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ABSTRACT

Most current benchmarks evaluate Generative Language Models based on the ac-
curacy of the generated output. However, in some scenarios, evaluating the recall
of the generations is more valuable, i.e., whether a model can generate all correct
outputs, such as all security vulnerabilities of a given codebase. There are two
challenges in evaluating the recall: the lack of complete sets of correct outputs for
any task and many distinct but similar outputs (e.g., two exploits that target the
same vulnerability).
In this paper, we propose a benchmark from the domain of small organic
molecules. We define several sets of molecules of varying complexity and fine-
tune language models on subsets of those sets. We characterize set complexities
via recall of model generations and show that we can predict the recall for a given
number of generations in advance, using only perplexity on a held-out validation
set. This prediction method extends to several i.i.d. sampling generation meth-
ods. Subsequently, we propose a novel decoding method based on beam search
that maximizes recall by avoiding duplicates. Finally, we design a recall-aware
loss function that leverages intuition from prior experiments to improve model re-
call for small language models. We perform additional analyses on the impact of
molecular representation and model pretraining.

1 INTRODUCTION

Evaluating the performance of generative models, particularly language models, is an important
challenge in modern deep learning (Chang et al., 2024). Most of the current benchmarks evaluate
the ability of models to produce correct output, e.g., correctly answer questions, translate a sentence,
generate a coherent story on a given topic, etc.

An overlooked aspect of evaluation is the ability of generative models to generate all correct outputs
for the given input. This capability is crucial for security-focused applications. In software code
analysis, generating exploits that target all vulnerabilities (Liguori et al., 2021; Yang et al., 2023) is
a significant challenge. In language model security, one would like to find all “jailbreaks”, i.e., the
prompts that would force the target model to produce undesired outputs (Samvelyan et al., 2024),
which allows for patching language models in the post-training phase before making them publicly
available. In healthcare, AI assistants can suggest causes for the given symptoms, and sometimes, it
is desirable to list not only the most probable, but all possible conditions that could produce those
symptoms. In scientific discovery, generating new molecules or materials with given characteristics
is a cornerstone problem. For example, in drug discovery, most of the correctly generated molecules
may prove useless in subsequent phases of drug development (e.g., in toxicity analysis), so gen-
erating a diverse and complete set of initial molecules is useful. Another related problem is the
exhaustive generation of all conformations (3D positions) for a given molecule. These conforma-
tions then become inputs for multiple downstream tools in drug discovery (Watts et al., 2010).

The ability of language models to cover all correct outputs without incorporating retrieval has yet
to be systematically evaluated. We believe there are two significant obstacles. First, developing a
benchmark that includes all correct outputs is hard. Second, the representations of the objects we are
trying to generate are typically not unique. For example, the same security exploit can be written in
multiple ways by changing variable names or refactoring; the same health condition can be described
in different terms. More formally, the set of correct outputs is usually split into equivalence classes.
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An ideal evaluation benchmark should ignore multiple generations from the same equivalence class
and count the number of distinct classes a generative model can cover.

In this paper, we propose a benchmark that overcomes both obstacles and enables research into opti-
mizing the recall of language models. We start from GDB-13 (Blum & Reymond, 2009), a complete
database of molecules with specific characteristics and, most significantly, having at most 13 heavy
atoms. We design four sets of molecules of varying complexity and train language models on small
subsets of them. We represent molecules by SELFIES strings (Krenn et al., 2020), for which the
equivalence classes are well-defined and can be computed algorithmically. We use the models to
generate millions of molecules and evaluate the precision and recall of the generations by leverag-
ing information about equivalence classes. We show that we can predict recall in advance without
performing generation and devise novel recall-optimized generation methods and loss functions.
We hope that this system for LLM evaluation will prove to be a valuable tool in other domains, like
security, where the same software vulnerability can be exploited with similar attacks or the same
language model exploit can be triggered with different wording.

