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ABSTRACT

Accurate document retrieval is crucial for the success of retrieval-augmented gen-
eration (RAG) applications, including open-domain question answering and code
completion. While large language models (LLMs) have been employed as dense
encoders or listwise rerankers in RAG systems, they often struggle with reasoning-
intensive tasks because they lack nuanced analysis when judging document rele-
vance. To address this limitation, we introduce JUDGERANK,1 a novel agentic
reranker that emulates human cognitive processes when assessing document rele-
vance. Our approach consists of three key steps: (1) query analysis to identify the
core problem, (2) document analysis to extract a query-aware summary, and (3)
relevance judgment to provide a concise assessment of document relevance. We
evaluate JUDGERANK on the reasoning-intensive BRIGHT benchmark, demon-
strating substantial performance improvements over first-stage retrieval methods
and outperforming other popular reranking approaches. In addition, JUDGERANK
performs on par with fine-tuned state-of-the-art rerankers on the popular BEIR
benchmark, validating its zero-shot generalization capability. Through compre-
hensive ablation studies, we demonstrate that JUDGERANK’s performance gener-
alizes well across LLMs of various sizes while ensembling them yields even more
accurate reranking than individual models.

1 INTRODUCTION

Passage reranking is a critical component in modern information retrieval systems, designed to refine
results obtained from efficient first-stage retrieval methods such as BM25 (Robertson et al., 1995;
2009). By narrowing down the pool of candidate documents, reranking substantially improves the
quality of downstream tasks, such as retrieval-augmented generation or RAG (Lewis et al., 2020).
Two primary approaches have emerged to address the reranking task. The first category comprises
encoding-based approaches (Nogueira & Cho, 2019; Gao et al., 2021), which encode queries and
documents into fixed-size embedding vectors. These methods use either cosine similarity as a score
function or directly output a score from the model (Nogueira et al., 2020; Zhuang et al., 2023). While
highly efficient, these approaches face several limitations. One major challenge is their inflexibility
in defining relevance, making it difficult to accommodate diverse retrieval objectives (e.g., finding
supporting vs. refuting evidence). Moreover, encoding-based models heavily rely on manual super-
vision signals due to the discrepancy between LLM pretraining and reranking objectives, limiting
their ability to generalize to new domains or models (Nguyen, 2016; Izacard et al., 2022).

Most recently, utilizing Large Language Models (LLMs) for document reranking has led to promis-
ing progress in addressing some of these challenges, owing to their superior capabilities in language
understanding, generation, interaction, and reasoning (Ouyang et al., 2022). These approaches uti-
lize an LLM either as a pointwise judge (Ma et al., 2024) or a listwise reranker (Sun et al., 2023;
Zhuang et al., 2024). While these approaches allow for flexible definition of document relevance
and support zero-shot operation, they still require the model to make decisions without intermediate
analyses. Consequently, they fall short in scenarios requiring complex reasoning (Su et al., 2024),
hampering both performance and interpretability. Moreover, listwise rerankers face significant com-
putational challenges due to context length constraints, often compromising on individual document
length when processing multiple documents simultaneously.

1We plan to release our code upon acceptance.
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Can we taste electrons?
Why does licking a 9-Volt battery elicits a taste sensation? Can taste be stimulated by electrical stimulation?

Query Analysis
Core problem: Can taste be stimulated by external electrical stimuli?
Key question: What mechanism explains the taste sensation when licking a 9-Volt battery?

Positive Doc:
Stimuli to neurons can be physical, 

electrical, or chemical, and can either 
inhibit or excite the neuron being 

stimulated. An inhibitory stimulus is 
transmitted to the dendrite of a neuron, 

causing hyperpolarization of the neuron. 
The hyperpolarization following an …

BM25 score = 42.6 Rank=91
Stimuli to neurons can be physical, 

electrical, or chemical, and can either 
inhibit or excite the neuron being 

stimulated. An inhibitory stimulus is 
transmitted to the dendrite of a neuron, 

causing hyperpolarization of the neuron. 
The hyperpolarization following an …

Retrieved Top-k Docs
Document Analysis
Extract Sentences from Doc related to the questions:
1. Stimuli to neurons: Stimuli can be physical, electrical, or chemical, 

exciting or inhibiting neurons.
2. Excitation stimuli: Electrical stimuli increase neuron voltage, 

making neurons easier to depolarize.
3. Summing stimuli: Stimuli travel down dendrites, converge at the 

axon hillock, and determine the neuronal response.

