 540B on 21 out of 26
tasks. Given that PaLM is the SOTA language
model on these tasks, this makes U-PaLM the new
state-of-the-art on these tasks.

3.2 BigBench Emergent Suite

We select a suite of challenging tasks from
BigBench based on a criterion that performance on
PaLM on these tasks remain relatively flat-lined at
8B and 62B scale but suddenly unlocks at 540B. We
also consider tasks that are difficult for PaLM 540B
to solve (near random performance). We call these



Table 2: Results on finetuning on SuperGLUE and TydiQA dev sets.

PaLM 8B U-PaLM 8B PaLM 62B U-PaLM 62B

SuperGLUE (Avg) 83.4 86.1 (+3.2%) 89.5 91.4 (+2.1%)
TydiQA (EM/F1) 75.7 / 85.2 77.5 (+2.3%) / 86.7 (+1.7%) 78.3 / 87.3 78.4 (+0.1%) / 88.5 (+2.1%)

Table 3: Results on Massively Multi-Task Language
Understanding (MMLU) test set.

Method Accuracy

Random 25.0%
Average Human Rater 34.5%
GPT-3 5-shot 43.9%
Gopher 5-shot 60.0%
Chinchilla 5-shot 67.6%

PaLM 540B 5shot 69.3 %
U-PaLM 540B 5-shot 70.7 % (+2.0%)

suite of tasks EMERGENT suite of BigBench tasks
(BBES) as inspired by the criterion set by Wei et al.
[2022a]. Note that while these set of tasks overlap
but are not entirely identical to BBH [Suzgun
et al., 2022]. Moreover, BBES uses the default
prompting and templates as BIG-Bench and do not
use chain-of-thought prompting. Hence, they are
not entirely comparable. BBH results can be found
later in section 11.1.3.

3.2.1 BIG-Bench Results
Table 1 reports the results of PaLM 540B and
U-PaLM 540B on the BigBench emergent suite. We
also describe the task and reasoning task for each
task. Note that some tasks require a conjunction
of various ‘skills’ to excel at. For example, the
navigate task is a combination of spatial reasoning
and arithmetic (counting).

Overall results and Scaling Plots We observe
that U-PaLM outperforms PaLM on 19 out of the
21 tasks at 540B scale. Moreover, the gains on
certain tasks are substantial (e.g., 55.3%→67.0%)
on navigate and 69.1%→86.1% on snarks). On
average, there is a +5.4% relative quality gain on
the un-normalized aggregated average across all 21
tasks which we consider to be pretty strong results.
Figure 4 which shows the scaling plots of U-PaLM
relative to other models. Whenever possible, we
also include baselines such as GPT-3 or Gopher
from the official BIG-Bench repository.

UL2R unlocks emergent task performance at
smaller scales Scale (e.g., scaling to 540B) is

known to be one factor that results in emergent
task performance [Wei et al., 2022a]. We show
that UL2R is able to elicit emergent abilities
at smaller scales. For example, the quality
on certain tasks such as crass_ai, vitaminc,
identify_odd_metaphors are tasks where
performance starts to spike at 62B scale (as
opposed to only at 540B with the PaLM model.
In rarer occasions, the performance of U-PaLM
8B is even higher than PaLM 62B (e.g., snarks,
understanding_fables). Overall, these results
show that there are strong evidence that inductive
bias (e.g., combinations of prefix language mod-
eling, span corruption based pretraining in UL2)
could be crucial when it comes to unraveling new
abilities in large language models.

3.2.2 MMLU Results
We compare PaLM and U-PaLM on the Massively
Multi-Task Language Understanding (MMLU)
benchmark [Hendrycks et al., 2020]. Table 3 reports
our results on MMLU’s test set. Prior results are
reported from [Hoffmann et al., 2022]. Our results
show that U-PaLM outperforms PaLM on this task
in the 5-shot setup by 2.0% relative gain.

3.3 Finetuning
We conduct experiments on SuperGLUE [Wang
et al., 2019] and TydiQA [Clark et al., 2020a]
finetuning. We conduct experiments at 8B and 62B
scale1. Fine-tuning is conducted with a constant
learning rate for 100k steps with a batch size of
32. Table 2 reports finetuning results. We observe
that there is substantial improvement in fine-tuning
especially at the 8B scale. The gains diminish
slightly at 62B scale but are still modest in general.
We note that PaLM’s fine-tuning performance can
be generally considered weaker than expected. For
instance, PaLM 8B is generally outperformed by a
T5.1.1 large model on the SuperGLUE dev average.
We postulate that training PaLM on UL2 and span
corruption tasks in complement to causal language

1Finetuning at 540B is compute intensive and probably
less relevant for the finetuning setup since large scale LMs are
typically used for prompting. Meanwhile, it is significantly
more likely that smaller models are fine-tuned.



