
Under review as a conference paper at ICLR 2023

3D MOLECULAR GENERATION BY VIRTUAL DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Structure-based drug design, i.e., finding molecules with high affinities to
the target protein pocket, is one of the most critical tasks in drug discovery.
Traditional solutions, like virtual screening, require exhaustively searching on a
large molecular database, which are inefficient and cannot get novel molecules
beyond the database. The pocket-based 3D molecular generation model, i.e.,
directly generating a molecule with a 3D structure and binding position in the
pocket, is a new promising way to address this issue. However, the method is very
challenging due to the complexity brought by the huge continuous 3D space in
the pocket cavity. Herein, inspired by Molecular Dynamics, we propose a novel
pocket-based 3D molecular generation framework VD-Gen. VD-Gen consists of
a Virtual Dynamics mechanism and several carefully designed stages to generate
fine-grained 3D molecules with binding positions in the pocket cavity end-to-end.
Rather than directly generating or sampling atoms with 3D positions in the pocket
like in early attempts, in VD-Gen, we first randomly scatter many virtual particles
in the pocket; then with the proposed Virtual Dynamics mechanism, a deep model,
acting like a "force field", iteratively moves these virtual particles to positions
that are highly possible to contain real atoms. After virtual particles are stabilized
in 3D space, we extract the atoms from them. Finally, we further refine the 3D
positions of atoms by Virtual Dynamics again, to get a fine-grained 3D molecule.
Extensive experiment results on pocket-based molecular generation demonstrate
that VD-Gen can generate novel 3D molecules to fill the target pocket cavity with
high binding affinities, significantly outperforming previous baselines.

1 INTRODUCTION

Structure-based (pocket-based) drug design, i.e., finding a molecule to fill the cavity of the protein
pocket with a high binding affinity [1; 2; 3; 4], is one of the most critical tasks in drug discovery. The
most widely used method is virtual screening [5; 6; 7]. Virtual screening iteratively places molecules
from a molecular database into the target pocket cavity and evaluates molecules with good binding
based on rules such as energy estimation [8; 9; 10; 11]. However, virtual screening is inefficient
for the exhaustive search and is infeasible to generate new molecules that are not in the database.
Recently, molecular generative models have become a potential solution to address the problem as
they could generate novel molecules in an efficient way. The early attempts focused on ligand-based
molecular generation[12; 13; 14], which trains models to learn the underlying distribution of the
molecules in training data and generate similar molecules. However, those methods didn’t consider
conditional information, such as the shape of the pocket. Therefore, the generated molecules could
hardly fit well with a given pocket in practice. Later, more efforts were paid to studying how to
leverage the information of protein pockets for molecular generation. Some pocket-based generative
models simply generate molecules in the form of SMILES or graphs [15; 16], without considering
the 3D geometric position of the molecule and pocket, which is closely related to binding affinity.

However, directly generating pocket-based molecules in the 3D space is not trivial. Given the 3D
structure of a pocket, the ultimate goal of the task is to generate 3D molecules which contain a set
of atoms, each with an atom type and the corresponding 3D position. The biggest challenge here
is the large space of continuous 3D positions. In most existing generative models (in images/texts),
the space of position is usually small and discrete, like an image with 224×224 pixels. To address
that, there are some early attempts, which can be roughly categorized into two classes, molecular
3D density grid generation [17] and auto-regressive 3D generation [18; 19; 20]. In 3D density
grid generation, similar to images, pockets and molecules are converted to 3D density grids with
coarse-grained positions. 3D convolutional models could be used here. But it compresses the

1

Under review as a conference paper at ICLR 2023

iterative
movement

Pocket Condition

Equilibrium RefinementExtraction

iterative
movement

Confidence……

Q K V

Attention

FFN

Q K V

Attention

FFNfilter

merge

𝑁 × 𝑁 ×

Figure 1: The framework of VD-Gen, which consists of 4 stages, for generating fine-grained 3D
molecules with binding positions in the pocket end-to-end. In Equilibrium and Refinement, the
proposed Virtual Dynamics is used to iteratively move the virtual particles.

information of the pocket structure and is hard to generate accurate (fine-grained) molecules due
to the coarse-grained grid positions. In auto-regressive 3D generation, an atom (with a 3D position
and an atom type) is sampled (or generated) at each time step. But it is very inefficient due to the
large sampling space of 3D positions. Besides, using sequential generation for 3D molecules is not
reasonable since we do not know which atoms should be generated first.

In short, existing models did not fully tackle the challenges in pocket-based 3D molecular generation.
The ideal models should be able to generate fine-grained 3D molecules efficiently, in a one-shot
(non-auto-regressive) fashion. To achieve that, we proposed a novel 3D molecular generation
framework, VD-Gen, based on a Virtual Dynamics (VD) mechanism. Inspired by the
Molecular Dynamics [21; 22], VD contains a deep model, which acts like a "force field", iteratively
moving the random scattered "virtual particles" (VPs) to positions that are highly possible to contain
real atoms. Based on VD , as illustrated in Fig. 1, VD-Gen framework contains 4 stages to directly
generate 3D molecules in the pocket end-to-end. 1) Equilibrium. To cover the pocket cavity space
as much as possible, many VPs are first randomly placed. Then the VPs are iteratively moved by VD
until equilibrium. Ideally, the VPs will be moved into several clusters, each representing a possible
atom. 2) Extraction. We want to extract atoms from equilibrious VPs in this stage. First, a success
rate will be predicted for each VP, a higher success rate means that VP is more close to its target,
and the VPs with low success rates will be filtered. Then, a model is used to predict the clustering of
VPs, by a pair-wise fashion, and the VPs in the same cluster will be merged into one atom. With the
merged atoms, we can get a molecule with a 3D structure. 3) Refinement. Although a 3D molecule
could be generated in Extraction stage, it may be inaccurate due to the error in merging multiple VPs.
To get a more accurate 3D molecule, the atoms are iteratively moved by VD again in this step. 4)
Confidence. A confidence score for the generated 3D molecule will be provided by the model in this
stage. The confidence score is instrumental when selecting or ranking from multiple generated results.

Our contributions can be summarized as follows:

• We propose Virtual Dynamics (VD) mechanism, which implicitly simulates Molecular
Dynamics by a deep model, iteratively moving the particles to positions that highly possibly
contain atoms. We design several strategies, like least-action target assignment and iterative
movement, to make the training of VD feasible.

• Although VD can generate rough shapes (densities of particles) of 3D molecules, it is hard to extract
molecules from the shapes. To address the problem, we further propose a novel pocket-based 3D
molecular generation framework VD-Gen, which end-to-end extracts a 3D molecule from many
particles, then refines it by VD again, and predicts a confidence score used for selecting or ranking.

• Under VD-Gen, to tackle the limited data in pocket-based 3D molecular generation, we design
a self-partial-generation pretraining task and successfully use it to further improve performance.

• Multiple evaluation metrics, such as Vina [23], MM-PBSA [24], 3D Similarity [25], are used
to benchmark VD-Gen thoroughly. Experiments results demonstrate that VD-Gen can generate
diverse drug-like molecules with high binding affinities, significantly outperforming all baselines.
Ablation studies and case studies are designed to further demonstrate the effectiveness of VD-Gen.

2 METHOD
The problem of pocket-based 3D molecular generation could be denoted as M = h(P;θ), where
h(·;θ) is the model with learnable parameter θ, P = {(xp

i ,y
p
i)}ui=1 is the set of u atoms in the

pocket, xp
i ∈ Rt and yp

i ∈ R3 are the i-th pocket atom’s type (one-hot) and coordinate, respectively, t
is the number of atom types, and M = {(xi,yi)}mi=1 is the set of m atoms of the generated molecule.

2

Under review as a conference paper at ICLR 2023

Linear
Q K V

Particle-Pocket
Attn. Layer

FFN Layer

Particle-Pocket
Pair Repr.

Self Attn. Layer

Particle Pair
Repr.

Coordinates

Gaussian
Kernel

Pa
rt
ic
le
-P
oc
ke
t

Pa
ir

Di
st
.

Pocket Repr.
Coordinates

Pocket atom
Repr.

Self Attn.
Layer

FFN Layer

Pocket Pair
Repr.

Pocket Pair
Dist.

Particle Pair
Dist.

Gaussian
Kernel

Model Block

N × Blocks

Gaussian
Kernel

Pocket Repr.

Virtual Particle EncoderPocket Encoder

Particle
Repr.

last layer

N × Blocks

Particle Repr.

Gated

Linear Linear

Gated

FFN Layer

Figure 2: The backbone model used in VD-Gen. Details are in Appendix A.1.1 and Alg. 2.

2.1 VIRTUAL DYNAMICS

As aforementioned, directly generating M is challenging due to the large space of 3D positions.
Therefore, inspired by Molecular dynamics (MD), we propose Virtual Dynamics (VD), which
iteratively refines the particles from a random state, rather than direct generation. MD is a Newtonian
Mechanics based computational simulation to move atoms or other microscopic particles. In MD,
what determines how atoms move is the molecular force field, a physical model that defines the
interactions between atoms. The potential energy surface (PES) [26; 27], a function of energy based
on atomic positions, is used to describe the energy landscape of the system. Each minimal energy on
PES corresponds to a physical stable state, in which the atoms prefer to stay in particular positions.

Virtual Dynamics (VD) contains a deep model, acting like a "force field", implicitly predicting
the preferred positions of ligand molecular atoms in the pocket cavity by moving the "virtual
particles"(VPs) toward those positions. Formally, VD could be denoted as Vr = h(V0,P, r;θ),
where r is the number of rounds, Vr = {(xr

i ,y
r
i)}ni=1 is the set of n VPs that are generated at the r-th

round. Here we define the VPs as particles without fixed atom types. Besides, VD can generate more
VPs than the real atoms, i.e., n = |Vn

r | can be larger than m = |M |, and VPs can overlap with each
other. To train a model to achieve effective movement of VPs, VD consists of 4 parts: 1) Backbone
Model, a SE(3) model takes Vr as input and outputs the refined Vr+1; 2) Target Assignment, a
method to assign targets for VPs during training; 3) Iterative Movement, a strategy to update positions
of VPs iteratively like MD; 4) Training Objectives, effective objective functions to train VD .

