
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPTIMAL TARGETS FOR CONCEPT ERASURE IN DIF-
FUSION MODELS AND WHERE TO FIND THEM

Anonymous authors
Paper under double-blind review

ABSTRACT

Concept erasure has emerged as a promising technique for mitigating the risk of
harmful content generation in diffusion models by selectively unlearning unde-
sirable concepts. The common principle of previous works to remove a specific
concept is to map it to a fixed generic concept, such as a neutral concept or just
an empty text prompt. In this paper, we demonstrate that this fixed-target strat-
egy is suboptimal, as it fails to account for the impact of erasing one concept on
the others. To address this limitation, we model the concept space as a graph
and empirically analyze the effects of erasing one concept on the remaining con-
cepts. Our analysis uncovers intriguing geometric properties of the concept space,
where the influence of erasing a concept is confined to a local region. Building
on this insight, we propose the Adaptive Guided Erasure (AGE) method, which
dynamically selects optimal target concepts tailored to each undesirable concept,
minimizing unintended side effects. Experimental results show that AGE sig-
nificantly outperforms state-of-the-art erasure methods on preserving unrelated
concepts while maintaining effective erasure performance.

1 INTRODUCTION

The widespread accessibility of text-to-image generation models has introduced significant risks
such as the generation of harmful content, copyright infringements, biases and stereotypes due to
the exposure of models to undesirable concepts during training. Initial attempts to address these
concerns focus on dataset filtering during the training phase (StabilityAI, 2022), post-generating
filtering (Rando et al., 2022) or inference guiding (Schramowski et al., 2023b). While dataset fil-
tering often requires costly retraining, post-processing and inference-based methods can be easily
bypassed (Yang et al., 2024). Recently, concept erasure (Gandikota et al., 2023; Orgad et al., 2023;
Zhang et al., 2023; Kumari et al., 2023), which aims to directly remove the concept from the model’s
parameters without the need for complete retraining, has emerged as a promising alternative.

Concept erasure methods can be broadly categorized into two approaches: output-based and
attention-based. Output-based methods aim to neutralize the output associated with undesirable
concepts (Gandikota et al., 2023; Wu et al., 2024), while attention-based methods modify the atten-
tion scores of these concepts in the cross-attention layers of the model (Zhang et al., 2023; Orgad
et al., 2023; Gandikota et al., 2024; Lu et al., 2024; Lyu et al., 2024). Despite their differences,
both approaches share a common principle: mapping undesirable concepts to a fixed, generic target,
such as “a photo” or an empty text prompt. Although these methods have shown success in eras-
ing undesirable concepts, they do not consider how the choice of target concepts affects both the
effectiveness of erasure and the preservation of benign concepts.

To address this limitation, we first model the concept space as a graph, where each node represents
a concept, and the edge weights denote the impact of erasing one concept on another. We perform
an empirical analysis using a newly curated evaluation dataset, NetFive, to understand the structure
of the concept space. Our findings suggest that the concept impact space has a geometric structure,
characterized by a key property: locality—the impact of erasing one concept is localized in the
concept space, i.e., it affects strongly only those concepts that are close to the erased one.

Furthermore, we explore different types of target concepts—synonyms, semantically related local
concepts, and semantically distant concepts—and find that the choice of target significantly influ-
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ences both erasure performance and the preservation of benign concepts. At the end, we identify
the ideal target concept as the most affected by the change of the model parameters when the corre-
sponding concept is erased, but must not be its synonym.

Building on these insights, we propose the Adaptive Guided Erasure (AGE) method, which automat-
ically selects the optimal target concept for each erasure query by solving a minimax optimization
problem. To further improve the richness of the target concept, we model it as a learned mixture
of multiple single concepts, allowing us to search for the optimal target in continuous rather than
discrete space. We evaluate the proposed AGE method on various erasure tasks, including object
removal, Not-Safe-For-Work (NSFW) attribute erasure, and artistic style removal. Experimental re-
sults show that AGE significantly outperforms state-of-the-art concept erasure methods, achieving
near-perfect preservation of benign concepts while effectively erasing undesirable ones.

Our main contributions can be summarized as follows. ❶ We present a novel empirical evaluation
of the structure and geometric properties of the concept space, which provides new insights into
concept erasure, such as the locality of the impact of erasing one concept on another. ❷ We analyze
the impact of target concept selection on both erasure effectiveness and the preservation of benign
concepts, identifying two key properties of desirable target concepts, i.e., closely related but not
synonyms to the to-be-erased concept. ❸ Motivated by the analysis, we propose a novel adaptive
method for selecting the optimal target concept for each erasure query satisfying the two key prop-
erties. ❹ Finally, we conduct extensive experiments demonstrating the effectiveness of our method
and its ability to preserve benign concepts while erasing undesirable ones.

2 BACKGROUND

Latent Diffusion Models. Diffusion models, a recent class of generative models, have shown
impressive results in generating high-resolution images (Ho et al., 2020; Rombach et al., 2022;
Ramesh et al., 2021; 2022). In a nutshell, training a diffusion model involves two processes: a
forward diffusion process where noise is gradually added to the input image x0 ∼ pdata, and a
reverse denoising diffusion process where the model tries to predict a noise ϵt, which is added in the
forward process. The model is trained by minimizing the difference between the true noise ϵ and
the predicted noise ϵθ(xt, t) at diffusion step t parameterized by the denoising model θ. With an
intuition that semantic information that controls the main concept of an image can be represented
in a low-dimensional space, Rombach et al. (2022) proposed a diffusion process operating on the
latent space of a pre-trained encoder E which compresses the input data xt into low-dimensional
latent representation z0 = E(x). The objective function of the latent diffusion model as follows:

L = Ez0∼E(x),x∼pdata,t,ϵ∼N (0,I) ∥ϵ− ϵθ(zt, t)∥22 (1)

Text-to-image Diffusion Model. The denoising model θ can also be conditioned on textual em-
bedding τ(c) of input description c to generate images that align with the description provided. The
training objective of latent diffusion models conditioned on the text description c of the input image
x is as follows:

L = Ez0∼E(x),(x,c)∼pdata,t,ϵ∼N (0,I) ∥ϵ− ϵθ(zt, τ(c), t)∥22 (2)

Concept Erasing. Given a textual description in a set of undesirable concepts ce ∈ E, the con-
cept erasing problem aims to remove this concept from a pretrained text-to-image diffusion model
ϵθ(zt, τ(c), t), typically via finetuning to obtain a benign output ϵθ′ (zt, τ(c), t) from sanitized model
ϵθ′ parameterized by θ

′
. For the remainder of this paper, because all outputs are from the same time

step t and latent vector zt, we omit the time step t and latent vector zt for the sake of simplicity,
i.e., ϵθ(τ(c)) and ϵθ′ (τ(c)). While proposed in different forms, previous works (Gandikota et al.,
2023; Orgad et al., 2023; Gandikota et al., 2024) share a common principle to map a to-be-erased
concept ce to a target neutral concept ct. The target concept ct can be either a generic concept,
such as “a photo” or a null concept, such as an empty text prompt. It is typically predefined and
fixed for all undesirable concepts ce ∈ E. To preserve the model’s performance on other concepts,
an additional term L2 is added to ensure that the output of the neutral concept remains unchanged.
More specifically, the erasing objective can be formulated as follows:
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min
θ′

Ece∈E

[
∥ϵθ′ (τ(ce))− ϵθ(τ(ct))∥22

]
︸ ︷︷ ︸

L1

+ ∥ϵθ′ (τ(cn))− ϵθ(τ(cn))∥22︸ ︷︷ ︸
L2

(3)

While this naive principle is simple and effective in erasing the specific concept, choosing a fixed
neutral concept as the target concept for all concepts to be erased is obviously not optimal (i.e.,
ct = cn ∀ce ∈ E). Intuitively, remapping the visual concept “English Springer” to “Dog” will
likely cause a less drastic change on the model’s parameter compared to remapping it to a neutral
concept such as “A photo” or “ ”, leading to a better preservation performance on other concepts. In
the following section, we will provide a series of evidence to support this intuition which leads us to
a principled approach on choosing an optimal target concept for each concept to be erased.

3 QUANTIFYING IMPACT OF ERASING CONCEPTS

Netfive Dataset. Two main challenges in evaluating an erasing method are: (1) How to verify
whether a concept is present in the generated images or not? (2) How to ensure the evaluation is
diverse enough to cover the output space of the model which is of infinite possibilities? To tackle
these two challenges, we propose an evaluation dataset called NetFive, which consists of 25 concepts
from the ImageNet dataset, for which we can leverage the pre-trained classification model to verify
the presence of the concepts in the generated images. We also ensure the diversity of the evaluation
by generating 500 samples for each concept. More specifically, we choose a total of five subsets
of concepts, each subset contains one anchor concept, e.g., “English Springer” and four related
concepts, ranked by their closeness to the anchor concept as follows: (the details and rationale of
choosing the concepts are provided in Appendix C.1)

• Dog: English springer, Clumber spaniel, English setter, Blenheim spaniel, Border collie.
• Vehicle: Garbage truck, Moving van, Fire engine, Ambulance, School bus.
• Instrument: French horn, Basson, Trombone, Oboe, Saxophone.
• Building: Church, Monastery, Bell cote, Dome, Library.
• Equipment: Cassette Player, Polaroid camera, Loudspeaker, Typewriter keyboard, Projec-

tor.

