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Abstract
Machine unlearning seeks to remove unwanted
information from trained models, initially at the
individual-sample level, but increasingly at the
level of entire sub-populations. In many de-
ployments, models must delete whole topical do-
mains to satisfy privacy, legal, or quality re-
quirements, e.g., removing several users’ posts
under GDPR or copyrighted web content. Ex-
isting unlearning tools remain largely sample-
oriented, and straightforward point deletion of-
ten leaves enough residual signal for downstream
learners to recover the unwanted domain. We in-
troduce distributional unlearning, a data-centric,
model-agnostic framework that asks: Given ex-
amples from an unwanted distribution and a re-
tained distribution, what is the smallest set of
points whose removal makes the edited dataset
far from the unwanted domain yet close to the re-
tained one? Using Kullback–Leibler divergence
to quantify removal and preservation, we derive
the exact Pareto frontier in the Gaussian case and
prove that any model retrained on the edited data
incurs log-loss shifts bounded by the divergence
thresholds. We propose a simple distance-based
selection rule satisfying these constraints with
a quadratic reduction in deletion budget com-
pared to random removal. Experiments on syn-
thetic Gaussians, Jigsaw Toxic Comments, SMS
spam, and CIFAR-10 show 15–72% fewer dele-
tions than random, with negligible impact on re-
tained performance.

1. Introduction
Long-lived models meet short-lived data. Machine learn-
ing models often live in production far longer than the data
on which they were trained. Over time, significant por-
tions of the training data may become legally or ethically
objectionable—think of a large text classifier that scrapes
web forums, only to face a GDPR (1) takedown demand

1Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
thor <anon.email@domain.com>.
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requiring the removal of several users’ posting history, or
an image-recognition system that must excise every photo
from a now-copyrighted online archive (12). In these sce-
narios, deleting a handful of flagged samples is often in-
sufficient: the remaining dataset may still carry the sta-
tistical signature of the unwanted domain, allowing down-
stream models to relearn or exploit it. For example, recent
works show that large language models can verbatim repro-
duce sequences that were removed from their training sets,
purely from overlapping context (20). While “approximate
retraining” methods, like influence-function updates (13)
or certified unlearning via convex optimization (14; 25),
reduce computational overhead, they do not minimize the
number of samples that must be removed to erase a do-
main’s influence, and hence do not address the core statis-
tical question of sample-efficiency in unlearning.

Existing research on sample-level unlearning has mainly
focused on per-record deletions with guarantees on
parameter-space closeness to a retrained model (14; 8).
These approaches typically assume that all unwanted sam-
ples have been perfectly identified and focus on how
quickly the model parameters can be updated. By contrast,
our work asks “which samples—and how many—must be
deleted to sever the unwanted distribution’s statistical foot-
print entirely?” Recent advances in class-level unlearn-
ing (27; 17) and spurious-feature pruning (21) demon-
strate effective forms of domain-level removal, yet neither
provides an explicit, divergence-based deletion budget for
minimal sample removal. Additionally, concept erasure
methods, e.g., INLP (24), LEACE (5), provide complemen-
tary, model-internal tools for suppressing unwanted signals
post hoc, but because they do not edit the raw data, any
downstream retraining can potentially reintroduce those
concepts. Finally, robust optimization approaches such as
distributionally-robust risk minimization (22) seek to pro-
tect against worst-case shifts, rather than remove a known
shift with provable guarantees on how many and which
samples must be deleted.

While these lines of work tackle important aspects of
unlearning or robustness, they do not provide a unified,
distribution-level forgetting criterion coupled with minimal
deletion guarantees. This gap raises a precise statistical
question:

Given samples from an unwanted distribution p1
and a retained distribution p2, how can we select
and minimize the set of points to delete so that
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the edited empirical distribution is information-
theoretically far from p1 but close to p2?

To answer this, we introduce distributional unlearning, a
data-centric, model-agnostic framework that reframes for-
getting as a purely statistical operation at the distribution
level. We quantify “far” and “close” via the forward Kull-
back–Leibler (KL) divergence. This choice enables control
over downstream log-loss performance with respect to both
distributions.

Contributions. We summarize our contributions in tack-
ling the above question as follows:

• Formal framework: We formalize distributional un-
learning via forward-KL constraints; α for removal, ε
for preservation, enabling strong guarantees on down-
stream log-loss.

• Pareto frontier & downstream guarantees: We derive
the closed-form Pareto frontier of achievable (α, ε)
pairs for Gaussians and characterize its geometry in
terms of divergence between the reference distribu-
tions for exponential families. We prove that any pre-
dictor retrained on the edited dataset incurs log-loss
shifts bounded precisely by α and ε.

• Algorithm & sample efficiency: We study the sample
complexity of distributional unlearning with both ran-
dom and selective removal (of the most divergent sam-
ples) mechanisms. We show that selective removal
improves sample-efficiency quadratically, in terms of
number of removed samples, compared to random re-
moval.

• Empirical validation: Our selective removal strategy
significantly reduces the removal budget versus ran-
dom deletion. We report on experiments on synthetic
Gaussians, Jigsaw toxic comments, SMS spam, and
CIFAR-10 images, where we demonstrate 15–72%
reductions in deletion budgets over random removal,
with little loss in utility on retained domains.

2. Distributional Unlearning: Definition and
Implications

We consider probability distributions over an input space
X , and we denote by P a class of distributions on X . We
focus on two distributions:

• p1 ∈ P: the target distribution to forget,

• p2 ∈ P: the reference distribution to preserve.

The goal is to construct a new distribution p ∈ P
that removes the statistical influence of p1 while re-
taining the properties of p2. We formalize this via
Kullback–Leibler (KL) divergence, which we recall for
two absolutely-continuous distributions q, p on X is
KL(q∥p):=

∫
X q(x) log q(x)

p(x) dx. Throughout this section,
we defer all proofs to Appendix D.

Definition 1 ((α, ε)-Distributional Unlearning). For tol-
erances α, ε > 0, a distribution p ∈ P satisfies (α, ε)-
distributional unlearning with respect to (p1, p2) if:

KL(p1 ∥ p) ≥ α (removal), (1)
KL(p2 ∥ p) ≤ ε (preservation). (2)

The first inequality forces the edited data to be
information-theoretically distant from the population we
wish to forget. The second inequality upper bounds col-
lateral damage to the population we preserve. We adopt the
forward KL divergence as it directly controls the expected
log-loss under the edited distribution p, which is critical for
bounding downstream predictive performance (Prop. 2).1

Feasibility and the pareto frontier. The pair (α, ε) cap-
tures a trade-off: how far we can move from p1 while re-
maining close to p2. To understand which (α, ε) pairs are
jointly achievable, we characterize the feasible region and
its boundary. Formally, the Pareto frontier PF(p1, p2;P)
consists of those pairs (α, ε) for which no strictly better
trade-off exists: there is no p′ ∈ P satisfying KL(p1∥p′) ≥
α′ and KL(p2∥p′) ≤ ε′ with α′ > α and ε′ < ε. That is,
every point on the frontier is optimal in the sense that one
objective cannot be improved without worsening the other.

The following result gives the closed-form Pareto frontier
in the Gaussian case:
Proposition 1 (Pareto Frontier). Let p1, p2 be two distribu-
tions in P , the class of Gaussian distributions with shared
covariance, with KL(p1∥p2) < ∞. The Pareto frontier of
(α, ε) values achievable by any p ∈ P is given by:

PF(p1, p2;P) =
{(

α,
(√

α−
√
KL(p1∥p2)

)2)
: α ≥ KL(p1∥p2)

}
.

This frontier characterizes the minimal preservation loss ε
required to achieve a given removal level α. In particu-
lar, the value KL(p1∥p2) plays a critical role: no distri-
bution can forget more than this amount (α>KL(p1∥p2))
while remaining arbitrarily close to p2. The shape of the
frontier reflects how intertwined p1 and p2 are. While this
curve was derived analytically for Gaussians, the same re-
moval–preservation tradeoff arises more broadly, e.g., reg-
ular exponential families (Proposition 3). Empirically, the
frontier matches closely in synthetic Gaussian experiments
(Fig. 1), confirming both its shape and the threshold behav-
ior.

3. Algorithms and Sample Complexity
We now instantiate the distributional unlearning framework
in a concrete setting where we only have access to samples
from p1 and p2, and we must decide which points to remove
and how many in order to achieve (α, ε)-distributional un-
learning. In this section, we (i) introduce two deletion

1Reverse KL or Wasserstein could be used to enforce other tail
behaviors, which we leave for future work.
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Mechanism Sample Complexity

Removal Preservation

Random Removal (Thm. 1) n1

(
1−

√
1− α

)
n1 (1−

√
ε)

Selective Removal (Thm. 2) n1

(
1− (1− α)

1/4
)

n1

(
1− ε1/4

)
Table 1. Summary of simplified sample complexity bounds: the formulas give the minimal number of p1 samples (out of n1≥1) to
remove in order to achieve (α, ε)-distributional unlearning, and show the quadratic improvement of selective removal over random in
ε, α. We focus on dependences on α, ε ∈ (0, 1) and ignore constants, KL(p1∥p2), and n2

n1
, and assume that n2 is large enough. Full

expressions and assumptions are given in Corollary 8 in the appendix.

strategies—random removal and selective removal—and
(ii) derive high-probability bounds on the number of sam-
ples that must be deleted under each.

In the following, we focus on the univariate Gaussian case,
since it captures the essential phenomena. That is, denoting
P :=

{
N (µ, σ2) : µ ∈ R

}
, where σ > 0, we have p1, p2 ∈

P . We consider n1 i.i.d. samples from p1 and n2 from p2.
We let 0 ≤ f ≤ n1 denote the number of points removed
from the p1 samples. We defer all proofs to Appendix D.

3.1. Random Removal
We begin with a baseline deletion strategy that treats every
sample equally, deleting f points chosen uniformly at ran-
dom from the n1 samples of p1. For clarity, we first state
the random removal procedure formally below:

Algorithm (Random Removal).

1. Randomly select f out of the n1 samples of p1 without
replacement.

2. Remove those f samples.
3. Re-fit N (µ̂, σ2) by MLE on the remaining data.

The following theorem provides a finite-sample guarantee
for achieving (α, ε)-distributional unlearning using random
removal with a deletion budget f .
Theorem 1 (Random Removal). Let p1, p2 ∈ P and δ ∈
(0, 1). We observe n1 samples from p1 and n2 samples
from p2, and randomly remove f samples from p1 before
fitting. Then with probability at least 1 − δ, the resulting
MLE distribution satisfies (α, ε)-distributional unlearning
with:

α ≥
(1
2
− 3
(
n1−f
n2

)2)
KL(p1∥p2)−

3 ln(4/δ)

2n2

(
1 + n1−f

n2

)
,

ε ≤ 3
(
n1−f
n2

)2
KL(p1∥p2) +

3 ln(4/δ)

n2

(
1 + n1−f

n2

)
.