Backbone Model We can denote the model as Vr+1 = f(Vr,P;θ). To predict the coordinates
effectively, the model f should be SE(3)-equivariance. We mainly follow the design of the efficient
SE(3)-equivariance Transformer proposed in Uni-Mol [28] and Graphormer-3D [29]. However,
they did not consider the interaction between pocket and molecule. Therefore, as illustrated in
Fig. 2, we extend the model by adding an additional pocket encoder, and a particle-pocket attention
layer to capture the interactions between pocket atoms and VPs. In particular, the key/value in
the particle-pocket attention is from the node representation of the last layer in the pocket encoder.
Besides, to encode the 3D spatial interactions between the pocket and VPs, the pair distance between
pocket atoms and VPs is used for particle-pocket spatial position encoding. For efficiency purposes,
particle-pocket attention is only used in every 4-layer, not in all layers.

To encode 3D positions, we follow Uni-Mol and use SE(3)-invariant Gaussian kernel to encode
the pair-wise Euclidean distances, as shown in Fig. 2. To predict 3D positions directly, the SE(3)-
equivariance coordinate head in Uni-Mol [28] is used. Besides, to predict the atom types of particles
after movement, an atom type prediction head is introduced. Due to space restrictions, we leave the
details of the above components in Appendix A.1.1.

Target Assignment The goal of model f is to move the VPs to the preferred positions of ligand
molecular atoms. To achieve this, we can directly assign a real atom as the training target for each
VP. Formally, given the ground-truth atoms G = {(xg

i ,y
g
i)}mi=1 and the random initialized VPs V0,

3

Under review as a conference paper at ICLR 2023

Algorithm 1 Iterative Movement
Require: R: max rounds, P: pocket atoms, V0: random initialized virtual particles

1: r ← uniform(1, R) if training else R ▷ Sampling is only enabled at training
2: disable_gradient() ▷ Disable gradient calculation globally
3: for k ∈ [1, ..., r − 1) do ▷ Iterative updates without gradients
4: Vk ← f(Vk−1,P;θ) ▷ backbone model f predict the types and positions
5: enable_gradient() ▷ Enable gradient calculation globally
6: Vr ← f(Vr−1,P;θ) ▷ update with gradients
7: return Vr ▷ Return the positions and types of particles

there are nm possible assignments. Following the principle of least action [30], the assignment with
minimal moving distance is favored. That is to optimize Min

∑n
i=1∥y0

i − yg
ai
∥2, where x0

i is the
initial position and ai ∈ N is the assigned target for i-th VP. This optimization problem is easy to
solve: for each VP, assign its nearest real atom as the training target, i.e., ai = arg minm

j=1∥y0
i −yg

j ∥2.
However, by this method, some real atoms may not be assigned as targets when VPs are closer to
other real atoms. To increase the coverage, there are two methods. The first is taking the coverage
as a constraint in the above optimization problem; the second is using more VPs to cover the pocket
cavity as possible. Although the former is more favorable from the algorithm perspective, it increases
the learning difficulty of VP movement since the constrained assignment breaks the principle of least
action 1. Therefore, in VD , we take the latter one, using more VPs to ensure coverage. Besides, we
propose an algorithm to determine the pocket cavity, and VPs are only initialized inside the detected
cavity. In particular, we use a breadth-first search algorithm, from a given position in the cavity,
to detect the cavity space. Details are in Appendix A.1.2.

Iterative Movement Since VPs are scattered randomly in the pocket cavity, there is a wide range
of distances between each VP and its target. As a result, it is not realistic that every VP can be moved
to the right target position in one step. Therefore, VD takes a strategy that iteratively moves the VPs
and predicts their types with multiple rounds. In particular, at each round, the model will take the
VPs’ positions and types from the previous round as inputs, and output the new positions and types
for them. In the first few rounds, the VPs that are close to the target positions will soonly approach
their target positions. But for the VPs that are far away from the target positions, it may take more
rounds to approach. In short, with iterative movement, more VPs could reach their target positions.

However, training the model with multiple rounds is not efficient in both speed and memory consump-
tion. To reduce the training cost, we adopt the stochastic iteration in AlphaFold2 [31]. In particular,
during training, the number of rounds r is uniformly sampled between 1 and R, where R is the
max round. Then, the model is run on the forward-only mode in the first r − 1 rounds, without loss
calculation and gradient backward. Finally, the gradient and backward are enabled at the r-th round.
During inference, the sampling on rounds is not used. The above algorithm is shown in Alg. 1.

In addition, we propose two technologies to improve training stability. First, the SE(3) coordinate head
is initialized to predict the zero delta positions; thus, the predicted movements of VPs are nearly zeros
at the beginning of training, and gradually increase. Second, to avoid moving too fast in each round,
a regularization of the delta distance between the input and output positions is used during training.

Training Objectives With assigned targets (ai = arg minmj=1∥y0
i − yg

j ∥2), the training of VD
is straightforward. First, a clip L2 loss is used for the coordinate prediction, clipping is for the
training stability. Second, as aforementioned, a regularization of the moving distance of iterative
movement is introduced to avoid moving too fast and improve training stability. Third, a negative log
likelihood loss is used for the particle type prediction. Finally, two auxiliary L1 losses are used for
the particle-particle pair distance prediction and particle-pocket pair distance prediction, respectively.
The final training objective loss function could be denoted as:

LVD =
1

n

n∑
i=1

(
clip(||yr

i − yg
ai
||2, τ) + max(||yr

i − yr−1
i ||2 − δ, 0) + NLL(x̄r

i ,x
g
ai
)

+
1

n

n∑
j=1

||dr
ij − dg

ai,aj
||1 +

1

u

u∑
j=1

||crij − cgai,j
||1

)
,

(1)

1Our early attempts on target assignment are described in Appendix B.4.

4

Under review as a conference paper at ICLR 2023

where r is the number of rounds, x̄r
i is the predicted atom type distribution of i-th particle, dr

ij

(dg
ai,aj

) is the predicted (ground-truth) distance of the i-th and j-th particle pair, crij (cgai,j
) is the

predicted (ground-truth) distance of the i-th particle and the j-th pocket atom.

2.2 VD-GEN FRAMEWORK

With VD , a rough shape (density of VPs) of the 3D molecule could be formed by the VPs after
iterative movement. We may use some rule-based solutions, like clustering by distances, to extract
3D molecules from the VPs. However, rule-based solutions are not end-to-end and could fail in
various scenarios. Therefore, to better leverage VD , we further develop an end-to-end pocket-based
3D molecular generation framework, called VD-Gen, with the following 4 stages, illustrated in Fig 1.

Equilibrium This stage is exactly the same as the VD . Many VPs are first uniformly scattered in the
pocket. Then, VPs iteratively move toward their target positions. Finally, VPs will reach a stable state.

Extraction With the equilibrious VPs, a rough shape of the 3D molecule could be got, and we want
to extract a 3D molecule from it. For the end-to-end purpose, we propose a deep model based solution
to extract atoms. Formally, the model can be denoted as W0 = hex(Vr,P;θex), where θex is
learnable parameters, W0 = {(x̂0

i , ŷ
0
i)}mi=1 is the set of m VPs after extraction. The model reduces

VPs from n to m by two steps, filter and merge. First, as some VPs may fail to approach their target
positions, we want to filter out them. A binary classification head is used to predict the success rates of
VPs, and the training targets are "success" if the distances between VPs and their target positions after
Equilibrium are smaller than a threshold. And we filter out the VPs based on the predicted success rate.

Second, we want to merge the remaining VPs into atoms. Based on the pair representation of VPs,
we use another binary classification head to predict whether a VP pair should be merged or not.
Ideally, the VPs with the same target atom should be merged, thus training label for a VP pair with
the same atom target is set to "true". When there are n VPs and m real atoms, the ratio of "true"
class is about m×(n/m)2

n2 = 1
m . As m ranges from dozens to hundreds, the binary classification

task here is very unbalanced. Thus, we introduce a focal loss [32] to balance the classes. With the
predicted pair-wise merge probability matrix, we can use a threshold to get a binary merge matrix
and merge VPs into clusters according to the matrix. However, it is hard to decide a threshold since
the training of pair-wise merge is unbalanced. To tackle that, we further introduce a prediction task
for the number of ligand molecular atoms, based on pocket atom representation. During inference,
we use binary search to find a merging threshold that satisfies the predicted atom number, details
are in Appendix A. There will be several (ideally m) merge clusters, and we denote wi as the set of
the indices of i-th cluster’s VPs. Then, to initialize W0, we use x̂0

i = Uniform({xr
j |j ∈ wi}) and

ŷ0
i = Mean({yr

j |j ∈ wi}), to sample an atom type and get an average coordinate respectively.

Refinement After Extraction, a 3D molecule with a set of VPs (W0) could be formed. However,
due to the possible error in Extraction, the predicted 3D molecule may not be very accurate. To get
a more accurate 3D molecule (Wr), we use VD again, with different model weights, to iteratively
move these VPs to their target positions. Different with Equilibrium, the training target assignment
of the i-th VP is the most frequent target atom in the cluster wi, not its nearest atom.

Confidence Abundant molecules are usually generated in real-world tasks. We want to select or
rank the molecules according to binding affinities. Although we can use computational simulations or
wet experiments to examine the generated molecules, they are too costly, especially for a large number
of molecules. To further improve the usability of VD-Gen and reduce the extra cost of selecting good
molecules, we explicitly train a task to learn the confidence scores for the generated molecules. In
particular, following AlphaFold [31], we compute the LDDT score [33] of the generated molecule and
ground-truth molecule, and a pLDDT(predict LDDT) head is used to learn the LDDT score. During
inference, the output of pLDDT head is used as the confidence score of the generated molecule.

The loss functions in the above 4 stages are combined, and the entire VD-Gen framework is trained
end-to-end. Due to space restrictions, we leave the details of the above loss functions in Appendix A.