2 RELATED WORK

2.1 EVALUATING MOLECULAR GENERATION

A variety of methods have been successfully applied to molecular generation tasks, including
GFlowNets (Bengio et al., 2021; Kim et al., 2024), recurrent neural networks (Guo & Schwaller,
2023; Blaschke et al., 2020), and graph-based genetic algorithms (Jensen, 2019) among others.
Finally, LLMs have recently demonstrated strong performance on these tasks, especially when com-
bined with iterative training, prompt design, and reinforcement learning methods (Wang et al., 2024;
Guevorguian et al., 2024; Guo & Schwaller, 2024). In order to directly compare these methods,
benchmarks in molecular generation and molecule optimization emphasize measuring the number
of molecules generated under constraints that satisfy pre-specified criteria. For instance, the Practi-
cal Molecular Optimization benchmark involves a suite of tasks evaluated using the area under the
curve of the scores of generations throughout the optimization process (Gao et al., 2022). However,
this does not measure the diversity of generations, a critical criterion for generative models in indus-
trial settings. Similarly, benchmarks involving docking simulations count the number of molecules
generated that exceed certain property thresholds (Lee et al., 2024; Guo & Schwaller, 2023).

2.2 RECOVERING MOLECULAR DATASETS

Blum & Reymond (2009) introduced GDB-13, a complete set of small molecules with certain char-
acteristics. Arús-Pous et al. (2019) attempted to re-generate the GDB-13 by training a recurrent
neural network (RNN) on 1 million randomly sampled molecules. Arús-Pous et al. (2019) explored
the effect of SMILES randomization on the recall. This line of papers motivated our work to explore
the recall abilities of modern language models. However, the set of molecules these papers were
trying to recover are simple and do not require significant knowledge of chemistry, as they can be
described as all possible graphs with certain rules on node labels and graph properties. The sets we
introduce in this paper have varying complexity and rely on more complex chemical features.

2.3 RECALL OF GENERATIVE MODELS

For generative image models, the need for and introduction of precision and recall-based evalua-
tion methods is an extension of Fréchet Inception Distance (Heusel et al., 2017), which allow for
a more comprehensive understanding of tradeoffs between the quality and diversity of generated
images. In a seminal work, (Sajjadi et al., 2018) demonstrated a method to estimate these metrics by
comparing dataset and model distributions, with subsequent works making these estimations more
accurate (Kynkäänniemi et al., 2019; Park & Kim, 2023) and efficient to implement (Liang et al.,
2024). Further research has been done to provide stronger theoretical motivation and a unifying
framework for these methods (Sykes et al., 2024). Evaluating language models in terms of recall is
a comparatively new direction, with fewer existing application methods and theoretical background.
Several benchmark datasets evaluate models’ ability to recall information from a provided corpus of
text (Amouyal et al., 2022; Akhtar et al., 2024). In order to characterize the diversity of generations,
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the MAUVE score describes the divergence criteria via a suite of comparison measures between
ground truth and generated texts (Pillutla et al., 2021) , which was expanded and improved upon in
(Pimentel et al., 2022) by performing more comprehensive ablations and operating on more granu-
lar textual features. The research closest to our research work continues in this direction and uses
a K-nearest neighbor estimator on text embeddings of generated text under reduced dimensionality
(Bronnec et al., 2024).

For molecular generation tasks, the ability to precisely evaluate the recall of generations for a prede-
fined closed set of desired molecules provides more evidence for the effectiveness of a modeling ap-
proach compared to current threshold-based evaluatory frameworks. Methods proposed for general
recall evaluation of generative models typically focus on other generative architectures (Generative
Adversarial Networks, Variational Autoencoders, Gaussian Processes) or operate directly on image
data. Existing methods that target LLMs require retrieving data from a text corpus or using a K-
nearest neighbors (KNN) estimator to approximate model recall. By contrast, our problem setting
allows for the direct calculation of recall. We show that we can predict this recall from quantities al-
ready implemented in standard model evaluation pipelines (perplexity) without additional modeling
considerations. Finally, this paper is the only work that proposes methods for improving language
model recall derived from the recall problem formulation we define.