Metric to measure the generation capability of the model. Because of intentionally choosing all
concepts from the ImageNet dataset, we can leverage the pre-trained classification model to detect
the presence of the concept in the generated image, More specifically, given a model Gθ, we generate
k = 500 images with the input description c, and then measure using the metrics:

-Detection Score (DS-1/DS-5): # of samples that are classified as the concept c in top-1 or top-5
predictions / k (i.e., top-k accuracy).

-Confident Score (CS-1/CS-5): Average confident score w.r.t. the concept c in top-1 or top-5
predictions, otherwise, the confident score is set to be 0. This metric indicates how good the model
Gθ is when generating the concept c. A higher score means that the concept c is more likely appeared
in the generated images.

For all metrics, higher values indicate better generation capability of the model on concept c. In
the rest of the paper, we use the Detection Score (DS-5) as the main metric, while results for other
metrics are provided in Appendix C.2.

We present G0(cj) and Gce(cj) as the generation capability of the original model and the sanitized
model on the same query concept cj after erasing concept ce, respectively. With this, we can mea-
sure the impact of erasing concept ce on the generation capability of concept cj by computing the
difference between G0(cj) and Gce(cj), i.e., ∆(ce, cj) = G0(cj)−Gce(cj).

3.1 TARGETING TO A GENERIC CONCEPT

We first analyze the impact of choosing a generic concept such as an empty “ ” as the target concept
for erasure. The top subfigure in Figure 1 shows a sample analysis of the impact of erasing concept
“English Springer” to the generation capability of all NetFive concepts. Each column corresponds
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Figure 1: Analysis of the impact of choosing empty concept as the target concept for erasure. Com-
plete details are provided in Figure 8.

to one concept cj in the NetFive dataset. The blue bar represents the generation capability Gce(cj)
of the sanitized model on concept cj , while the total height of the stack is the generation capability
G0(cj) of the original model on concept cj . The red bar, therefore, represents the gap of generation
capability between the sanitized model and the original model, i.e., ∆(ce, cj) = G0(cj)−Gce(cj),

The higher the total height of the stack, the higher the generation capability of the original model on
concept cj , while the higher the red bar, the higher the difference between the generation capability
of the sanitized model and the original model. We also provide the confidence score of the classifier
when predicting the concept from the generated images from the original model (the green line) and
the sanitized model (the orange line).

Sample Analysis. It can be seen from the top subfigure in Figure 1 that the concept ce
“English Springer” has been successfully removed from the sanitized model as evidenced by
Gce(“English Springer”) = 0. It can also be seen that all closely related concepts to concept ce
“English Springer” are affected by the erasure of this concept, evidenced by the significant drop
in the generation capability Gce(cj) < G0(cj), as well as the corresponding confidence scores.
In contrast, the other concepts that are not closely related to the concept ce are less affected, evi-
denced by the unchanged generation capability Gce(cj) ≈ G0(cj). Interestingly, the two abnormal
concepts that are not related to the to-be-erased concept ce but are also affected, “Bell Cote” and
“Oboe”. These two concepts have low generation capability even before the erasure of concept ce,
i.e., G0(cj) ≈ 60%, compared to other concepts which have G0(cj) ≈ 100%.

Systematic Analysis. Figure 1 shows the impact of erasing one concept to all the other concepts
in the NetFive dataset, where each row corresponds to erasing one concept, and the first row cor-
responds to erasing the concept “English Springer” as shown in the top subfigure. Each cell in the
matrix represents the drop of the generation capability of concept cj after erasing concept ce, i.e.,
∆(ce, cj) = G0(cj)−Gce(cj). A deeper red color indicates a larger drop of the generation capabil-
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Figure 2: Analysis of the impact of choosing a specific concept as the target concept for erasure.
Full details are provided in Figure 11.

ity of concept cj after erasing concept ce. The matrix can be interpreted as a concept graph, showing
the impact of one concept on other concepts.

There are several intriguing observations that can be made from Figure 1:

• Locality: The concept graph is sparse and localized, which means that the impact of eras-
ing one concept does not strongly spread to all the other concepts but only local concepts
that are semantically related to the erased concept ce.

• Asymmetry: The concept graph is asymmetric such that the impact of erasing concept ce
on concept cj is not the same as the impact of erasing concept cj on concept ce.

• Abnormal: The two abnormal concepts “Bell Cote” and “Oboe”, which have low genera-
tion capability to begin with, are sensitive to the erasure of any concept.

In the case of erasing exclusive concepts, such as “Taylor Swift”, “Van Gogh”, “gun”, and “nudity”
as shown in the last four rows of the figure, the impact of erasing these concepts to all NetFive con-
cepts are also limited, except for the two abnormal concepts, which supports the above observations
on the concept graph.

Results with Stable Diffusion version 2.1 Figure 12 shows the impact of choosing the empty
concept as the target concept for erasure with Stable Diffusion v2.1 It can be seen that our earlier
observations are still valid, except that the abnormal concepts which have low generation capability
and are sensitive to the erasure of any concept are now “Bell Cote” and “Projector”. This consistency
indicates the generalization of the observations on the concept graph of different models, trained on
different datasets and settings.

3.2 TARGETING TO A SPECIFIC CONCEPT

We now compare different strategies of choosing the target concept for erasure to see how the choice
of the target concept affects the preservation of other concepts. In each subset, we choose to erase a
same concept ce but with seven different target concepts ct, in the following order: (1st) a synonym
of ce, (2nd, 3rd) two semantically related concepts but not synonyms, (4th) a general, upper-level
concept that covers the subset, (e.g. “Dog” for the concept “English Springer”) (5th, 6th) two se-
mantically unrelated concepts, and (7th) an empty concept. The explanation of finding a synonym
to an anchor concept is provided in Appendix C.3.
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It can be seen from Figure 2 that the preservation performance highly depends on the choice of the
target concept. More specifically, there are several notable observations:

• Locality: Regardless of the choice of the target concept, the impact of erasing one concept
is still sparse and localized.

• Abnormal: The two abnormal concepts “Bell Cote” and “Oboe” are still sensitive to the
erasure of any concept regardless of the choice of the target concept.

• Synonym ✗✗✗: Mapping to a synonym of the anchor concept leads to a minimal change as
evidenced by the lowest ∆(ce, cj) for all cj . However, it also the least effective in erasing
the undesirable concept ce.

• All Unrelated Concepts ✗✗: Mapping to semantically unrelated concepts demonstrates
the similar performance as the generic concept “ ”, as evidenced by the similar ∆(ce, cj)
between the three last rows (5th − 7th) in each subset.

• General concepts ✗: While choosing a general concept as the target concept is intuitive
and reasonable, it does not necessary lead to good preservation performance. For example,
“English Springer”→ “Dog” or “French Horn”→ “Musical Instrument Horn” still cause a
drop on related concepts in their respective subsets. Moreover, there are also small drops on
erasing performance compared to other strategies, shown by DS-5 of 83%, 91%, and 78%
when mapping “Garbage Truck” to “Truck”, “French Horn” to “Musical Instrument Horn”,
and “Cassette Player“ to “Audio Device”, respectively. The two observations indicate that
choosing a general concept is not an optimal strategy.

• In-class ✓: The highest preservation performance which is consistently observed in all five
subsets is achieved when the target concept is a closely related concept to ce. For example,
“English Springer”→ “Clumber spaniel” or “Garbage Truck”→ “Moving Van” or “School
Bus” in the “Dog” and “Vehicle” subsets.

4 PROPOSED METHOD: ADAPTIVE GUIDED ERASURE

Motivated by the observations in Section 3, we propose to select the target concept for erasure
adaptively for each query concept to mitigate the side effects of erasing undesirable concepts in
diffusion models. More specifically, the ideal target concept should satisfy the following properties:

• It should not be a synonym of the query concept that resembles a similar visual appearance
(e.g., “nudity” to “naked” or “nude”, or “Garbage Truck” to “Waste Collection Vehicle”).
This ensures that the erasure performance on the query concept remains effective.

• It should be closely related to the query concept but not identical (e.g., ”English Springer”
to “Clumber Spaniel”, or “Garbage Truck” to “Moving Van”). This helps preserve the
model’s generation capabilities on other concepts. As suggested by the locality property
of the concept graph, changes in the model’s output can be used to identify these locally
related concepts.

Although it is possible to manually select the ideal target concept for each query concept based on
the above properties, this approach is not scalable for a large erasing set E. Therefore, we propose
an optimization-based approach to automatically and adaptively find the optimal target concept for
each query concept. Specifically, we aim to solve the following optimization problem:

min
θ′

E
ce∈E

max
ct∈C

∥ϵθ′ (τ(ce))− ϵθ(τ(ct))∥22︸ ︷︷ ︸
L1

+λ ∥ϵθ′ (τ(ct))− ϵθ(τ(ct))∥22︸ ︷︷ ︸
L2

 (4)

where λ is a trade-off hyperparameter and C is the search space of target concepts ct.