<extra_id_0>2. Mix the 
ingredients.<extra_id_1>4. Pour the 
batter into a pan.<extra_id_2>6. Cool 
the cake.

2. Bake the cake.“Steps to making a cake:
1. Weigh out all the ingredients.
3. Put the a batter into the cake pan.
4. Put it into the oven.
What is the second step? ”

Original Model Input

A. Put the batter into the cake pan. B. 
Put it into the oven. C. Weigh out all 
the ingredients. D. Put the batter into 
the cake pan.

PaLM 540B outputU-PaLM 540B output

“Steps to making a cake:
1. Weigh out all the ingredients.
<extra_id_0>
3. Put the a batter into the cake pan.
4. Put it into the oven.”

Infill Model Input

5. Bake it for 30 minutes. 6. Take it out 
of the oven. 7. Let it cool. 8. Frost it. 9. 
Eat it. [...]

PaLM 540B output

<extra_id_0> 2. Mix the ingredients.

U-PaLM 540B output

(wrong answer)

(not corresponding to infill)

(wrong answer)

“Steps to making a cake:
1. Weigh out all the ingredients.
<extra_id_0>
3. Preheat the oven.
<extra_id_1>
5. Bake the cake.
<extra_id_2>”

Multi-Infill Model Input

7. Take the cake out of the oven. 9. 
Let the cake cool. 11. Decorate the 
cake. 13. Eat the cake. 

PaLM 540B outputU-PaLM 540B output

(not corresponding to infill)

Figure 5: An example of a prompt that is improved by rephrasing to use U-PaLM’s infilling capabilities.

modeling can ameliorate some of its flaws. Our
results ascertains this by showing that U-PaLM
strongly improves quality especially at smaller (8B)
scales.

3.4 Additional Results & Analysis

We conduct additional, extensive, evaluation and
analysis of our approach. Due to space constraints
we refer the reader to Section 11 in the Appendix.
There we provide results for zero-shot and few-shot
NLP tasks including commonsense reasoning,
closed book QA & reading comprehension, reason-
ing & chain-of-thought, and few-shot multilingual
tasks. We find that the improvements from U-PaLM
over PaLM generally hold across these additional
tasks, with major improvements on certain tasks
such as GSM8K (+6.6%) [Cobbe et al., 2021],
BIG-Bench Hard (+10.7%) [Suzgun et al., 2022],
and MGSM (+8.7%) [Shi et al., 2022]. We also
include analysis of BBES performance, scaling
curves for few-shot experiments, and additional
discussion of our methods.

4 Qualitative
Analysis: New Prompting Capabilities

4.1 Infilling Ability

Left-to-right casual language model pretraining
has typically allowed models to provide meaningful
continuations of prompts. With U-PaLM we
observe that, by extending pretraining with a small
amount of UL2 denoising steps, the model is also
able to pick up infilling abilities – where the model
is given a location in the middle of a prompt to fill

in. Notably, with U-PaLM it is possible to query
both the infill style and the traditional style via the
usage of extra ID tokens (as it is used in denoising)
or without, respectively.

In Figure 5, we include example outputs for
PaLM, U-PaLM with traditional prompting, as well
as U-PaLM with infill prompting. We phrase this
particular prompt in two ways: one as a question
that is suitable for traditional prompting via PaLM
and one leveraging U-PaLM’s infill capabilities. In
the traditional phrasing, both PaLM and U-PaLM
do not produce the correct answer. With the infill
phrasing, PaLM ignores the infill token (extra ID
token) as PaLM has not seen it during training, and
instead produces the rest of the steps after step 4.
U-PaLM correctly infills the second step in this
example. Finally, a third example is included to
demonstrate U-PaLM’s ability to infill multiple
slots. These examples demonstrate that, with only
a small amount of additional training, we are able
to expand the functionality of PaLM to serve an
entirely new class of queries.