Relevance Judgment
This document explains how licking a 9-Volt battery elicits a taste sensation by suggesting that the 
electrical stimulus affects neurons responsible for transmitting taste signals.
Document Relevance Score: 0.978 Rank=1

Figure 1: A step-by-step illustration of how JUDGERANK arrives at the final judgment through
query and document analyses. The query analysis identifies the core problem being asked, while the
document analysis extracts relevant sentences from the document based on the query. This is a real
example from the Biology task in the BRIGHT evaluation benchmark.

To bridge this gap, we propose JUDGERANK, a novel zero-shot pointwise reranker tailored for
reasoning-intensive text retrieval tasks. Inspired by Chain-of-Thought (Wei et al., 2022) and LLM-
as-a-Judge (Zheng et al., 2023) methods, JUDGERANK utilizes highly generalizable prompts to
guide instruction-tuned LLMs through explicit reasoning steps before arriving at a final judgment.

Figure 1 illustrates a real example of how our model works on the Biology dataset in the BRIGHT
(Benchmark for Reasoning-Intensive Generative Retrieval Tasks) benchmark (Su et al., 2024).
Specifically, our reranker first prompts the LLM to identify the core problem in the query, allowing
it to focus on the central question while filtering out irrelevant context. Next, the model produces an
extractive summary for each of the candidate documents and explains how it addresses the query.
Finally, the model makes a relevance judgment based on the previous analyses. This process closely
mimics how humans approach questions: by first skimming the document, identifying relevant parts,
and then carefully reading these parts to obtain an answer (Masson, 1983). This structured pipeline
enables JUDGERANK to transcend surface-level lexical matching, leveraging deeper semantic un-
derstanding to improve reranking accuracy.

We evaluate JUDGERANK on the recently constructed BRIGHT benchmark, widely regarded as
one of the most challenging retrieval evaluation datasets. Despite the poor performance of state-
of-the-art text embedding models and rerankers on this benchmark, our method achieves significant
improvements over all existing baselines and secures the top position on the BRIGHT benchmark
leaderboard among 89 models, surpassing the previous best model by a significant margin (9 points).
Our work is the first to show that a zero-shot pointwise reranker can outperform a well-trained list-
wise reranker by a significant margin, challenging the common belief that listwise rerankers in
general perform better than pointwise rerankers (Déjean et al., 2024). Additionally, we demonstrate
that JUDGERANK readily generalizes to other popular retrieval benchmarks such as BEIR and per-
forms competitively with state-of-the-art rerankers. We also analyze the complementarity of models
at different scales by investigating the alignment of their ranking decisions. We observe that models
of different sizes demonstrate a surprisingly orthogonal behavior on their relevance judgments, lead-
ing to a simple ensembling strategy that allows us to combine multiple models flexibly and achieve
considerable performance gains on the final ranking.
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You will be presented with a/an {query name}.

Your task consists of the following step:

1. Analyze the {query name}:
- Carefully read each sentence of the {query name}.
- Identify the core problem or question being asked.

Here is the {query name}:
{query}

You will be presented with a/an {query name}, an analysis of the query, and a/an {doc name}.

Your task consists of the following steps:
1. Analyze the {doc name}:
- Thoroughly examine each sentence of the {doc name}.
- List all sentences from the {doc name} that {definition of relevance} the {query name}.
- Briefly explain how each sentence listed {definition of relevance} the {query name}.

2. Assess overall relevance:
- If the {doc name}, particularly the relevant sentences (if applicable), {definition of relevance} 
the {query name}, briefly explain why.
- Otherwise, briefly explain why not.

Here is the {query name}:
{query}

Here is the analysis of the {query name}:
{query analysis}

Here is the {doc name}:
{doc}

Judgment Prompt

You will be presented with a/an {query name}, an analysis of the {query 
name}, a/an {doc name}, and an analysis of the {doc name}.