Minimizing the objective L1 w.r.t. θ
′

ensures that the output of the sanitized model for the query
concept ce is close to the output of the original model but for the target concept ct, which serves the
purpose of erasing the undesirable concept ce. Meanwhile, minimizing the objective L2 w.r.t. θ

′
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ensures that the output of the two models remain similar for the same input concept ct, preserving the
model’s capability on the remaining concepts. In summary, the outer minimization problem opti-
mizes the sanitized model parameters θ

′
to simultaneously erase undesirable concepts and preserve

the model’s functionality for other concepts.

On the other hand, maximizing the objective L1 w.r.t. ct ensures that the solution c∗t is not a
synonym of the query concept ce, while maximizing the objective L2 w.r.t. ct finds a sensitive
concept to the change of the model’s parameter θ → θ

′
. This helps identify the most related concept

to the query concept ce, as suggested by the locality property of the concept graph in Section 3. By
maximizing both L1 and L2 w.r.t. ct, we ensure that the solution c∗t satisfies both key properties of
the ideal target concept. We provide empirical evidence in Section 5.2 and Appendix D.5, showing
that the intermediate value of the solution c∗t from the optimization problem equation 4 aligns with
the above analysis.

Optimization Details. Since the concept space C is discrete and finite, the straightforward ap-
proach is to enumerate all the concepts in C and select the one that maximizes the total loss in each
optimization step of the outer minimization problem. However, this approach is computationally
prohibitive for large C. Moreover, some concepts can be complex and may not be interpreted as a
single concept in the concept space C. To address this, we formulate the target concept as a com-
bination of multiple concepts in the concept space C, i.e., τ(ct) = G(π) ⊙ TC , where G is the
Gumbel-Softmax operator, π ∈ R|C| is a learnable variable, and TC is the textual embedding matrix
of the entire concept space C. We choose the Gumbel-Softmax operator with a temperature less than
1 to ensure that the target concept is a combination of a few main concepts rather than a mixture of
all concepts in C. The optimization problem equation 4 can be rewritten as follows:

min
θ′

E
ce∈E

max
π

∥ϵθ′ (τ(ce))− ϵθ(G(π)⊙ TC)∥22︸ ︷︷ ︸
L1

+λ ∥ϵθ′ (G(π)⊙ TC)− ϵθ(G(π)⊙ TC)∥22︸ ︷︷ ︸
L2


(5)

in which the objective of the inner-max is transformed to find the continuous weight π instead of
the discrete concept ct. This trick allows us to increase the richness and expressiveness of the target
concept ct as well as the optimization efficiency. We provide further details in Appendix B.

5 EXPERIMENTS

In this section, we demonstrate the effectiveness of our method in erasing various concepts from
the foundation model, including object-related concepts, artistic styles, and NSFW attributes. We
compare our approach with the state-of-the-art erasure methods including ESD (Gandikota et al.,
2023), UCE (Gandikota et al., 2024), CA (Kumari et al., 2023), and MACE (Lu et al., 2024). Our
experiments follow the same setup as in Gandikota et al. (2023; 2024). Specifically, we use Stable
Diffusion (SD) version 1.4 as the foundation model, and fine-tune the model for 1000 steps with a
batch size of 1, using the Adam optimizer with a learning rate of α = 10−5.

Further implementation details and analyses are provided in the appendix, including qualitative re-
sults (Section D.7), an examination of the impact of vocabularies (Section D.2) and hyperparameters
(Section D.3), as well as an analysis of the search for the optimal target concepts (Section D.5).
We strongly recommend referring to the appendix for a deeper understanding of our method and
experiments. Our code is anonymously published at https://anonymous.4open.science/r/Adaptive-
Guided-Erasure.

5.1 ERASING OBJECT-RELATED CONCEPTS

Setting. In this experiment, we assess our method’s ability to erase object-related concepts, such
as “Dog” or “Cat”, from a foundational model. We utilize the Imagenette dataset 1, a subset of Ima-
geNet (Deng et al., 2009), which contains 10 easily recognizable classes as suggested in (Gandikota

1https://github.com/fastai/imagenette
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et al., 2023). We conduct four different erasing tasks, each involving the simultaneous erasure of
five classes while preserving the other five, generating 500 images per class.

Metrics. Erasing performance is measured using the Erasing Success Rate (ESR-k), which cal-
culates the percentage of generated images where the “to-be-erased” classes are not detected in the
top-k predictions. Preserving performance is evaluated using the Preserving Success Rate (PSR-k)
to measure how well “to-be-preserved” classes are detected, along with FID and CLIP scores on the
COCO 30K validation set to assess preservation of common concepts. For example, in Table 1, the
average PSR-5 of the original SD model is 97.6%, which means that 97.6% of the generated images
contain the object-related concepts in the top-5 predictions, indicating the strong ability to generate
object-related concepts accurately of the foundation model.

Results. In term of erasure, all baselines perform well, with the lowest ESR-1 and ESR-5 scores
being 95.5% and 88.9% respectively, indicating that only a small proportion of the generated images
retain the object-related concepts. The UCE method achieves a perfect 100% ESR-1 and ESR-5,
while our method reaches 98.1% ESR-1 and 95.7% ESR-5, slightly below CA and MACE.

However, when it comes to concept preservation, the baselines, particularly UCE, perform poorly,
with MACE showing the best PSR-1 and PSR-5 scores at 47.4% and 72.8%, respectively. In con-
trast, our method significantly outperforms the baselines, achieving 73.6% PSR-1 and 95.6% PSR-
5, far exceeding MACE and approaching the original SD model’s performance. Our method also
achieves the best FID score of 16.1 and CLIP score of 26.0, surpassing the second-best CA method
by 0.5 and 0.2 points, respectively, which can be considered as a notable improvement in term of
these metrics. These results demonstrate that our method not only effectively erases unwanted con-
cepts but also excels in preserving other important concepts, closely matching the performance of
the foundation model.

Table 1: Erasing object-related concepts. The best erasing results are highlighted in bold, and the
second-best erasing results are highlighted in underline.

Method ESR-1↑ ESR-5↑ PSR-1↑ PSR-5↑ FID↓ CLIP↑
SD 22.0± 11.6 2.4± 1.4 78.0± 11.6 97.6± 1.4 16.1 26.4

ESD 95.5± 0.8 88.9± 1.0 41.2± 12.9 56.1± 12.4 17.9 24.5
UCE 100± 0.0 100± 0.0 23.4± 3.6 49.5± 8.0 19.1 21.4
CA 98.4± 0.3 96.8± 6.1 44.2± 9.7 66.5± 6.1 16.6 25.8
MACE 99.3± 0.3 97.6± 1.2 47.4± 12.0 72.8± 10.5 16.9 24.9

Ours 98.1± 1.1 95.7± 2.5 73.6± 9.8 95.6± 1.1 16.1 26.0

5.2 ERASING NSFW CONCEPTS

Setting. In this experiment, we focus on unlearning Not-Safe-For-Work (NSFW) attributes like
“nudity” from the model’s capability. We follow the same setting as in (Gandikota et al., 2023),
focusing exclusively on fine-tuning the non-cross-attention modules. To generate NSFW images,
we employ I2P prompts (Schramowski et al., 2023b) and generate a dataset comprising 4703 images
with attributes encompassing sexual, violent, and racist content.

Metrics. We utilize the detector (Praneet, 2019) which can accurately detect several types of ex-
posed body parts to recognize the presence of the nudity concept in the generated images. The
detector (Praneet, 2019) provides multi-label predictions with associated confidence scores, allow-
ing us to adjust the threshold and control the trade-off between the number of detected body parts
and the confidence of the detection, i.e., the higher the threshold, the fewer the number of detected
body parts. Erasing performance is measured using the Nudity Exposure Rate (NER-k), which
measures the ratio of images with any exposed body parts detected by the detector (Praneet, 2019)
over the total number of generated images with a confidence score greater than the threshold k. For
example, in Table 2, with the threshold set at 0.5, the NER score for the CA model stands at 9.27%,
indicating that 9.27% of the generated images contain signs of nudity concept from the detector’s
perspective. Preserving performance is evaluated using FID score on COCO 30K validation set.
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Table 2: Evaluation on the nudity erasure setting.

NER-0.3↓ NER-0.5↓ NER-0.7↓ NER-0.8↓ FID↓
CA 13.84 9.27 4.74 1.68 20.76

UCE 6.87 3.42 0.68 0.21 15.98
ESD 5.32 2.36 0.74 0.23 17.14
Ours 5.06 1.53 0.32 0.04 14.20

Results. Table 2 shows the NER score across
thresholds ranging from 0.3 to 0.8. With
k = 0.5, CA, ESD, and UCE achieve 9.27%,
2.36%, and 3.42% NER, respectively, while
our method achieves 1.53% NER, the low-
est among the baselines, indicating the highest
erasing performance. This result remains con-
sistent across different thresholds, emphasizing the robustness of our method in erasing NSFW
content. In term of preserving performance, our method achieves the best FID score of 14.20, a
significant improvement over the second-best UCE method at 15.98, indicating that our method can
simultaneously erase a concept while preserving other concepts effectively.

Figure 3: Number of exposed body parts counted
in all generated images with threshold 0.5.