4.2 Leveraging Specific Pretraining Modes

Recall that via the UL2 objective, R-, X-, and
S-denoisers are associated with the [NLU], [NLG],
and [S2S] mode tokens respectively. S-denoisers
are essentially the PrefixLM objective, while R- and
X-denoisers are variations of span corruption, and
thus are also associated with extra ID tokens which
we can use during prompting for infill (as shown
above.) Given this unique setup, we can control
the mode token during inference to gain access to



<extra_id_0>.

'xanh'“Answer in Vietnamese: the color of 
grass is ”

Original Model Input

'green'

PaLM 540B outputU-PaLM 540B Default output

'xanh lá cây'

U-PaLM 540B [S2S] output U-PaLM 540B [NLG] Infill output

<extra_id_0>.

U-PaLM 540B [NLU] Infill output

(answer in English)
(correct but not 
specific enough)

(wrong answer) (wrong answer)

Figure 6: An example of a prompt that works only when querying a specific pretraining mode.

A cat on a lake
Baking a cake for his sake
He's a cat, he can't bake!

I thought I saw it all,
But then I saw a cat bake a cake,
On top of a lake. 

“A haiku about a cat baking a cake on 
a lake: ”

Original Model Input

A cat on a lake
Baking a cake on a lake
A cat on a lake.

PaLM 540B outputU-PaLM 540B Default output

A cat is baking a cake on a lake.
The cake is a lie.

U-PaLM 540B Default Infill output U-PaLM 540B [NLG] Infill output

A cat on a lake
Baking a cake for his sake
He's a cat, he can't bake!

U-PaLM 540B [NLU] Infill output

I see you baking
A cake on the lake, kitty
It's so appetizing!

A cat on a lake
Baking a cake on a lake
It's a lake cake, cat.

U-PaLM 540B [S2S] output U-PaLM 540B [NLG] output

I thought I saw it all,
But then I saw a cat bake a cake, 
On a lake, no less.

U-PaLM 540B [NLU] output

Figure 7: Querying U-PaLM for diverse outputs by using different prompt mode token and LM/infill combinations.

specific knowledge that might have been acquired
in one mode but not another. This effectively
provides us with more options in how to answer
prompts, without the need to make any changes to
the learned model or its inference algorithm.

In Figure 6, we include a challenging exam-
ple where we ask the model to do zero-shot
cross-lingual question answering from an English
question into a Vietnamese answer. For PaLM
and U-PaLM default, we pass the input as-is to
the model. For the rest, we prepend one of [S2S],
[NLU], or [NLG] to the beginning of the input, and
in the case of [NLU] and [NLG], we add the infill
token at the end of the input, as typical for these
modes. Interestingly, U-PaLM in [S2S] mode is
the only variant that returns the correct answer in
Vietnamese. Regular PaLM produces the correct
answer, but ignores the Vietnamese request, while
U-PaLM with default prompting (no mode, no
infill) produces a roughly correct answer but could
be more specific (’xanh’ encompasses both greens
and blues). This example shows how accessing
specific mode tokens may work well for some
prompts more so than others, giving us a powerful
technique to serve a larger variety of prompts.

Even though [NLU] and [NLG] modes typically
coincide during pretraining with span corruption
(involving extra ID tokens, infilling), we can still
use [NLU] and [NLG] mode tokens with no infilling
at all. Similarly we can use infilling but with

no mode tokens. The variety of ways to prompt
U-PaLM results in a useful technique to increase
the diversity of the outputs we can get from the
model, without resorting to alternative decoding
techniques (e.g. sampling). This is particularly
useful for more open-ended prompts.

In Figure 7, we ask PaLM and all variants of
querying U-PaLM to write a haiku about "a cat
baking a cake on a lake" - a very random prompt
that the model is unlikely to see during training,
yet requires very structured output. All outputs
use greedy decoding here, and surprisingly all
models generate reasonable haikus about the topic,
although not all follow a strict 5-7-5 syllable
structure. PaLM’s haiku repeats the first and last
line, which is somewhat less interesting. We can
see that the different combinations of querying
U-PaLM results in pleasantly varying poems.

4.3 Improved
Diversity for Open-ended Generation

Beyond improving the scaling behavior of PaLM,
we find that the small amount of continued training
applied in UL2R is sufficient to imbue PaLM with
new prompting abilities introduced by the UL2
objective. Namely, the use of denoising in UL2
allows PaLM to acquire infilling abilities. Infilling
allows U-PaLM to have a second approach to
tackling prompts, which we observe to be very
useful. In addition, with U-PaLM we can also



supply mode tokens to gain access to specific
pretraining objectives. This gives us a powerful tool
to control the model without making any updates to
the model or its inference. In this section we provide
some examples of situations where U-PaLM’s
expanded prompting capabilities prove to be useful.