Your task is to assess if the {doc name} {definition of relevance} the 
{query name} in one word:
- Yes: If the {doc name} {definition of relevance} the {query name}.
- No: Otherwise.

Important: Respond using only one of the following two words without 
quotation marks: Yes or No.

Here is the {query name}:
{query}

Here is the analysis of the {query name}:
{query analysis}

Here is the {doc name}:
{doc}

Here is the analysis of the {doc name}:
{doc analysis}

Query Analysis Prompt

Document Analysis Prompt

(b). Document Analysis Prompt of JudgeRank

(c). Judgment Prompt of JudgeRank

(a). Query Analysis Prompt of JudgeRank

Figure 2: (a) Prompt to analyze query, where {query name} (e.g., “Biology post”) and {query}
are placeholders for the query type and content. (b) Prompt for analyzing a document, where {doc
name} (e.g., “document”) and {doc} are placeholders for the document type and content. (c)
Prompt for making the final one-word relevance judgment.

2 METHOD

2.1 AGENTIC STEPS

Mimicking human cognitive process, JUDGERANK consists of three main steps: Query Analysis,
Document Analysis, and Relevance Judgment. The prompt templates are illustrated in Figure 2.

Query analysis The query analysis prompt (Figure 2 (a).) directs the LLM to analyze the query
by identifying the core problem being asked. Note that this prompt only depends on the query so
that we can generate the query analyses separately and store them. Since the number of queries nq is
usually much smaller than that of documents nd (nq ≪ nd), we can afford to use a more expensive
LLM (e.g., GPT-4) to handle this important step, and leave the other steps to relatively smaller LMs.

Document analysis The document analysis prompt (Figure 2 (b).) asks the LLM to output an
extractive summary of the document that helps answer the query, and assess the overall relevance of
the document based on the summary.

Relevance judgment The judgment prompt (Figure 2 (c).) asks the model to make a one-word
judgment, either “Yes” or “No”. We isolate this step to make it easier to ensemble with different
judgment prompts or models.

2.2 GENERALIZABILITY OF THE PROMPTS

All three steps consume natural language as input and generate a response, making it more flexible
to transfer and stack across different LLMs. The templates also show that the prompts are highly
generalizable: to adapt them to a new reranking task, one only needs to replace the query name, the
document name, and the relation between them.2 Leveraging LLMs in a zero-shot setting allows

2Intuitively, there is a trade-off between prompt generalizability and reranking performance. To further push
reranking accuracy, one always has the option to further adapt the prompt templates to the target tasks.
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us to flexibly define the relation between the query and the document. This flexibility is impor-
tant because the user may define either “document that supports a query” or “document that refutes
a query” as the relation, which are opposites of each other. Encoding-based models usually can-
not achieve such behavior zero-shot because most of them use cosine similarity or metrics alike to
represent “relevance”. One way encoding-based models could achieve such flexibility is through
extensive fine-tuning. However, this requires additional training data and introduces new model pa-
rameters, potentially causing an unintended distribution shift. Similarly, models like RANKZEPHYR
also finetunes the LLM to output document ids, thus suffering from a distribution shift as well.

2.3 METHODOLOGY OF SCORING DOCUMENTS

Binary version The binary version creates a binary partition between accepted (when the model
outputs a “Yes”) and rejected (when the model outputs a “No”) documents, maintaining the first-
stage retrieval ranking within each category. More specifically, let D = {d1, d2, . . . , dk} be an
ordered list of top-k documents ranked by the first-stage retrieval model. Let Dy and Dn be a
partition of D, such that

Dy ∪Dn = D (1)
Dy ∩Dn = ∅ (2)

, where Dy is the set of documents that the reranker judged as relevant and Dn is the set of documents
that the reranker judged as non-relevant. Let R be the reranking function which maps each document
d to its rank (lower rank means “more relevant”), then

∀d ∈ Dy and d′ ∈ Dn, R(d) < R(d′) (3)

, and for the relative ranking within each partition,

∀di, dj ∈ Dy, R(di) < R(dj) ⇐⇒ R0(di) < R0(dj) (4)

, where R(d) is the final rank of document d and R0(d) is the rank of d from the first-stage retrieval.
The same applies to Dn.