2.3 PRE-TRAINING FOR VD-GEN

Due to the limited protein-ligand binding data for the supervised training, VD-Gen may fail to train or
overfit the small training data. Therefore, to improve the model ability, we pretrain the pocket encoder
and the VP encoder by large-scale unlabeled data, respectively. The pretrained pocket encoder is
directly taken from the pretrained one from Uni-Mol [28]. For the VP encoder, the pretraining is
mostly the same as the VD-Gen framework, except that pocket is not involved. In particular, the

5

Under review as a conference paper at ICLR 2023

pocket related components, like particle-pocket attention, are all removed. Nevertheless, without
pocket as a condition, the training of VD-Gen is infeasible. So we design a self-partial-generation
pretraining task, by using a part of the molecule as the known condition and generating the unknown
part. To be more consistent with finetuning, only a few atoms, about 20% to 30%, are kept as a
condition. To have a continuous 3D space for VPs to generate, we randomly remove the atoms in the
continuous region. We use a greedy recursive algorithm to find a cluster of atoms to remove, and
then, the VPs are randomly scattered in the continuous region of these removed atoms.

During finetuning, the backbone model in VD-Gen loads the weights from two pretrained models.
For the VP encoder, the weights in the particle-pocket attention layers are not pretrained and are
randomly initialized. Gated layers, initialized as zeros, are used in the residual connections of
particle-pocket attention layers. Therefore, the outputs of random initialized particle-pocket attention
layers will not affect the pretrained encoders at the beginning of finetuning.

2.4 EXTENDING VD-GEN TO POCKET-BASED 3D MOLECULAR OPTIMIZATION

Molecular optimization is also an important task in real-world drug design. In molecular optimization,
rather than generating from scratch, the goal is to replace a part of the given molecule, like a fragment,
and to get a molecule with better binding affinity. Here, we extend VD-Gen to the pocket-based 3D
molecular optimization. In particular, as illustrated in Fig. 8, we first randomly remove a fragment of
the given molecule, and the model is learned to generate it, with the pocket and the remaining atoms
in the molecule as conditions. In this way, although it is not trained to optimize molecules directly, the
model learns how to remove-then-fill a fragment of a molecule, and thus could be used in molecular
optimization tasks. The benchmark results of molecular optimization are left to Appendix B.8.

3 EXPERIMENTS

3.1 SETTINGS

Evaluation metrics There is not a golden metric to evaluate the generated molecules, so we use mul-
tiple metrics to have a comprehensive evaluation. 1) 3D Similarity. As the pocket-based 3D generation
models are trained by the 3D structures of the pockets and molecules, the most direct metric to examine
the models’ generative ability is to evaluate the 3D similarity between the generated molecule and the
ground-truth one. Here we use LIGSIFT [25] to calculate the overlapping ratio in 3D space between
two molecules. 2) Vina. Docking scores, like Vina [23], are widely used in previous pocket-based gen-
eration works, for they are easy to compute. To be consistent with previous works, we also use Vina
as a metric. However, previous works usually relied on Vina’s re-docking, in which the molecular
conformation and binding pose may be largely changed by docking tools. Thus, to directly evaluate
the 3D molecules generated by model, we add an additional Vina* score that does not use re-docking.
3) MM-PBSA. Although docking scores are easy and fast to compute, they are proposed to recall the
possible hits in the large-scale virtual screening, not for ranking. Thus, docking scores are not good
metrics to compare the binding affinities for different models [34], and we further use the slower but
more accurate MM-PBSA (Molecular Mechanics Poisson–Boltzmann Surface Area) [35] as a metric.
Based on MM-PBSA, we add two additional metrics. MM-PBSA B.T. (MM-PBSA Better than
Target), which computes the percentage of generated molecules with better MM-PBSA scores than
ground-truth. MM-PBSA Rank, which computes the average rankings of different models among dif-
ferent complexes. Due to MM-PBSA scores varying largely in different complexes, MM-PBSA Rank
can better compare different models. The details of the above metrics are described in Appendix B.2.

Data We use 3D molecular conformations from Uni-Mol [28] to pretrain VP encoder. PDBBind
2020 dataset [36; 37], containing 19,443 protein-ligand complexes crystal structures, are used to
finetune the VD-Gen. Although the cross-docked data [38] used in the previous works is much
larger, it is built by docking tools and thus is not accurate as PDBBind, so we do not use it. For the
test set, we use 100 protein-ligand complex crystal structures from [24], on which MM-PBSA was
validated to be effective. To avoid leakage, we remove the training data’s complexes whose protein
sequences are similar to the ones in the test set. In particular, two protein sequences are identified as
similar if their e-value from BLAST [39] search results is larger than 0.4. There are 18,413 training
complexes after filtering.

Training We leave the detailed hyper-parameters used in training to Appendix B.1.

3.2 MOLECULE GENERATION PERFORMANCE

Baselines We compare VD-Gen with several previous 3D pocket-base molecular generation mod-
els: the 3D density generation model LiGAN [17], and the auto-regressive 3D generation models

6

Under review as a conference paper at ICLR 2023

Table 1: Performance on pocket-based 3D molecular generation.

Model 3D Sim(↑) Vina(↓) Vina*(↓) MM-PBSA(↓) MM-PBSA- MM-PBSA-
Rank(↓) B.T.(%↑)

LiGAN[17] 0.356 -6.724 -5.372 -17.865 2.57 0.3
3DSBDD[18] 0.365 -8.662 -7.227 -30.221 2.26 3.2
GraphBP[19] 0.333 -8.710 -3.689 -5.130 3.98 0

Pocket2Mol[20] 0.352 -8.332 -6.525 -7.823 3.49 0
VD-Gen 0.414 -9.047 -7.444 -51.258 1.18 13.5

Table 2: Ablation study on pretraining.
Setting no pretrain pretrain pocket encoder only pretrain VP encoder only pretrain

3D Similarity (↑) 0.361 0.379 0.402 0.414

GraphBP [19], 3DSBDD [18], and Pocket2Mol [20]. For all models, we generate 500 results for
each pocket, and then select 100 from them. For 3DSBDD and Pocket2Mol, beam search is used and
the top 100 results are selected. For VD-Gen, the selection is based on the confidence score. For
LiGAN and GraphBP, random 100 results are selected due to they did not implement beam search.

Results As we pay more attention to the generated molecules with high binding affinities, we
report the top 5-th percentile result for Vina, Vina*, and MM-PBSA. MM-PBSA-Rank is calculated
based on the top 5-th percentile MM-PBSA result. The 10-th, 25-th, and 50-th percentile results
are in Appendix B.3.

From the results in Table 1, it is easy to conclude: 1) VD-Gen significantly outperforms all other
baselines in all metrics, with top-1 MM-PBSA Rank, demonstrating the superior performance of
the proposed VD-Gen. 2) MM-PBSA B.T shows that VD-Gen can generate more molecules with
better MM-PBSA scores than the ground-truth ones, while baseline hardly can. 3) In 3D Similarity
results, VD-Gen also largely outperforms baselines, indicating that VD-Gen effectively learned the
pocket-based 3D molecular generation and can generalize to unseen pockets. 4) Although some
baselines achieve good performance on Vina scores, like GraphBP and Pocket2Mol, their Vina*
and MM-PBSA scores are very poor. We believe the re-docking in Vina fixes their generated 3D
structures and then a good Vina score could be obtained. This result indicates that the previously
widely used Vina score is not a good metric for pocket-based 3D molecular generation.

3.3 ABLATION STUDY

Pocket coverage As discussed in Sec. 2.1, Virtual Dynamics requires many VPs to cover
the pocket cavity as much as possible. And we study how the number of VPs affects the final
performance, the results are shown in Fig. 3(a). From the result, it is clear that the number of VPs
will affect the performance, and the results with more VPs are better.

Effectiveness of Refinement stage The Refinement stage is used to further refine the 3D molecule
after Extraction. To examine how Refinement affects the final performance, we benchmarked
different movement iterations in Refinement. As shown in Fig. 3(c), we can find the results with
more iterations are better. The result indicates the necessity of the Refinement stage.

Iterative Movement ronuds Iterative Movement is critical in the Virtual Dynamics. From
the result in Fig. 3(c), we can find the results with more rounds are better. We also benchmark the
effectiveness of Iterative Movement in Equilibrium stage. And we reduce the movement iterations
to 25% in Refinement stage, to better show the impact brought by Equilibrium stage. As shown in
Fig. 3(b), we can find more iteration rounds in Equilibrium also improves the final performance.

Effectiveness of Confidence stage The pLDDT score is outputted at Confidence stage, and used
for selecting or ranking molecules, and we want to check its effectiveness. In particular, we calculate
the correlation between 3D similarity and the pLDDT for the generated molecules on a pocket
(PDBID 1I7Z), and the result is shown in Fig. 3(d). It is clear that with a larger pLDDT score, the
corresponding 3D Similarity is better. This result indicates that the confidence score provided by
VD-Gen is effective to select or rank the generated molecules.

Effectiveness of pretraining We also benchmark the performance brought by pretraining. In
particular, we add three additional models, one without any pretraining, one only with pocket

7

Under review as a conference paper at ICLR 2023

0.4 0.6 0.8 1.0
Ratio of virtual particles

0.37
0.38
0.39
0.40
0.41
0.42

3D
 si

m
ila

rit
y

(a) Pocket Coverage

1 2 3 4
Movement iterations

0.386
0.388
0.390
0.392
0.394

(b) Equilibrium

4 8 12 16 20
Movement iterations

0.37
0.38
0.39
0.40
0.41
0.42

(c) Refinement

0.88 0.92 0.96 1.00
pLDDT

0.34
0.36
0.38
0.40
0.42
0.44

(d) Confidence

Figure 3: Ablation studies for VD-Gen.

Figure 4: Generated molecules with high 3D similarity to the reference molecular and high PBSA
scores for three protein pockets. Gray surfaces are the protein pockets. Green molecules are the
ground truth molecules. Purple molecules are the molecules generated by VD-Gen. Lower Vina
score, lower PBSA score and higher 3D similarity indicate higher binding affinity.

pretraining, and one only with particle pretraining. From the results shown in Table 2, we can easily
conclude that pretraining indeed boosts the performance of VD-Gen.

3.4 CASE STUDY

Here, we selected three protein pockets from the test set to visualize the generated results of VD-Gen
on pocket-based generation tasks. As shown in Fig 4, for each pocket, 3 molecules (purple molecules
in the middle column) with the top MM-PBSA scores are selected for display. These molecules
are shown as they as, without any structural post-processing. Green molecules are the ground truth
molecules, and the rightmost column is the spatial overlapping of the generated molecules and the
original molecule.