Figure 3 provides detailed statistics of differ-
ent exposed body parts in the generated images.
It can be seen that in the original SD model,
among all the body parts, the female breast is
the most detected body part in the generated
images, accounting for more than 320 images
out of the total 4703 images. Both baselines,
ESD and UCE, as well as our method, achieve a
significant reduction in the number of detected
body parts, with our method achieving the low-
est number among the baselines. Our method
also achieves the lowest number of detected
body parts for the most sensitive body parts,
only surpassing the baselines for feet which is
a less sensitive body part.

Searching for the optimal target concepts. We investigate the search for optimal target concepts
ct by visualizing the generated images from ct found by our method and the corresponding output
of ce at the same optimization step as shown in Figure 4a. Additionally, we present the similarity
scores between the nudity attributes detected by the detector and ct as in Figure 4b. Firstly, the
to-be-erased concept ce (“nudity”) is closely related to the sensitive body parts such as “breasts” and
“genitalia”, explaining why removing the “nudity” concept also eliminates these sensitive attributes.
On the other hand, as discussed in Section 4, the target concept ct is designed to be locally aligned
with ce but not exactly the same as ce. In our results, all intermediate concepts ct such as “Model”,
“Drawing”, and “Toy” are highly correlated with the “nudity” concept satisifying the first condition.
However, while being highly correlated with less sensitive parts such as “Feet”, they are less corre-
lated with more sensitive ones like “breasts” and “genitalia”, meeting the second condition. It is a
worth recall that in Equation 4, ct serves as a retained concept to preserve the model’s capabilities.
Therefore, the strong correlation between ct and “Feet”, and its weaker connection with other sensi-
tive parts, explains the interesting advantage of our method that it can still retain the “Feet” concept
while successfully erasing others, as observed in Figure 3. We provide more results and analyses in
Appendix D.5.

5.3 ERASING ARTISTIC CONCEPTS

Setting. In this experiment, we evaluate our method’s ability to erase artistic style concepts. We
focus on five well-known artists with highly recognizable styles that are commonly mimicked by
text-to-image generative models, including ”Kelly Mckernan”, ”Thomas Kinkade”, ”Tyler Edlin”,
”Kilian Eng”, and ”Ajin Demi Human” as in (Gandikota et al., 2023). The experiment involves five
tasks, each aiming to erase one artist’s style while preserving the others.

Metrics. A major challenge in this setting is the lack of a reliable detector for identifying the
presence of artistic styles in generated images. Human-evaluation is avoided due to the high cost,
time-consuming, not scalable, and more importantly, easily biased. To overcome this, we utilize the
CLIP score 2 to measure the alignment between the generated images and the textual prompts, which

2https://lightning.ai/docs/torchmetrics/stable/multimodal/clip score.html
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Figure 4: Top/a: Intermediate results of the search process, with images generated from the most
sensitive concepts ct found by our method and ce at the same optimization step. Bottom/b: Similarity
between nudity attributes and keywords.

has been shown to be effective in similar tasks (Gandikota et al., 2023). To enhance the correctness,
we make use of a list of long textual prompts that are designed exclusively for each artist (credits
to (Gandikota et al., 2023)), combined with 5 seeds per prompt to generate 200 images for each
artist across all methods. This approach allows the use of the CLIP score as a more meaningful
measurement to evaluate the erasing and preserving performance. We also use LPIPS (Zhang et al.,
2018) to measure the distortion in generated images by the original SD model and editing methods,
where a low LPIPS score indicates less distortion between two sets of images. However, as LPIPS
is designed for quantitative comparison between two outputs, it might not be as good as CLIP score
in order to verify the presence of a specific concept in the generated images, and should be used as
a complementary metric to CLIP score.

Results. Table 3 presents the results of the artistic style erasure task. In terms of erasing perfor-
mance, our method achieves the best CLIP score on the to-be-erased set of 22.44, outperforming the
second-best score of 23.56 achieved by ESD, and obtains the second-best LPIPS score of 0.80, only
slightly lower than CA’s 0.82. For preserving performance, our method secures the CLIP and LPIPS
scores of 30.45 and 0.44, respectively, slightly below UCE. The MACE method leads in preserving
performance with the best CLIP score of 31.52 and LPIPS score of 0.25, but performs poorly in
erasing tasks, with the worst CLIP score of 27.96 and LPIPS score of 0.60. Our method outper-
forms UCE in erasing performance, demonstrating a better trade-off between erasing and preserving
performance compared to the baselines.

Table 3: Erasing artistic style concepts. The best and second-best results are highlighted in bold and
underline, respectively.

To Erase To Retain
CLIP ↓ LPIPS↑ CLIP↑ LPIPS↓

ESD 23.56± 4.73 0.72± 0.11 29.63± 3.57 0.49± 0.13
CA 27.79± 4.67 0.82± 0.07 29.85± 3.78 0.76± 0.07
UCE 24.47± 4.73 0.74± 0.10 30.89± 3.56 0.40± 0.13
MACE 27.96± 4.22 0.60± 0.10 31.52± 2.91 0.25± 0.12
Ours 22.44± 5.03 0.80± 0.12 30.45± 3.35 0.44± 0.13

6 CONCLUSION

In this paper, we introduced the Adaptive Guided Erasure (AGE) method, a novel approach for con-
cept erasure that addresses the limitations of existing fixed-target methods. By modeling the concept
space as a graph and analyzing its geometric properties, we demonstrated that selecting a locally re-
lated target concept can minimize unintended side effects. AGE adapts target selection through a
minimax optimization, further enriched by representing targets as mixtures of single concepts. Our
experiments show that AGE outperforms state-of-the-art methods, effectively erasing undesirable
concepts while preserving benign ones across various tasks. Besides the method, we also provided
the first comprehensive study of the concept space structure, providing new intriguing insights that
shed light on the concept space geometry. We believe that these insights will inspire future research
on understanding and manipulating the concept space for various applications.
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A RELATED WORK

Existing methods for removing or unlearning undesirable concepts from text-to-image generative
models can be categorized into four main categories: (1) pre-processing dataset filtering, (2) post-
processing screening, (3) model fine-tuning, and (4) in-generation guidance. Each approach has its
advantages and drawbacks. While pre-processing and post-processing methods are effective, they
may not address the underlying tendencies of models to generate inappropriate content (SmithMano,
2022). Fine-tuning approaches provide a more direct solution but often struggle with maintaining
model performance while removing specific concepts. In-generation guidance offers flexibility but
can be resource-intensive and requires careful tuning.

Pre-processing dataset filtering is the most straightforward method, involving mechanisms to de-
tect and remove or flag undesirable content in the training data. This generally requires a pre-trained
detector to identify objectionable content within both the original dataset and any newly added data.
However, the primary drawback of this approach is that it necessitates retraining the model from
scratch, which is computationally expensive and impractical for dynamic erasure requests. Exam-
ples of this include Stable Diffusion v2.0 (StabilityAI, 2022), which uses an NSFW detector to filter
the LAION-5B dataset (Schuhmann et al., 2022), and Adobe Firefly, which is trained on licensed
and public-domain content to ensure commercial safety (Rao, 2023). DALL·E 3 (Shi et al., 2020)
further refines this by subdividing the NSFW concept into specific categories and applying individ-
ualized detectors. Despite significant efforts in curating training data, pre-processing methods often
leave models inadequately sanitized, as shown in Gandikota et al. (2023).

Post-processing screening methods identify inappropriate content in generated images after in-
ference. Images flagged by detectors are either blurred or blocked before being shown to users. This
approach is employed by organizations such as OpenAI (DALL-E), StabilityAI (Stable Diffusion),
and Midjourney Inc. DALL·E 3, for instance, enhances this approach by training standalone de-
tectors for various concepts such as race and gender. While post-processing is highly effective, it
can be vulnerable to adversarial attacks. As demonstrated in Yang et al. (2024), adversaries can use
techniques like Boundary Attack (Brendel et al., 2017) to circumvent such filters.

In-generation guidance methods intervene directly during the image generation process, often
using techniques such as handcrafted textual blacklisting (Shi et al., 2020) or employing large
language models for prompt engineering and safety classification. Safe Latent Diffusion (SLD)
(Schramowski et al., 2023a) takes an alternative approach by leveraging inappropriate knowledge
encoded in pre-trained models for reverse guidance during generation.

Model parameter fine-tuning offers a more scalable solution by fine-tuning pre-trained founda-
tion models to remove unwanted concepts without retraining from scratch. This approach modifies
the model’s parameters, making it unnecessary to use detectors in post-processing. Consequently,
releasing a sanitized model is as simple as providing a new checkpoint, which is less vulnerable to
adversarial evasion. Fine-tuning methods have received considerable attention, with notable works
including TIME (Orgad et al., 2023), ESD (Gandikota et al., 2023), Concept Ablation (Kumari
et al., 2023), UCE (Gandikota et al., 2024), Forget-Me-Not (Zhang et al., 2023), and MACE (Lu
et al., 2024). However, these models remain susceptible to inversion attacks (Pham et al., 2023),
where adversaries can use textual inversion techniques (Gal et al., 2022) to learn and regenerate the
removed concepts using the sanitized model.

Within fine-tuning, there are two main branches of concept erasing techniques: (1) Attention-based,
and (2) Output-based or optimization-based.