This result shows that random removal can achieve both
forgetting and preservation as long as f is large enough, so
that the term n1−f

n2
, i.e., ratio of number of non-deleted p1

samples to p2 samples, is small enough. First, we remark
that the last term in both inequalities can be ignored if n2

is large enough compared to log(1/δ). Next, the removal
guarantee improves linearly in KL(p1∥p2), but quadrati-
cally in n1−f

n2
, indicating diminishing returns as more data

is deleted. Note that preservation improves as n2 increases,
since the estimation of p2 becomes more accurate, reducing
collateral damage. While conceptually simple, this method
does not prioritize which samples contribute most to the
divergence from p2, and may thus be inefficient in certain
regimes.

3.2. Selective Removal
We next consider a selective removal strategy that uses
knowledge of the data to delete the most distinguishable
samples from p2, specifically the lowest likelihood under
the empirical estimation of the preserved distribution p2.
We outline the exact procedure below:

Algorithm (Selective Removal).

1. Compute the mean µ̂2 of the n2 samples from p2.
2. For each of the n1 samples xi from p1, compute the

score si = |xi − µ̂2|.
3. Delete the f samples with the largest scores si.
4. Re-fit N (µ̂, σ2) by MLE on the remaining data.

The following theorem provides a finite-sample guarantee
for achieving (α, ε)-distributional unlearning using selec-
tive removal with a deletion budget f .

Theorem 2 (Selective Removal). Let p1, p2 ∈ P and
δ ∈ (0, 1). Let f samples from p1 be removed according to
Selective Removal. Then with probability at least 1− δ, the
resulting estimate satisfies (α, ε)-distributional unlearning
with:

α ≥ 1

2
KL(p1∥p2)−

1

2

(
n1−f
n2

)2
Γ(f, n1, δ,KL(p1∥p))− ln(4/δ)

n2
,

ε ≤
(

n1−f
n2

)2
Γ(f, n1, δ,KL(p1∥p)) + 2 ln(4/δ)

n2
,

where Γ(f, n1, δ,KL(p1∥p)) := g−1
(
1 − f

n1
+√

ln(4/δ)
2n1

; KL(p1∥p2)
)2

with g(u;κ) := Φ(u −
√
2κ) +

Φ(u +
√
2κ) − 1, for u, κ > 0, and Φ is the standard

normal CDF.

While this result also shows that larger deletion budgets im-
prove both removal and preservation, the main difference
with random removal is that the quadratic factor (n1−f

n2
)2

is amplified by a multiplicative factor involving the inverse

3
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Domain Target on p1 Random Selective Saving
Gaussians (low) KL(p1∥p) 65 18 72 %
Gaussians (high) KL(p1∥p) 65 50 23 %
Jigsaw toxic comments Recall 100 85 15 %
SMS Spam Recall 90 75 17 %
CIFAR-10 Accuracycat 80 50 38 %

Table 2. Deletion budget (%) needed to reach half of the initial value of the removal metric (no deletion) on each dataset.
“Selective”=best-performing selective removal score; “Saving”=relative reduction versus random deletion. Gaussians (low) and (high)
are the scenarios of the top leftmost and rightmost plots of Fig. 2, respectively.

of g(· ;κ), which represents the CDF of the folded nor-
mal shifted by divergence κ = KL(p1∥p2). Therefore,
for p ∈ (0, 1), g−1(p;κ) is the p-th quantile of the folded
normal shifted by the aforementioned divergence κ. In-
tuitively, this term arises as scores computed by selective
removal, which are of the form si = |xi − µ̂2| with xi

being a sample from p1, are distributed following a folded
normal. Thus, we are effectively selecting samples from p1
whose distance to the mean of p2 is at most the ≈ (1− f

n1
)-

th quantile of the aforementioned folded normal, which is
fortunately a decreasing function in f . That is, this term
strictly amplifies the quadratic decrease in f , which was
the best we could previously obtain with random removal.

Simplified bounds. While the above theorem is general
and gives exact quantities, the term involving g−1(· ;κ)
can be upper bounded with a simpler analytical expression.
As we mentioned previously, this term represents a quan-
tile of the folded normal distribution. We can bound this
quantile with a linear approximation, when the divergence
KL(p1∥p2) is small enough, i.e., p1 and p2 are similar, and
f
n1

is large enough, i.e., we delete enough samples. The
result of this simplification is given in Table 1, and fur-
ther developed in Corollary 8. Essentially, focusing only
on the dependence on α ∈ (0, 1) for removal, selective re-
moval only requires O(n1(1−

√
1− α)), while random re-

moval requires O(n1(1− (1−α)1/4)). Analogous conclu-
sions hold for ε for preservation. Therefore, we show that
selective removal strictly improves, at least quadratically,
over random removal with respect to ε, α in low-divergence
regimes.

We empirically validate the improvement over random re-
moval in Figure 2. Specifically, as discussed earlier, when
KL(p1∥p2) is small (top left plot), selective removal sig-
nificantly improves over random removal. When the dis-
tributions are very far apart (top right plot), the difference
narrows and both mechanisms perform comparably.

4. Empirical Validation
We now evaluate distributional unlearning empirically
across synthetic as well as real-world data. Our goals are
threefold:

1. Compare the (deletion) sample-efficiency of random ver-
sus selective deletion strategies.

2. Assess how distributional unlearning shapes down-

stream predictive performance.

3. Validate the theoretical Pareto frontier of achievable
(α, ε) values.

We consider four qualitatively different settings: synthetic
Gaussians, Jigsaw toxic-comment moderation, SMS spam
filtering, and image classification on CIFAR-10. In each
case, we define a distribution p1 to forget and a distribu-
tion p2 to preserve, apply several deletion methods to re-
move samples from p1, and measure the resulting trade-off
in statistical proximity and model performance. All results
are averaged over multiple random seeds. We defer exper-
imental details to Appendix E.

Results overview. We summarize our main findings in Ta-
ble 3 for convenience, before detailing them in Appendix C
due to space constraints. Across Gaussians, toxic text,
short-message spam, and natural images, the same selec-
tive removal recipe cuts the deletion budget by 15−72%
relative to random removal while reducing accuracy or re-
call on the forget distribution by at least half. The gains
are largest in the low-divergence Gaussian regime (72%),
where theory predicts the greatest advantage for selective
deletion. The same trends persist in high-diversity real data
(15−38%) confirming that distributional unlearning con-
trols downstream predictive performance as predicted by
Proposition 2. Crucially, we achieve these savings without
harming utility on the retained distribution. Table 3 distills
the central empirical message: selective removal delivers
the desired distributional unlearning guarantees with sub-
stantially less data removal than naı̈ve approaches consis-
tently across domains and models.

5. Conclusion and Discussion
While our approach operates by editing samples drawn
from structured distributions, the core idea extends natu-
rally to representation-level interventions, structured latent-
variable models, or causal inference frameworks. Distribu-
tional unlearning may also enhance fairness, robustness, or
interpretability by targeting and removing harmful subpop-
ulation signals. By operating at the level of data distribu-
tions rather than model internals, it complements existing
unlearning and debiasing techniques in a model-agnostic
fashion. As a general-purpose statistical primitive, it offers
a new lens for thinking about modularity and controllability
in data-centric learning pipelines.

4
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Distributional Unlearning: Forgetting Distributions, Not Just Samples

A. Related Work
Sample-level unlearning. Sample-level unlearning has made impressive strides in fast model updates and formal deletion
guarantees (23; 28; 30; 9; 19; 2). Izzo et al. (15) use influence-function updates to approximate the effect of deleting a
single point without full retraining; Guo et al. (14) provide certified bounds on how close the post-deletion model is to
a scratch-retrained one; Bourtoule et al. (8) employ data sharding to efficiently erase small batches. However, this class
of methods does not address which or how many samples must be removed to eliminate a domain’s overall statistical
footprint. Our work complements these techniques by asking not just how to update a model once samples are flagged, but
which samples to flag in the first place, and in what quantity.

Model-internal unlearning. Concept erasure methods tackle unwanted attributes in learned features. INLP (24) repeatedly
projects out directions predictive of a protected attribute; counterfactual augmentation (16) synthesizes targeted data to
sever causal links; adversarial training (11) trains encoders to remove specific signals. These operate post-hoc on a fixed
model’s representations—ideal for fairness use-cases such as removing gender or sentiment—but they rely on white-box
access and tailor to one model at a time. Where concept erasure edits model representations, we edit the data, guaranteeing
forgetting for downstream models.

Domain adaptation, robustness, and coresets. Domain adaptation theory bounds target error by source error plus a
divergence between domains (6). Our work flips and complements this paradigm: we intentionally increase divergence
from an unwanted source p1 while controlling proximity to a desired reference p2. Distributionally-robust optimization (22)
protects against all shifts within a divergence ball, whereas we target the removal of one specific shift. Coreset and
importance-sampling methods (26) select representative subsets to approximate a distribution; we invert that idea to remove
the most representative samples of the unwanted component, while preserving another.

B. Implications for Downstream Prediction
We now connect distributional unlearning to predictive performance in supervised learning. Consider a predictor h : X →
∆(Y), where X is the input space and ∆(Y) the probability simplex over label space Y , trained on a distribution p over
X × Y that satisfies (α, ε)-unlearning with respect to (p1, p2). We study how h performs under the true data-generating
distributions p1 and p2.

Let ℓ(y, q) := − log q(y), for y ∈ Y, q ∈ ∆(Y), denote the log-loss. Define the expected loss under p as L(h; p) :=
E(x,y)∼p[ℓ(y, h(x))]. Then, for any class of distributions P , we have:

Proposition 2. Let h minimize L(h; p), and let h1, h2 be optimal predictors under p1, p2 ∈ P , respectively. If p satisfies
(α, ε)-distributional unlearning with respect to (p1, p2), then:

L(h; p1)− L(h1; p1) ≥ α− δ1, (3)
L(h; p2)− L(h2; p2) ≤ ε− δ2, (4)

where δ1 := KL(p1,X∥pX), δ2 := KL(p2,X∥pX) denote the marginal KL divergence over inputs.

These bounds show that distributional unlearning guarantees increased loss under the forgotten distribution and bounded
degradation under the preserved one. In this sense, the (α, ε)-distributional unlearning framework provides meaningful
control over downstream predictive behavior. Regarding the extra marginal KL term in the first inequality, which quantifies
divergence on input distributions, the data-processing inequality gives KL

(
p1,X∥pX

)
≤KL(p1∥p), hence this extra term is

always bounded by the same α we already control. A similar term appears in the second inequality, but can only improve
the preservation bound.