In the first case (PDBID: 2XBW), the protein pocket has a pit deep inside the protein (bottom left of the
image), the volume of which can accommodate about one benzene ring. It is a challenging task due to
the small size of the pit and the long distance from the center of the whole pocket. We can see that the
molecules generated by VD-Gen have successfully grown fragments within the pit. On the other hand,
the three generated molecules have good 3D similarity with the original molecules, and the MM-PBSA
score is good, the Vina scores of the original molecule are much better than those of the three generated
molecules. If we only use Vina to pick molecules, It may lead to not picking good molecules.

In the second case (PDBID: 1BHX), the protein pocket is bulky, which requires the generation
of protein-interacting fragments at both ends of the protein pocket, and connecting the two ends

8

Under review as a conference paper at ICLR 2023

together by a molecular backbone, we can see the original molecule is long and distorted, making
it a challenging prediction task. We see that the molecules generated by VD-Gen replicate the shape
of the original molecules well, filling the uneven protein pockets well. All three molecules have
good 3D similarity and MM-PBSA scores.

In the third case (PDBID: 2BRM), the protein pocket is flat, which requires that the molecular
backbone of the ligand bound to it should be close to a planar structure, such as composed of
conjugated aromatic rings. We can see that the molecules generated by VD-Gen are the same as
the original molecular structures, whose molecular backbone is a planar structure composed of
conjugated aromatic rings, and the part toward the outside of the pocket is flexible. We can see that
in this case, Vina scoring, MM-PBSA scoring, and 3D similarity all show good agreements.

From these three cases in Fig 4, we can see that VD-Gen has demonstrated good generation capa-
bilities on different types of challenging molecular generation tasks. For example, the generated
molecules can fill deep pockets, follow the trend of large pockets, or match the special structure of the
pockets, and the 3D similarity between the generated molecule and the molecule in the original crystal
structure is high. On the other hand, we can see that the MM-PBSA score and 3D similarity maintain
good consistency in evaluating the quality of generated molecules, while the Vina score fails in some
cases, which indicates that it is unreasonable to select molecules based on the Vina score alone.

4 RELATED WORK
Ligand-Based Molecular Generation Early works focused on ligand-based molecular generation,
took a set of molecules as training data, and generated molecules based on the learned distribution
of training data. And these methods mainly represented molecules as 1D SMILES strings and 2D
molecular graphs, and used VAEs [12; 13; 14; 40; 41; 42], GANs [43; 44], flow models [45] for one-
shot generation, RNNs [46; 47; 48; 49], reinforcement learning approaches[50; 51] for step-by-step
generation. And some works [52; 53; 54] tried to preserve structural features like molecular scaffolds,
or physicochemical properties like QED, to gain better generated molecules compared to randomly
generation. However, those methods did not take the binding affinity against a specific protein pocket
as a target directly thus the generated molecules hardly worked well in real-world tasks. Some recent
works [55; 56; 57; 58] also tried the ligand-based 3D molecular generation.
Pocket-Based Molecular Generation Due to the importance of binding affinity in drug design,
recent works involved the information of protein pockets for molecular generation. Early attempts [15;
16] encoded pocket information and took it as a condition to generate molecules in SMILES strings or
molecular graphs. However, since the binding affinity depends on the spatial positions of pocket and
molecule, the latter works paid more effort in generating molecules with 3D spatial structures. Some
works [17], recognized as molecular 3D density grid generation, converted pockets and molecules
into 3D density grids, and applied 3D convolutional models like processing images. But as the pocket
cavity is large, the positions of pockets and molecules are coarse-grained in 3D density grids and it
leads to information loss and hard to generate fine-grained molecules. Besides, it is not end-to-end
since the conversion from 3D density to 3D coordinates is required and usually causes additional
accuracy loss. Some other works [18; 19; 20], recognized as auto-regressive 3D molecular generation,
sampled/generated atoms in 3D space one by one to form a molecule. Suffering from the large space
of continuous 3D positions, it is quite inefficient. Besides, unlike the sequential nature in text, the
atoms in a molecule do not have a sequential order. That is, we do not know which atoms should be
generated first, and thus, using auto-regressive generation for 3D molecules is not reasonable.

5 CONCLUSION

In this paper, we propose VD-Gen, a novel pocket-based 3D molecular generation framework,
which consists of a Virtual Dynamics mechanism and several stages, to generate fine-grained
3D molecules with good binding affinities against the pocket end-to-end. In particular, with
Virtual Dynamics, many virtual particles are first randomly scattered in the pocket cavity,
and are iteratively moved to positions that are highly possible to contain real atoms. Then, a
coarse-grained 3D molecule could be extracted by deep models from these particles. Next, the 3D
molecule is continued refined by Virtual Dynamics again, and a fine-grained 3D molecule
could be obtained. Finally, a confidence score will be calculated for the generated molecule for
the need of selecting or ranking. Several strategies are proposed to make the training of VD-Gen
feasible. Experiment results demonstrate that VD-Gen can generate molecules with higher binding
affinities to protein pockets and more accurate 3D binding structures than other baselines. Several
case studies also demonstrate the effectiveness of VD-Gen.

9

Under review as a conference paper at ICLR 2023

REFERENCES

[1] Hugo Kubinyi. 3D QSAR in drug design: volume 1: theory methods and applications, volume 1.
Springer Science & Business Media, 1993.

[2] Renee L DesJarlais, Robert P Sheridan, George L Seibel, J Scott Dixon, Irwin D Kuntz, and
R Venkataraghavan. Using shape complementarity as an initial screen in designing ligands for a
receptor binding site of known three-dimensional structure. Journal of medicinal chemistry,
31(4):722–729, 1988.

[3] Robert S DeWitte, Alexey V Ishchenko, and Eugene I Shakhnovich. Smog: de novo design
method based on simple, fast, and accurate free energy estimates. 2. case studies in molecular
design. Journal of the American Chemical Society, 119(20):4608–4617, 1997.

[4] Robert S DeWitte and Eugene I Shakhnovich. Smog: de novo design method based on simple,
fast, and accurate free energy estimates. 1. methodology and supporting evidence. Journal of
the American Chemical Society, 118(47):11733–11744, 1996.

[5] W Patrick Walters, Matthew T Stahl, and Mark A Murcko. Virtual screening—an overview.
Drug discovery today, 3(4):160–178, 1998.

[6] Brian K Shoichet. Screening in a spirit haunted world. Drug discovery today, 11(13-14):607–
615, 2006.

[7] Brian K Shoichet. Virtual screening of chemical libraries. Nature, 432(7019):862–865, 2004.

[8] Anita de Ruiter and Chris Oostenbrink. Free energy calculations of protein–ligand interactions.
Current opinion in chemical biology, 15(4):547–552, 2011.

[9] Christophe Chipot and Andrew Pohorille. Free energy calculations, volume 86. Springer, 2007.

[10] Clara D Christ, Alan E Mark, and Wilfred F Van Gunsteren. Basic ingredients of free energy
calculations: a review. Journal of computational chemistry, 31(8):1569–1582, 2010.

[11] Julien Michel and Jonathan W Essex. Prediction of protein–ligand binding affinity by free energy
simulations: assumptions, pitfalls and expectations. Journal of computer-aided molecular
design, 24(8):639–658, 2010.

[12] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational
autoencoder. In International conference on machine learning, pages 1945–1954. PMLR, 2017.

[13] Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-directed variational
autoencoder for structured data. arXiv preprint arXiv:1802.08786, 2018.

[14] Robin Winter, Floriane Montanari, Andreas Steffen, Hans Briem, Frank Noé, and Djork-Arné
Clevert. Efficient multi-objective molecular optimization in a continuous latent space. Chemical
science, 10(34):8016–8024, 2019.

[15] Miha Skalic, Davide Sabbadin, Boris Sattarov, Simone Sciabola, and Gianni De Fabritiis. From
target to drug: generative modeling for the multimodal structure-based ligand design. Molecular
pharmaceutics, 16(10):4282–4291, 2019.

[16] Mingyuan Xu, Ting Ran, and Hongming Chen. De novo molecule design through the molecular
generative model conditioned by 3d information of protein binding sites. Journal of Chemical
Information and Modeling, 61(7):3240–3254, 2021.

[17] Matthew Ragoza, Tomohide Masuda, and David Ryan Koes. Generating 3d molecules condi-
tional on receptor binding sites with deep generative models. Chemical science, 13(9):2701–
2713, 2022.

[18] Shitong Luo, Jiaqi Guan, Jianzhu Ma, and Jian Peng. A 3d molecule generative model for
structure-based drug design. arXiv preprint arXiv:2203.10446, 2022.

[19] Meng Liu, Youzhi Luo, Kanji Uchino, Koji Maruhashi, and Shuiwang Ji. Generating 3d
molecules for target protein binding. arXiv preprint arXiv:2204.09410, 2022.

10

Under review as a conference paper at ICLR 2023

[20] Xingang Peng, Shitong Luo, Jiaqi Guan, Qi Xie, Jian Peng, and Jianzhu Ma. Pocket2mol:
Efficient molecular sampling based on 3d protein pockets. arXiv preprint arXiv:2205.07249,
2022.

[21] Berni J Alder and Thomas Everett Wainwright. Studies in molecular dynamics. i. general
method. The Journal of Chemical Physics, 31(2):459–466, 1959.

[22] Berni Julian Alder and Thomas Everett Wainwright. Studies in molecular dynamics. ii. behavior
of a small number of elastic spheres. The Journal of Chemical Physics, 33(5):1439–1451, 1960.

[23] Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking
with a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455–461, 2010.

[24] Maohua Yang, Dongdong Wang, and Hang Zheng. Uni-gbsa: An automatic workflow to
perform mm/gb(pb)sa calculations for virtual screening. ChemRxiv, 2022.

[25] Ambrish Roy and Jeffrey Skolnick. Ligsift: an open-source tool for ligand structural alignment
and virtual screening. Bioinformatics, 31(4):539–544, 2015.

[26] Alan D McNaught, Andrew Wilkinson, et al. Compendium of chemical terminology, volume
1669. Blackwell Science Oxford, 1997.