5 Conclusion

We proposed UL2R for continued training of PaLM.
We show that with only≈0.1% additional FLOPs
(or compute), we are able to improve the scaling
curve and properties of PaLM on many downstream
tasks and metrics. Notably, UL2R enables a 4.4
million TPUv4 savings at 540B scale. The resulting
model which we call U-PaLM outperforms PaLM
on English NLP tasks (e.g., commonsense reason-
ing and closed-book question answering), reasoning
tasks with chain-of-thought, multilingual reasoning,
MMLU and a suite of challenging BIG-Bench tasks.

6 Limitations

In this work we show the effectiveness of continued
training of a 540B PaLM model with UL2R
over conditional language modeling alone. We
only demonstrate this for the PaLM model and
pretraining corpus. Our study is only a demon-
stration of what is possible with an example near
state-of-the-art system, and we do not provide
results on what would happen if the underlying
model and pretraining corpus were to differ from the
one studied here. For example, what would happen
if we applied ULR2 to a model that was trained to
saturation on a corpus already? Would we observe
similar improvements? What would happen if we
use a weaker underlying model? This paper also
only studies models with 8B+ parameters, and does
not provide insight on how UL2R would perform
on smaller models and compute regions. We leave
these investigations for future work, and this work
should not be interpreted as a comprehensive study
of continued pretraining or model reuse.

7 Ethics Statement

As this work continues training PaLM, we defer
discussion of ethical considerations with respect
to large language models to the original PaLM
paper [Chowdhery et al., 2022]. We do note though
that this work presents a way of improving large
language models without training from scratch, and
all the different types of cost (e.g. environmental)
that that might entail.
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9 Appendix

10 Related Work

Large language models Scaling and improv-
ing large language models is one of the most
impactful research areas in modern artificial intel-
ligence [Chowdhery et al., 2022]. To this end, large
language models not only continue to improve as we
scale in terms of data or computational budget [Hoff-
mann et al., 2022, Kaplan et al., 2020] but also
acquire new abilities [Wei et al., 2022a]. The impact
of large language models has been ubiquitous and
pervasive, unlocking breakthroughs across many
fields, e.g., reasoning [Wei et al., 2022b, Wang et al.,
2022b, Zhou et al., 2022, Drozdov et al., 2022],
math [Lewkowycz et al., 2022], dialog [Thoppilan
et al., 2022], multimodal applications [Yu et al.,
2022], retrieval [Tay et al., 2022c] inter alia.

While there have been many paradigms and
self-supervision methods proposed to train these
models [Devlin et al., 2018, Clark et al., 2020b,
Yang et al., 2019, Raffel et al., 2019], to this date
most large language models (i.e., more than 100B
parameters) are trained as decoder-only casual
language models. For example, flagship large lan-
guage models such as GPT-3 [Brown et al., 2020],
Gopher [Rae et al., 2021] and PaLM [Chowdhery
et al., 2022] are all trained as causal language
models. Meanwhile, bidirectional models (e.g.,
BERT [Devlin et al., 2018], T5 [Raffel et al., 2019],
ST-MoE [Zoph et al., 2022]) have also been very
popular as the goto model of choice, especially in
smaller computational regimes (e.g., less than 30B
parameters and often times in the ranges of hundred
of millions of parameters).

Scaling laws of large language models Kaplan
et al. [2020] investigated scaling laws of Trans-
former language models and first showed the scal-
ing laws are predictive of future performance. The
authors found that model size (and not shape) cor-
relates strongly with model quality, i.e., upstream
cross entropy. Tay et al. [2021] studied the scaling
properties of encoder-decoder models and their im-
pact on upstream and downstream finetuning tasks.
Generally, Tay et al. [2021] found that upstream
perplexity and downstream quality does not always
correlate. As a follow up, Tay et al. [2022a] studied
the scaling laws of different model architectures and
found that inductive bias does significantly impact
the scaling behavior of the model. Finally, Hoff-
mann et al. [2022] proposed compute-optimal mod-

https://arxiv.org/abs/2202.08906


els that popularized the ‘chinchilla’ scaling laws -
an approach that aims to be predictive of the optimal
amount of data given the number of model parame-
ters. In this work, we mainly consider scaling laws
over downstream performance largely because this
is more reflective of a language model’s usability.
Since downstream performance is more important
than upstream cross entropy, we advocate for future
scaling studies to always incorporate downstream
evaluation (and metrics) as opposed to only using
cross entropy loss.