While straightforward and well-performing, this approach is sensitive to prompt wording and relies
heavily on first-stage retrieval performance. That said, for proprietary LLMs that do not allow access
to the probabilities of the generated tokens, this approach is also the only option.

Continuous version The continuous version addresses the limitations of the binary version by
using the probability of the “Yes” judgment py and the probability of the “No” judgment pn to
construct a complete ranking. The probabilities are computed by first obtaining their log probabili-
ties,3 and then take their exponential. This is similar to the relevance generation approach proposed
in Liang et al. (2023). The scoring function S is defined by normalizing the probabilities between
py and pn as follows:

S(d) =
py

py + pn
(5)

This normalization step is necessary because the combined probability mass allocated to py and pn
is not always a fixed value across different documents. Without normalization, the py values for
different documents would not be directly comparable.

The final ranking DR is then defined as DR = {d1, d2, . . . , dk} such that

3One can easily obtain the log probabilities for open-source LLMs and proprietary models that provide this
functionality, such as OpenAI.
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∀i, j ∈ {1, 2, . . . , k}, i < j ⇐⇒ S(di) > S(dj) (6)

This continuous version provides a more fine-grained ranking compared to the binary partition, as it
utilizes the full range of probabilities output by the LLM.

Hybrid version Additionally, we explore a variant of the continuous version where the final score
is computed by taking a weighted sum of the probability score Sprob and the BM25 score SBM25.
More specifically, the final score is computed by

S = αSprob + SBM25 (7)

, where SBM25 is the score provided by BM25 in the first-stage retrieval, and α is the relative weight
of the probability score. We set α = 100 in this work to bring Sprob to the same scale as SBM25.
This version leverages model ensembling to consider both reasoning and surface-level matching,
thus marrying the benefits of both approaches. Unless otherwise specified, we use this setting to
compute the final score throughout the paper. In the ablation studies, we compare these three settings
and show their relative performances.

3 EXPERIMENTAL SETUP

3.1 DATASETS

BRIGHT We use the BRIGHT benchmark (Su et al., 2024) to assess the performance of our
reranker. BRIGHT is specifically designed to evaluate text retrieval systems on complex, reasoning-
intensive queries that go beyond simple keyword matching. The benchmark comprises 1,398 real-
world queries spanning diverse domains, including economics, psychology, robotics, math, and soft-
ware engineering. These queries are carefully curated to represent challenging scenarios that require
deep understanding and reasoning to identify relevant documents. We use this dataset to evaluate
our approach because unlike traditional benchmarks that focus on simple information-seeking tasks,
BRIGHT queries require complex reasoning to determine document relevance, making it an excel-
lent tool for evaluating advanced retrieval systems in realistic scenarios. The benchmark has also
been validated to be robust against potential data leakage, maintaining its effectiveness even when
benchmark documents have been included in model training data.

Because of its challenging nature, state-of-the-art retrieval models have shown significantly lower
performance on BRIGHT compared to other benchmarks (Su et al., 2024). For example, the leading
model on the MTEB leaderboard (Muennighoff et al., 2022) achieves an nDCG@10 of only 18.0 on
BRIGHT, compared to 59.0 on other benchmarks. The GPT-4 listwise reranker also only improves
around 2 points on nDCG@10 on top of the BM25 first-stage retrieval, while Gemini (Team et al.,
2023) features less improvement than that. The cross-encoder reranker MiniLM (Wang et al., 2020)
even significantly underperforms the BM25 baseline.

BEIR To test the generalizability of our approach, we evaluate on the BEIR benchmark (Thakur
et al., 2021), a robust and heterogeneous evaluation benchmark for information retrieval. We eval-
uate on all tasks that are publicly available (Kamalloo et al., 2023). For all datasets we use the the
test set, except for MSMARCO where we follow BEIR convention to evaluate on the dev set. For
cqadupstack we follow BEIR convention and evaluate on all sub-datasets and compute their aver-
age. Because BEIR is a large benchmark, and the largest dataset has more than 13K queries, we
only generate query analysis to evaluate on this dataset. This almost adds no overhead to the genera-
tion because the query analysis generation does not depend on the document. Since our model only
generates a single token “Yes” or “No”, its latency is almost the same as encoding both the query
and the document with an encoding-based retrieval model, making it a highly efficient alternative.