[27] Shin Sato. On a new method of drawing the potential energy surface. The Journal of chemical
physics, 23(3):592–593, 1955.

[28] Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng
Zhang, and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework.
2022.

[29] Yu Shi, Shuxin Zheng, Guolin Ke, Yifei Shen, Jiacheng You, Jiyan He, Shengjie Luo, Chang
Liu, Di He, and Tie-Yan Liu. Benchmarking graphormer on large-scale molecular modeling
datasets. arXiv preprint arXiv:2203.04810, 2022.

[30] Richard Feynman. The Character of Physical Law, with new foreword. MIT press, 2017.

[31] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

[32] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988, 2017.

[33] Valerio Mariani, Marco Biasini, Alessandro Barbato, and Torsten Schwede. lddt: a local
superposition-free score for comparing protein structures and models using distance difference
tests. Bioinformatics, 29(21):2722–2728, 2013.

[34] Tiejun Cheng, Xun Li, Yan Li, Zhihai Liu, and Renxiao Wang. Comparative assessment
of scoring functions on a diverse test set. Journal of chemical information and modeling,
49(4):1079–1093, 2009.

[35] Samuel Genheden and Ulf Ryde. The mm/pbsa and mm/gbsa methods to estimate ligand-binding
affinities. Expert opinion on drug discovery, 10(5):449–461, 2015.

[36] Renxiao Wang, Xueliang Fang, Yipin Lu, and Shaomeng Wang. The pdbbind database:
Collection of binding affinities for protein- ligand complexes with known three-dimensional
structures. Journal of medicinal chemistry, 47(12):2977–2980, 2004.

[37] Renxiao Wang, Xueliang Fang, Yipin Lu, Chao-Yie Yang, and Shaomeng Wang. The pdbbind
database: methodologies and updates. Journal of medicinal chemistry, 48(12):4111–4119,
2005.

11

Under review as a conference paper at ICLR 2023

[38] Paul G Francoeur, Tomohide Masuda, Jocelyn Sunseri, Andrew Jia, Richard B Iovanisci, Ian
Snyder, and David R Koes. Three-dimensional convolutional neural networks and a cross-
docked data set for structure-based drug design. Journal of Chemical Information and Modeling,
60(9):4200–4215, 2020.

[39] Christiam Camacho, George Coulouris, Vahram Avagyan, Ning Ma, Jason Papadopoulos, Kevin
Bealer, and Thomas L Madden. Blast+: architecture and applications. BMC bioinformatics,
10(1):1–9, 2009.

[40] Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. Constrained bayesian optimization for
automatic chemical design using variational autoencoders. Chemical science, 11(2):577–586,
2020.

[41] Orion Dollar, Nisarg Joshi, David AC Beck, and Jim Pfaendtner. Attention-based generative
models for de novo molecular design. Chemical Science, 12(24):8362–8372, 2021.

[42] André F Oliveira, Juarez LF Da Silva, and Marcos G Quiles. Molecular property prediction and
molecular design using a supervised grammar variational autoencoder. Journal of Chemical
Information and Modeling, 62(4):817–828, 2022.

[43] Gabriel Lima Guimaraes, Benjamin Sanchez-Lengeling, Carlos Outeiral, Pedro Luis Cunha
Farias, and Alán Aspuru-Guzik. Objective-reinforced generative adversarial networks (organ)
for sequence generation models. arXiv preprint arXiv:1705.10843, 2017.

[44] Benjamin Sanchez-Lengeling, Carlos Outeiral, Gabriel L Guimaraes, and Alan Aspuru-Guzik.
Optimizing distributions over molecular space. an objective-reinforced generative adversarial
network for inverse-design chemistry (organic). 2017.

[45] Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang.
Graphaf: a flow-based autoregressive model for molecular graph generation. arXiv preprint
arXiv:2001.09382, 2020.

[46] Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
design through deep reinforcement learning. Journal of cheminformatics, 9(1):1–14, 2017.

[47] Esben Jannik Bjerrum and Richard Threlfall. Molecular generation with recurrent neural
networks (rnns). arXiv preprint arXiv:1705.04612, 2017.

[48] Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating focused
molecule libraries for drug discovery with recurrent neural networks. ACS central science,
4(1):120–131, 2018.

[49] Daniel Flam-Shepherd, Kevin Zhu, and Alán Aspuru-Guzik. Keeping it simple: Language
models can learn complex molecular distributions. arXiv preprint arXiv:2112.03041, 2021.

[50] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional
policy network for goal-directed molecular graph generation. Advances in neural information
processing systems, 31, 2018.

[51] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-objective molecule generation using
interpretable substructures. In International conference on machine learning, pages 4849–4859.
PMLR, 2020.

[52] Yibo Li, Jianxing Hu, Yanxing Wang, Jielong Zhou, Liangren Zhang, and Zhenming Liu.
Deepscaffold: a comprehensive tool for scaffold-based de novo drug discovery using deep
learning. Journal of chemical information and modeling, 60(1):77–91, 2019.

[53] Jaechang Lim, Sang-Yeon Hwang, Seokhyun Moon, Seungsu Kim, and Woo Youn Kim.
Scaffold-based molecular design with a graph generative model. Chemical science, 11(4):1153–
1164, 2020.

[54] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS central science, 4(2):268–276, 2018.

12

Under review as a conference paper at ICLR 2023

[55] Vitali Nesterov, Mario Wieser, and Volker Roth. 3dmolnet: a generative network for molecular
structures. arXiv preprint arXiv:2010.06477, 2020.

[56] Gregor Simm, Robert Pinsler, and José Miguel Hernández-Lobato. Reinforcement learning
for molecular design guided by quantum mechanics. In International Conference on Machine
Learning, pages 8959–8969. PMLR, 2020.

[57] Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant
diffusion for molecule generation in 3d. In International Conference on Machine Learning,
pages 8867–8887. PMLR, 2022.

[58] Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, and Qiang Liu. Diffusion-based molecule
generation with informative prior bridges. arXiv preprint arXiv:2209.00865, 2022.

[59] Muhammed Shuaibi, Adeesh Kolluru, Abhishek Das, Aditya Grover, Anuroop Sriram, Zachary
Ulissi, and C Lawrence Zitnick. Rotation invariant graph neural networks using spin convolu-
tions. arXiv preprint arXiv:2106.09575, 2021.

[60] Chia-Tche Chang, Bastien Gorissen, and Samuel Melchior. Fast oriented bounding box opti-
mization on the rotation group so (3, r). ACM Transactions on Graphics (TOG), 30(5):1–16,
2011.

[61] Jerome Eberhardt, Diogo Santos-Martins, Andreas F Tillack, and Stefano Forli. Autodock vina
1.2. 0: New docking methods, expanded force field, and python bindings. Journal of Chemical
Information and Modeling, 61(8):3891–3898, 2021.

[62] Alexey Onufriev, Donald Bashford, and David A Case. Exploring protein native states and
large-scale conformational changes with a modified generalized born model. Proteins: Structure,
Function, and Bioinformatics, 55(2):383–394, 2004.

[63] Yong Duan, Chun Wu, Shibasish Chowdhury, Mathew C Lee, Guoming Xiong, Wei Zhang,
Rong Yang, Piotr Cieplak, Ray Luo, Taisung Lee, et al. A point-charge force field for molecular
mechanics simulations of proteins based on condensed-phase quantum mechanical calculations.
Journal of computational chemistry, 24(16):1999–2012, 2003.

[64] Araz Jakalian, Bruce L Bush, David B Jack, and Christopher I Bayly. Fast, efficient generation
of high-quality atomic charges. am1-bcc model: I. method. Journal of computational chemistry,
21(2):132–146, 2000.

[65] Harrison Green and Jacob D Durrant. Deepfrag: An open-source browser app for deep-learning
lead optimization. Journal of chemical information and modeling, 61(6):2523–2529, 2021.

13

Under review as a conference paper at ICLR 2023

A VD-GEN DETAILS

Table 3: Symbol in VD-Gen.
Symbol Meaning
P the set of atoms in the pocket
Vr the set of virtual particles (VPs) that are generated at the r-th round in Equilibrium
Wr the set of virtual particles (VPs) that are generated at the r-th round in Refinement
G the set of ground-truth atoms
xp
i the i-th pocket atom’s type (one-hot)

yp
i the i-th pocket atom’s coordinate

xg
i the i-th ground-truth atom’s type (one-hot)

yg
i the i-th ground-truth atom’s coordinate

xr
i the i-th VP’s type (one-hot) at the r-th round in Equilibrium

yr
i the i-th VP’s coordinate at the r-th round in Equilibrium

x̄r
i predicted atom type distribution of i-th VP at the r-th round

ai The index of assigned target atom for the i-th VP
dr
ij the predicted distance of the i-th and j-th VP pair at the r-th round

dg
ai,aj

the ground-truth distance of the i-th and j-th VP pair
crij the predicted (ground-truth) distance of the i-th VP and the j-th pocket atom at the r-th round
cgai,j

the ground-truth distance of the i-th VP and the j-th pocket atom.
x̂r
i the i-th VP’s type (one-hot) at the r-th round in Refinement

ŷr
i the i-th VP’s coordinate at the r-th round in in Refinement

q the pair representation of VP pair
ql the pair representation of VP pair at l-th layer
qP the pair representation of pocket atom pair
qC the pair representation of VP and pocket pair
s̄ the predicted probability distribution of "success or" not for VP
r̄ predicted probability of merging type of VP pair
n̄ the predicted atom number
wi The indices of VPs in the i-th cluster in Extraction
h the node representation of VP
hl the node representation of VP at l-th layer
hV the node representation of VP in Equilibrium
qV the pair representation of VP pair in Equilibrium
hW the node representation of VP in Refinement
qW the pair representation of VP pair in Refinement
hP the node representation of pocket atom
θeq the model parameter in Equilibrium
θex the model parameter in Extraction
θre the model parameter in Refinement
θco the model parameter in Confidence
f the SE(3) backbone model, return VP types and coordinates
L the number of layers

A.1 VIRTUAL DYNAMICS

A.1.1 DETAILS OF THE BACKBONE MODEL

In Fig 2 we show the structure of our backbone model, "Repr.", "Attn." and "Dist." are the abbre-
viations of "Representation", "Attention" and "Distance", respectively. On the left is the pocket
encoder, which first uses an atom-type embedding to encode the pocket atom type and a Gaussian
kernel to encode the pair-wise distances between pocket atom pairs. In each layer of the pocket
encoder, a self-attention layer is used. On the right is the VP encoder, which also uses an atom-type
embedding and a Gaussian kernel to encode the particle type and the pair-wise distances between
VPs. To interact with the pocket encoder, another Gaussian kernel is used to encode the pair-wise
distances between VPs and pocket atoms. In each layer of the VP encoder, before the self-attention
layer, a particle-pocket attention layer is used to interact with the pocket encoder.