C. Empirical Validation
We now evaluate distributional unlearning empirically across synthetic as well as real-world data. Our goals are threefold:

1. Compare the (deletion) sample-efficiency of random versus selective deletion strategies.

2. Assess how distributional unlearning shapes downstream predictive performance.

3. Validate the theoretical Pareto frontier of achievable (α, ε) values.

We consider four qualitatively different settings: synthetic Gaussians, Jigsaw toxic-comment moderation, SMS spam fil-
tering, and image classification on CIFAR-10. In each case, we define a distribution p1 to forget and a distribution p2
to preserve, apply several deletion methods to remove samples from p1, and measure the resulting trade-off in statistical
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Distributional Unlearning: Forgetting Distributions, Not Just Samples

Domain Target on p1 Random Selective Saving
Gaussians (low) KL(p1∥p) 65 18 72 %
Gaussians (high) KL(p1∥p) 65 50 23 %
Jigsaw toxic comments Recall 100 85 15 %
SMS Spam Recall 90 75 17 %
CIFAR-10 Accuracycat 80 50 38 %

Table 3. Deletion budget (%) needed to reach half of the initial value of the removal metric (no deletion) on each dataset.
“Selective”=best-performing selective removal score; “Saving”=relative reduction versus random deletion. Gaussians (low) and (high)
are the scenarios of the top leftmost and rightmost plots of Fig. 2, respectively.

Figure 1. Synthetic Gaussians. The empirical frontier aligns with the theoretical prediction.

proximity and model performance. All results are averaged over multiple random seeds. We defer experimental details to
Appendix E.

Results overview. We summarize our main findings in Table 3 for convenience, before detailing them in the next sections.
Across Gaussians, toxic text, short-message spam, and natural images, the same selective removal recipe cuts the deletion
budget by 15−72% relative to random removal while reducing accuracy or recall on the forget distribution by at least
half. The gains are largest in the low-divergence Gaussian regime (72%), where theory predicts the greatest advantage for
selective deletion. The same trends persist in high-diversity real data (15−38%) confirming that distributional unlearning
controls downstream predictive performance as predicted by Proposition 2. Crucially, we achieve these savings without
harming utility on the retained distribution. Table 3 distills the central empirical message: selective removal delivers the
desired distributional unlearning guarantees with substantially less data removal than naı̈ve approaches consistently across
domains and models.

C.1. Synthetic Gaussians: frontier verification and sample efficiency
We begin with a synthetic setting to evaluate distributional unlearning under controlled conditions. Let p1 = N (0, 1) and
p2 = N (µ, 1) for varying µ ∈ {0.5, 2.5, 5}, which induces increasing divergence KL(p1∥p2). For each configuration,
we draw n1 = n2 = 1000 samples from p1 and p2, respectively, and examine how different deletion strategies affect the
post-edit distribution. We implement two mechanisms: random removal, which deletes a uniform subset of p1 points, and
selective removal, which prioritizes those samples with largest deviation from the empirical mean of p2. After deleting
f samples, we re-fit a Gaussian N (µ̂, 1) on the retained p1 and p2 samples via maximum likelihood, yielding a post-edit
distribution p. We then compute forward KL divergences α = KL(p1∥p) and ε = KL(p2∥p) to quantify forgetting and
preservation, respectively.

Pareto frontier. Figure 1 confirms that the empirical (α, ε) trade-off closely matches the theoretical Pareto frontier derived
in Proposition 1. To plot feasible empirical trade-offs, we set p = N (µ, 1) and vary µ ∈ R, while p1 = N (0, 1) and
p2 = N (2, 1) so that KL(p1∥p2) = 2. The latter quantity is the threshold predicted by the theory, and validated by
Figure 1. Indeed, feasible trade-offs whose removal divergence α is below this threshold are pareto-suboptimal. They are
dominated by the trade-off (α = KL(p1∥p2), ε = 0), which can be achieved with the choice of distribution p = p2.

Sample efficiency. We next compare the efficiency of the two removal strategies in the finite-sample case analyzed in
Section 3. In Figure 2, we plot achieved α as a function of the number of p1 samples removed. Selective removal reaches
higher forgetting levels with fewer deletions than random removal, especially when KL(p1∥p2) is small (µ2 = 0.5, top
left plot). For example, to reach 0.06 nats of removal divergence, i.e., half of that obtained by removing all samples,
selective removal requires 5× less samples than random removal. Analogous trends hold for preservation (bottom left
plot): selective removal more effectively preserves the reference distribution p2 throughout. The remaining plots show
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Distributional Unlearning: Forgetting Distributions, Not Just Samples

Figure 2. Synthetic Gaussians. Selective removal consistently requires fewer deletions, especially when KL(p1∥p2) is small (left), for
the same removal and preservation target as random removal. In high-divergence regimes (right), the gap between methods shrinks, as
predicted by the theory.

similar trends when increasing the divergence KL(p1∥p2) by increasing µ2. As predicted in theory, selective removal
offers the greatest savings when p1 and p2 are close and diminishes as the distributions diverge.

C.2. Jigsaw Toxic: forgetting a toxic sub-population

We now consider the Jigsaw toxic comments dataset (10). Let p1 be the set of comments that contain any of five
high-frequency profanity keywords (see Appendix E). This sub-population accounts for 8.6% of the training corpus. All
remaining comments form the reference distribution p2. For each deletion budget f corresponding to removal fractions
{0, 0.05, . . . , 1}, we remove f comments from p1 ranked by four scoring rules computed based on TF-IDF embeddings,
plus a random baseline:

1. COS-MU2: cosine distance to the p2 mean only;

2. LR-COS: cosine margin between the comment and the mean vectors of p2 vs. p1;

3. KNN-RATIO: local k-NN density ratio (k=10);

4. TFIDF-NORM: comment ℓ2 length; and

5. RANDOM: uniformly random baseline.

The first heuristic COS-MU2 above is a proxy for the selective removal method introduced in Section 3, where we use
cosine distance between TF-IDF embeddings instead of Euclidean distance. The second heuristic LR-COS is a simple
extension, and stands for a proxy of a likelihood ratio score, i.e., we remove samples most distinguishable from p2 while
being representive of p1. After deletion we re-train a logistic–TF-IDF model on the kept data. We report Recall@p1 (higher
means less forgetting) and macro-F1@p2 (higher means stronger preservation).

Findings. We report our main findings on our Jigsaw task in Figure 3. Across all heuristics, Recall@ p1 remains es-
sentially flat around 0.88 until large budgets; a pronounced forgetting effect appears only at f ≥ 0.8|p1|, where LR-COS
decreases recall by nearly 20 percentage points (Fig. 3a). Crucially, macro-F1@ p2 is almost unchanged up to f =0.6|p1|
(Fig. 3b) and declines gradually afterwards, indicating that removing up to 60% of the profane comments has negligible
impact on overall utility. The sharp drop at full deletion confirms the theoretical pareto frontier prediction that excessive
removal targets must harm performance on the retained distribution. This can be naturally explained on this toxic comment
detection task, since p1 the distribution of profane comments, carries task-relevant signal. By contrast, random removal
requires removing most of p1, the distribution of profane comments, to reach the same removal level of selective methods.
Specifically, random removal requires removing 95% of p1 to achieve around 0.7 recall, which means that LR-COS saves
around 16% and COS-MU2 saves 11% in terms of deletion budget compared to random removel for the same Recall@ p1
target. All other methods have a similar performance to random removal.
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Distributional Unlearning: Forgetting Distributions, Not Just Samples

(a) Recall on profane comments (p1, forgotten). (b) Macro-F1 on non-profane comments (p2, kept).

Figure 3. Jigsaw Toxic Comments. Impact of removing profane comments on Jigsaw Toxic. Left: recall on the to-be-forgotten set p1;
right: macro-F1 on the retained set p2. Utility is almost unchanged up to 60% deletion; marked forgetting appears only around 80%
deletion, with LR-COS showing the steepest drop. Error bars: ±1 standard error over five randomness seeds.

(a) Recall on spam (p1, forgotten). (b) Macro-F1 on ham (p2, kept).

Figure 4. SMS Spam. The likelihood-ratio score (LR-COS) pushes spam recall below 0.6 after deleting 70% of spam, whereas random
deletion needs nearly 90% removal to reach the same point. Ham performance remains almost flat (<0.004 absolute change) until the
final 100 % budget, affirming the tight preservation guarantee. Error bars: ±1 standard error over ten seeds.

C.3. SMS Spam: a content-moderation unlearning task

We revisit the UCI SMS Spam Collection (3), treating the spam class (p1) as information to forget and the ham class (p2)
as information to preserve. Messages are vectorised with TF–IDF features. Deletion budgets again span 5% to 100% of
the spam slice in 5-point increments. We compare the same five scoring rules as before (COS-MU2, LR-COS, KNN-RATIO,
TFIDF-NORM, RANDOM) and average results over ten random seeds. Metrics reported are recall on p1 and macro-F1 on
p2.

Findings. We report our main findings on our SMS Spam task in Figure 4. We observe that spam recall decays gradually
until 75−80% deletion, after which all methods converge to zero as p1 vanishes. LR-COS consistently dominates: it reaches
a recall of 0.60 at the 70% deletion budget, whereas random deletion does not cross that threshold until 90% deletion.
Throughout, ham macro-F1 increases slightly (see Fig. 4b), an artefact of class-imbalance—removing spam reduces false
positives in the ham slice—yet the difference across methods never exceeds 0.002. These results strengthen the evidence
that selective deletion offers a 1.3−1.5× sample-efficiency gain over random removal while preserving downstream utility
almost perfectly.
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Distributional Unlearning: Forgetting Distributions, Not Just Samples

(a) Accuracy on cat images (p1, forgotten). (b) Accuracy on non-cat images (p2, kept).

Figure 5. CIFAR-10 images. Removing cat images suppresses accuracy on that class (left) while leaving accuracy on the retained nine
classes essentially unchanged (right, <0.03 variation). No substantial removal is observed until 50% deletion, before selective removal
strategies LR-MAHA and MAHA-MU2 outperform random removal. Error bars: ±1 standard error over thirty seeds.

C.4. CIFAR-10: privacy-motivated forgetting of an entire class

We treat the CIFAR-10 (18) cat category as a privacy-sensitive sub-population. Deleting a few individual images is insuffi-
cient; their aggregate statistics would still influence the model. Instead, we rank every cat image with three distance-based
scores (LR-MAHA, MAHA-MU2, KNN-RATIO), and a random baseline. The former two methods are the direct equivalents
of LR-COS and COS-MU2, by using the pretrained ResNet18 features to compute scores instead instead of the TF-IDF
embeddings, and using the Mahalanobis distance2 instead of cosine distance. We delete the top score-ranked samples for
each deletion budget, re-train a CNN for ten epochs, and report accuracy on the cat test set and accuracy on the other nine
classes test set.