3 PROBLEM DEFINITION

Let S be the set of all correct generations, i.e., strings in the language modeling context. Assume
there is an equivalence relation among the strings in S which divides S into M equivalence classes.
We denote the set of equivalence classes by Su (u stands for unique). Each equivalence class corre-
sponds to a single object. For any object m ∈ Su, the size of its equivalence class, i.e., the number
of distinct strings corresponding to that object, is denoted by ∥m∥.

The goal is to train a model that can generate strings from the maximum number of equivalence
classes, i.e., a maximum number of unique objects. To achieve that, we train a (potentially pre-
trained) language model on a subset of M objects. Suppose we also have a validation set, i.e., a
subset of V objects (V < M ) distinct from the training set. After training, we generate G strings by
sampling from the model. Let G denote all generated strings.

We evaluate the model using the following metrics. True positives, denoted by TP , are the gener-
ated strings that belong to S. Note that G can contain duplicate strings but may also contain dis-
tinct strings that belong to the same equivalence class. Hence we also define unique true positives,
TPu = |Gu|, as the number of equivalent classes represented in G. We track two metrics:

Precision(G) =
TP

G
, Recall(G) =

TPu

M

Suppose a process samples G in an i.i.d. fashion. In that case, the number of true positives will
scale linearly with G, and precision will not depend on G (after a sufficiently large number of
generations). On the contrary, TPu does not scale indefinitely with G as it is upper bounded by
M = |Su|. Hence, the recall increases with G and can ideally reach M and stay constant. Section
4.3 shows how precision can depend on G if the sampling process is not i.i.d..

The ideal model can learn to put uniform p = 1
M probability on all objects of the set Su. Note

that in this ideal scenario, the probability of each object can be arbitrarily distributed over its string
representations. The recall of the ideal model after G generations will be 1 − (1− p)

G. Thus, this
quantity is the theoretical upper bound for the recall of i.i.d. sampling methods.

Below, we define four sets of molecules. Each molecule can be represented by multiple strings that
form the equivalence class of the molecule. Hence, S denotes the set of all string representations of
all molecules in the set.

3.1 MOLECULAR DATASETS

We take GDB-13 (Blum & Reymond, 2009), an exhaustive set of molecules with at most 13 heavy
atoms that satisfy certain conditions. Although the list of conditions is not small, it is well-defined.
Essentially, GDB-13 is constructed by taking all planar graphs of at most 13 vertices (enumerated
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using Nauty package (McKay & Piperno, 2014)) and putting atoms on the vertices in a way that
satisfies a set of chemical criteria. Several filters are further applied to enforce chemical stability and
synthetic feasibility rules. We refer the reader to the supplementary material of (Blum & Reymond,
2009) for the details. For the scope of this paper, we note that the set is exhaustive under the chosen
conditions. Next, we define four subsets of GDB-13 in Table 1. In the rest of the paper, we define

Table 1: Definitions of four subsets of GDB-13.

Name Size Description
Sasp 8,284,280 The set of (all strings of) molecules from GDB-13 that

have at least 0.4 similarity with aspirin.
Ssas 6,645,440 The set of easily synthesizable molecules from GDB-13,

more precisely, the subset of molecules having SAS score
less than 3.

Sd>p 9,331,077 The set of molecules that have at least 0.4 similarity to
paracetamol (a famous drug) and have less than 0.4 simi-
larity to 4-nitroanisole (a famous toxic molecule, a “poi-
son”).

Sd=p 8,051,185 The set of molecules m that are at a similar distance
from paracetamol (d) and 4-nitroanisole (p): 0.2 ≤
sim(m, d) ≤ 0.2165 and 0.2 ≤ sim(m, p) ≤ 0.2165.

the similarity between molecules (denoted by sim(m1,m2)) as the Tanimoto similarity (Tanimoto,
1958) between MACCS fingerprints (Durant et al., 2002). We also use synthetic accessibility score
(SAS) (Ertl & Schuffenhauer, 2009), a score between 1 (easily synthesizable) and 10 (very difficult
to make).