14

Under review as a conference paper at ICLR 2023

We describe the components in the backbone model in the following paragraphs. Besides, we also
describe the overall pipeline of the backbone model in the Alg. 2. For simplicity, layer normalization
is not shown in the equations and algorithms.

Gaussian kernel The pair-type aware Gaussian kernel [59; 28] is denoted as:

pij = {G(A(dij , tij ;a, b), µ
k, σk)|k ∈ [1, D]}, A(d, r;a, b) = ard+ br, (2)

where G(d, µ, σ) = 1
σ
√
2π

e−
(d−µ)2

2σ2 is a Gaussian density function with parameters µ and σ, dij is
the Euclidean distance of atom pair ij, and tij is the pair-type of atom pair ij. A(dij , tij ;a, b) is the
affine transformation with parameters a and b, it affines dij corresponding to its pair-type tij .

Pair representation Pair representation [28] is used to further enhance the 3D spatial encoding.
The update of pair representation is via the multi-head Query-Key product results in self-attention.

ql+1
ij = ql

ij + {
hl
iW

Q
l,h(h

l
jW

K
l,h)

T

√
d

|h ∈ [1, H]}, (3)

where hl
i is the atom/node representation of the i-th atom at l-th layer, ql

ij is the pair representation
of atom pair ij in l-th layer, H is the number of attention heads, d is the dimension of hidden
representations, and WQ

l,h (WK
l,h) is the projection for Query (Key) of the l-th layer h-th head.

To leverage 3D information in the atom representation, pair representation is used in self-attention.

hl+1,h
i = softmax(

hl
iW

Q
l,h(h

l
jW

K
l,h)

T

√
d

+ ql,h
ij)hl

jW
V
l,h,

hl+1
i = concath(h

l+1,h
i),

(4)

where W V
l,h is the projection of Value of the l-th layer h-th head.

Particle-Pocket Attention The Particle-Pocket Attention can be denoted as the following:

hl+1,h
i = softmax(

hl
iW

P,Q
l,h (hP

j W
P,K
l,h)T

√
d

+ qC,l,h
ij)hP

j W
P,V
l,h ,

hl+1
i = concath(h

l+1,h
i),

hl+1
i = hl

i + g1 · hl+1
i + g2 · MLP(hl+1

i),

(5)

where g1 and g2 are learned parameters with initialized value 0, hP
j is the representation of the j-th

pocket atom, qC,l,h
ij is the pair representation of particle-pocket pair ij in l-th layer h-th head, MLP is

a full-connected network with one hidden layer. W P,Q
l,h , W P,K

l,h , and W P,V
l,h are learnable projections

for Query, Key and Value.

SE(3)-equivariance coordinate Following [28], the head could be denoted as:

yr+1
i = yr

i +

n∑
j=1

(yr
i − yr

j)zij

n
, zij = ReLU((qL

ij − q0
ij)U1)U2, (6)

where n is the number of total atoms, L is the number of layers in model, yr
i ∈ R3 is the input

coordinate of i-th atom, and yr+1
i ∈ R3 is the output coordinate of i-th atom, U1 ∈ RH×H and

U2 ∈ RH×1 are the projection matrices to convert pair representation to scalar.

Atom Type Prediction Head We use a non-linear head with two layers to predict the atom type
based on the atom representation in the last layer of the particle encoder:

x̄i = MLP(hL
i) (7)

where hL
i is the atom representation, L is the number of layers of the particle encoder,

15

Under review as a conference paper at ICLR 2023

Algorithm 2 Backbone_Update
Require: P: pocket atoms, Vr: virtual particles

1: hP,0 ← Atom_Type_Embedding(P) ▷ Embeddings from atom types
2: qP,0 ← Gaussian_Kernel(Dist_Matrix(P,P)) ▷ Get invariant spatial positional embedding
3: for l ∈ [1, ..., L) do ▷ Update Pocket Encoder
4: hP,l, qP,l ← Self_Attn(hP,l−1, qP,l−1)) ▷ Update by self attention
5: hP,l ← MLP(hP,l) ▷ Update by Feed-Forward-Network
6: hP ← hP,L

7: h0 ← Atom_Type_Embedding(Vr) ▷ Embeddings from atom types
8: q0 ← Gaussian_Kernel(Dist_Matrix(V0,V0)) ▷ Get invariant spatial positional embedding
9: qC,0 ← Gaussian_Kernel(Dist_Matrix(V0,P)) ▷ Get invariant spatial positional embedding of

particle-pocket pairs
10: for l ∈ [1, ..., L) do ▷ Update Particle Encoder
11: hl, ql ← Self_Attn(hl−1, ql−1)) ▷ Update by self attention
12: hl ← MLP(hl) ▷ Update by Feed-Forward-Network
13: if l mod 4 == 0 then ▷ Only enabled at every 4-layer
14: hl, qC,l ← Particle_Pocket_Attn(hl,hP , qC,l−1)) ▷ Update by Particle-Pocket Attention
15: x̄r+1 ← Atom_Type_Head(hL) ▷ Atom Type Prediction
16: xr+1 ← sample(x̄r+1) ▷ Sample an atom type based on predicted probability
17: yr+1 ← SE(3)_Head(yr, qL) ▷ Coordinate update
18: return Vr+1 = {xr+1,yr+1}, hL, qL, hP

Figure 5: A case to show the detected pocket cavity.

A.1.2 POCKET CAVITY DISCOVERY

Pocket cavity discovery is an essential component in VD-Gen, as VPs need to scatter into the cavity.
To find the pocket cavity, we first use OBB (oriented bounding box) [60] to determine a cubic box,
denote as B, based on the pocket’s residue atoms. Then, we enlarge the box a little bit, increased by
4 Å. Then, we make the 3D grids with resolution 2 Å, for the whole protein, including the pocket,
and mark the grids that contain protein atoms as "used". Then, starting from a given grid inside the
cavity, a breadth-first search is used to find the grids inside the cavity. In particular, the grids marked
as "used" or are not in B are not considered. We show an example in Fig 5, where the purple region
indicates the pocket cavity we find.

A.2 EXTRACTION

Filtering Loss

LFilter =
1

n

n∑
i=1

NLL(s̄i, si) (8)

where n is the number of virtual particles, s̄i is the predicted probability distribution of success or
not, si is the target label. The target label is marked as "success" if the distances between VPs and
their target positions after Equilibrium are smaller than 2.5 Å.

Merging Loss

LMerge =
1

l2

l∑
i=1

l∑
j=1

2∑
k=1

−rk
ij log r̄

k
ijαk(1− r̄k

ij)
γ , (9)

where l is the number of virtual particles predicted to be "success", rij is the target merging type, r̄ij
is the predicted probability of merging type, the blue part is from focal loss [32], and αk and γ are

16

Under review as a conference paper at ICLR 2023

hyper-parameters to balance classes. Here γ is set to 2, the subscript 1 of α represents the True type
and α1 is set 10 while α0 is set to 1.

Atom number loss For atom number prediction, we bucket the number of atoms into different bins
and transform the numerical problem into a classification problem to make the training more stable.

Latom_num = NLL(ō,o) (10)

where ō is the predicted probability distribution of bins, and o represents the one-hot vector of the
target bin.

During inference, the predicted atomic number can be calculated from the predicted distribution over
bins.

nbin∑
k=1

(bin_valk)ōk, (11)

where bin_valk is the bin value of the k-th bin, nbin is the number of bins, l is the size of each bin
and ōk is the predicted probability of the k-th bin. Notably, the bin value is not the bin boundary
value, it is the average of left and right boundaries.

Merge algorithm The detail of merging VPs into atoms are shown in Alg 3. In particular, a binary
search is used to find a merging threshold. During training, teacher-forcing merging is used for
reducing the training cost (without binary search). This is, rather than predicting pair-wise merge
probabilities and the atom number, we directly used their ground truth values. During inference, the
binary search is used. Besides, considering the error in atom number prediction, we try a range (±10)
of atom numbers, and select from them based on their confidence scores.

A.3 CONFIDENCE

The confidence score is based on LDDT metric [33]:

LDDT =
1

n

n∑
i=1

∑
j ̸=i

1

4
((errij < 0.5) + (errij < 1.0) + (errij < 2.0) + (errij) < 4.0), (12)

errij = L1(||ŷr
i − ŷr

j ||2, ||ŷ
g
i − ŷg

j ||2), (13)

where ŷr
i is the predicted coordinate of i-th particle after Refinement, and ŷg

i is its ground truth
coordinate. Then, a task is trained to predict the LDDT score. Here, we use the binning trick for
training stability, bucketing the error of each VP into different bins, and using cross-entropy loss to
train the task:

LConfidence =
1

n

n∑
i=1

NLL(ēi, ei) (14)

where ēi is the predicted error’s probability distribution of i-th VP and ei represents the one-hot
vector of the real error.

A.4 PRETRAIN

During pretraining, we remove atoms in a continuous spatial region, and VPs are initialized in the
region. To find the atoms in a continuous region, we design a greedy algorithm. First, we initialize
an empty atom set, then we randomly select an atom in the molecular to join the set. Starting from
the atom set, we choose an atom closest to the atoms in the set and join it to the set. We repeat the
process until the number of atoms in the set meets the requirements. And we use OBB (oriented
bounding box) [60] to determine a cubic box by the removed atoms, and VPs are initialized inside
the cubic box.