Findings. Figure 5 shows that the cat footprint persists in terms of accuracy, which is problematic for privacy scenarios
and motivates distributional unlearning, until ≥50% data is removed (Fig. 5a), yet the model’s utility on the other classes
remains stable (Fig. 5b) at around 82%. Selective removal strategies reach a given accuracy threshold, on the cat class,
with substantially fewer deletions than random. Specifically, LR-MAHA halves the initial accuracy by deleting half of the
cat images, which is 1.6× more sample-efficient than random removal. Also, MAHA-MU2 reaches the same accuracy
threshold with 1.3× fewer deletions than random removal. These results underscore the value of distributional unlearning:
strong class-level forgetting is achieved long before every single cat image is deleted, and with minimal collateral loss on
the retained distribution.

D. Proofs
D.1. Pareto Frontier

Proposition 1 (Pareto Frontier). Let p1, p2 be two distributions in P , the class of Gaussian distributions with shared
covariance, with KL(p1∥p2) < ∞. The Pareto frontier of (α, ε) values achievable by any p ∈ P is given by:

PF(p1, p2;P) =
{(

α,
(√

α−
√
KL(p1∥p2)

)2)
: α ≥ KL(p1∥p2)

}
.

Proof. For simplicity, we consider univariate Gaussians with share variance. For d-dimensional Gaussians with covariance
Σ ∈ Rd×d, the same result holdsafter replacing squared error by the Mahalanobis distance ∥x−µ∥2Σ−1 (see Proposition 3).

Let p = N (µ, σ2) ∈ P . Since all distributions in P share the same variance, the KL divergence from pi to p is:

KL(pi∥p) =
(µi − µ)2

2σ2
, i = 1, 2.

2The Mahalanobis distance of vector x to probability distribution p, of mean µ and covariance Σ, is: d(x, p) :=√
(x− µ)⊤Σ−1(x− µ). We estimate µ and Σ empirically on the retained distribution p2.
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Fix α ≥ KL(p1∥p2). We want to compute the minimal possible ε achievable under the constraint KL(p1∥p) ≥ α. Define
this minimum as:

ε⋆(α) := min
µ∈R, (µ−µ1)2≥2σ2α

(µ2 − µ)2

2σ2
.

This is a one-dimensional quadratic minimization problem subject to a quadratic inequality constraint. The feasible set is:

µ ∈ (−∞, µ1 − σ
√
2α] ∪ [µ1 + σ

√
2α,∞).

We minimize (µ2 − µ)2 over this set. This yields two cases:

• If µ2 ∈ [µ1 − σ
√
2α, µ1 + σ

√
2α], then the closest feasible points are the endpoints. The minimizing value of µ is:

µ = µ1 + sign(µ2 − µ1) · σ
√
2α,

and the resulting divergence is:

ε⋆(α) =
(µ2 − µ1 − sign(µ2 − µ1) · σ

√
2α)2

2σ2
.

• If µ2 already lies in the feasible set, i.e., |µ2 − µ1| ≥ σ
√
2α, then we can choose µ = µ2, yielding ε⋆(α) = 0.

Thus, for all α ≥ 0:

ε⋆(α) =

[(
|µ2 − µ1| − σ

√
2α
)
+

]2
2σ2

,

where (x)+ = max{x, 0}. Let ∆ := |µ2 − µ1|, and recall that KL(p1∥p2) = ∆2

2σ2 . Then:

∆ = σ
√

2KL(p1∥p2).

Substituting into ε⋆(α):

ε⋆(α) =
(√

α−
√
KL(p1∥p2)

)2
, for α ≥ KL(p1∥p2).

Finally, note that any pair (α, ε) with α < KL(p1∥p2) satisfies ε⋆(α) = 0, hence is dominated by (KL(p1∥p2), 0).
Therefore, the Pareto optimal points are exactly:{(

α,
(√

α−
√
KL(p1∥p2)

)2)
: α ≥ KL(p1∥p2)

}
,

as claimed.

Next, we show that a qualitatively similar result holds more generally for any exponential-family member.
Proposition 3 (Pareto Frontier–Exponential Families). Let (X , µ) be a measurable space and let

P =
{
pθ(x) = h(x) exp(θ⊤T (x)−A(θ)) : θ ∈ Θ ⊂ Rd

}
be a regular minimal exponential family (carrier h > 0, sufficient statistic T : X → Rd, log-partition A). Fix
pi(x) = pθi(x), i = 1, 2, and α ≥ 0. Define v(α) = infθ∈Θ

{
KL(p2∥pθ) | KL(p1∥pθ) ≥ α

}
, where KL(q∥p) =∫

q log(q/p) dµ. Then:

(i) The Pareto frontier for points in P is

PF(p1, p2;P) =
{(

α, v(α)
)
: α ≥ KL(p1∥p2)

}
,

where v(α) = KL(p2∥p1) + α+ 1
λ∗−1 (θ2 − θ1)

⊤(Ep2
[T ]− Ep1

[T ]), and λ∗ is the unique scalar in (0, 1) such that

the distribution p∗ ∈ P of mean Ep∗ [T ] =
λ∗ Ep1 [T ]−Ep2 [T ]

λ∗−1 satisfies KL(p1∥p∗) = α.
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(ii) (Gaussian case) If P = {N (µ,Σ) : µ ∈ Rd} with fixed Σ ≻ 0, then for α ≥ KL(p1∥p2):

v(α) =
(√

α−
√

KL(p1∥p2)
)2
.

Proof. In this proof, for a fixed α ≥ 0, we study the optimal value

v(α) = inf
θ∈Θ

{
KL(p2∥pθ) | KL(p1∥pθ) ≥ α

}
.

This enables characterzing the Pareto frontier of feasible (α, ε) trade-offs. Below, we focus on the non-trivial case α >
KL(p1∥p2). Indeed, in the case α ≤ KL(p1∥p2), the problem above’s unconstrained minimizer p2 is a feasible solution,
so that v(α) = 0 for all α ≤ KL(p1∥p2).

Reparametrization and KKT. First, we recall the expression of the KL divergence in exponential families as a Bregman
divergence. For any θ′, θ ∈ Θ one has

KL(pθ′∥pθ) = A(θ)−A(θ′)− (θ − θ′)T∇A(θ′).

We let
f(θ) = KL(p2∥pθ), g(θ) = KL(p1∥pθ).

Both are continuously differentiable on the open set Θ. The feasible set {g(θ) ≥ α} is nonconvex, so we check linear
independence constraint qualification (LICQ, (7)) at any minimizer θ∗. To do so, we recall (see (29)) that for exponential
families ∇A(θ) = Epθ

[T ] for any θ ∈ Θ, so that

∇g(θ) = −∇A(θ1) +∇A(θ) = −Ep1 [T ] + Epθ
[T ].

Minimality of the exponential family ensures Epθ
[T ] is injective (29). This together with the fact that p1 ̸= pθ for any

feasible θ, since α > 0, implies that ∇g(θ∗) ̸= 0 and LICQ holds.

Next, we form the Lagrangian
L(θ, λ) = f(θ)− λ

(
g(θ)− α

)
, λ ≥ 0.

Since LICQ holds, KKT conditions are necessary (7) for any minimizer θ∗. Hence, stationarity (∇θL = 0) gives

∇f(θ∗) = λ∇g(θ∗).

Given that we had derived ∇θKL(pi∥pθ) = −Epi
[T ] + Epθ

[T ], we obtain

−Ep2
[T ] + Ep∗ [T ] = λ (−Ep1

[T ] + Ep∗ [T ]),

hence (1 − λ)Ep∗ [T ] = Ep2
[T ] − λEp1

[T ]. Observe that we must have λ ̸= 1, as otherwise Ep2
[T ] = Ep1

[T ], but this
contradicts the fact that p1 ̸= p1 given that Epθ

[T ] is injective for minimal exponential families (29). Therefore, we have
the following:

Ep∗ [T ] =
λEp1

[T ]− Ep2
[T ]

λ− 1
.

Now, we observe that the inequality constraint must be active. Otherwise, the minimizer lies in the interior of the feasible set
and is thus a local minimum of the unconstrained problem. The latter admits p2 as a unique minimizer, so the minimizer
at hand must be p2 but this is not feasible since we assume KL(p1∥p2) < α. Therefore, the minimizer must lie at the
boundary of the feasible set, and the inequality constraint is active. That is, we have g(θ∗) = α.

Optimal value. We are now ready to derive the expression of the optimal value:

v(α) = f(θ⋆) = KL(p2∥p∗).

We use the following classical Pythagorean-type identity for Bregman divergences (see, e.g., Banerjee et al. (4)):

KL(p2∥p∗) = KL(p2∥p1) + KL(p1∥p∗) + (θ2 − θ1)
⊤(∇A(θ1)−∇A(θ∗)).
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Now, consider the aforementioned KKT multiplier λ > 0, λ ̸= 1 such that ∇A(θ∗) = Ep∗ [T ] =
λEp1

[T ]−Ep2
[T ]

λ−1 =
λ∇A(θ1)−∇A(θ2)

λ−1 as well as KL(p1∥p∗) = g(θ∗) = α. We thus get

v(α) = KL(p2∥p∗) = KL(p2∥p1) + KL(p1∥p∗) + (θ2 − θ1)
⊤(∇A(θ1)−∇A(θ∗))

= KL(p2∥p1) + KL(p1∥p∗) +
1

λ− 1
(θ2 − θ1)

⊤(∇A(θ2)−∇A(θ1))

= KL(p2∥p1) + α+
1

λ− 1
(θ2 − θ1)

⊤(∇A(θ2)−∇A(θ1)).

We now again use that ∇A(θ) = Epθ
[T ] for all θ ∈ Θ. We then obtain:

v(α) = KL(p2∥p1) + α+
1

λ− 1
(θ2 − θ1)

⊤(Ep2
[T ]− Ep1

[T ]). (5)

Uniqueness of λ. We now show that there is a unique KKT multiplier λ for the optimal solution. We recall that λ > 0 is
such that λ ̸= 1 and:

Ep∗ [T ] =
λEp1

[T ]− Ep2
[T ]

λ− 1
g(θ∗) = KL(p1∥p∗) = α.

Above, the first equation uniquely defines the distribution p∗, by minimality of the family, and we now show that there is
only a unique λ of interest such that the second equations above holds.

Let θ∗(λ) be the unique (by minimality) parameter such that Ep∗ [T ] =
λEp1

[T ]−Ep2
[T ]

λ−1 . We define

H(λ) := KL(p1∥p∗) = A(θ∗)−A(θ1)− (θ∗ − θ1)
⊤∇A(θ1)

Taking the derivative above, we get

dH

dλ
(λ) = (∇A(θ∗)−∇A(θ1))

⊤ dθ∗

dλ
(λ).

We again use that

∇A(θ∗) = Ep∗ [T ] =
λEp1

[T ]−Ep2
[T ]

λ−1 =
λ∇A(θ1)−∇A(θ2)

λ− 1
.

First, replacing in the previous derivative equation, we obtain:

dH

dλ
(λ) = (∇A(θ∗)−∇A(θ1))

⊤ dθ∗

dλ
(λ) =

1

λ− 1
(∇A(θ1)−∇A(θ2))

⊤ dθ∗

dλ
(λ).