Emergent Abilities New behaviors that arise due
to scaling language models have been increasingly
referred to as emergent abilities [Steinhardt, 2022,
Ganguli et al., 2022, Wei et al., 2022a]. For instance,
Wei et al. [2022a] define emergent abilities as “abil-
ities that are not present in smaller models but as
present in larger models.” For a few-shot prompted
task, this would look like a flat scaling curve (ran-
dom performance) until a certain critical threshold,
during which performance increases to substantially
above random. This type of phenomena has been
observed across dozens of tasks in the BIG-Bench
benchmark [Srivastava et al., 2022]. Although such
emergent abilities are typically observed as a func-
tion of scale, increasing model scale to induce emer-
gent abilities is computationally expensive. In this
paper we show how UL2R unlocks emergence with-
out increasing the number of model parameters.

Continued Training of Language Models The
paradigm of continue to train (or finetune) a
language model on more data or tasks is commonly
known as adaptation. A range of prior work
has shown that finetuning language models on a
collection of NLP tasks can improve downstream
performance on a broad range of downstream
tasks [Aghajanyan et al., 2021, Aribandi et al., 2022,
Wei et al., 2021, Sanh et al., 2022, Ouyang et al.,
2022, inter alia]. The majority of this prior work,
however, requires additional data such as aggre-
gating dozens or hundreds of NLP datasets [Raffel
et al., 2019, Aghajanyan et al., 2021, Aribandi
et al., 2022], writing additional templates of
instructions [Wei et al., 2021, Sanh et al., 2022], or
finetuning on human-labeled annotations [Ouyang
et al., 2022]. UL2R does not require new data
since it simply re-uses the pre-training data, which
makes it orthogonal to continued training methods
that leverage large collections of NLP datasets.
Adapting a pretrained language model with a new

self-supervised objective has been explored. For
example, a model trained with a language modeling
objective can be adapted by further training with the
masked language modeling objective [Wang et al.,
2022a]. The other direction is also possible; a model
trained with a masked language objective can be
adapted with the causal language modeling objec-
tive [Wang et al., 2022a, Lester et al., 2021]. UL2R
follows a similar idea but uptrains a language model
with a set of diverse and new preordaining tasks from
mixture-of-denoisers, even after a vast amounts of
standard pretraining and demonstrates a very rapid
improvement on variety of setups and tasks.

Unified language learner (UL2) The UL2 [Tay
et al., 2022b] model is a state-of-the-art model that
bridges both generative causal language models
and bidirectional language models. UL2 proposes
a mixture-of-denoiser objective that mixes prefix
(non-causal) language modeling and infilling (span
corruption) within the same model and leverages
mode prompts to switch between modes during
downstream tasks. UL2 is architecture agnostic in
which the authors argue that the choice of decoder-
only versus encoder-decoder models is largely an
efficiency trade-off. In [Tay et al., 2022b], the final
UL2 model was trained as a 20B encoder-decoder
model, which achieves very compelling perfor-
mance on both finetuning and in-context learning.

11 Additional Results & Analysis

11.0.1 Analyzing individual
task performance on BIG-Bench

This section dives into individual task performance
and attempts to understand quality on different
types of BIG-Bench tasks.

Spatial or Visual Reasoning Tasks The first cat-
egory of tasks that U-PaLM does extremely well on
are tasks that require some form of spatial or visual
reasoning (e.g., navigate or geometric_shapes).
In both of these tasks, U-PaLM 8B outperforms
PaLM 540B. We postulate that this is due to the
prefix language model architecture and additional
PrefixLM training that U-PaLM undergoes. To
give a better illustration, consider the following
examples from these tasks.

• In the navigate task, an example is as follows:
‘Turn right. Take 1 step. Turn right. Take 6 steps.
Turn right. Take 1 step. Turn right. Take 2 steps.
Take 4 steps.‘ and the task is a binary classification



task that determines if the agent returns to the
starting point.

• In the geometric_shapes task, the goal is to
predict the shape given an SVG path, e.g., given ‘M
31,29 L 34,76 L 82,16 L 31,29’ the model should
predict triangle.

Here, it is worth noting that both tasks can be
improved intuitively by having bidirectional
attention and being trained using a PrefixLM like
objective. This could explain why U-PaLM could
outperform PaLM 540B even at 8B because it was
given the right inductive bias.