A.5 VD-GEN OVERALL ALGORITHM

We also summarize the overall inference pipeline of VD-Gen in the Alg. 4. The algorithm mainly
relies on the function "VD", which iteratively moves the VPs. Both Equilibrium and Refinement use

17

Under review as a conference paper at ICLR 2023

Algorithm 3 Filter_Merge_VPs
Require: VR = {(xR

i ,y
R
i)}ni=1: virtual particles at R-th rounds, n̄: the predicted atom num, r̄ =

{(r̄ij)}n×n
i=1,j=1: the predicted merging probability matrix, s̄ = {s̄i}ni=1: the predicted filtering prob-

ability
1: for i in [1, ..., n] do ▷ Set the merge type between particles with the particle to be filtered to 0
2: si ← argmax(s̄i) ▷ Get the filtering type
3: if si = 0 then ▷ If the i-th particle should be filtered
4: r̄[:, i]← 0 ▷ Set {r̄i,j}nj=1 to 0
5: r̄[i, :]← 0 ▷ Set {r̄j,i}nj=1 to 0

6: high← max({(r̄ij)}n×n
i=1,j=1)

7: low← min({(r̄ij)}n×n
i=1,j=1)

8: mid← low+high
2

9: while low < high do ▷ using the binary search to find the threshold
10: rij ← r̄ij > mid
11: W0 ← [],w ← [],m← 0
12: for i in random_perm(1, n) do ▷ Greedy merge based a random order
13: wi ← [],
14: for j in [1, ..., n] do
15: if rij = True then ▷ the j-th particle should be merged
16: r[:, j]← False ▷ the merged particle will not be merged again
17: wi.add(j) ▷ add the particle indices into the i-th cluster
18: if len(wi) > 0 then
19: x̂0

m ← Uniform({xr
k|k ∈ wi}) ▷ Sample atom type from the merging list

20: ŷ0
m ← Mean({yr

k|k ∈ wi}) ▷ the average position is atom position after merging
21: W0.add((x̂0

m, ŷ0
m)) ▷ add the atom to the set

22: m← m+ 1 ▷ Count the number of clusters
23: if m = n̄ then ▷ find the threshold
24: break
25: else
26: if m < n̄ then ▷ too many particles are merged, the threshold needs to be increased
27: low← mid
28: else
29: high← mid ▷ Too few particles are merged, the threshold needs to be lowered

return W0 ▷ Return particle set after merging

"VD". In Extraction, several heads are used to predict the filtered probability, the pair merge probabil-
ity, and the number of atoms of the ligand molecule. Based on these predictions, "Filter_Merge_VPs"
is used to extract the merged VPs.

The training pipeline is very similar, except for the following differences:

• For efficiency purposes, R1 and R2 are sampled during training, and the gradient backward is only
enabled in the last round.

• For efficiency purposes, in "Filter_Merge_VPs", teacher-forcing merging (without binary search)
is used during training. This is, rather than predicting pair-wise merge probabilities and the atom
number, we directly used their ground truth values.

• The loss functions are enabled to get gradients to train models.

B EXPERIMENT DETAILS AND MORE RESULTS

B.1 TRAINING DETAILS

The detailed configurations of VD-Gen are listed in Table 4. We did not tune these hyper-parameters
for now, a better performance could be achieved with well-tuned hyper-parameters.

B.2 EVALUATION MERTIC

• 3D similarity. We use LIGSIFT [25] to calculate 3D similarity. However, by default, LIGSIFT will
align the input molecules before calculating 3D similarity. But we want to evaluate the generated

18

Under review as a conference paper at ICLR 2023

Algorithm 4 VD-Gen Framework during Inference
Require: R1, R2: max rounds in Equilibrium and Refinement, P: pocket atoms with types and positions, n:

number of VPs, θeq , θex, θre, θco: model parameters in different stages
1:
2: # Virtual dynamics mechanism
3: def VD(R, V0, P, θ): ▷ Virtual dynamics mechanism
4: for k ∈ [1, ..., R] do ▷ Iterative updates without gradients
5: Vk,h

L, qL,hP ← Backbone_Update(Vk−1,P;θ) ▷ backbone model update as in Alg. 2
return VR,h

L, qL,hP

6:
7: # Initialize VPs
8: P̃ = Cavity_Discovery(P) ▷ Get the pocket cavity as in Appendix A.1.2
9: for i in [1,...,n] do

10: x0
i ← one_hot([MASK]) ▷ The types of VPs are initialized as a meaningless [MASK] type

11: y0
i ← Uniform(P̃) ▷ The initial coordinates of VPs are uniformly sampled from the cavity

12: V0 = {(x0
i ,y

0
i)}ni=1

13:
14: # Equilibrium stage
15: VR,h

V , qV ,hP ← VD(R1,V0,P,θeq) ▷ Predict coordinates and types with VD
16:
17: # Extraction stage
18: s̄← Filter_Head(hV ;θex) ▷ Predict to filter the "not success" particles
19: r̄ ← Merge_Head(qV ;θex) ▷ Predict merging matrix
20: n̄← Atom_Num_Head(hP ;θex) ▷ Predict the atom number
21: W0 ← Filter_Merge_VPs(VR, n̄, r̄, s̄)
22: ▷ Filter and Merge VPs as in Alg. 3 using predicted merging matrix, atom number and filtering type
23:
24: # Refinement stage
25: WR,h

W , qW ,hP ← VD(R2,W0,P;θre) ▷ Refine the coordinates and types
26: # Confidence stage
27: Pred_LDDT← Confidence_Head(hW , θco) ▷ Predict LDDT
28:
29: return WR, Pred_LDDT ▷ Return the final positions and types, and the confidence score

3D structure directly, to examine the end-to-end performance. Therefore, we remove the alignment
in LIGSIFT.

• Vina. We use AutoDock Vina1.2 [61] to get Vina score. In particular, the re-docking will be applied.
That is, the binding pose and the conformation of the ligand molecule generated by the model will
be ignored, and a new binding pose and a new molecular conformation will be re-calculated by
AutoDock Vina1.2. We believe the re-docking in Vina cannot reflect the actual performance of the
pocket-based 3D molecular generation. But to be consistent with previous works, we still use it as
one of the metrics.

• Vina*. Vina* is Vina without re-docking. In particular, we use the built-in energy optimization
process based on Vina scoring function in AutoDock Vina1.2 [61] to minimize the energy of
the binding pose of generated molecules, and then use the Vina scoring function to score the
energy-minimized binding pose to get Vina* score.

• MM-PBSA. We take the default settings of parameters (i.e., solvation mode: GB-2[62], protein
forcefield: amber03[63], ligand charge method: bcc[64], dielectric constant: 4.0) and workflow (i.e.,
force field building, structure optimization by energy minimization, MM/GB(PB)SA calculation)
of [24] to calculate MM-PBSA score. Since the crystal structure indicates the preferred binding
pose against a specific target, we filtered the generated molecules by 3D similarity to the molecule
in crystal structure and take the molecules whose 3D similarity score is over 0.4 as effective
molecules, and we only calculate the MM-PBSA score for the effective molecules. In Table 6 we
show MM-PBSA S.R. (success rate), which calculates the proportion of effective MM-PBSA of

19

Under review as a conference paper at ICLR 2023

the generated molecules. For MM-PBSA B.T. and MM-PBSA Rank we have:

MM-PBSA B.T. =
1

np

np∑
i=1

|{g ∈ G|MM-PBSA(g) < MM-PBSA(mi)}|
|G|

, (15)

MM-PBSA Rank =
1

np

np∑
i=1

ranki, (16)

where np is the number of proteins in the test set, G represents the generated molecular set, mi

represents the molecular in the crystal structure of the i-th protein and ranki represents the ranking
index of the current model among all of the compared models under the i-th protein which is ranked
by MM-PBSA.

• Metric for ablation studies. We use 3D similarity between the generated molecules and the ground
truth as the metric in ablation studies since it reflects the generative ability based on the pocket
structure and there is a strong correlation between 3D similarity and binding affinity according to
Table 1.

Table 4: Settings for VD-Gen.
Pretrain
VP encoder layers 12
Peak learning rate 1e-4
Batch size 128
Max training steps 1M
Warmup steps 10K
Attention heads 64
FFN dropout 0.1
Attention dropout 0.1
Embedding dropout 0.1
Weight decay 1e-4
Embedding dim 512
FFN hidden dim 2048
Gaussian kernel channels 128
Activation function GELU
Learning rate decay Linear
Adams ϵ 1e-6
Adams(β1, β2) (0.9,0.99)
Gradient clip norm 1.0
Particle type prediction weight 1.0
Loss weight for LVD of Equilibrium 1.0
Loss weight for LVD of Refinement 1.0
Loss weight for LFilter 1.0
Loss weight for LMerge 5.0
Loss weight for Latom_num 1.0
Loss weight for Confidence 1.0
R, max round of iterative movement of Equilibrium and Refinement 4
numbers of virtual particles 8 ∼ 9 times of the number of real atoms
τ , the clip value for coordinate loss 2
δ, the threshold for coordinate regularization 1
Finetune
Batch size 64
Max training steps 100K
R1, max round of iterative movement of Equilibrium 4
R2, max round of iterative movement of Refinement 4
numbers of virtual particles 16 ∼ 18 times of the number of real atoms
Inference
R1, max round of iterative movement of Equilibrium 4
R2, max round of iterative movement of Refinement 16
n, numbers of VPs 512

B.3 MORE RESULTS

In Table 5, we report more percentile results for Vina, Vina*. In Table 6, we report more percentile
MM-PBSA results and MM-PBSA S.R. scores. The MM-PBSA S.R. scores in many baselines are

20

Under review as a conference paper at ICLR 2023

very low. Thus, there are not enough effective MM-PBSA results to calculate percentile results in
some baselines. Therefore, in each pocket, we replace the failed MM-PBSA result with the worst one
generated by that baseline. And we calculated the percentile results after the replacement.

Table 5: More results on Vina and Vina*.

Model 5-th 10-th 25-th 50-th
Vina(↓) Vina*(↓) Vina(↓) Vina*(↓) Vina(↓) Vina*(↓) Vina(↓) Vina*(↓)

LiGAN[17] -6.724 -5.372 -6.324 -4.922 -5.740 -4.215 -5.065 -3.49
3DSBDD[18] -8.662 -7.227 -8.296 -6.664 -7.557 -5.633 -6.474 -4.078
GraphBP[19] -8.710 -3.689 -7.832 -2.774 -6.765 -1.169 -5.625 -1.2

Pocket2Mol[20] -8.332 -6.525 -8.015 -5.399 -7.467 -3.513 -6.837 -1.808
VD-Gen -9.047 -7.444 -8.652 -6.848 -7.958 -5.825 -7.146 -4.621

Table 6: More MM-PBSA results.

