
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXPLORING THE RECALL OF LANGUAGE MODELS:
CASE STUDY ON MOLECULES

Anonymous authors
Paper under double-blind review

ABSTRACT

Most current benchmarks evaluate Generative Language Models based on the ac-
curacy of the generated output. However, in some scenarios, evaluating the recall
of the generations is more valuable, i.e., whether a model can generate all correct
outputs, such as all security vulnerabilities of a given codebase. There are two
challenges in evaluating the recall: the lack of complete sets of correct outputs for
any task and many distinct but similar outputs (e.g., two exploits that target the
same vulnerability).
In this paper, we propose a benchmark from the domain of small organic
molecules. We define several sets of molecules of varying complexity and fine-
tune language models on subsets of those sets. We characterize set complexities
via recall of model generations and show that we can predict the recall for a given
number of generations in advance, using only perplexity on a held-out validation
set. This prediction method extends to several i.i.d. sampling generation meth-
ods. Subsequently, we propose a novel decoding method based on beam search
that maximizes recall by avoiding duplicates. Finally, we design a recall-aware
loss function that leverages intuition from prior experiments to improve model re-
call for small language models. We perform additional analyses on the impact of
molecular representation and model pretraining.

1 INTRODUCTION

Evaluating the performance of generative models, particularly language models, is an important
challenge in modern deep learning (Chang et al., 2024). Most of the current benchmarks evaluate
the ability of models to produce correct output, e.g., correctly answer questions, translate a sentence,
generate a coherent story on a given topic, etc.

An overlooked aspect of evaluation is the ability of generative models to generate all correct outputs
for the given input. This capability is crucial for security-focused applications. In software code
analysis, generating exploits that target all vulnerabilities (Liguori et al., 2021; Yang et al., 2023) is
a significant challenge. In language model security, one would like to find all “jailbreaks”, i.e., the
prompts that would force the target model to produce undesired outputs (Samvelyan et al., 2024),
which allows for patching language models in the post-training phase before making them publicly
available. In healthcare, AI assistants can suggest causes for the given symptoms, and sometimes, it
is desirable to list not only the most probable, but all possible conditions that could produce those
symptoms. In scientific discovery, generating new molecules or materials with given characteristics
is a cornerstone problem. For example, in drug discovery, most of the correctly generated molecules
may prove useless in subsequent phases of drug development (e.g., in toxicity analysis), so gen-
erating a diverse and complete set of initial molecules is useful. Another related problem is the
exhaustive generation of all conformations (3D positions) for a given molecule. These conforma-
tions then become inputs for multiple downstream tools in drug discovery (Watts et al., 2010).

The ability of language models to cover all correct outputs without incorporating retrieval has yet
to be systematically evaluated. We believe there are two significant obstacles. First, developing a
benchmark that includes all correct outputs is hard. Second, the representations of the objects we are
trying to generate are typically not unique. For example, the same security exploit can be written in
multiple ways by changing variable names or refactoring; the same health condition can be described
in different terms. More formally, the set of correct outputs is usually split into equivalence classes.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

An ideal evaluation benchmark should ignore multiple generations from the same equivalence class
and count the number of distinct classes a generative model can cover.

In this paper, we propose a benchmark that overcomes both obstacles and enables research into opti-
mizing the recall of language models. We start from GDB-13 (Blum & Reymond, 2009), a complete
database of molecules with specific characteristics and, most significantly, having at most 13 heavy
atoms. We design four sets of molecules of varying complexity and train language models on small
subsets of them. We represent molecules by SELFIES strings (Krenn et al., 2020), for which the
equivalence classes are well-defined and can be computed algorithmically. We use the models to
generate millions of molecules and evaluate the precision and recall of the generations by leverag-
ing information about equivalence classes. We show that we can predict recall in advance without
performing generation and devise novel recall-optimized generation methods and loss functions.
We hope that this system for LLM evaluation will prove to be a valuable tool in other domains, like
security, where the same software vulnerability can be exploited with similar attacks or the same
language model exploit can be triggered with different wording.