3.2 FIRST-STAGE RETRIEVAL

For both benchmarks we evaluate on, we follow common settings from previous work to rerank the
top-100 documents from the first-stage retrieval and use nDCG@10 score as the evaluation metric.

5
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This metric assesses the quality of the retrieved documents, taking into account both their relevance
and ranking position.

BRIGHT The original BRIGHT paper explores using LLMs to generate Chain-of-Thought (Wei
et al., 2022) reasoning steps as queries (Su et al., 2024), resulting in up to 12.2 point improvements
on average.4 We thus build on top of this best first-stage retrieval model on the leaderboard, which
achieves an nDCG@10 score of 26.47 with BM25 and reasoning chains generated by GPT-4-0125-
preview.

BEIR We follow the original BEIR paper (Thakur et al., 2021) and use ElasticSearch BM25 (Elas-
ticsearch, 2018) as the first-stage retriever.

3.3 BASE MODEL

Our main model builds on top of Llama-3.1-70B-instruct (Dubey et al., 2024). We choose the
Llama-3.1 model family because its ROPE scaling Liu et al. (2024b) allows longer context length
up to 128K, which is essential in handling long documents. To speed up experiments, we evaluate
on a quantized version of this model, namely Llama-3.1-70B-instruct-awq-int4. We also perform
ablation studies where we evaluate on Llama-3.1-8B and Llama-3.1-405B-instruct-awq-int4.5

3.4 BASELINE RERANKERS

We reproduce RANKLLAMA (Ma et al., 2024) and RANKZEPHYR (Pradeep et al., 2023), two state-
of-the-art rerankers as evaluated by the BEIR benchmark. RankLlama is a pointwise reranker that
directly outputs a score. This model is trained on the MS MARCO passage ranking dataset (Bajaj
et al., 2016). RANKZEPHYR is a listwise reranker that takes a query and a list of documents together
as input and outputs a ranking. This model uses the queries sourced by Sun et al. (2023) from the MS
MARCO dataset to distill GPT-3.5 and GPT-4 in sequence. We use the RERANKERS library (Clavié,
2024), a lightweight unified API that allows users to run diverse reranking models out-of-the-box.6

3.5 EFFICIENCY AND OPTIMIZATION

To make the encoding and generation more efficient, we use vLLM (Kwon et al., 2023), which
leverages paged attention to improve throughput. Importantly, when designing the prompts used in
our approach, we append the query and the document at the very end of each prompt to make the
best use of Automatic Prefix Caching (Gim et al., 2024), which temporarily stores the KV cache of
existing inputs so that a new input can directly reuse the KV cache if it shares the same prefix with
one of the existing ones. This design greatly improves the efficiency of our experiments, and it is
also the main motivation for us to choose decoupled analyses over Chain-of-Thought style prompts
which ask the LLM to perform all the analyses and make a judgment in one take.

4 RESULTS AND DISCUSSION

4.1 MAIN RESULTS

BRIGHT As shown in Table 1, JUDGERANK achieves state-of-the-art results on the BRIGHT
evaluation benchmark as measured by nDCG@10. Our best performing model improves upon
the no-rerank baseline by more than 9 points, while RANKLLAMA underperforms the baseline
and RANKZEPHYR stays barely above the baseline. The smaller Llama-3.1-8B-instruct also out-
performs the baseline by more than 3 points, showing the generalizability of our approach across
different model sizes. Interestingly, increasing model size from 70B to 405B does not bring a signif-
icant gain on nDCG@10. This is understandable because according to the benchmark performance

4See Table 38 of the original BRIGHT.
5For the 8B model we do not use the quantized version because it can already fit on a single A100 GPU,

while the other two bigger models require quantization to save computational cost.
6https://github.com/AnswerDotAI/rerankers
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BM25 RankLlama RankZephyr JudgeRank
8B 70B 405B Ensemble