Note that these sets have different complexities. Intuitively, similarity in terms of MACCS finger-
prints implies certain shared substructures of molecules. Hence, Sasp contains molecules that share
a certain percentage of substructures with aspirin. Sd>p is more complicated as it contains molecules
that share some substructures with paracetamol but also do not share many structures with a toxic
substance. Sd=p is the most complicated, as it cannot be described solely with substructures. Ssas
is technically more complicated than Sasp as its formula includes statistics about various fragments,
but on the other hand, the contribution of those statistics in the final score is too little; the score is
dominated by “easier” variables like number of atoms.
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Figure 1: The statistics of the four sets of molecules we describe in Section 3.1. Ssas has a noticeably
different distribution of molecules compared to the other three sets, which might help to explain
certain divergences from the overall patterns seen in the later sections.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

For pretraining, we utilize a large subset of 848 million molecules from GDB-13 that explicitly
excludes the four sets defined above. We split this data into a training set and a 10,000-instance
validation set. We adopt most of the pretraining settings and model architecture from the OPT
1.3B model (Zhang et al., 2022), with additional information in A.1. We represent molecules using
SELFIES strings (Krenn et al., 2020). Note that while it guarantees that the generated strings in its
alphabet correspond to some molecules, it is not necessarily helpful for the quality of the generated
molecules as shown by Skinnider (2024). We perform experiments demonstrating the impacts of
the SELFIES representation in the analysis section. Canonical SELFIES correspond to a specific,
uniform, rule-based molecular structure traversal. Similarly, we define randomized SELFIES as
corresponding to random traversals of the molecule. Refer to the appendix for more details on
definitions of canonical and random SELFIES.

Training is performed from scratch for one epoch over the entire pretraining dataset, ensuring each
training string is used exactly once. For fine-tuning, we take our pretrained models and fine-tune
them on the four sets, from which we randomly select 1 million molecules as training data. For the
baseline models, we utilize the same OPT 1.3B architecture and employ the finetuning procedure on
the four subsets without pretraining.

We adopt the following methodology for each subset to construct evaluation sets encompassing
nearly all randomized versions of a given set of molecules. We randomly select 500 SELFIES
strings from each subset. For each selected SELFIES string, we loop 1 million times and ask the
RDKit library to generate an unrestricted randomized version. We finalized the set by removing all
duplicates to ensure a unique set of randomized versions for each molecule.

4.1 CHARACTERIZING DATA MODELLING DIFFICULTY WITH RECALL

Above, section 3.1 described the relative complexity of our molecular subsets based on domain
knowledge of the rules used to create them. Generating molecules from models trained on these sets,
in Table 2, we provide an interpretable characterization of the difficulty of modeling these sets by
directly evaluating recall for the trained language models, a unigram model trained on the same data,
and the i.i.d. upper bound sampling process described in section 3. Note that we show results for a
setting where the number of generations equals the number of molecules in the corresponding set.
Otherwise, the recall numbers between different subsets would not be directly comparable because
the size of the respective sets (M ) varies. Here, the upper bound is the same for all sets: 63.21%.
The unigram model performs poorly compared to our models, confirming that a more sophisticated
language modeling approach is necessary to represent these molecular sets. The results for the
trained language models show that in terms of recall, Ssas is the easiest one, followed by Sasp, Sd>p

and Sd=p. The observed ranking of modeling difficulty across molecular subsets aligns with what
was proposed in 3.1 based on domain-informed analysis of the set definitions.

Table 2: Recall (%) of OPT-1.3B language models fine-tuned on four sets of molecules, on G = M
strings generated with random sampling.