Commonsense and Knowledge Tasks A
reasonable portion out of the 21 tasks require
some form of commonsense or language-based
knowledge in order to do well. It is worth
noting that U-PaLM does not train on any new
unique tokens (or new data) and therefore, has
no access to no new ‘knowledge’ compared to
vanilla PaLM. Hence, gains here are expected to
be milder compared to tasks that rely more on
algorithmic or other types of reasoning. However,
we observe some relatively smaller gains in
certain tasks (e.g., understanding_fables or
movie_dialog_same_or_different). Amongst
the tasks in this category, one exception is the
snarks task which involves detecting sarcasm
in natural language. It is worth noting that the
only 2 out of 21 tasks where U-PaLM under-
performs PaLM belongs to this category (e.g.,
logical_sequence and english_proverbs). We
think this is reasonable since we do not completely
expect UL2R to always improve upon this category
of tasks given that it does not actually process new
data tokens.

Context Reasoning or Reading Comprehen-
sion Tasks Some tasks require some understanding
of context and then requires the language model to
answer questions based on this context. An example
of this is the vitaminc_fact_verficiation task
which tries to determine the veracity of a claim given
external evidence (context). Another example is
the understanding_fables task where the goal is
to determine the ‘morale of the story’ given context
(passage or story). It is worth noting that U-PaLM
exhibits emergence at 62B scale on these two tasks
even though the final 540B model performance
is relatively similar. We postulate that this is due
to the architectural (and pretraining) advantage of
PrefixLM which aids the model in performing much
better even at smaller scales. Intuitively, being able

Task / Model PaLM U-PaLM Chinchilla Gopher PaLM U-PaLM
Size 62B 62B 70B 280B 540B 540B
FLOPS (ZFLOPS) 295.7 298.7 588 504 2527.2 2529.7

BoolQ 0-shot 84.8 85.4 83.7 81.8 88.0 88.8 (+0.9%)
PIQA 0-shot 80.5 81.4 81.8 81.8 82.3 84.1 (+2.2%)
HellaSwag 0-shot 79.7 79.7 80.8 79.7 83.4 84.1 (+0.8%)
Winogrande 0-shot 77.0 76.2 74.9 70.1 81.1 82.6 (+1.8%)

Avg. Commonsense 80.5 80.7 80.3 78.2 83.7 84.9 (+1.4%)

Table 4: Results on zero-shot commonsense reasoning.

to bidirectionally reason with context (prefix) could
be important in context reasoning tasks.

Multi-step Reasoning, Analogical Reasoning
and Arithmetic tasks We observe that there are
some performance improvements on analogical
reasoning task (e.g., analogical_similarity) or
multi-step reasoning tasks (strategyqa) at 540B
scale. However, unlike context reasoning tasks, the
performance on these class of tasks tend to follow
similar scaling patterns albeit with slightly better
performance. For example, based on Figure 4, we
note that strategyqa follows relatively similar
scaling curves to PaLM.

11.1 Zero-shot and Few-shot NLP
In this section, we evaluate our models on various
well-established NLP tasks. These tasks test a
spectrum of zero and few-shot abilities of U-PaLM.

11.1.1 Commonsense Reasoning
We conduct experiments on four zero-shot
commonsense reasoning benchmarks. Specifi-
cally, following [Hoffmann et al., 2022], we use
BoolQ [Clark et al., 2019], PIQA [Bisk et al.,
2020], HellaSWAG [Zellers et al., 2019] and
Winogrande [Sakaguchi et al., 2019]. Aside from
PaLM 62B and PaLM 540B which we use for direct
comparisons with U-PaLM, we also compare with
Chinchilla 70B [Hoffmann et al., 2022] and Gopher
280B [Rae et al., 2021]. Table 4 reports the results
on zero-shot commonsense reasoning.

We show that U-PaLM 540B outperforms
PaLM 540B on all four tasks with an average of
(+1.4%) relative improvement and attains the best
performance across all models.