Biology 53.63 11.05 44.37 54.44 57.59 60.33 60.70
Earth Science 53.65 11.83 35.24 54.62 58.36 55.11 58.72

Economics 24.28 9.56 24.44 28.04 33.01 32.15 35.39
Psychology 38.59 11.38 36.92 42.16 46.59 45.42 47.57

Robotics 18.77 8.53 18.80 24.09 28.30 27.64 28.16
Stack Overflow 22.74 11.40 19.62 27.18 27.47 28.30 29.74

Sustainable Living 25.90 11.75 29.38 30.69 39.55 38.54 41.88
Leetcode 19.27 20.32 24.58 17.49 20.06 22.47 20.23

Pony 17.73 18.88 48.96 22.85 30.82 31.54 32.74
Aops 3.92 3.55 6.98 6.15 8.24 7.74 8.57

TheoremQA-Questions 18.90 11.82 22.34 24.09 23.83 26.93 25.86
TheoremQA-Theorems 20.22 5.63 7.78 29.89 34.55 36.16 36.20

Average 26.47 11.31 27.25 30.14 34.03 34.36 35.48

Table 1: JUDGERANK nDCG@10 results on the BRIGHT evaluation benchmark. Best results on
each dataset and the entire benchmark are boldfaced. “Ensemble” stands for model ensembling of
JUDGERANK-8B, 70B, and 405B.

presented by Meta7, there are multiple tasks where 405B is not significantly stronger than 70B, such
as COMMONSENSEQA, TRIVIAQA-WIKI, and BOOLQ. We hypothesize that the BRIGHT bench-
mark also falls in this plateauing category. We thus select the 70B version as our main model to
balance between efficiency and performance. Our results also show that in zero-shot settings, our
pointwise reranker is better than listwise approaches for reasoning-intensive tasks. For example,
the original BRIGHT paper shows that GPT-4 with zero-shot listwise reranking improves on top
of vanilla BM25 baseline by an average of 2.7 points on nDCG@10, a much smaller improvement
compared to JUDGERANK despite using a much stronger LLM. To examine if our prompts are sen-
sitive to wordings, we additionally conduct an experiment where we use the quantized version of
Llama-3.1-70B-instruct to paraphrase all three prompt templates and conduct the reranking exper-
iment with Llama-3.1-8B. We find that the model achieves an nDCG@10 of 30.36, which is very
close to 30.14 as reported in Table 1, showing that our approach is not sensitive to prompt variations.

BEIR As shown in Table 2, our model delivers competitive results on the BEIR evaluation bench-
mark despite the fact that RANKLLAMA and RANKZEPHYR are heavily fine-tuned on in-domain
data including MS MARCO, which is part of the BEIR benchmark. Note that for the less reasoning-
intensive BEIR benchmark, we do not include the document analysis step, which is the only step that
cannot be KV-cached in advance. This setting shows that one can flexibly adjust the complexity of
our approach based on the complexity of the task. Overall, there is a much smaller performance gap
on BEIR between JUDGERANK and the baselines than on BRIGHT, indicating that our approach is
more geared toward reasoning-intensive tasks.

4.2 DISCUSSION

We pose several research questions to illustrate whether and how our approach works.

How complementary are LLMs of different scales? In Table 1, we observe that JudgeRank-70B
and JudgeRank-405B performs on par with each other. However, nDCG@10 alone does not reveal
the whole picture. One natural question to ask is: do these two models make similar judgments or
are complementary to each other? To answer this question, we obtain statistics on the percentage
of both models agreeing and disagreeing each other and show them on the left of Figure 3. From
the tables we can see that for all three combinations of the models, the majority case is always
that both models rejects the documents. This is understandable because only a few out of the top-
100 documents are supposed to be relevant. The interesting pattern emerges when we inspect the
other three cases: each pair of the models spends more time disagreeing with each other than both
outputting “Yes”. For the pairs 8B vs 70B and 8B vs 405B, there is a higher difference because the