Pretraining Fine-tuning Sasp Ssas Sd>p Sd=p

Canonical Canonical 48.36 58.44 40.72 12.40
Canonical Randomized 47.58 56.24 39.12 10.35
Randomized Canonical 48.21 57.97 41.00 12.89
Randomized Randomized 50.12 58.05 41.56 12.92

Upper bound (i.i.d.) 63.21 63.21 63.21 63.21

Unigram model 0.03 0.48 0.0034 0.0057

Figure 2 shows how true positives and unique true positive molecules grow as the number of gener-
ated strings grows. The plot indicates that the recall is close to saturation at 10 million generations,
implying that this model will not cover 90% of the molecules even with 50 million generations. This
result motivates us to look for other approaches to improve the recall scores of the language models
in section 4.3.
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Table 3: Precision (%) of OPT-1.3B language models fine-tuned on four sets of molecules, on 10
million strings generated with random sampling.

Pretraining Fine-tuning Sasp Ssas Sd>p Sd=p

Canonical Canonical 75.69 80.58 68.27 14.07
Canonical Randomized 70.59 73.26 61.63 10.86
Randomized Canonical 76.16 80.26 68.93 14.58
Randomized Randomized 75.15 76.17 65.66 13.67

Unigram model 0.05 15.72 0.02 0.01
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Figure 2: Number of true positive strings and unique true positive molecules generated by the OPT-
1.3B model fine-tuned on aspirin-like molecules.

4.2 PREDICTING RECALL WITHOUT GENERATING

Given that evaluating recall provides a meaningful and interpretable measure of an approach’s abil-
ity to model data, estimating recall without needing to perform generations would be useful. This
subsection shows that this is possible and that the predicted recall can be derived from the autore-
gressive loss quantity on a representative set. We first compute the probability that the model will
generate a molecule from the validation set in G attempts. Let the j-th SELFIES string of the i-th
molecule si,j contain K tokens ski,j , k = 1, . . . ,K. The language model, when sampling a new
string, will select s1i,j as the first token with p(s1i,j) probability, the second token with p(s2i,j |s1i,j)
probability, continuing in this manner for subsequent tokens. Under this formulation, if we can
access the model, we can compute the expected probability of generating the entire string. Let us
denote this probability by pi,j . Then, the probability of the i-th molecule mi to be generated in a
single attempt is

∑∥mi∥
j=1 pi,j . The average probability of a desired molecule to be generated in a

single attempt becomes
∑M

i=1

∑∥mi∥
j=1 pi,j . Note that this is the expected precision of the model, as

the model will produce a correct string with exactly this probability at each sampling iteration.

To compute the expected value for recall in G sampling iterations, we take the probability
that the i-th given molecule will not be sampled in G iterations, and subtract it from one:

1 −
(
1−

∑∥mi∥
j=1 pi,j

)G

. The expected value of this quantity over all molecules is the expected
recall at G generations.

Assuming access to a small validation set of V molecules, one can estimate the precision and recall
using only those:

Precision =
M

V

V∑
i=1

∥mi∥∑
j=1

pi,j Recall =
1

V

V∑
i=1

1−

1−
∥mi∥∑
j=1

pi,j

G
 (1)
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Note that this formula holds for any i.i.d. sampling method. For example, if the probabilities are
scaled by temperature or by removing the tail by top-p or top-K approaches, then pi,j scores in the
above formulas will correspond to the scaled values.

We use these formulas to estimate precision and recall for various combinations of pretraining and
fine-tuning, random sampling, and temperature sampling across various sets of molecules. The
Pearson correlation between predicted and actual precision scores is 0.99975 and 0.99982 for the
recall scores. Figure 3 shows the correlation between predicted and actual recall scores for 4 subsets.
Here we use the model with canonical fine-tuning after canonical pretarining and generate 1M and
10M SELFIES for each subset. These results demonstrate that we can reliably use the predicted
scores for model selection.
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Figure 3: The correlation plot of actual recall and predicted recall for all 4 subsets.