11.1.2 Question Answering
and Reading Comprehension

We evaluate zero-shot and few-shot closed book
question answering (CBQA) tasks [Kwiatkowski
et al., 2019, Joshi et al., 2017, Roberts et al.,
2020] along with the zero-shot Lambada reading
comprehension task [Paperno et al., 2016]. Table 5
reports the results of our experiments. We compare
with PaLM 62B, PaLM 540B, Chinchilla 70B and



Task / Model PaLM U-PaLM Chinchilla Gopher PaLM U-PaLM
Size 62B 62B 70B 280B 540B 540B
FLOPS (ZFLOPS) 295.7 298.7 588 504 2527.2 2529.7

TriviaQA 0-shot 67.3 68.3 67.0 52.8 76.9 76.4 (-0.7%)
TriviaQA few-shot 72.7 73.6 73.2 63.6 81.4 82.0 (+0.7%)
Natural Questions 0-shot 18.1 18.7 16.6 10.1 21.2 21.7 (+2.4%)
Natural Questions few-shot 27.6 30.5 31.5 24.5 36.0 40.1 (+11.4%)
Lambada 0-shot 75.4 79.7 77.2 74.5 77.9 80.5 (+3.3%)

Avg. QA/RC 52.2 54.3 53.0 45.1 58.7 60.1 (+2.3%)

Table 5: Results on closed book QA and reading
comprehension.

Task / Model Minerva 540B PaLM 540B U-PaLM 540B

GSM8K 57.8 54.9 58.5 (+6.6%)
BBH 37.2 44.8 49.6 (+10.7%)
StrategyQA 61.9 76.4 76.6 (+0.2%)
CSQA 72.2 76.9 80.1 (+4.2%)

Table 6: Experiment results on reasoning and chain-of-
thought reasoning experiments.

Gopher 280B. Overall, on few-shot CBQA and
reading comprehension, we observe that U-PaLM
540B outperforms PaLM 540B by +2.3% on
average and up to +11.4% on few-shot natural
questions. Meanwhile, the gain at 62B scale is also
strong (i.e., +2.1% on average).

11.1.3 Reasoning
and Chain-of-thought Experiments

We conduct experiments on reasoning and CoT
and compare U-PaLM 540B with PaLM 540B and
Minerva 540B. We use the GSM8K [Cobbe et al.,
2021], BBH [Suzgun et al., 2022], StrategyQA
[Geva et al., 2021] and CommonsenseQA [Talmor
et al., 2019] benchmarks. All tasks are run with
chain-of-thought (CoT) prompting. Table 6
reports results on reasoning and CoT benchmarks.
U-PaLM 540B outperforms both PaLM 540B and
Minverva 540B. Notably, the gains on GSM8K
and BBH are relatively strong. This shows that
U-PaLM does well on reasoning and is well-suited
for chain-of-thought reasoning.

11.1.4 Multilingual Few-shot Reasoning
and Question Answering Tasks

We conduct experiments on few-shot multilingual
reasoning and question answering tasks. We
use the MGSM (multilingual grade school math)
benchmark proposed in [Shi et al., 2022]. For
multilingual question answering, we use the
well-established TydiQA [Clark et al., 2020a]
benchmark. In our experiments, both PaLM
540B and U-PaLM 540B uses chain-of-thought
prompting [Wei et al., 2022b]. Table 7 reports our
results on MGSM and TydiQA. Our results show
that U-PaLM outperform PaLM by a considerable

Task / Model PaLM 540B U-PaLM 540B

TydiQA 52.9 54.6 (+3.2%)
MGSM 45.9 49.9 (+8.7%)

Table 7: Experiments on Multilingual GSM
(MGSM) [Shi et al., 2022] and TydiQA [Clark
et al., 2020a]

Model PaLM 540B U-PaLM 540B
Task/#Tokens 182B 329B 780B 182B+ 329B+ 780B+

TriviaQA 1shot 73.4 74.4 81.4 73.3 75.6 82.0
NQA 1shot 23.2 25.6 29.3 24.4 28.1 30.7
WebQA 1shot 21.6 19.9 22.6 21.0 21.7 23.4
BoolQ 82.4 85.6 88.0 85.8 88.2 88.8
ReCORD 91.5 92.7 92.9 91.5 92.6 93.0
COPA 92.0 93.0 93.0 94.0 93.0 96.0
RTE 68.6 67.2 72.9 73.7 71.5 75.5
WIC 50.8 53.8 59.1 52.2 58.0 62.2
WSC 88.1 86.7 89.1 87.0 88.1 87.4
CB 57.1 48.2 51.8 69.6 71.4 69.6
MultiRC 76.7 81.1 83.5 78.4 81.7 83.8
Winogrande 89.4 88.3 90.1 87.9 89.7 88.3
Winograd 76.9 79.6 81.1 78.2 79.3 82.6
ANLI R1 44.3 49.4 48.4 50.3 50.6 55.3
ANLI R2 41.3 42.7 44.2 43.5 45.2 47.8
ANLI R3 43.8 42.8 45.7 46.7 49.3 57.0
PIQA 81.0 81.9 82.3 80.8 82.0 84.1
StoryCloze 82.7 83.9 84.6 83.7 84.2 87.0
HellaSwag 79.1 81.8 83.4 79.5 82.3 84.1
ArcE 74.8 72.8 76.6 74.6 76.3 85.9
ArcC 48.0 46.9 53.0 48.6 50.4 60.3
RaceM 63.6 67.3 68.1 63.2 67.1 67.2
OpenbookQA 50.2 51.2 53.4 50.2 51.2 53.6
RaceH 45.3 48.5 49.1 45.5 48.5 51.3
Lambada 1shot 75.4 77.5 81.8 74.3 79.9 80.0
SquadV2 1shot 70.5 71.3 78.7 71.8 70.3 78.2