2 RELATED WORK

2.1 EVALUATING MOLECULAR GENERATION

A variety of methods have been successfully applied to molecular generation tasks, including
GFlowNets (Bengio et al., 2021; Kim et al., 2024), recurrent neural networks (Guo & Schwaller,
2023; Blaschke et al., 2020), and graph-based genetic algorithms (Jensen, 2019) among others.
Finally, LLMs have recently demonstrated strong performance on these tasks, especially when com-
bined with iterative training, prompt design, and reinforcement learning methods (Wang et al., 2024;
Guevorguian et al., 2024; Guo & Schwaller, 2024). In order to directly compare these methods,
benchmarks in molecular generation and molecule optimization emphasize measuring the number
of molecules generated under constraints that satisfy pre-specified criteria. For instance, the Practi-
cal Molecular Optimization benchmark involves a suite of tasks evaluated using the area under the
curve of the scores of generations throughout the optimization process (Gao et al., 2022). However,
this does not measure the diversity of generations, a critical criterion for generative models in indus-
trial settings. Similarly, benchmarks involving docking simulations count the number of molecules
generated that exceed certain property thresholds (Lee et al., 2024; Guo & Schwaller, 2023).

2.2 RECOVERING MOLECULAR DATASETS

Blum & Reymond (2009) introduced GDB-13, a complete set of small molecules with certain char-
acteristics. Arús-Pous et al. (2019) attempted to re-generate the GDB-13 by training a recurrent
neural network (RNN) on 1 million randomly sampled molecules. Arús-Pous et al. (2019) explored
the effect of SMILES randomization on the recall. This line of papers motivated our work to explore
the recall abilities of modern language models. However, the set of molecules these papers were
trying to recover are simple and do not require significant knowledge of chemistry, as they can be
described as all possible graphs with certain rules on node labels and graph properties. The sets we
introduce in this paper have varying complexity and rely on more complex chemical features.

2.3 RECALL OF GENERATIVE MODELS

For generative image models, the need for and introduction of precision and recall-based evalua-
tion methods is an extension of Fréchet Inception Distance (Heusel et al., 2017), which allow for
a more comprehensive understanding of tradeoffs between the quality and diversity of generated
images. In a seminal work, (Sajjadi et al., 2018) demonstrated a method to estimate these metrics by
comparing dataset and model distributions, with subsequent works making these estimations more
accurate (Kynkäänniemi et al., 2019; Park & Kim, 2023) and efficient to implement (Liang et al.,
2024). Further research has been done to provide stronger theoretical motivation and a unifying
framework for these methods (Sykes et al., 2024). Evaluating language models in terms of recall is
a comparatively new direction, with fewer existing application methods and theoretical background.
Several benchmark datasets evaluate models’ ability to recall information from a provided corpus of
text (Amouyal et al., 2022; Akhtar et al., 2024). In order to characterize the diversity of generations,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the MAUVE score describes the divergence criteria via a suite of comparison measures between
ground truth and generated texts (Pillutla et al., 2021) , which was expanded and improved upon in
(Pimentel et al., 2022) by performing more comprehensive ablations and operating on more granu-
lar textual features. The research closest to our research work continues in this direction and uses
a K-nearest neighbor estimator on text embeddings of generated text under reduced dimensionality
(Bronnec et al., 2024).

For molecular generation tasks, the ability to precisely evaluate the recall of generations for a prede-
fined closed set of desired molecules provides more evidence for the effectiveness of a modeling ap-
proach compared to current threshold-based evaluatory frameworks. Methods proposed for general
recall evaluation of generative models typically focus on other generative architectures (Generative
Adversarial Networks, Variational Autoencoders, Gaussian Processes) or operate directly on image
data. Existing methods that target LLMs require retrieving data from a text corpus or using a K-
nearest neighbors (KNN) estimator to approximate model recall. By contrast, our problem setting
allows for the direct calculation of recall. We show that we can predict this recall from quantities al-
ready implemented in standard model evaluation pipelines (perplexity) without additional modeling
considerations. Finally, this paper is the only work that proposes methods for improving language
model recall derived from the recall problem formulation we define.