4.3 RECALL-ORIENTED GENERATION

The experiments so far used only random sampling. Over the past few years, many papers have
focused on improving the sampling procedures of language models. Here, we investigate how basic
sampling strategies affect precision and recall. We then present a new generation method motivated
by our findings to improve model recall. For the model pretrained on canonical SELFIES and fine-
tuned on canonical ones from Sasp, we performed generation with temperature sampling. High
temperature means high entropy and more diverse generations, simultaneously increasing the risk
of incorrect generations. Figure 4 shows how the true positive generations (i.e., precision) drop as
the temperature grows. It also shows that the optimal number of unique true positive molecules is
achieved with T = 0.8 temperature.

All generation methods studied above suffer from duplicates in G. Beam search, another commonly
used sampling strategy for language models, can be used to mitigate this issue. The regular beam
search is an extension of the greedy algorithm and uses a relatively small beam size to keep the
best B generations at each token. At the end of the generation, the algorithm produces B distinct
sequences, and the top one is selected. We propose to keep all generations of the beam search
and use a beam size equal to G. We used beam search with B = 106 and B = 107 on one of
the language models fine-tuned on Sasp. The results are presented in Table 4, demonstrating a
significant improvement in recall using this approach. Furthermore, the beam size can be adjusted
to modulate precision, or the selection can be limited to the top-ranked generated sequences. We
leave the prediction of the recall of the generations using beam search to future work.
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Figure 4: Temperature sampling for the model fine-tuned on Sasp. G = 106 molecules are generated
to calculate Recall (%) and Precision (%).

Table 4: Precision and recall of the OPT-1.3B model trained on Sasp (only canonical SELFIES in
both phases) using different sampling methods, including beam search. Note that the upper bound
does not apply to beam search, as it is not an i.i.d. generation. We did not perform 107 generations
with low-temperature sampling.

Sampling Precision (%) Recall (%)

G = 106 G = 107 G = 106 G = 107

Random sampling 75.65 75.69 8.61 55.02
Temperature (T = 0.8) 83.02 83.02 9.16 51.21
Upper bound (i.i.d.) 100 100 11.37 70.01

Beam search (B = G) 93.08 71.03 10.71 69.17

4.4 RECALL-ORIENTED LOSS FUNCTION

Our next target is the loss function in the fine-tuning phase. One potential problem is that the
models “waste efforts” on generating multiple SELFIES strings of the same molecules. We notice
from Tables 3 and 8 that a model trained on randomized SELFIES during both training phases has
18.75 percentage points higher precision than recall, which means 1.875 million generated strings
are correct (i.e., they belong to Sasp), but represent the same molecules that are duplicated in the
56.40%. Some of these strings are duplicated SELFIES strings, but others are different SELFIES
representations of the same molecule. Notably, using canonical SELFIES for both training phases
does not improve this gap.

In this subsection, we perform an experiment explicitly forcing the network to focus on one SELF-
IES only. In contrast to earlier experiments, we enlarge the training set with 8 SELFIES for each
of the 1 million molecules. Then, we design the batches such that all variants of the same molecule
appear in the same batch. We use batch size 128, which covers 16 molecules with 8 variants each.
The loss function during fine-tuning first aggregates the loss over the 8 variants and then takes the
average across 16 distinct molecules.

We use three kinds of aggregation functions: mean, minimum, and maximum. Mean aggregation
is equivalent to the regular loss function; it puts equal weight on all SELFIES strings available to
the model. Minimum aggregation forces the model to optimize only the best SELFIES string, i.e.,
the one with the lowest loss. The hypothesis is that the model will direct its capacity on the easiest
string only. We hypothesize that the rest of its capacity will be allocated to covering more molecules
(instead of more SELFIES of the “known” molecules), hence increasing the recall. Maximum ag-
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gregation has the opposite effect, it forces the model to put efforts on optimizing even the hardest
SELFIES string.

Table 5 shows that our hypothesis did not hold generally. Mean aggregation performs the best both
in terms of precision and recall. Diverging from the regular loss function in both directions does
not help. We thought that the 1.3B parameter model might have too much capacity. Hence, there
is no actual competition between storing information about diverse molecules vs. about various
SELFIES strings of the same molecule. We tried the same experiment with smaller 125M and 800K
parameter versions of OPT (pretrained on the same set of canonical SELFIES). Although the same
result was observed for the 125M parameter model, the 800K model benefited from the minimum
aggregation loss. This discrepancy suggests that there may be a relationship between total model
capacity and the benefit gained from the proposed loss formulations. A more detailed investigation
of this relationship belongs to future work.