Second, taking the derivative with respect to λ in the expression of ∇A(θ∗) yields:

∇2A(θ∗) · dθ
∗

dλ
(λ) =

1

(λ− 1)2
(∇A(θ1)−∇A(θ2)).

We observe that the Fisher information matrix ∇2A(θ∗) is positive definite since the family is regular. Multiplying by the
inverse of the latter then yields:

dθ∗

dλ
(λ) =

1

(λ− 1)2
∇2A(θ∗)−1(∇A(θ1)−∇A(θ2)).

Plugging the above in the latest expression of the derivative of H yields:

dH

dλ
(λ) =

1

λ− 1
(∇A(θ1)−∇A(θ2))

⊤ dθ∗

dλ
(λ)

=
1

(λ− 1)3
(∇A(θ1)−∇A(θ2))

⊤∇2A(θ∗)−1(∇A(θ1)−∇A(θ2)).
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Distributional Unlearning: Forgetting Distributions, Not Just Samples

Since the matrix ∇2A(θ∗) is positive definite by regularity of the family, the corresponding quadratic form above is positive
(recall θ1 ̸= θ2), and the sign of the derivative is that of λ − 1. Therefore, H is decreasing on (0, 1) and increasing on
(1,+∞). It is straighforward to check that H(0+) = KL(p1∥p2), H(1−) = H(1+) = +∞, and H(+∞) = 0. Since
KL(p1∥p2) < α by assumption, there exists a unique λ∗ ∈ (0, 1) such that H(λ∗) = α and a unique λ∗

1 > 1 such that
H(λ∗

1) = α.

We now discard λ∗
1 thanks to the expression of the optimal value expression (5). Indeed, the second term in (5) is positive

for λ∗
1 since λ∗

1 > 1 and (θ2− θ1)
⊤(Ep2

[T ]−Ep1
[T ]) = (θ2− θ1)

⊤(∇A(θ2)−∇A(θ1)) > 0 by strict convexity of A and
the fact that p1 ̸= p2. On the other hand, this same second term is negative for λ∗ since λ∗ < 1. Therefore, the optimal
value is smaller for the choice of λ∗, so that:

v(α) = KL(p2∥p1) + α+
1

λ∗ − 1
(θ2 − θ1)

⊤(Ep2 [T ]− Ep1 [T ]), (6)

where λ∗ is the unique scalar in (0, 1) such that:

Ep∗ [T ] =
λ∗ Ep1

[T ]− Ep2
[T ]

λ∗ − 1
g(θ∗) = KL(p1∥p∗) = α.

Finally, we note that v(α) is non-decreasing by definition; increasing α shrinks the feasible set. Also, we recall that
v(α) = 0 for all α < KL(p1∥p2), i.e., all trade-offs (α, ε) with α < KL(p1∥p2), ε > 0 are dominated by (KL(p1∥p2), 0).
Therefore, we conclude that the pareto frontier is given by:

PF(p1, p2;P) =
{(

α, v(α)
)
: α ≥ KL(p1∥p2)

}
.

Gaussian case. For pµ = N (µ,Σ) one has T (x) = x, Epµ
[T ] = µ, and

KL(pi∥pµ) = 1
2 (µi − µ)⊤Σ−1(µi − µ).

By the conditions on λ∗ we have

µ∗ =
λ∗µ1 − µ2

λ∗ − 1
, KL(p1∥pµ∗) = α.

Using the KL divergence expression for Gaussians N (µ,Σ) (recall KL(N (µ1,Σ),N (µ2,Σ)) =
1
2 (µ1 − µ2)

⊤Σ−1(µ1 −
µ2)), we get

µ1 − µ∗ =
µ2 − µ1

λ∗ − 1
, α =

KL(p1∥p2)
(λ∗ − 1)2

.

Solving for λ∗ ∈ (0, 1) yields λ∗ = 1−
√

KL(p1∥p2)/α and

µ∗ = µ1 +

√
α

KL(p1∥p2)
(µ2 − µ1).

Thus, direct computations yield

v(α) = 1
2

(
∥µ2 − µ1∥Σ−1 −

√
2α
)2

=
(√

KL(p1∥p2)−
√
α
)2
,

with v(α) = 0 if α ≤ KL(p1∥p2). This concludes the proof.

Discussion. In Proposition 3 we show that, in any regular exponential family, the trade-off between removal (α) and
preservation (ε) can be quantified. This yields a removal-preservation trade-off curve that faithfully reproduces the shared-
covariance Gaussian Pareto frontier—namely the familiar (

√
α −

√
D)2 parabola—while in other families it gives an

explicit but generally non-algebraic trade-off curve.
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Distributional Unlearning: Forgetting Distributions, Not Just Samples

D.2. Predictive Performance

Proposition 2. Let h minimize L(h; p), and let h1, h2 be optimal predictors under p1, p2 ∈ P , respectively. If p satisfies
(α, ε)-distributional unlearning with respect to (p1, p2), then:

L(h; p1)− L(h1; p1) ≥ α− δ1, (3)
L(h; p2)− L(h2; p2) ≤ ε− δ2, (4)

where δ1 := KL(p1,X∥pX), δ2 := KL(p2,X∥pX) denote the marginal KL divergence over inputs.

Proof. Let h(y | x) := h(x)(y) denote the conditional distribution defined by the hypothesis h, and suppose h minimizes
the expected log-loss under p. Since ℓ(y, q) = − log q(y) is a strictly proper scoring rule, the unique minimizer of L(h; p)
is the true conditional distribution h(x) = p(· | x), where p(x, y) = pX(x)p(y | x).

We begin by analyzing the expected log-loss of this hypothesis under an arbitrary distribution q over X × Y:

L(h; q) = E(x,y)∼q[− log h(y | x)] = Ex∼qXEy∼q(·|x)[− log p(y | x)],

where qX denotes the marginal distribution of x under q, and q(· | x) the corresponding conditional.

Now recall the standard identity for any two conditional distributions q(· | x) and p(· | x):

Ey∼q(·|x)[− log p(y | x)] = KL(q(y | x) ∥ p(y | x)) +H(q(y | x)),

where H(q(y | x)) = Ey∼q(·|x)[− log q(y | x)] is the Shannon entropy of the label distribution under q for fixed x.

Taking the expectation over x ∼ qX , we get:

L(h; q) = Ex∼qX [KL(q(y | x) ∥ p(y | x)) +H(q(y | x))]
= Ex∼qXKL(q(y | x) ∥ p(y | x)) + Ex∼qXH(q(y | x)).

The second term is the expected entropy, which corresponds to the Bayes-optimal risk under q:

L(h∗
q ; q) := inf

h′
L(h′; q) = Ex∼qXH(q(y | x)). (7)

Next, we relate the expected conditional KL term to the total KL divergence between the joint distributions. Using the
chain rule for KL divergence, we have:

KL(q ∥ p) = KL(qX ∥ pX) + Ex∼qXKL(q(y | x) ∥ p(y | x)). (8)

This decomposition holds generally for joint distributions with conditional factorizations. Solving for the conditional KL
term, we obtain:

Ex∼qXKL(q(y | x) ∥ p(y | x)) = KL(q ∥ p)−KL(qX ∥ pX). (9)

Substituting the above into the expression for L(h; q) and using (7), we get:

L(h; q) = KL(q ∥ p)−KL(qX ∥ pX) + L(h∗
q ; q). (10)

We now apply this to q = p1 and q = p2, noting that p satisfies (α, ε)-distributional unlearning, i.e., KL(p1 ∥ p) ≥ α and
KL(p2 ∥ p) ≤ ε.

For p1, we define δ1 := KL(pX1 ∥ pX) and compute:

L(h; p1)− L(h1; p1) = KL(p1 ∥ p)−KL(pX1 ∥ pX) = KL(p1 ∥ p)− δ1 ≥ α− δ1.

For p2, define δ2 := KL(pX2 ∥ pX) and similarly compute:

L(h; p2)− L(h2; p2) = KL(p2 ∥ p)−KL(pX2 ∥ pX) = KL(p2 ∥ p)− δ2 ≤ ε− δ2.

This completes the proof.
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Distributional Unlearning: Forgetting Distributions, Not Just Samples

D.3. Random Removal

Lemma 3 (Finite-sample concentration). Let µ̂ be the empirical mean of n samples drawn from N (µ, σ2). For any
δ ∈ (0, 1), with probability at least 1− δ, we have

|µ̂− µ| ≤ σ

√
2 ln(2/δ)

n
.

Proof. This follows directly from Hoeffding’s inequality for sub-Gaussian variables.

Theorem 1 (Random Removal). Let p1, p2 ∈ P and δ ∈ (0, 1). We observe n1 samples from p1 and n2 samples from p2,
and randomly remove f samples from p1 before fitting. Then with probability at least 1− δ, the resulting MLE distribution
satisfies (α, ε)-distributional unlearning with:

α ≥
(1
2
− 3
(
n1−f
n2

)2)
KL(p1∥p2)−

3 ln(4/δ)

2n2

(
1 + n1−f

n2

)
,

ε ≤ 3
(
n1−f
n2

)2
KL(p1∥p2) +

3 ln(4/δ)

n2

(
1 + n1−f

n2

)
.

Proof. We recall that p1 = N (µ1, σ
2), p2 = N (µ2, σ

2) ∈ P and p := N (µ, σ2) ∈ P are univariate Gaussian distributions.
We are given n1 i.i.d. samples x(1)

1 , . . . , x
(n1)
1 from p1 and n2 i.i.d. samples x(1)

2 , . . . , x
(n2)
2 from p2.

Upon removing f ≤ n1 randomly chosen samples x(1)
1 , . . . , x

(n1−f)
1 from the target distribution p1, we set the center µ of

the unlearned distribution p to be:

µ =
(n1 − f)µ̂1 + n2µ̂2

n1 − f + n2
, (11)

where µ̂1 := 1
n1−f

∑n1−f
i=1 x

(i)
1 and µ̂2 := 1

n2

∑n2

i=1 x
(i)
2 . We also observe that a standard Hoeffding bound (Lemma 3)

yields that:

|µ̂1 − µ1| ≤ σ

√
2 ln(4/δ)

f
, |µ̂2 − µ2| ≤ σ

√
2 ln(4/δ)

n2
, (12)

each with probability 1− δ
2 , so that both hold with probability 1− δ thanks to a union bound. We also recall that

KL(p1 ∥ p) =
(µ1 − µ)2

2σ2
, KL(p2 ∥ p) =

(µ2 − µ)2

2σ2
. (13)

Preservation bound. First, we upper bound the KL divergence of p2 from p. To do so, we first use the triangle inequality
to get

|µ− µ2| =
∣∣∣∣ (n1 − f)µ̂1 + n2µ̂2

n1 − f + n2
− µ2

∣∣∣∣ = ∣∣∣∣ n1 − f

n1 − f + n2
(µ̂1 − µ2) +

n2

n1 − f + n2
(µ̂2 − µ2)

∣∣∣∣
=

∣∣∣∣ n1 − f

n1 − f + n2
(µ1 − µ2) +

n1 − f

n1 − f + n2
(µ̂1 − µ1) +

n2

n1 − f + n2
(µ̂2 − µ2)

∣∣∣∣
≤ n1 − f

n1 − f + n2
|µ1 − µ2|+

n1 − f

n1 − f + n2
|µ̂1 − µ1|+

n2

n1 − f + n2
|µ̂2 − µ2| .