Attention-based methods (Zhang et al., 2023; Orgad et al., 2023; Kumari et al., 2023; Gandikota
et al., 2024; Lu et al., 2024) focus on modifying the attention mechanisms within models to remove
undesirable concepts. In Latent Diffusion Models (LDMs), for instance, the textual conditions are
embedded via a pre-trained CLIP model and injected into the cross-attention layers of the UNet
model (Rombach et al., 2022; Ramesh et al., 2022). To remove an unwanted concept, the attention
mechanism between the textual condition and visual information flow is altered. For example, in
TIME (Orgad et al., 2023), the authors propose the following optimization:
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min
W ′

∑
ce∈E

∥W
′
ce − v∗t ∥22 + λ∥W

′
−W∥22 (6)

where W represents the original cross-attention weights, W
′

the fine-tuned weights, ce the em-
bedding of the unwanted concept, and v∗t the targeted vector. Setting v∗t = Wct, where ct is the
embedding of a desired concept, allows the model to project the unwanted concept toward a more
acceptable one. Follow-up works (Zhang et al., 2023; Gandikota et al., 2024; Lu et al., 2024) share
this principle. Specifically, Forget-Me-Not (Zhang et al., 2023) introduces an attention resteering
method that minimizes the L2 norm of the attention maps related to the unwanted concept. UCE
(Gandikota et al., 2024) extends TIME by proposing a preservation term that allows the retention of
certain concepts while erasing others. MACE (Lu et al., 2024) improves the generality and speci-
ficity of concept erasure by employing LoRA modules (Hu et al., 2021) for each individual concept,
combining them with the closed-form solution from TIME (Orgad et al., 2023). This category has
two main advantages: (1) the Tikhonov regularization form of the objective function 6 allows for a
closed-form solution, as demonstrated in (Orgad et al., 2023), and (2) it operates solely on textual
embeddings, making it faster than optimization-based methods.

Output-based methods (Gandikota et al., 2023; Wu et al., 2024) focus on optimizing the output
image by minimizing the difference between the predicted noise ϵθ′ (zt, t, ce) and the target noise
ϵθ(zt, t, ct). Unlike attention-based methods, this approach requires intermediate images zt sampled
at various time steps t during the diffusion process. While this method is computationally more
expensive, it generally yields superior erasure results by directly optimizing the image, ensuring
the removal of unwanted concepts (Gandikota et al., 2023). Our proposed method belongs to this
category, but our insights into optimal target concepts are generalizable across both categories.

A recent addition to the field, SPM (Lyu et al., 2024), introduces one-dimensional adapters that,
when combined with pre-trained LDMs, prevent the generation of images containing unwanted con-
cepts. SPM introduces a new diffusion process ϵ̂ = ϵ(xt, ct | θ,Mce), where Mce is an adapter
model trained to remove the undesirable concept ce. While these adapters can be shared and reused
across different models, the original model θ remains unchanged, allowing malicious users to re-
move the adapter and generate harmful content. Thus, SPM is less robust and practical compared to
the other approaches discussed.

B FURTHER DETAILS ON THE ADAPTIVE GUIDED ERASURE METHOD

In this section, we provide more details on the proposed adaptive guided erasure method.

Algorithm. We first recall the central optimization problem in Equation equation 4:

min
θ′

E
ce∈E

max
π

∥ϵθ′ (τ(ce))− ϵθ(G(π)⊙ TC)∥22︸ ︷︷ ︸
L1

+λ ∥ϵθ′ (G(π)⊙ TC)− ϵθ(G(π)⊙ TC)∥22︸ ︷︷ ︸
L2


where τ(·) is the textual embedding function that embeds a concept into a textual embedding, G(·) is
the Gumbel-Softmax operator, and⊙ denotes the element-wise product. TC is the textual embedding
matrix of the entire concept space C, i.e., TC = {τ(c1), τ(c2), · · · , τ(cn)} that can be pre-computed
by the fixed textual encoderτ(·) in the foundation model.

The algorithm to solve the min-max optimization problem is provided in Algorithm 1. More
specifically, given the foundation model θ, concept space C, and the erasing set E, we precom-
pute the embedding matrix TC . Since we erase multiple concepts simultaneously, each concept ce
has an associated optimal target concept ct. Therefore, we maintain a dictionary D to store the
weights π of the optimal target concepts for all concepts in the erasing set E throughout the op-
timization process. Initially, the weights π are uniformly distributed across all concepts in C, i.e.,
D[ce] = [1/|C|, 1/|C|, · · · , 1/|C|].
During each iteration, we first sample a concept ce from the erasing set E. Then, we retrieve the
previous target concept π of ce from the dictionary D. By doing so, we can ensure the learning
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process is stable and continuous from previous learning process. We then compute the gradient of
the loss function w.r.t. the weight π and update the weight π. It can be done iteratively for Niter
times, however, in our experiment, we just simply set Niter to be 1 for simplicity. After having the
updated weight π, we update the model parameters θ

′
by performing a gradient descent step, as well

as the dictionary D.

Algorithm 1 Adaptive Guided Erasure Fine-tuning

Input: θ, TC ,E, λ, γ. Searching hyperparameters: η,Niter. Learning rate: α
Output: θ

′

k ← 0, θ
′

k ← θ
D[ce]← [1/|C|, 1/|C|, · · · , 1/|C|] ∀ce ∈ E ▷ Init the dictionary
while Not Converged do

ce ∼ E
// Find the target concept ct w.r.t. current ce
π ← D[ce] ▷ Retrieve the previous target concept
for i = 1 to Niter do

π ← π + η∇π

[
L1(π, θ, θ

′

k) + λL2(π, θ, θ
′

k)
]

▷ Inner Max
end for
D[ce]← π ▷ Update the dictionary
// Update model parameters
θ
′

k+1 ← θ
′

k − α∇θ
′
k

[
L1(π, θ, θ

′

k) + λL2(π, θ, θ
′

k)
]

▷ Outer min
k ← k + 1

end while

A detailed analysis on the impact of hyperparameters is provided in Section D.3. In all experiments,
we simply set the trade-off λ = 1.0, the temperature γ = 0.1, learning rate η = 0.001, and Niter = 1.
Visualizations of the mixture of concepts can be found in Section D.4, and the process of searching
for optimal target concepts is discussed in Section D.5.

Limitation. A crucial aspect of our method is the concept space C, which is used to search for
the optimal target concept. As discussed earlier, we use the Gumbel-Softmax trick, which requires
feedings the model with the embedding matrix TC of all concepts in the concept space C. However,
this requires a large computational cost, especially when the concept space C is large. To mitigate
the issue, we use a small set of concepts Cce which contains the most k closest concepts to the
concept ce in the original concept space C for each concept ce to reduce the computational cost. We
simply choose k = 100 for all experiments. The similarity between concepts is measured in textual
embedding space τ(·) by cosine similarity. We provide the analysis on the impact of choosing
concept space Cce in Section D.2.

Additionally, as demonstrated in Section D.4, the mixture of concepts is not a simple linear com-
bination of the concepts. Some transformations, like from English springer” to French Horn”, are
smooth, while others are not. This limits the potential of fully leveraging the concept mixture. We
leave further exploration of smoother concept mixtures for future work.

C EXPERIMENTAL SETTINGS

C.1 NETFIVE DATASET

Two main challenges in evaluating an erasing method are: (1) How to verify whether a concept
is present in the generated images or not? (2) How to ensure the evaluation is diverse enough to
cover the output space of the model which is of infinite possibilities? To tackle the two challenges,
we propose a evaluation dataset called NetFive, which consists of 25 concepts from the ImageNet
dataset, for which we can leverage the pre-trained classification model to verify the presence of the
concepts in the generated images. We also ensure the diversity of the evaluation by generating 500
samples for each concept More specifically, we choose total five subsets of concepts, each subset
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Figure 5: Sample images generated by the SD model from the NetFive dataset. Each row corre-
sponds to one subset of concepts.

contains one anchor concept, e.g., ”English Springer” and four related concepts, ranked by their
relative closeness to the anchor concept.

To choose the related concepts, we use the original SD model to generate 500 samples for each
concept. We then use the pre-trained ResNet50 model to classify the generated samples. We then
choose related concepts from top-10 most frequently appeared concepts in the output. In the end,
we choose the following subsets of concepts:

• Dog Subset: English springer, Clumber spaniel (315), English setter (160), Blenheim
spaniel (45), Border collie (39)

• Vehicle Subset: Garbage truck, Moving van (244), Fire engine (188), Ambulance (97),
School bus (33)

• Instrument Subset: French horn, Basson (327), Trombone (210), Oboe (199), Saxophone
(38)

• Building Subset: Church, Monastery (445), Bell cote (274), Dome (134), Library (17)

• Equipment Subset: Cassette Player, Polaroid camera (78), Loudspeaker (51), Typewriter
keyboard (19), Projector (9)

Each subset contains one anchor concept, i.e., English springer, and four related concepts, ranked by
the frequency of appearance of that concept in the top-10 predictions. For example, in 500 samples
with the input description ”English Springer”, there are 315 samples that are classified as ”Clumber
spaniel” in the top-10 predictions. The larger the frequency, the more related the concept is to the
anchor concept. We provide sample images generated by the SD model in Figure 5.