Table 5: Performance of the fine-tuned models on Sasp with different aggregation functions and
model sizes.

Aggregation Precision (%) Recall (%)
OPT-1.3B OPT-125M OPT-800K OPT-1.3B OPT-125M OPT-800K

Minimum 74.35 73.68 56.4 8.48 8.39 6.43
Maximum 64.60 61.60 33.4 7.42 7.09 3.87
Mean 78.35 76.04 47.5 8.96 8.70 5.46

Designing recall-oriented loss functions for fine-tuning remains a challenge for future work.

5 ANALYSIS AND ADDITIONAL RESULTS

5.1 IMPACT OF PRETRAINING

First, we examine the impact of pretraining on model performance via recall. To make the compar-
ison, we performed the same fine-tuning as in section 4 on a randomly initialized OPT-1.3B model
for the Sasp set and generated 1 million molecules using random sampling. The results, presented in
Table 6, show that pretraining consistently helps across all sets of molecules for both precision and
recall.

Table 6: Precision and Recall of OPT-1.3B language models fine-tuned on four sets of molecules
(only on canonical SELFIES), on 1 million strings generated with random sampling.

Pretraining Precision (%) Recall (%)
Sasp Ssas Sd>p Sd=p Sasp Ssas Sd>p Sd=p

No pretraining 61.01 68.07 52.19 6.45 6.92 9.47 5.29 0.79
Canonical 75.64 80.55 68.31 14.04 8.61 11.25 6.95 1.72
Randomized 76.22 80.28 68.88 14.54 8.66 11.20 7.00 1.78

Upper bound 100 100 100 100 11.37 13.97 10.16 11.68

5.2 MOLECULAR REPRESENTATIONS

5.2.1 SMILES VS SELFIES REPRESENTATIONS

We represent molecules using SELFIES strings (Krenn et al., 2020). Note that while it guarantees
that the generated strings in its alphabet correspond to some molecules, it is not necessarily helpful
for the quality of the generated molecules as shown by Skinnider (2024). To verify this in terms of
precision and recall, we train two additional models with SMILES representations, one with canon-
ical SMILES and another with randomized SMILES. We compare the performance of these two
models with that of the SELFIES-based models. In Table 7, we present the differences in precision
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and recall between SMILES and SELFIES. We evaluate the precision and recall of OPT-1.3B lan-
guage models, pretrained on randomized representations and fine-tuned on four molecular datasets.
After fine-tuning, 1 million strings were generated using random sampling. The results indicate that
SMILES performs better with canonical fine-tuning, while SELFIES excels with randomized fine-
tuning. It is important to note that all pretraining was conducted using the randomized versions for
both SMILES and SELFIES.

Table 7: The comparison of models’ performance trained with SMILES and SELFIES representa-
tions. For example, the precision difference between models trained with SMILES and SELFIES,
such as ∆Sasp = 1.74, highlights the performance gap between the two representations.

Fine-tuning Precision (%) Recall (%)
∆Sasp ∆Ssas ∆Sd>p ∆Sd=p ∆Sasp ∆Ssas ∆Sd>p ∆Sd=p

Canonical 1.74 0.80 1.94 1.83 0.20 0.12 0.20 0.22
Randomized -2.28 -0.26 -0.63 -0.05 -0.26 -0.03 -0.07 -0.01