Therefore, using (12) we have with probability 1− δ:

|µ− µ2| ≤
n1 − f

n1 − f + n2
|µ1 − µ2|+

n1 − f

n1 − f + n2
σ

√
2 ln(4/δ)

f
+

n2

n1 − f + n2
σ

√
2 ln(4/δ)

n2
.

Taking squares, using Jensen’s inequality, and simplifying further since f ≥ 0, yields:

|µ− µ2|2 ≤ 3

(
n1 − f

n2

)2

|µ1 − µ2|2 + 3

(
n1 − f

n2

)2

σ2 2 ln(4/δ)

n1 − f
+ σ2 6 ln(4/δ)

n2
. (14)
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Distributional Unlearning: Forgetting Distributions, Not Just Samples

Dividing both sides by 2σ2 and then using (30) yields with probability 1− δ:

KL(p2 ∥ p) ≤ 3

(
n1 − f

n2

)2

KL(p1 ∥ p2) +
3 ln(4/δ)

n2

(
1 +

n1 − f

n2

)
. (15)

Removal bound. Second, we lower bound the KL divergence of p1 from p. To do so, we use Jensen’s inequality and (14)
to obtain that, with probability 1− δ, we have

|µ1 − µ2|2 = |µ1 − µ+ µ− µ2|2 ≤ 2|µ1 − µ|2 + 2|µ− µ2|2

≤ 2|µ1 − µ|2 + 6

(
n1 − f

n2

)2

|µ1 − µ2|2 +
6σ2 ln(4/δ)

n2

(
1 +

n1 − f

n2

)
Rearranging terms and dividing by 4σ2 along with (30) yields that with probability 1− δ we have

KL(p1 ∥ p) =
|µ1 − µ|2

2σ2
≥ |µ1 − µ2|2

4σ2
− 3

(
n1 − f

n2

)2 |µ1 − µ2|2

2σ2
− 3 ln(4/δ)

2n2

(
1 +

n1 − f

n2

)
=

(
1

2
− 3

(
n1 − f

n2

)2
)
KL(p1 ∥ p2)−

3 ln(4/δ)

2n2

(
1 +

n1 − f

n2

)
.

Conclusion. With probability 1− δ, we have (α, ε)-distributional unlearning with

α ≥

(
1

2
− 3

(
n1 − f

n2

)2
)
KL(p1 ∥ p2)−

3 ln(4/δ)

2n2

(
1 +

n1 − f

n2

)
,

ε ≤ 3

(
n1 − f

n2

)2

KL(p1 ∥ p2) +
3 ln(4/δ)

n2

(
1 +

n1 − f

n2

)
.

D.4. Selective Removal

Lemma 4 (Dvoretzky–Kiefer–Wolfowitz Inequality). Let x1, x2, . . . , xn be independent and identically distributed ran-
dom variables with cumulative distribution function F . Define the empirical distribution function by

F̂ (t) =
1

n

n∑
i=1

1{xi ≤ t}.

Then, for any δ ∈ (0, 1), with probability at least 1− δ we have

sup
t∈R

∣∣∣F̂ (t)− F (t)
∣∣∣ ≤√ ln(2/δ)

2n
.

Lemma 5. Let µ1, µ2 ∈ R, σ > 0. Consider n1 i.i.d. samples x
(1)
1 , . . . , x

(n1)
1 from N (µ1, σ

2) and n2 i.i.d. samples
x
(1)
2 , . . . , x

(n2)
2 from N (µ2, σ

2). We define µ̂2 the average of the samples from N (µ2, σ
2), µ̂1 the average of the n1 − f ≤

n1 closest samples from x
(1)
1 , . . . , x

(n1)
1 to µ̂2. We define F : t ∈ R 7→ Φ( t−|µ1−µ2|

σ ) − Φ(−t−|µ1−µ2|
σ ), where Φ is the

standard normal CDF.

For any δ ∈ (0, 1), we have with probability 1− δ,

|µ̂1 − µ2| ≤ F−1

1− f

n1
+

√
ln(2/δ)

2n1

 . (16)

Proof. Recall from Equation (27) that µ̂1 is the average of the n1 − f samples, out of n1 i.i.d. from p1, with the closest
distance to µ̂2, the empirical mean of n2 samples from p2.
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Distributional Unlearning: Forgetting Distributions, Not Just Samples

Denote by τ̂f := |x(n1−f :n1)
1 − µ̂2| the (n1 − f)-th largest distance of µ̂2 to p1 samples. It is then immediate from the

triangle inequality that

|µ̂1 − µ2| = | 1

n1 − f

n1−f∑
i=1

x
(i:n1)
1 − µ2| ≤

1

n1 − f

n1−f∑
i=1

|x(i:n1)
1 − µ2| ≤ τ̂f . (17)

Besides, denoting by F̂1 the empirical CDF of the empirical distribution over
{
|x(i)

1 − µ2| : i ∈ [n1]
}

, we have for all
t ∈ R:

F̂1(t) =
1

n1

n1∑
i=1

1{
|x(i)

1 −µ2|≤t
}. (18)

Yet, we recall that with probability 1− δ
2 , we have

|µ̂2 − µ2| ≤ σ

√
2 ln(4/δ)

n2
. (19)

Therefore, the triangle inequality gives for i ∈ [n1], |x(i)
1 − µ2| ≤ |x(i)

1 − µ̂2|+ |µ̂2 − µ| ≤ |x(i)
1 − µ̂2|+ σ

√
2 ln(4/δ)

n2
, and

we deduce

F̂1(t) =
1

n1

n1∑
i=1

1{
|x(i)

1 −µ2|≤t
} ≤ 1

n1

n1∑
i=1

1{
|x(i)

1 −µ̂2|≤t−σ

√
2 ln(4/δ)

n2

}. (20)

In particular, by definition of τ̂f , we have

F̂1(τ̂f + σ

√
2 ln(4/δ)

n2
) ≤ 1

n1

n1∑
i=1

1{
|x(i)

1 −µ̂2|≤τ̂f

} =
n1 − f

n1
= 1− f

n1
. (21)

Now, observe that |x(i)
1 − µ2| follows a folded normal distribution of location µ1 − µ2 and scale σ2, since x

(i)
1 follows

p1 = N (µ1, σ
2). Denote by F1 its CDF. Thanks to the Dvoretzky–Kiefer–Wolfowitz inequality (Lemma 4), we have with

probability 1− δ
2 that for all t ∈ R,

|F̂1(t)− F1(t)| ≤

√
ln(4/δ)

2n1
. (22)

Plugging the above in the previous inequality, and using a union bound, we get with probability 1− δ,

F1(τ̂f + σ

√
2 ln(4/δ)

n2
) ≤ F̂1(τ̂f + σ

√
2 ln(4/δ)

n2
) +

√
ln(4/δ)

2n1
≤ 1− f

n1
+

√
ln(4/δ)

2n1
. (23)

By taking the inverse F−1
1 of the CDF F1 and rearranging terms, we obtain with probability 1− δ that

τ̂f ≤ F−1
1

1− f

n1
+

√
ln(4/δ)

2n1

− σ

√
2 ln(4/δ)

n2
. (24)

Finally, going back to (17), we obtain with probability 1− δ that

|µ̂1 − µ2| ≤ τ̂f ≤ F−1
1

1− f

n1
+

√
ln(4/δ)

2n1

− σ

√
2 ln(4/δ)

n2
. (25)
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Distributional Unlearning: Forgetting Distributions, Not Just Samples

Lemma 6. Let µ1, µ2 ∈ R and suppose that x ∼ N (µ1, σ
2). Define the random variable z := |x− µ2|, with cumulative

distribution function

Fσ(t) := P[z ≤ t] = Φ
( t− |µ1 − µ2|

σ

)
− Φ

(−t− |µ1 − µ2|
σ

)
, t ≥ 0,

where Φ denotes the standard normal CDF. Then, for any p ∈ (0, 1) the inverse CDF satisfies

F−1
σ (p) = σ g−1

(
p;

|µ1 − µ2|2

2σ2

)
,

where the function g(u;κ) is defined by g(u;κ) := Φ(u −
√
2κ) + Φ(u +

√
2κ) − 1, and g−1(p;κ) denotes the inverse

function in u satisfying g(u;κ) = p. In particular, when µ1 = µ2 (so that κ = 0) we have g(u; 0) = 2Φ(u) − 1 and thus

F−1
0,1 (p) = Φ−1

(
p+1
2

)
.

Proof. Since x ∼ N (µ1, σ
2), we have that z = |x− µ2| has CDF

Fσ(t) = Φ
( t− |µ1 − µ2|

σ

)
− Φ

(−t− |µ1 − µ2|
σ

)
, t ≥ 0.

Introduce the change of variable u = t
σ so that t = σ u. Then,

Fσ(σ u) = Φ
(
u− |µ1 − µ2|

σ

)
− Φ

(
−u− |µ1 − µ2|

σ

)
.

Using the symmetry Φ(−x) = 1− Φ(x), this becomes

Fσ(σ u) = Φ
(
u− |µ1 − µ2|

σ

)
+Φ

(
u+

|µ1 − µ2|
σ

)
− 1.

Defining κ = |µ1−µ2|2
2σ2 and setting

g(u;κ) := Φ(u−
√
2κ) + Φ(u+

√
2κ)− 1,

we have Fσ(σ u) = g(u;κ). Thus, if u∗ is the unique solution of g(u∗;κ) = p, then

Fσ(σ u∗) = p,

so that
F−1
σ (p) = σ u∗ = σ g−1(p;κ).

In the special case µ1 = µ2 (so that κ = 0), we obtain g(u; 0) = 2Φ(u)−1, whose inverse is given by u = Φ−1((p+1)/2).
Hence, F−1

1 (p) = Φ−1((p+ 1)/2), as required.

Theorem 2 (Selective Removal). Let p1, p2 ∈ P and δ ∈ (0, 1). Let f samples from p1 be removed according to Selective
Removal. Then with probability at least 1− δ, the resulting estimate satisfies (α, ε)-distributional unlearning with:

α ≥ 1

2
KL(p1∥p2)−

1

2

(
n1−f
n2

)2
Γ(f, n1, δ,KL(p1∥p))− ln(4/δ)

n2
,

ε ≤
(

n1−f
n2

)2
Γ(f, n1, δ,KL(p1∥p)) + 2 ln(4/δ)

n2
,

where Γ(f, n1, δ,KL(p1∥p)) := g−1
(
1− f

n1
+
√

ln(4/δ)
2n1

; KL(p1∥p2)
)2

with g(u;κ) := Φ(u−
√
2κ) +Φ(u+

√
2κ)− 1,

for u, κ > 0, and Φ is the standard normal CDF.