It is worth noting that, while most of the concepts in the dataset have high generation capability, i.e.,
the total height of the stack is almost 100% as shown in Figure 1, there are two concepts ”Bell Cote”
and ”Oboe” that have low generation capability, with their total height of the stack around 60-80%
as shown in Figure 1. Beside Figure 5, we also provide a failed sample from the ”Oboe” concept in
Figure 6 for reference.
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Figure 6: Sample images generated by the SD model from the NetFive dataset. Each row corre-
sponds to one subset of concepts. Failed sample from the ”Oboe” concept as showing a man
instead of an oboe.

C.2 METRIC TO MEASURE THE GENERATION CAPABILITY OF THE MODEL

In image generative models, while common metrics such as FID and Inception Score are used to
evaluate the quality of the generated images, there is no direct metric to evaluate the generation
capability of the model on a specific concept. One of the main tasks in evaluating the generation
capability is to detect the presence of the concept in the generated image. In our experiment, we
intentionally choose all concepts from the ImageNet dataset, which allows us to leverage the pre-
trained classification model to detect the presence of the concept in the generated image. Thus, we
can indirectly evaluate the generation capability of the model on a specific concept.

More specifically, given a model Gθ, we generate k = 500 images with the input description cj , and
then measure the two metrics:

• Detection Score (DS-1/DS-5): # of samples that are classified as the concept cj in top-1
or top-5 predictions / k. This metric indicates how many samples can be classified as the
concept cj by the pre-trained classification model.

• Confident Score (CS-1/CS-5): Average confident score w.r.t. the concept cj in top-1 or
top-5 predictions if the concept cj is detected in top-5 predictions, otherwise, the confident
score is set to be 0. This metric indicates how confident the model is when generating
the concept cj . A higher score means that the concept cj is more likely to appear in the
generated images.

It is worth noting that the confident score is designed to prefer a model that can generate more
low-confident samples over a model that generates fewer high-confident samples. Additionally, the
top-5 predictions are more reliable than the strict top-1 predictions, because the top-5 predictions
can tolerate some errors in the model’s prediction, e.g., a dog breed can be easily misclassified as
another dog breed.

We present G0(cj) and Gce(cj) as the generation capability of the original model and the sanitized
model on the same query concept cj after erasing concept ce, respectively. With this, we can mea-
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sure the impact of erasing concept ce on the generation capability of concept cj by computing the
difference between G0(cj) and Gce(cj), i.e., ∆(ce, cj) = G0(cj)−Gce(cj).

C.3 FINDING A SYNONYM TO AN ANCHOR CONCEPT

We follow the suggestion to evaluate the erasing capability on the synonyms of object-related con-
cepts, e.g., ‘Church’. More specifically, we first utilize a set of tools including ChatGPT, Dictio-
nary/Thesaurus.com, and Google image search to find the best synonyms for each target concept.
To verify that these synonyms are indeed resembling the target concept, we then use the original
model to generate images from the synonyms (e.g., ‘a photo of Chapel’), and use the ResNet-50
model to classify the generated images. We then only keep the synonyms that have the top-5 ac-
curacy higher than 50% to ensure that they are indeed generation-similar to the target concept. For
some concepts we could not find any good synonyms, such as ‘Golf ball’ or ‘Chain saw’, except for
some minor variations. We provide (top-1 and top-5) accuracy of the synonyms as below, as well as
those numbers of target concepts, the higher the accuracy, the more similar the synonyms are to the
target concept.

• Cassette player (5.4;96.6): tape player (10.0;95.0), cassette deck (0.0;95.0), cassette
recorder (2.5;92.5), tape deck (5.0;100.0)

• Church (84.4;100.0): chapel (80.0;100.0), cathedral (50.0;100.0), minster (87.5;100.0),
basilica (32.5;100.0)

• Garbage truck (83.2;99.2): trash truck (87.5;97.5), refuse truck (80.0;100.0), waste col-
lection vehicle (97.5;100.0), sanitation truck (47.5;100.0)

• Parachute (95.2;99.2): skydiving chute (93.9;100.0), paraglider (100.0;100.0)

• French horn (99.6;100.0): brass horn (32.5;95.0), double horn (37.5;65.0), German horn
(22.5;80.0)

• Chain saw (76.4;89.0): chainsaw (92.0;96.0), power saw (26.0;58.0)

• Gas pump (69.0;97.0): fuel dispenser (50.0;97.5), petrol pump (85.0;100.0), fuel pump
(47.5;65.0), gasoline pump (77.5;100.0), service station pump (47.5;87.5)

• Tench (76.0;98.0): cyprinus tinca (60.0;95.0), cyprinus zeelt (52.5;100.0)

• English springer (92.4;97.8): springer spaniel (95.0;100.0), springing spaniel (60.0;90.0),
welsh springer spaniel (2.5;72.5), English cocker spaniel (32.5;77.5)

• Golf ball (98.2;99.2): golfing ball (99.0;99.0)

D FURTHER ANALYSIS

D.1 MEASURING THE IMPACT OF ERASING ON THE GENERATION CAPABILITY OF OTHER
CONCEPTS

We would like to provide additional results with different metrics as follows while all results can be
found in the project repository.

• Targeting to a generic concept, with DS-1 metric (Figure 7), DS-5 metric (Figure 8), CS-1
metric (Figure 9), CS-5 metric (Figure 10).

• Targeting to a specific concept with DS-5 metric (Figure 11).

• Targeting to a generic concept on Stable Diffusion version 2 with DS-5 metric (Figure 12).

• Targeting to a specific concept on Stable Diffusion version 2 with DS-5 metric (Figure 13).

Observations based on DS-5 metric. To make the reading easier, we would like to recall the
observations in Section 3 which are based on the DS-5 metric.

First, when mapping to a generic concept, we can observe the following properties of the concept
graph:
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• (Locality) The concept graph is sparse and localized, which means that the impact of eras-
ing one concept does not strongly spread to all the other concepts but only a few concepts
that are related to the erased concept ce.

• (Asymmetry) The concept graph is asymmetric such that the impact of erasing concept ce
on concept cj is not the same as the impact of erasing concept cj on concept ce. Mathe-
matically, ∆(ci, cj) ̸= ∆(cj , ci).

• (Abnormal) The two abnormal concepts “Bell Cote” and “Oboe”, which have low genera-
tion capability to begin with, are sensitive to the erasure of any concept.

In the case of erasing exclusive concepts, such as “Taylor Swift”, “Van Gogh”, “gun”, and “nudity”
as shown in the last four rows of the figure, the impact of erasing these concepts to all NetFive con-
cepts are also limited, except for the two abnormal concepts, which supports the above observations
on the concept graph.

When mapping to a specific concept, we can observe the following properties that guide the choice
of the target concept for erasure:

• (Locality) Regardless of the choice of the target concept, the impact of erasing one concept
is still sparse and localized.

• (Abnormal) The two abnormal concepts “Bell Cote” and “Oboe” are still sensitive to the
erasure of any concept regardless of the choice of the target concept.

• (Synonym ✗✗✗) Mapping to a synonym of the anchor concept leads to a minimal change as
evidenced by the lowest ∆(ce, cj) for all cj . However, it also the least effective in erasing
the undesirable concept ce.

• (All Unrelated Concepts ✗✗) Mapping to semantically unrelated concepts demonstrates
the similar performance as the generic concept “ ”, as evidenced by the similar ∆(ce, cj)
between the three last rows (5th − 7th) in each subset.

• (General concepts ✗) While choosing a general concept as the target concept is intuitive
and reasonable, it does not necessary lead to good preservation performance. For example,
“English Springer”→ “Dog” or “French Horn”→ “Musical Instrument Horn” still cause a
drop on related concepts in their respective subsets. Moreover, there are also small drops on
erasing performance compared to other strategies, shown by DS-5 of 83%, 91%, and 78%
when mapping “Garbage Truck” to “Truck”, “French Horn” to “Musical Instrument Horn”,
and “Cassette Player“ to “Audio Device”, respectively. The two observations indicate that
choosing a general concept is not an optimal strategy.

• (In-class ✓) The highest preservation performance which is consistently observed in all
five subsets is achieved when the target concept is a closely related concept to ce. For
example, “English Springer”→ “Clumber spaniel” or “Garbage Truck”→ “Moving Van”
or “School Bus” in the “Dog” and “Vehicle” subsets.

Results with Stable Diffusion version 2. Figures 12 - 13 show the impact of choosing the empty
concept and a specific concept as the target concept for erasure with Stable Diffusion version 2.
It can be seen that the above observations are still valid, except for the abnormal concepts which
have low generation capability and are sensitive to the erasure of any concept (”Bell Cote” and
”Projector”). This consistency indicates the generalization of the observations on the concept graph
of different models, trained on different datasets and settings.

Why Use the DS-5 Metric? The CS-1 and CS-5 metrics measure the change in confidence scores
associated with a query concept cj in the generated images, whereas the DS-1 and DS-5 metrics
assess the change in detection status (presence or absence) of the query concept. Therefore, the
CS-1 and CS-5 metrics are more sensitive to the change of the image content, and should be treated
as a complementary analysis to the detection metrics.