5.2.2 CANONICAL VS RANDOMIZED REPRESENTATIONS

In section 4, we use canonical SELFIES representations for pretraining and randomized SELFIES
for fine-tuning. We define Canonical SELFIES of molecules as SELFIES generated via conversion
from the canonical SMILES representation produced by the RDKit library. By assigning unique
numbers to each atom in a molecule, RDKit enables a consistent traversal of the molecular structure.
This process ensures that the SMILES string generated will always be the same for a given molecule.
Likewise, to achieve the random SELFIES representation, we randomize the SMILES strings and
then transform them into SELFIES. It is possible to obtain randomized SMILES by altering the
atom ordering, which does not change how the algorithm traverses the graph (e.g., depth-first in the
case of RDKit) but changes the starting point and the order in which branching paths are selected.
Arús-Pous et al. (2019) defines two versions of randomization: restricted and unrestricted. The
unrestricted version allows the graph to be traversed without any constraints, whereas the restricted
version imposes certain restrictions, such as prioritizing sidechains when traversing a ring. We used
restricted versions in the pretraining data, but we used the unrestricted version during fine-tuning.

We used random sampling with temperature 1.0 to generate 10 million molecules from each of the
four fine-tuned models to better understand the tradeoffs between training on canonical vs random-
ized SELFIES. Tables 3 and 2 show the key evaluation metrics. Surprisingly, there is little difference
between the models trained on randomized and canonical SELFIES. The largest difference in recall
is less than 3 percentage points over 10 million samples. This result is in contrast with the find-
ings of Arús-Pous et al. (2019) (note the sets of molecules are different). While the difference is
small, pretraining on randomized SELFIES is better for precision and recall on three out of four
sets, with Ssas being the only exception. For precision, fine-tuning only on canonical is better, while
fine-tuning on randomized is preferable for recall. Pretraining on canonical and fine-tuning on ran-
domized SELFIES performs the worst on all molecular sets. We do not have a clear understanding
of the causes of these patterns. The recall numbers from Table 8 are not directly comparable across
molecular sets because the size of the respective sets (M ) varies. This is also evident from the upper
bound numbers. To make the numbers comparable, Table 2 shows the recall when the number of
generations equals the number of molecules in the respective set.

6 CONCLUSION

In this paper, we presented a benchmark for evaluating the recall of language models. We showed
how different factors affect the recall and highlighted a path toward improving the recall through
sampling methods and loss functions. We also present a novel method to predict generative recall
without doing generation. Whether pretraining or fine-tuning strategies of language models can
significantly improve their recall is still an open question. We will publicly release the sets of
molecules and the pretrained models to foster further research on methods for improved recall of
language models. Future work should develop methods covering much smaller datasets with few to
no training samples.
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A APPENDIX

A.1 MODEL TRAINING DETAILS

Our models were trained using the AdamW optimizer (Loshchilov & Hutter, 2019) with the follow-
ing hyperparameters: β1 = 0.9, β2 = 0.95 and ϵ = 10−5. The learning rate follows a linear schedule,
annealing to zero, with a peak learning rate of 4e−4 and 2,588 warmup steps. We use a weight de-
cay of 0.1, gradient clipping of 1.0, and a batch size of 128 with gradient accumulation steps of 32.
The maximum sequence length is 64, and dropout is set to 0. We employ mixed-precision training
(fp16). All training was conducted using the Hugging Face library. We pretrain a 1.3B parameter
model on eight A100 GPUs, each with 40GB of VRAM. Training on our dataset, which comprises
20 billion tokens, takes approximately two days.

For tokenization, we use an off-the-shelf tokenizer from ZJUNLP (2024) with a vocabulary size of
192, including a few additional tokens for debugging the models.

A.2 ADDITIONAL TABLES

Table 8: Recall of OPT-1.3B language models fine-tuned on four sets of molecules, on 10 million
strings generated with random sampling.

Pretraining Fine-tuning Sasp (%) Ssas (%) Sd>p (%) Sd=p (%)

Canonical Canonical 55.02 64.76 46.83 15.19
Canonical Randomized 53.74 62.21 44.90 12.39
Randomized Canonical 54.80 64.18 46.76 15.67
Randomized Randomized 56.40 64.10 47.48 15.33

Upper bound (i.i.d.) 70.09 77.79 65.76 71.12
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