Proof. We recall that p1 = N (µ1, σ
2), p2 = N (µ2, σ

2) ∈ P and p := N (µ, σ2) ∈ P are univariate Gaussian distributions.
We are given n1 i.i.d. samples x(1)

1 , . . . , x
(n1)
1 from p1 and n2 i.i.d. samples x(1)

2 , . . . , x
(n2)
2 from p2.
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Distributional Unlearning: Forgetting Distributions, Not Just Samples

The distance-based selection removes f ≤ n1 selected samples from the target distribution p1 with the f largest distances
to µ̂2 := 1

n2

∑n2

i=1 x
(i)
2 the empirical estimator of the mean of p2. That is, denoting by x

(1:n1)
1 , . . . , x

(n1:n1)
1 the original n1

samples from p1 reordered by increasing distance to µ̂2:

|x(1:n1)
1 − µ̂2| ≤ . . . ≤ |x(n1:n1)

1 − µ̂2|, (26)

with ties broken arbitrarily, then distance-based selection retains only x
(1:n1)
1 , . . . , x

(n1−f :n1)
1 to obtain

µ̂1 := 1
n1−f

n1−f∑
i=1

x
(i:n1)
1 . (27)

Subsequently, we set the center µ of the unlearned distribution p to be:

µ =
(n1 − f)µ̂1 + n2µ̂2

n1 − f + n2
, (28)

where µ̂1 = 1
n1−f

∑n1−f
i=1 x

(i:n1)
1 and µ̂2 = 1

n2

∑n2

i=1 x
(i)
2 . We also observe that a standard Hoeffding bound (Lemma 3)

yields that:

|µ̂2 − µ2| ≤ σ

√
2 ln(4/δ)

n2
, (29)

with probability 1− δ
2 . We also recall that

KL(p1 ∥ p) =
(µ1 − µ)2

2σ2
, KL(p2 ∥ p) =

(µ2 − µ)2

2σ2
. (30)

Preservation bound. First, we upper bound the KL divergence of p2 from p. To do so, we first use the triangle inequality
to get

|µ− µ2| =
∣∣∣∣ (n1 − f)µ̂1 + n2µ̂2

n1 − f + n2
− µ2

∣∣∣∣ = ∣∣∣∣ n1 − f

n1 − f + n2
(µ̂1 − µ2) +

n2

n1 − f + n2
(µ̂2 − µ2)

∣∣∣∣
≤ n1 − f

n1 − f + n2
|µ̂1 − µ2|+

n2

n1 − f + n2
|µ̂2 − µ2| .

Therefore, using (29) we have with probability 1− δ
2 :

|µ− µ2| ≤
n1 − f

n1 − f + n2
|µ̂1 − µ2|+

n2

n1 − f + n2
σ

√
2 ln(4/δ)

n2
.

Moreover, we know from Lemma 5 that with probabilty 1− δ
2

|µ̂1 − µ2| ≤ F−1

1− f

n1
+

√
ln(4/δ)

2n1

 .

Using the above in the previous inequality with a union bound, yields that with probability 1− δ

|µ− µ2| ≤
n1 − f

n1 − f + n2
F−1

1− f

n1
+

√
ln(4/δ)

2n1

+
n2

n1 − f + n2
σ

√
2 ln(4/δ)

n2
.

We can further simplify the above using Lemma 6, which implies that for all p > 0

F−1(p) = σ g−1
(
p;

|µ1 − µ2|2

2σ2

)
,
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Distributional Unlearning: Forgetting Distributions, Not Just Samples

where the function g is defined by g(u;κ) := Φ(u−
√
2κ) + Φ(u+

√
2κ)− 1, for u, κ > 0. Plugging this in the previous

bound yields

|µ− µ2| ≤
n1 − f

n1 − f + n2
σ g−1

(
1− f

n1
+

√
ln(4/δ)

2n1
;
|µ1 − µ2|2

2σ2

)
+

n2

n1 − f + n2
σ

√
2 ln(4/δ)

n2
. (31)

Dividing both sides by σ
√
2 and then using (30) yields with probability 1− δ:

√
KL(p2 ∥ p) ≤ n1 − f

(n1 − f + n2)
√
2
g−1

(
1− f

n1
+

√
ln(4/δ)

2n1
; KL(p1 ∥ p2)

)
+

√
n2 log(4/δ)

n1 − f + n2
. (32)

The above directly implies, by taking squares and using Jensen’s inequality and that f ≥ 0, that with probability 1− δ:

KL(p2 ∥ p) ≤
(
n1 − f

n2

)2

g−1
(
1− f

n1
+

√
ln(4/δ)

2n1
; KL(p1 ∥ p2)

)2
+

2 ln(4/δ)

n2
. (33)

Removal bound. Second, we lower bound the KL divergence of p1 from p. To do so, we use Jensen’s inequality and (31)
to obtain that, with probability 1− δ, we have

|µ1 − µ2|2 = |µ1 − µ+ µ− µ2|2 ≤ 2|µ1 − µ|2 + 2|µ− µ2|2

≤ 2|µ1 − µ|2 + 2

(
n1 − f

n1 − f + n2

)2

σ2 g−1
(
1− f

n1
+

√
ln(4/δ)

2n1
;
|µ1 − µ2|2

2σ2

)2
+

(
n2

n1 − f + n2

)2

σ2 4 ln(4/δ)

n2
.

Rearranging terms, using that f ≥ 0, and dividing by 4σ2 along with (30) yields that with probability 1− δ we have

KL(p1 ∥ p) =
|µ1 − µ|2

2σ2
≥ |µ1 − µ2|2

4σ2
− 1

2

(
n1 − f

n2

)2

g−1
(
1− f

n1
+

√
ln(4/δ)

2n1
;
|µ1 − µ2|2

2σ2

)2
− ln(4/δ)

n2

=
1

2
KL(p1 ∥ p2)−

1

2

(
n1 − f

n2

)2

g−1
(
1− f

n1
+

√
ln(4/δ)

2n1
;
|µ1 − µ2|2

2σ2

)2
− ln(4/δ)

n2
.

Now, using (30) we get

KL(p1 ∥ p) ≥ 1

2
KL(p1 ∥ p2)−

1

2

(
n1 − f

n2

)2

g−1
(
1− f

n1
+

√
ln(4/δ)

2n1
; KL(p1 ∥ p2)

)2
− ln(4/δ)

n2

Conclusion. With probability 1− δ, we have (α, ε)-distributional unlearning with

α ≥ 1

2
KL(p1 ∥ p2)−

1

2

(
n1 − f

n2

)2

g−1
(
1− f

n1
+

√
ln(4/δ)

2n1
; KL(p1 ∥ p2)

)2
− ln(4/δ)

n2
,

ε ≤
(
n1 − f

n2

)2

g−1
(
1− f

n1
+

√
ln(4/δ)

2n1
; KL(p1 ∥ p2)

)2
+

2 ln(4/δ)

n2
.

D.5. Simplified Sample Complexity for Selective Removal

In this section, we can simplify the result of Theorem 2 on selective removal by simplifying cumbersome terms. This leads
to Corollary 8, which then yields to the sample complexity results in Table 1.

We first prove an upper bound on the inverse CDF of a folded Normal for small quantiles.
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Distributional Unlearning: Forgetting Distributions, Not Just Samples

Lemma 7. Let µ1, µ2 ∈ R, σ > 0, and x ∼ N (µ1, σ
2). Define the random variable z = |x− µ2|, which follows a folded

normal distribution whose cumulative distribution function (CDF) is given by

F (t) := P[z ≤ t] = Φ
( t− |µ1 − µ2|

σ

)
− Φ

(−t− |µ1 − µ2|
σ

)
, t ≥ 0, (34)

where Φ denotes the standard normal CDF. Then, for any p > 0 such that F−1(p) ≤ |µ1 − µ2|, it holds that:

F−1(p) ≤ σ p

φ
(

|µ1−µ2|
σ

) ,
where φ(x) := 1√

2π
exp
(
−x2

2

)
, x ∈ R, is the standard normal density.

Proof. Since F , defined in (34), is continuously differentiable and strictly increasing on [0, |µ1−µ2|] (with F (0) = 0) and
by the assumption F−1(p) ≤ |µ1 − µ2|, the Mean Value Theorem guarantees that there exists some ξ ∈ [0, F−1(p)] such
that

F
(
F−1(p)

)
= F (0) + F ′(ξ)

(
F−1(p)− 0

)
.

Since F (0) = 0 and F is strictly increasing, one may directly write, via the Mean Value Theorem, that there exists
ξ ∈ [0, F−1(p)] with

F
(
F−1(p)

)
= F ′(ξ)F−1(p).

By definition of the inverse CDF, F
(
F−1(p)

)
= p; hence,

p = F ′(ξ)F−1(p).

It remains to lower-bound F ′(ξ) for ξ ∈ [0, |µ1 − µ2|]. We recall that for t ≥ 0,

F (t) = Φ
( t− |µ1 − µ2|

σ

)
− Φ

(−t− |µ1 − µ2|
σ

)
.

Taking the derivative with respect to t yields

F ′(t) =
1

σ
φ
( t− |µ1 − µ2|

σ

)
+

1

σ
φ
(−t− |µ1 − µ2|

σ

)
=

1

σ
φ
( t− |µ1 − µ2|

σ

)
+

1

σ
φ
( t+ |µ1 − µ2|

σ

)
,

where we used that the standard normal density ϕ is symmetric.

For t ∈ [0, |µ1−µ2|], observe that t−|µ1−µ2| ≤ 0. Because the standard normal density is symmetric and nonincreasing
on [0,∞), we have

φ
( t− |µ1 − µ2|

σ

)
= φ

( |µ1 − µ2| − t

σ

)
≥ φ

( |µ1 − µ2|
σ

)
.

Also, the second term φ
(

t+|µ1−µ2|
σ

)
is nonnegative. Hence, for all t ∈ [0, |µ1 − µ2|] we have

F ′(t) ≥ 1

σ
φ
( |µ1 − µ2|

σ

)
.

In particular, at t = ξ we obtain

F ′(ξ) ≥ 1

σ
φ
( |µ1 − µ2|

σ

)
.

Substituting this lower bound into the equation p = F ′(ξ)F−1(p) yields

p ≥ F−1(p)

σ
φ
( |µ1 − µ2|

σ

)
.
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Distributional Unlearning: Forgetting Distributions, Not Just Samples

Rearranging the inequality gives the desired upper bound:

F−1(p) ≤ σ p

φ
(

|µ1−µ2|
σ

) .
This completes the proof.