Due to the high degree of class similarity in datasets like ImageNet, where, for instance, one dog
breed may easily be misclassified as another, the DS-5 metric is more reliable than the DS-1 metric
for verifying the presence of a concept in the generated images. The DS-5 metric’s focus on de-
tection across the top five predictions reduces the risk of misclassification, making it a more robust
choice in such scenarios.
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Observations Based on Other Metrics Figure 7 illustrates the impact of using the empty concept
as the target for erasure, as measured by the DS-1 metric. While the results are not as pronounced as
those seen with the DS-5 metric, similar patterns can be observed on the concept graph. For example,
closely related concepts still show higher sensitivity to the erasure of a concept, as indicated by larger
differences in the DS-1 metric (more red color or values exceeding 60%). The abnormal concepts
such as ”Oboe” remain sensitive to the erasure of any concept, with the smallest differences still
exceeding 30%.

Similar trends are observed with the CS-1 metric, as shown in Figure 9, and with the CS-5 metric
in Figure 10. However, to draw definitive conclusions, we emphasize that the impact of erasing a
concept does not strongly propagate to all other concepts but tends to affect only local concepts
that are semantically closely related to the erased concept ce. Nonetheless, a weak impact on other
concepts can still be detected using complementary metrics.

D.2 IMPACT OF CHOOSING VOCABULARIES

Object-related settings Our method requires a concept space C predefined by users to search for
the optimal target concept. In this experiment, we assess the impact of choosing different vocabu-
laries for this task. The vocabularies compared include:

• ImageNet: A list containing all 1000 classes from the ImageNet dataset.
• Oxford: A list of the 3000 most common English words 3.
• CLIP: The CLIP token vocabulary, consisting of 49,408 tokens. While comprehensive, the

CLIP vocabulary includes a significant number of nonsensical tokens, making it challeng-
ing to use.

• ChatGPT: A vocabulary generated by ChatGPT using the following prompt: ”Provide
k=100 objects that resemble a ’Cassette Player’ but are not ’Cassette Player,’ and export
the list to a CSV file.”

To reduce computational costs, we filter each original dictionary to a set of k = 100 concepts most
similar to the target concept ce, forming the concept space Cce . Results indicate that the ChatGPT-
generated vocabulary achieves the best preservation performance, with an impressive 96.49% top-5
accuracy—nearly matching the original model’s performance. However, this vocabulary underper-
forms in the erasing task, as reflected by its lower ESR-1 and ESR-5 scores. Both the Oxford and
CLIP vocabularies demonstrate similar erasing and preservation performance. Finally, the ImageNet
vocabulary strikes the best balance between erasing and preserving, achieving the highest ESR-1
and ESR-5 scores, while maintaining respectable PSR-1 (80.84%) and PSR-5 (94.4%) scores, only
slightly below the original model’s performance. Consequently, we select the ImageNet vocabu-
lary as the default vocabulary for all object-related experiments in the main paper. We provide the
intermediate results of the erasing process for different vocabularies in Section D.5.

Table 4: Impact of choosing vocabularies on object-related settings.

Vocab ESR-1↑ ESR-5↑ PSR-1↑ PSR-5↑
SD 26.44 1.00 82.40 96.20

ESD 95.48 88.88 41.32 56.12
UCE 100.00 100.00 21.96 38.04

ImageNet 97.08 93.48 80.84 94.4
Oxford 93.48 87.68 66.88 85.40
CLIP 93.40 84.96 69.96 87.56

ChatGPT 83.60 41.84 80.92 96.49

Artistic style settings For artistic style settings, we use the same vocabularies as in the object-
related settings, except we exclude ImageNet. For the ChatGPT vocabulary, we modify the prompt
to focus on artistic style concepts rather than object concepts. The prompts used are: ”Provide k=100

3https://www.oxfordlearnersdictionaries.com/wordlist/american english/oxford3000/
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Figure 7: Analysis of the impact of choosing empty concept as the target concept for erasure with
DS-1 metric.
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Figure 8: Analysis of the impact of choosing the empty concept as the target concept for erasure
with DS-5 metric.
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Figure 9: Analysis of the impact of choosing the empty concept as the target concept for erasure
with CS-1 metric.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 10: Analysis of the impact of choosing the empty concept as the target concept for erasure
with CS-5 metric.
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Figure 11: Analysis of the impact of choosing a specific concept as the target concept for erasure
with DS-5 metric.
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Figure 12: Analysis of the impact of choosing the empty concept as the target concept for erasure
with Stable Diffusion version 2 with DS-5 metric.
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Figure 13: Analysis of the impact of choosing a specific concept as the target concept for erasure
with Stable Diffusion version 2 with DS-5 metric.
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(a) λ (b) γ

Figure 14: Ablation study on the trade-off hyperparameter λ and the temperature hyperparameter γ.

keywords or phrases that resemble a ’painting,’ and export the list to a CSV file” and ”Provide k=100
artistic concepts similar to the ’Kelly McKernan’ art style, and export the list to a CSV file.” The
complete list of concepts is available in the corresponding repository. As shown in Table 5, the
ChatGPT vocabulary achieves comparable erasing performance to the Oxford vocabulary, while
outperforming it in preservation. Based on these results, we select the ChatGPT vocabulary as the
default for all artistic style experiments in the main paper.

Table 5: Impact of choosing vocabularies on artistic style settings.

To Erase To Retain
CLIP ↓ LPIPS↑ CLIP↑ LPIPS↓

ESD 23.56± 4.73 0.72± 0.11 29.63± 3.57 0.49± 0.13
CA 27.79± 4.67 0.82± 0.07 29.85± 3.78 0.76± 0.07
UCE 24.47± 4.73 0.74± 0.10 30.89± 3.56 0.40± 0.13

Oxford 22.03± 5.24 0.79± 0.11 29.97± 3.54 0.49± 0.14
ChatGPT 22.44± 5.03 0.80± 0.12 30.45± 3.35 0.44± 0.13

D.3 HYPERPARAMETER ANALYSIS

In this experiment, we analyze the impact of the trade-off hyperparameter λ and the temperature γ
in our method. For all other experiments, we fixed λ = 1.0 and γ = 0.1 We conduct experiment
with object-related setting, erasing five concepts “Cassette Player”, “Church”, “Garbage Truck”,
“Parachute”, and “French Horn” simultaneously. We vary λ and τ within the range of 0.01 to 2.

It can be seen from Figure 14a that the erasing performance decreases as λ increases, while the
preserving performance improves monotonically. This aligns with our theoretical analysis in Section
4, where λ controls the balance between the erasure loss L1 and the preserving loss L2 in Equation
equation 4.

In Figure 14b, we observe that as γ increases, the preserving performance declines, though there is
no clear trend for erasing performance. It is worth reminding that γ is the temperature parameter in
the Gumbel-Softmax operator, which controls the discreteness of the mixed weight G(π) in Equation
equation 5, i.e., the lower γ is, the closer G(π) is to the true one-hot vector.

D.4 MIXTURE OF CONCEPTS

Why mixture of concepts? Given that the concept space C is discrete and finite, a natural approach
to solving Equation equation 4 would be to enumerate all the concepts in C and select the most
sensitive concept ct that maximizes the total loss at each optimization step of the outer minimization
problem. However, this method is computationally impractical due to the large number of concepts
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Figure 15: Visualization of the output images g(z0, (1−α)τ(c1)+ατ(c2)) with different α and c2.

in C. Moreover, many concepts are inherently complex, often composed of multiple attributes, and
cannot always be interpreted as singular, isolated concepts within the space C.

Since the concepts are represented textually and the output of Latent Diffusion Models is controlled
by textual prompts, the most intuitive way to create a mixture of concepts, such as combining c1
and c2, is through a textual template. For example, using a prompt like “a photo of a c1 and a c2”
ensures that both concepts appear in the generated image. However, this approach has a significant
limitation: it does not provide gradients, preventing us from using standard backpropagation to learn
and fine-tune the target concept ct.

To address this issue, we employ the Gumbel-Softmax operator to approximate a mixture of con-
cepts. We set the temperature to a value below 1, ensuring that the resulting target concept is a
combination of a few dominant concepts, rather than an indiscriminate mixture of all the concepts
in C.

Visualization To illustrate the effect of concept mixtures as described in Equation equation 5, we
visualize the generated images g(zT , (1 − α)τ(c1) + ατ(c2)) in Figure 15, where g() represents
the image generation function (the diffusion backward process), zT is the initial noise input, and
τ is the textual encoder. We fix c1 as “English Springer” and vary α from 0 to 1 with different c2
values to simulate the mixture of concepts G(π) · C in Equation equation 5. Intuitively, we expect
the generated images to gradually transition from concept c1 to concept c2 as α increases.

In cases like “Church,” “French Horn,” and “Garbage Truck,” this gradual transformation is indeed
observable, where the image transitions smoothly from “English Springer” to the target concept as
α increases. However, for other concepts like “Border Collie” and “Golf Ball,” the transformation
is less smooth. For instance, the image shifts abruptly from “English Springer” to “Border Collie”
when α increases from 0.4 to 0.5, or from “English Springer” to “Golf Ball” as α changes from 0.4
to 0.7.

This phenomenon suggests that mixing concepts is not merely a linear interpolation between two
target concepts, but is influenced by the intrinsic nature of the concepts c1 and c2.