7https://huggingface.co/meta-llama/Llama-3.1-405B

7

https://huggingface.co/meta-llama/Llama-3.1-405B


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

BM25 RankZephyr RankLlama JudgeRank
webis-touche2020 34.71 33.34 32.97 27.94

trec-covid 68.80 85.77 81.08 83.70
scifact 69.06 74.68 75.57 73.24

nfcorpus 34.28 38.79 35.92 37.73
dbpedia-entity 32.02 44.19 43.72 44.30

fiqa 25.36 40.40 42.70 40.35
scidocs 16.47 19.70 19.26 19.47
arguana 47.16 47.07 32.08 62.77

nq 32.61 60.10 59.19 56.87
climate-fever 18.61 24.26 17.75 19.00

fever 64.94 79.52 78.55 69.97
msmarco 22.75 37.89 41.40 34.01
hotpotqa 60.22 71.16 70.65 68.30

quora 80.77 79.60 82.73 84.25
cqadupstack 32.53 42.68 42.43 43.98

Average 42.69 51.94 50.40 51.06

Table 2: JUDGERANK (70B) nDCG@10 results on the BEIR evaluation benchmark. Best results on
each dataset and the entire benchmark are boldfaced.

capabilities of the two models differ more. In contrast, for 70B vs 405B there is less disagreement.
From these observations, we indeed see that each two models may be complementary to each other.

Motivated by this observation, we take model ensembling one step further. Recall that in Section 2.3,
we ensemble the BM25 score with each of the scores output by the Llama models. Here we first take
the average score output by all the Llama models, and then perform the weighted sum with the BM25
score. More specifically, let S8B, S70B, and S405B be the score assigned by each model, respectively,
the ensemble score of the three models is computed as α(S8B + S70B + S405B)/3 + SBM25, where
again α = 100 and SBM25 is the score given by the BM25 model. The same equation generalizes
analogously to two-model ensembles.

We present all ensembling results on the right of Figure 3. We can see that each ensembling perfor-
mance is better than its individual model performances, with the strongest performance observed
when ensembling all three models. This result shows that a salient performance boost can be
achieved by ensembling two of the strongest models (70B + 405B), while even the model with
lower performance (i.e., 8B) could contribute positively in model ensembling. Intuitively, such en-
sembling is equivalent to a verification or a majority voting step. The final score is the highest when
both models say “Yes”, the score is medium when one of the two says “No”, and the lowest score is
observed when both say “No”.8

How does the choice of reranking score impact the final performance? Recall that to compute
the final score, we take a weighted sum of the BM25 score and the probability score from the
judgment step. To justify this choice, we compare it with two other settings: the first is binary
judgment, and the second only uses the normalized probability to rerank documents (introduced in
Section 3). The left part of Figure 4 shows that binary judgment performs the worst among the
three settings while using only probability achieves somewhere in between. This is understandable
because binary judgments are sensitive to wordings. Imagine that if we change the relation from
“substantially helps answer” to “helps answer” or “at least partially helps answer,” the number of
“Yes” that the model outputs will keep increasing, thus also increasing the number of false positives.
However, the other two settings are not sensitive to such changes.

How useful are the query and document analysis steps? To show the effectiveness of the anal-
ysis steps, we perform an ablation study on BRIGHT. We remove the two analysis steps and keep

8Model ensembling boosts performance at the price of higher latency. In practice, practitioners can decide
on the most suitable configuration based on how sensitive the downstream tasks are to retrieval performance.
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Figure 3: On the left: judgment alignment studies for models of three sizes: 8B, 70B, and 405B.
Percentages are shown for each quadrant. On the right: nDCG@10 of each individual model and
model ensembling on the BRIGHT evaluation benchmark.
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Figure 4: Ablation studies of JudgeRank. On the left: Comparison of three scoring settings on the
BRIGHT evaluation benchmark. Binary stands for binary judgment, Prob stands for probability,
and Hybrid stands for a weighted sum of BM25 and probability scores. On the right: Comparison
of direct judge and judge with query and document analyses on the BRIGHT evaluation benchmark.

the judgment step untouched.9 The right of Figure 4 shows that judging with query and document
analyses performs consistently better than the direct judgment approach.10