We are now ready to prove the corollary below. Note that retaining dependences on α, ε only in this corollary leads to the
result of Table 1.
Corollary 8. Let p1, p2 ∈ P and δ ∈ (0, 1). Let f samples from p1 be removed according to our distance-based scoring
rule or at random before MLE. Then in each case, with probability at least 1 − δ, the resulting estimate satisfies (α, ε)-
distributional unlearning if:

1. Random removal: n2 ≥ 12 ln(4/δ)
min {ε,α} and KL(p1 ∥ p2) ≥ 8α, and

f ≥ n1 − n2

√
2KL(p1 ∥ p2)− α

12KL(p1 ∥ p2)
, f ≥ n1 − n2 min

{
1,

√
ε

6KL(p1 ∥ p2)

}
.

2. Selective removal: n2 ≥ 2 ln(4/δ)max
{

1
ε ,

1√
ε
, 1
α ,
√
KL(p1 ∥ p2)− 4α

}
, KL(p1 ∥ p2) ≥ 4α, and f ≥

n1

(
3
2 +

√
ln(4/δ)
2n1

− Φ(2
√
2KL(p1 ∥ p2))

)
, and

f ≥ n1 −
√
n1n2

( ε

16π

)1/4
exp(−KL(p1 ∥ p2)),

f ≥ n1 −
√
n1n2

(
KL(p1 ∥ p2)− 4α

8π

)1/4

exp(−KL(p1 ∥ p2)).

Proof. We treat random and selective removal separately below.

Random Removal. Consider removing f samples using the random removal mechanism, before maximum likelihood
estimation. From Theorem 1, with probability 1− δ, we achieve (α, ε)-unlearning with:

α ≥

(
1

2
− 3

(
n1 − f

n2

)2
)
KL(p1 ∥ p2)−

3 ln(4/δ)

2n2

(
1 +

n1 − f

n2

)
(removal),

ε ≤ 3

(
n1 − f

n2

)2

KL(p1 ∥ p2) +
3 ln(4/δ)

n2

(
1 +

n1 − f

n2

)
(preservation).

Therefore, assuming that n2 ≥ 12 ln(4/δ)
min {ε,α} and KL(p1 ∥ p2) ≥ 8α, direct calculations show that it is sufficient to set:

f ≥ n1 − n2

√
2KL(p1 ∥ p2)− α

12KL(p1 ∥ p2)
(removal),

f ≥ n1 − n2 min

{
1,

√
ε

6KL(p1 ∥ p2)

}
(preservation).

Selective Removal. For selective removal, Theorem 2 shows that, with probability 1 − δ, we achieve (α, ε)-unlearning
with:

α ≥ 1

2
KL(p1 ∥ p2)−

1

2

(
n1 − f

n2

)2

g−1
(
1− f

n1
+

√
ln(4/δ)

2n1
; KL(p1 ∥ p2)

)2
− ln(4/δ)

n2
(removal),

ε ≤
(
n1 − f

n2

)2

g−1
(
1− f

n1
+

√
ln(4/δ)

2n1
; KL(p1 ∥ p2)

)2
+

2 ln(4/δ)

n2
(preservation).
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We can simplify these bounds using Lemma 7. Indeed, thanks to the latter and using the same notation and a simple change
of variable, we have for all p, κ > 0 such that p ≤ F (|µ1 − µ2|)

g−1
(
p;κ
)
≤ p

ϕ(
√
2κ)

= p
√
2π exp(κ). (35)

Now, we plug in p = 1 − f
n1

+
√

ln(4/δ)
2n1

. Assuming f ≥ n1

(
−Φ(2

√
2KL(p1 ∥ p2)) +

3
2 +

√
ln(4/δ)
2n1

)
, which directly

implies that p ≤ F (|µ1 − µ2|) as required, we then obtain

g−1
(
1− f

n1
+

√
ln(4/δ)

2n1
; KL(p1 ∥ p2)

)
≤
(
1− f

n1
+

√
ln(4/δ)

2n1

)√
2π exp (KL(p1 ∥ p2)) .

Plugging the above back in the first bounds due to Theorem 2, we obtain:

α ≥ 1

2
KL(p1 ∥ p2)−

1

2

(
n1 − f

n2

)2 (
1− f

n1
+

√
ln(4/δ)

2n1

)2
2π exp (2KL(p1 ∥ p2))−

ln(4/δ)

n2
,

ε ≤
(
n1 − f

n2

)2 (
1− f

n1
+

√
ln(4/δ)

2n1

)2
2π exp (2KL(p1 ∥ p2)) +

2 ln(4/δ)

n2
.

Therefore, assuming that n2 ≥ 2 ln(4/δ)max
{

1
ε ,

1√
ε
, 1
α ,
√
KL(p1 ∥ p2)− 4α

}
and KL(p1 ∥ p2) ≥ 4α, and recalling

we had assumed f ≥ n1

(
−Φ(2

√
2KL(p1 ∥ p2)) +

3
2 +

√
ln(4/δ)
2n1

)
, direct calculations show that it is sufficient to set:

f ≥ n1 −
√
n1n2

( ε

16π

)1/4
exp(−KL(p1 ∥ p2)) (removal),

f ≥ n1 −
√
n1n2

(
KL(p1 ∥ p2)− 4α

8π

)1/4

exp(−KL(p1 ∥ p2)) (preservation).

E. Experimental Details
E.1. Heuristic Deletion Strategies

Across all datasets, we evaluate five scoring strategies for ranking samples in the forget distribution p1 for removal. These
scores approximate statistical dissimilarity from the retained distribution p2 and correspond to different operational inter-
pretations of divergence:

• LR-COS / LR-MAHA (likelihood-ratio inspired):
A proxy for the log-likelihood ratio of x under p2 versus p1:

s(x) = d(x, µ2)− d(x, µ1)

where d(·, µ) denotes cosine distance in TF–IDF space (text) or Mahalanobis distance in ResNet feature space (im-
ages). Points are scored high when they are far from p2 and close to p1.

• COS-MU2 / MAHA-MU2 (dissimilarity to p2):
Measures the distance from each x ∈ p1 to the empirical mean of p2:

s(x) = d(x, µ2)

This approximates the contribution of each point to the KL divergence KL(p2∥p̂) when p is modeled as a Gaussian.
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Figure 6. Synthetic Gaussians. Comparison of all strategies considered in the real-world datasets, using the low-divergence scenario of
synthetic Gaussians (left plot, Fig. 2). Likelihood-ratio surpasses the distance-based strategy for lower deletion budgets. However, for
larger budgets, it sacrifices utility for excessive removal. This is likely because it deletes samples representative of p1 but close to p2
since p1 and p2 are similar here.

• KNN-RATIO (local density ratio):
Estimates the ratio of k-NN densities:

s(x) =
p̂1(x)

p̂2(x)

where p̂i(x) = exp(−∥x− NN(i)
k (x)∥2/σ2) is a local Gaussian kernel density using k = 10 nearest neighbors. This

captures how typical x is under p1 versus p2.

• TFIDF-NORM / L2-NORM:
Uses the ℓ2 norm of the raw input (TF–IDF or real-valued) as a proxy for informativeness or deviation from the origin:

s(x) = ∥x∥2

• RANDOM:
Samples points uniformly at random from p1 as a baseline.

E.2. Synthetic Gaussians

We draw n1 = n2 = 1,000 samples from p1 = N (0, 1) and p2 = N (µ2, 1) for µ2 ∈ {0.5, 2.5, 5.0}, with 20 seeds. After
computing scores using each strategy, we remove the top-f fraction of p1 points, fit a Gaussian N (µ̂, 1) to the retained
data, and compute:

α = KL(p1∥p̂), ε = KL(p2∥p̂)
These metrics match the forward-KL objectives of removal and preservation. No predictive model is trained; results reflect
pure distributional divergence. For completeness, in Figure 6, we plot a comparison of all strategies considered in the real-
world datasets, using the low-divergence scenario of synthetic Gaussians (left plot, Fig. 2). Likelihood-ratio surpasses the
distance-based strategy for lower deletion budgets. However, for larger budgets, it sacrifices utility for excessive removal.
This is likely because it deletes samples representative of p1 but close to p2 since p1 and p2 are similar here. This indicates
that no removal strategy strictly dominates all others across all divergence (between p1 and p2) scenarios.

E.3. Jigsaw Toxic Comments

We use the Jigsaw Toxic Comment Classification dataset, with 140K examples filtered to length 5–200 tokens. We define p1
as all training comments containing any of the keywords: “f*ck”, “s*it”, “d*mn”, “b*tch”, “a*s”, and p2 as the remaining
comments. For each of 5 random seeds, we:
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Distributional Unlearning: Forgetting Distributions, Not Just Samples

1. Stratified-split p1, p2 into 70/30 train/val.

2. Compute TF–IDF embeddings (40K max features, 1–2 grams, sublinear TF, min df=5).

3. Score and remove f of p1 training points using each heuristic.

4. Downsample p2 to 5× the remaining p1 size.

5. Train an ℓ2-regularized logistic regression on the edited data.

6. Evaluate Recall@p1 and macro F1@p2 on the validation sets.

E.4. SMS Spam Collection

We use the UCI SMS Spam dataset (5574 examples, 13.4% spam). We apply:

1. TF–IDF vectorization (20K features, 1–2 grams, stopword removal).

2. Scoring of spam (p1) messages using each heuristic.

3. Removal of top-f fraction of spam for each strategy.

4. Retrain a logistic regression classifier.

5. Evaluate Recall@spam and F1@ham on a held-out 20% test split.

We run 10 seeds and report mean ± standard error.

E.5. CIFAR-10 Class Removal

We treat the “cat” class as p1 and the other 9 classes as p2. We use the standard CIFAR-10 split (50K train, 10K test), and
proceed as follows:

1. Train a 3-block CNN (Conv–BN–ReLU ×2 + MaxPool, widths 32–64–128, global avg pool + linear head) for 10
epochs on the full training set.

2. Extract features for all training images using the penultimate layer.

3. Compute Mahalanobis distance scores for each cat image (p1) using:

smaha(x) =
√
(x− µ)⊤Σ−1(x− µ)

where µ and Σ are estimated from p2.

4. Delete the top-f fraction of cat images under each scoring method.

5. Retrain the same CNN architecture on the edited training set.

6. Evaluate:
Accuracycat, Accuracynon-cat

on the test set. Results are averaged over 30 random seeds.

E.6. Computing Environment

All experiments were run on a HPE DL380 Gen10 equipped with two Intel(R) Xeon(R) Platinum 8358P CPUs running
at 2.60GHz, 128 GB of RAM, a 740 GB SSD, and two NVIDIA A10 GPUs. Training for vision experiments was im-
plemented in PyTorch, while text-based experiments used Scikit-learn. All experiments were conducted using a single
GPU.
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