Model 5-th 10-th 25-th 50-th MM-PBSA-
MM-PBSA(↓) MM-PBSA(↓) MM-PBSA(↓) MM-PBSA (↓) S.R.(%↑)

LiGAN[17] -17.865 -13.374 -8.775 -7.418 11.9
3DSBDD[18] -30.221 -23.623 -13.544 -7.739 12.9
GraphBP[19] -5.130 -4.894 -4.894 -4.894 0.2

Pocket2Mol[20] -7.823 -5.945 -5.398 -5.398 1.8
VD-Gen -51.258 -47.247 -39.984 -21.140 42.7

B.4 COMPARED WITH IMAGE GENERATION AND SOME EARLY ATTEMPTS

1:1 VD VD-Gen
Training Scheme

0.300

0.325

0.350

0.375

0.400

0.425

0.450

3D
 S

im
ila

rit
y

Figure 6: Comparison for different training frameworks. "1:1 VD" is our early attempt, which is
directly based on Virtual Dynamics, with 1:1 particle-atom assignment, and without the 4
stages in VD-Gen. The result indicates the effectiveness of the proposed VD-Gen framework.

During inference, VD iteratively moves particles to more precious positions from random initialized
positions. A similar idea of "coarse-to-fine" generation is widely used in image generative models,
and images could be iteratively refined from noises.

From this view, VD looks similar to the "coarse-to-fine" image generation. However, the training of
VD is more challenging and very different from "coarse-to-fine" image generation.

• In image generation, the training target for each pixel is straightforward to assign, since input
pixels’ positions are the same as the ground-truth pixels’ position, i.e. there is a 1-to-1 mapping
between input and ground-truth. For example, in an image with 32x32 pixels, for an input pixel
located at position i, j, we can directly use the ground-truth pixel located at position i, j as its
training target. With the 1-to-1 assignment, the training of image generation is straightforward.

• However, in the 3D molecular generation, the 1-to-1 assignment cannot simply be used, as the
randomly initialized 3D positions of input particles are far different from the ground-truth atoms’
positions, so it is hard to have 1-to-1 mapping. Besides, the number of ground-truth atoms is
unknown, which further increases the difficulty of 3D molecular generation.

21

Under review as a conference paper at ICLR 2023

Table 7: Inference Efficiency.

Model 3DSBDD GraphBP Pocket2Mol VD-Gen

Time(s)(↓) 14.153 1.660 3.476 3.678

• In our early attempts, we also tried some 1-to-1 assignment methods (assuming the ground truth of
the number of atoms is given). We first tried the random assignment, and found model training
is hard to converge. We then optimized it by considering the total moving distance of all input
particles in the target assignment. We call this method "1:1 VD", details are in the following
paragraph. In particular, we assign each particle a unique target atom, by sub-optimal assignment
(optimal assignment is NP-hard) to minimize the total moving distance. It is much better than
random assignment, but the performance is still not good, and we think the reason is due to the
large difficulty of the training task.

• To further reduce the difficulty of the training task, we propose to use the many-to-1 assignment.
That is, we first use many random-scattered particles to the pocket cavity, then for each particle,
assign its nearest ground-truth atom as the training target. With this solution, the learning of
movement is much easier, since particles only consider their nearest atoms. Besides, the unknown
atom number is not a problem.

• Besides, VD-Gen is not just VD. Simply using VD, we can only get a 3D density-like shape (formed
by the positions of particles) of a 3D molecule. We may use some rule-based solutions, like
clustering by distances, to extract 3D molecules from the shape. However, rule-based solutions are
not end-to-end and could fail in various scenarios. To address this, we further propose VD-Gen, a
more reliable framework with additional Extraction, Refinement and Confidence stages.

1:1 VD In our early attempt, we tried a simple solution: use the same number of VPs as real atoms,
and randomly scatter them; then, make an assignment so that each atom has a paired VP, and each VP
has a paired atom. The optimal assignment with minimal moving distance is NP-hard, and we use a
greedy algorithm to find a sub-optimal assignment. With the 1-to-1 assignment, the Extraction stage
is not needed, since the number of VPs is the same as real atoms. We called this method "1:1 VD".
For a fair comparison, pretraining is also used in "1:1 VD". We conduct the experiment to compare
VD-Gen with "1:1 VD", the results are shown in Fig. 6. From the result, we find that VD-Gen
largely outperforms "1:1 VD". Although its simplicity, the learning of "1:1 VD" is challenging,
due to the ambiguous target assignment which violates the least action principle. As for VD-Gen,
although it looks complicated with multiple stages, these stages are necessary for generating accurate
3D molecules end-to-end.

B.5 INFERENCE EFFICIENCY

Experiment results have demonstrated the effectiveness of the proposed VD-Gen, and we also check
its efficiency here. In particular, we benchmark the inference speed of generating one molecule
for 3DSDBB, GraphBP, Pocket2Mol, and our VD-Gen. The results are summarized the Table 7.
3DSBDD is the slowest one, due to the inefficient MCMC sampling. Although GraphBP is the fastest
one, its generated molecules are the worst. VD-Gen and Pocket2Mol are similar in efficiency. But
VD-Gen significantly outperforms Pocket2Mol in effectiveness. Due to the large number of VPs and
several movement rounds, it is expected that VD-Gen is not the fastest one. We leave the efficiency
improvement to future work.

B.6 ILLUSTRATION OF VPS’ MOVEMENT

We show an example of VPs’ spatial position during the inference of VD-Gen in Fig 7. In the initial
stage, the coordinates of VPs are randomly initialized. In Equilibrium stage, with the increase of
movement rounds(1 ∼ 4), VPs gradually gather together. Then in Extraction stage, after clustering,
fewer VPs are extracted from gathered VPs. Then in Refinement stage, the extracted VPs continue
the iterative movement, toward positions with better pLDDT scores.

22

Under review as a conference paper at ICLR 2023

Initial state Equilibrium, r=1 Equilibrium, r=2 Equilibrium, r=3

Equilibrium, r=4 Extraction (clustering) Refinement, r=1,
pLDDT=0.931

Refinement, r=4,
pLDDT=0.958

Refinement, r=8,
pLDDT=0.982

Refinement, r=12,
pLDDT=0.984

Refinement, r=16,
pLDDT=0.984

Refinement, r=10,
pLDDT=0.984

Figure 7: An example to show how the VPs moves at each iteration in Equilibrium and Refinement, r
indicates the moving iterations and pLDDT can reflect the change of coordinates.

Table 8: Training on CrossDocked Dataset.

Model LiGAN 3DSBDD GraphBP Pocket2Mol VD-Gen

3D Similarity(↑) 0.356 0.365 0.333 0.352 0.39

B.7 TRAINING ON THE CROSSDOCKED DATASET

Since the baselines use the cross-docked dataset as training data, to analyze our model effect without
pretrain, we conduct experiments on the cross-docked dataset. Results are shown in Table 8. We can
see VD-Gen achieves 3D similarity with 0.39, outperforming other baselines. Besides, compared
to VD-Gen with particle encoder pertaining in Table 2, the performance of using the cross-docked
dataset is worse (0.39 v.s. 0.402). This result also indicates that pretraining is better than data
augmentation in the cross-docked dataset.

B.8 MOLECULAR OPTIMIZATION TASK

iterative
movement

Pocket
Condition

Equilibrium RefinementExtraction

iterative
movement

Confidence……

Q K V

Attention

FFN

Q K V

Attention

FFNfilter

merge

𝑁 × 𝑁 ×

Figure 8: Extending VD-Gen to molecular optimization.

23

Under review as a conference paper at ICLR 2023

Difference in training molecular optimization models To train the molecular optimization model,
we make the following changes.

• The remove ratio in pretraining is much smaller, only 25% to 40% are removed.
• Rather than removing the whole molecule, during finetuning, only 25% to 40% of atoms are

removed, like the pretraining.
• During training, the number of VPs is also much smaller, only 8 times of the real atoms.
• The VPs are not scattered in the whole pocket cavity, but scattered around the removed atoms.

Experiment We compare our model with a traditional molecular fragments optimization model
DeepFrag [65]. DeepFrag can replace molecular fragments based on SMILES, which is a 1D model
without pocket information. The results are shown in Table 9 and Table 10. From them, it is clear
that VD-Gen can outperform the baseline in molecular optimization.

Table 9: Full percentile results on Vina and Vina*, in molecular optimization tasks.

Model 5-th 10-th 25-th 50-th
Vina(↓) Vina*(↓) Vina(↓) Vina*(↓) Vina(↓) Vina*(↓) Vina(↓) Vina*(↓)

DeepFrag[65] -8.357 - -8.132 - -7.775 - -7.372 -
VD-Gen -9.040 -8.30 -8.775 -8.020 -8.333 -7.507 -7.880 -6.946

Table 10: Full percentile results on MM-PBSA, in molecular optimization tasks.

Model 5-th 10-th 25-th 50-th
MM-PBSA(↓) MM-PBSA(↓) MM-PBSA(↓) MM-PBSA (↓) MM-PBSA B.T.(↑)

DeepFrag[65] -51.783 -48.959 -39.786 -34.485 23.9
VD-Gen -53.799 -52.120 -46.707 -41.788 38.3

24

	Introduction
	Method
	Virtual Dynamics
	VD-Gen Framework
	Pre-training for VD-Gen
	Extending VD-Gen to Pocket-based 3D Molecular Optimization

	Experiments
	Settings
	Molecule Generation Performance
	Ablation Study
	Case Study

	Related Work
	Conclusion
	VD-Gen details
	Virtual Dynamics
	Details of the backbone model
	Pocket Cavity Discovery

	Extraction
	Confidence
	Pretrain
	VD-Gen Overall Algorithm

	Experiment details and more results
	Training details
	Evaluation Mertic
	More Results
	Compared with Image Generation and Some Early Attempts
	Inference Efficiency
	Illustration of VPs' movement
	Training on the CrossDocked dataset
	Molecular optimization task