Average 62.7 63.8 66.5 64.1 66.2 69.4

Table 8: Results of PaLM vs U-PaLM at different
FLOPs (# tokens) at 540B scale.

margin (+3.2% on TydiQA and +8.7% on MGSM).

11.2 Details of Scaling
Curves for Few-shot Experiments

We compute a mean aggregated score of the follow-
ing tasks. We use 21 zero-shot rank classification
tasks, i.e., BoolQ, Record, COPA, RTE, WiC, WSC,
CB, MultiRC, Winograd, Winogrande, ANLI R1,
ANLI R2, ANLI R3, PIQA, StoryCloze, HellaSwag,
Arc-E, Arc-C, RaceM, RaceH, OpenbookQA. We
use 5 one-shot generative tasks, i.e., TriviaQA, Nat-
uralQuestions, WebQuestions,SQuaDV2 and Lam-
bada. All tasks use the accuracy (or exact match)
metric except MultiRC which reports f1a follow-
ing [Brown et al., 2020]. In total, the aggregated met-
ric is a mean over all 26 tasks. We list the scores that
correspond to Figure 2’s 540B scaling plot below.



11.3 Details of Vocab and Sentinel Tokens
For U-PaLM, we had to train on span corruption or
infilling task. We use the same setup as UL2 and T5
where we inject sentinel tokens, e.g., <extra_id_0>
into the masked positions. In T5, sentinel ids are
added as 100 additional vocab tokens at the end
of the sentencepiece (vocab). In PaLM, since we
restart from an existing PaLM checkpoints, it was
quite cumbersome to initialize 100 new embeddings
in the vocab. Hence, we opt to simply use the last
100 subwords as sentinel tokens. Finally, we also
use eos symbols in the vocab when training the
model.

11.4 Details of Prompt Templates
As stated in Section 3.2, BBES uses the default
prompting and templates a BIG-Bench and do not
use chain-of-thought prompting. For full BBH and
MMLU results, we use the same set of prompts as
[Chung et al., 2022], which we refer the reader to for
more details. However, our 5-shot MMLU prompts
do not use chain-of-thought, only directly stating
the answer option, e.g. "Answer: (C)". Prompts
for our zero-shot and few-shot NLP evaluations
in Section 10.1 use the same basic templates as
[Brown et al., 2020].

11.5 Additional Discussion
In this section, we delve into some additional topics
and discussions.

11.5.1 What about training from scratch?
We address the elephant in the room. There are mul-
tiple perspectives to this question. The first is that
UL2R can be thought as a form of ‘UL2 schedule‘
that sets a single causal language model objective
from 0 toN steps and then doing the UL2 mixture
from N to N + ε. In this sense, if we wanted to
train from scratch, this would require modifying the
mixture to have significantly more causal language
modeling. The second perspective is that UL2R
introduces a natural curriculum where the model
spents a large fraction of training acquiring basic
language modeling before moving on to tasks like
infilling or learning how to leverage bidirectional
receptive fields. Whether there is a taxonomy or
hierarchical of pretraining tasks is still an open
question which we hope to answer in future work.
The third perspective is simply the practical aspect
of U-PaLM. Training a PaLM 540B model from
scratch is incredibly costly and we would like to
reuse our existing models (or components) as much

as possible to design new models for new tasks.
U-PaLM is an instance of this type of research. Fi-
nally, given that many language models are trained
as causal language models, we believe that UL2R
presents great opportunity for improving existing
models with only a small amount of compute.