Qualitative examples Figure 5 demonstrates how JUDGERANK enhances document relevance
identification using real examples from the BRIGHT dataset. In the left example, we observe a doc-
ument initially ranked high by the first-stage retriever is correctly identified as irrelevant. Despite
surface-level similarities, JUDGERANK fails to extract any sentences that help answer the query,
revealing that the document is merely an advertisement coincidentally sharing common terminol-
ogy with the query. The right example presents a contrasting scenario, where a document initially
ranked low by the first-stage retriever is accurately identified as highly relevant. In this instance, the
document analysis prompt enables the LLM to pinpoint key sentences that elucidate the underlying
mechanism of funnel web spider venom’s lethality, precisely addressing the query. These extracted
sentences further inform the LLM to make the final positive judgment, demonstrating JudgeRank’s
ability to uncover deeply relevant content that might be overlooked by traditional retrieval methods.

5 RELATED WORK

The field of reranking models can be understood through two primary dimensions.

9This setting is highly efficient because its latency is practically identical to encoding-based models of the
same size.

10The analysis steps involve generating tokens, which leads to higher latency. In practice, practitioners can
decide on the most appropriate setup based on how sensitive the downstream tasks are to retrieval performance.
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Figure 5: Illustration of how agentic generations of JUDGERANK help identifying the relevant doc-
uments. On the left, the document is ranked high by the first-stage retriever but judged as negative
by the reranker. On the right, the document is ranked low by the first-stage retriever but judged as
positive by the reranker because the document analysis prompt helps the LLM to locate the relevant
sentences that answer the query.

The first dimension distinguishes between encoding-based and LLM-based approaches. Encoding-
based models (Nogueira & Cho, 2019; Gao et al., 2021), typically require extensive training to adapt
to the specific objectives of reranking tasks. In contrast, LLM-based models (Sun et al., 2023; Tang
et al., 2024; Qin et al., 2024; Zhuang et al., 2024), demonstrate impressive zero-shot capabilities,
allowing them to perform effectively without task-specific fine-tuning. Some work has also explored
pretraining, fine-tuning and distillation techniques for LLM-based rerankers to further enhance their
performance (Zhang et al., 2023; Ma et al., 2024; Yu et al., 2024).

The second dimension differentiates between pointwise and listwise reranking. Pointwise
rerankers (Ma et al., 2024; Guo et al., 2024) evaluate the relevance of individual query-document
pairs in isolation, producing a score for each pair without direct comparison between documents. In
contrast, listwise rerankers (Sun et al., 2023; Pradeep et al., 2023; Ma et al., 2023; Yoon et al., 2024;
Liu et al., 2024a; Tang et al., 2024) consider the entire set of documents for a given query, generating
an ordered list as output. To address the challenges posed by input length limitations, researchers
have developed innovative techniques such as sliding window approaches (Sun et al., 2023), which
allow for the ranking of smaller subsets of documents before aggregating them into a comprehen-
sive ranking. This framework encompasses pairwise (Pradeep et al., 2021; Qin et al., 2024) and
setwise (Zhuang et al., 2024) rerankers as specific instances of the broader listwise category.

Our contribution is a novel LLM-based, pointwise reranker that leverages the capabilities of LLMs
and incorporates explicit reasoning steps in the relevance judgment process. This approach sets our
work apart from previous efforts by enhancing the model’s ability to handle complex, reasoning-
intensive reranking tasks while simultaneously improving the interpretability of its decisions.

6 CONCLUSION

In this work, we target document retrieval tasks that require intensive context-based reasoning.
Through experiments and ablation studies, we show that our reranker outperforms previous state-of-
the-art reranking models, while remaining flexible and efficient. In section 4.2 we have shown the
significant benefit of model ensembling on document reranking. Yet we do not have to stop there.
Other than ensembling LLMs of different model families, or even ensembling with encoder-only
embedding models, there are at least two categories of ensembling that we envision. First, sampling
ensembling: for each generation, we sample several generations, each of which could lead to a dif-
ferent judgment. This kind of ensembling is similar to the self-consistency approach (Tang et al.,
2024). Second, prompt ensembling: we could leverage paraphrases of the same prompt to perform
ensembling. We leave the exploration as future work because such approaches could be generalized
to many prompting-related tasks, and thus better be addressed in separate works.
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