D.5 SEARCHING FOR THE OPTIMAL TARGET CONCEPT

Erasing Nudity Concept We investigate the search for optimal target concepts ct by visualizing
the generated images from ct found by our method and the corresponding output of ce at the same
optimization step as shown in Figure 16a. Additionally, we present the similarity scores between the
nudity attributes detected by the detector and ct as in Figure 16b. Firstly, the to-be-erased concept ce
(“nudity”) is closely related to the sensitive body parts such as “breasts” and “genitalia”, explaining
why removing the “nudity” concept also eliminates these sensitive attributes. On the other hand,
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Figure 16: Top/a: Intermediate results of the search process, with images generated from the most
sensitive concepts ct found by our method and ce at the same optimization step. Bottom/b: Similarity
between nudity attributes and keywords. The figure is repeated for reading convenience.

as discussed in Section 4, the target concept ct is designed to be locally aligned with ce but not
exactly the same as ce. In our results, all intermediate concepts ct such as “Model”, “Drawing”,
and “Toy” are highly correlated with the “nudity” concept satisifying the first condition. However,
while being highly correlated with less sensitive parts such as “Feet”, they are less correlated with
more sensitive ones like “breasts” and “genitalia”, meeting the second condition. It is a worth recall
that in Equation 4, ct serves as a retained concept to preserve the model’s capabilities. Therefore,
the strong correlation between ct and “Feet”, and its weaker connection with other sensitive parts,
explains the interesting advantage of our method that it can still retain the “Feet” concept while
successfully erasing others, as observed in Figure 3.

Erasing Object-Related Concepts To further illustrate how our method operates across different
settings, we provide intermediate results of the search process in Figures 17, 18. These experiments
follow the same setup as in Section 5.1, exploring the effect of using various vocabularies including
CLIP, Oxford, ChatGPT, and ImageNet, as introduced in Section D.2.

In each subfigure, the first row depicts images generated from the most sensitive concepts ct iden-
tified by our method, while the second row shows the corresponding to-be-erased concepts ce. Im-
portantly, all images are generated from the same initial noise input zT , resulting in similar back-
grounds, while still featuring the relevant concepts ct and ce.

The results reveal that different vocabularies lead to distinct erasing outcomes.

It can be seen that different vocabularies lead to different erasing effects. For instance, when us-
ing ChatGPT’s vocabulary, as shown in Figure 17c, the intermediate concepts ct identified include
[“Chapel,” “Altar room,” “Shrine”], which are semantically similar to the to-be-erased concept
“Church.” This close semantic similarity results in a weaker erasing effect, where the “Church”
concept is not fully removed in the generated images. This phenomenon is also evident in other
object-related concepts, such as “Garbage Truck” as shown in Figure 18c. This result is consistent
with the low erasing performance score observed in Table 4 as discussed in Section D.2.

In contrast, using ImageNet as the vocabulary, as shown in Figures 17d and 18d, leads to more
effective erasure. Initially, the target concepts ct are closely related to the to-be-erased concepts ce,
but they gradually shift to less related concepts. This results in a stronger erasing effect, as outlined
in Section D.2.

D.6 IMPACT OF ERASING ON SYNONYMS

Given the list of ‘valid’ synonyms as introduced in Section C.3, we generated images using the
sanitized models from four object-related settings, where each setting corresponds to erasing five
Imagenette concepts simultaneously, as described in Section 5.1. We then evaluated the sanitized
models using the ESR-1, ESR-5, PSR-1, and PSR-5 metrics. Specifically, if an image generated
from a synonym of a to-be-erased concept is classified as that concept, the model has failed to erase
it, and vice versa. The results are shown in Table 6.
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(a) CLIP

(b) Oxford

(c) ChatGPT

(d) ImageNet

Figure 17: Intermediate results of the search process. The first row is generated from the most
sensitive concepts ct found by our method, and the second row is generated from the corresponding
to-be-erased concepts ce “Church”. Each column represents different fine-tuning steps in increasing
order. Each subfigure represents for different vocabularies.
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(a) CLIP

(b) Oxford

(c) ChatGPT

(d) ImageNet

Figure 18: Intermediate results of the search process. The first row is generated from the most
sensitive concepts ct found by our method, and the second row is generated from the corresponding
to-be-erased concepts ce “Garbage Truck”. Each column represents different fine-tuning steps in
increasing order. Each subfigure represents for different vocabularies.
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First, the SD-org and SD-syn represent the results of the original model using the original concepts
and their synonyms, respectively. Notably, the PSR-1 score for SD-syn is only 58.5%, indicating
that out of 100 images generated from synonyms of a concept like ”Trash Truck,” only 58.5% are
classified as ”Garbage Truck” by the ResNet-50 model. This is significantly lower than the 78%
PSR-1 of the original concept (SD-org). However, for PSR-5, SD-syn achieves 92.5%, which is
only 5% lower than SD-org. This suggests that while the images generated from synonyms may not
be recognized as the target concept in the top-1 prediction, they are still often classified correctly
within the top-5.

With this understanding, we analyzed the performance of erasure methods in handling synonyms of
both the to-be-erased and to-be-preserved concepts.

The results show that while UCE and ESD maintain strong erasure performance for the to-be-erased
concepts, they struggle to preserve the synonyms of the to-be-preserved concepts. Conversely, CA
achieves better preservation but at the cost of reduced erasure performance. MACE strikes a better
balance between erasing and preserving, making it the most effective baseline. Our method outper-
forms MACE in preserving performance by a large margin, achieving the best results overall, though
MACE still leads in erasure effectiveness.

Table 6: Impact of erasing on synonyms

Method ESRs-1↑ ESRs-5↑ PSRs-1↑ PSRs-5↑
SD-org 22.0± 11.6 2.4± 1.4 78.0± 11.6 97.6± 1.4
SD-syn 41.5± 8.2 7.5± 2.3 58.5± 8.2 92.5± 2.3

ESD 91.5± 0.5 81.6± 2.5 33.4± 7.3 62.8± 6.6
CA 84.1± 2.2 67.4± 5.3 46.2± 7.4 80.3± 1.9

UCE 99.8± 0.1 99.2± 0.5 19.5± 4.4 43.8± 0.6
MACE 98.1± 0.9 84.7± 2.2 41.4± 10.3 73.3± 3.1

Ours 78.8± 6.3 62.3± 7.2 55.4± 8.3 90.0± 2.5

D.7 QUALITATIVE RESULTS

This section provides qualitative examples to further highlight the effectiveness of our approach in
comparison to the baselines. Due to internal policies regarding sensitive content, we are only able
to display results from two settings: erasing object-related concepts and erasing artistic concepts.

Erasing Object-Related Concepts Figures 20, 21, and 22 show the results of erasing object-
related concepts using ESD, UCE, and our method, respectively. Figure 19 shows the generated
images from the original SD model. Each column represents different random seeds, and each row
displays the generated images from either the to-be-erased objects or the to-be-preserved objects.

From Figure 19, we can see that the original SD model can generate all objects effectively. When
erasing objects using ESD (Figure 20), the model maintains the quality of the preserved objects, but
it also generates objects that should have been erased, such as the ”Church” in the second row. This
aligns with the quantitative results in Table 1, where ESD achieves the lowest erasing performance.

When using UCE (Figure 21), the model effectively erases the objects as shown in rows 1-5, but the
quality of the preserved objects is significantly degraded, such as ”tench” and ”English springer” in
the 8th and 9th rows. This is consistent with the quantitative results in Table 1, where UCE achieves
the highest erasing performance but the lowest preservation performance.

In contrast, our method (Figure 22) effectively erases the objects while maintaining the quality of
the preserved objects.

Erasing Artistic Concepts Figures 23, 24 show the results of erasing artistic style concepts using
our method compared to the baselines. Each column represents the erasure of a specific artist,
except the first column, which represents the generated images from the original SD model. Each
row displays the generated images from the same prompt but with different artists. The ideal erasure
should result in changes in the diagonal pictures (marked by a red box) compared to the first column,
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Figure 19: Generated images from the original model. Five first rows are to-be-erased objects
(marked by red text) and the rest are to-be-preserved objects. Each column represents different
random seeds.
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Figure 20: Erasing objects using ESD. Five first rows are to-be-erased objects (marked by red text)
and the rest are to-be-preserved objects. Each column represents different random seeds.
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Figure 21: Erasing objects using UCE. Five first rows are to-be-erased objects (marked by red text)
and the rest are to-be-preserved objects. Each column represents different random seeds.
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Figure 22: Erasing objects using our method. Five first rows are to-be-erased objects (marked by
red text) and the rest are to-be-preserved objects. Each column represents different random seeds.
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(a) Ours (b) ESD

(c) UCE (d) CA

Figure 23: Erasing artistic style concepts. Each column represents the erasure of a specific artist,
except the first column which represents the generated images from the original SD model. Each
row represents the generated images from the same prompt but with different artists. The ideal
erasure should result in the change in the diagonal pictures (marked by a red box) compared to the
first column, while the off-diagonal pictures should remain the same.

while the off-diagonal pictures should remain the same. The results demonstrate that our method
effectively erases the artistic style concepts while maintaining the quality of the remaining concepts.
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(a) Ours (b) ESD

(c) UCE (d) CA

Figure 24: Erasing artistic style concepts (continued). Each column represents the erasure of a
specific artist, except the first column which represents the generated images from the original SD
model. Each row represents the generated images from the same prompt but with different artists.
The ideal erasure should result in the change in the diagonal pictures (marked by a red box) com-
pared to the first column, while the off-diagonal pictures should remain the same.
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