3 PROBLEM DEFINITION

Let S be the set of all correct generations, i.e., strings in the language modeling context. Assume
there is an equivalence relation among the strings in S which divides S into M equivalence classes.
We denote the set of equivalence classes by Su (u stands for unique). Each equivalence class corre-
sponds to a single object. For any object m ∈ Su, the size of its equivalence class, i.e., the number
of distinct strings corresponding to that object, is denoted by ∥m∥.

The goal is to train a model that can generate strings from the maximum number of equivalence
classes, i.e., a maximum number of unique objects. To achieve that, we train a (potentially pre-
trained) language model on a subset of M objects. Suppose we also have a validation set, i.e., a
subset of V objects (V < M) distinct from the training set. After training, we generate G strings by
sampling from the model. Let G denote all generated strings.

We evaluate the model using the following metrics. True positives, denoted by TP , are the gener-
ated strings that belong to S. Note that G can contain duplicate strings but may also contain dis-
tinct strings that belong to the same equivalence class. Hence we also define unique true positives,
TPu = |Gu|, as the number of equivalent classes represented in G. We track two metrics:

Precision(G) =
TP

G
, Recall(G) =

TPu

M

Suppose a process samples G in an i.i.d. fashion. In that case, the number of true positives will
scale linearly with G, and precision will not depend on G (after a sufficiently large number of
generations). On the contrary, TPu does not scale indefinitely with G as it is upper bounded by
M = |Su|. Hence, the recall increases with G and can ideally reach M and stay constant. Section
4.3 shows how precision can depend on G if the sampling process is not i.i.d..

The ideal model can learn to put uniform p = 1
M probability on all objects of the set Su. Note

that in this ideal scenario, the probability of each object can be arbitrarily distributed over its string
representations. The recall of the ideal model after G generations will be 1 − (1− p)

G. Thus, this
quantity is the theoretical upper bound for the recall of i.i.d. sampling methods.

Below, we define four sets of molecules. Each molecule can be represented by multiple strings that
form the equivalence class of the molecule. Hence, S denotes the set of all string representations of
all molecules in the set.

3.1 MOLECULAR DATASETS

We take GDB-13 (Blum & Reymond, 2009), an exhaustive set of molecules with at most 13 heavy
atoms that satisfy certain conditions. Although the list of conditions is not small, it is well-defined.
Essentially, GDB-13 is constructed by taking all planar graphs of at most 13 vertices (enumerated

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

using Nauty package (McKay & Piperno, 2014)) and putting atoms on the vertices in a way that
satisfies a set of chemical criteria. Several filters are further applied to enforce chemical stability and
synthetic feasibility rules. We refer the reader to the supplementary material of (Blum & Reymond,
2009) for the details. For the scope of this paper, we note that the set is exhaustive under the chosen
conditions. Next, we define four subsets of GDB-13 in Table 1. In the rest of the paper, we define

Table 1: Definitions of four subsets of GDB-13.

Name Size Description
Sasp 8,284,280 The set of (all strings of) molecules from GDB-13 that

have at least 0.4 similarity with aspirin.
Ssas 6,645,440 The set of easily synthesizable molecules from GDB-13,

more precisely, the subset of molecules having SAS score
less than 3.

Sd>p 9,331,077 The set of molecules that have at least 0.4 similarity to
paracetamol (a famous drug) and have less than 0.4 simi-
larity to 4-nitroanisole (a famous toxic molecule, a “poi-
son”).

Sd=p 8,051,185 The set of molecules m that are at a similar distance
from paracetamol (d) and 4-nitroanisole (p): 0.2 ≤
sim(m, d) ≤ 0.2165 and 0.2 ≤ sim(m, p) ≤ 0.2165.

the similarity between molecules (denoted by sim(m1,m2)) as the Tanimoto similarity (Tanimoto,
1958) between MACCS fingerprints (Durant et al., 2002). We also use synthetic accessibility score
(SAS) (Ertl & Schuffenhauer, 2009), a score between 1 (easily synthesizable) and 10 (very difficult
to make).

Note that these sets have different complexities. Intuitively, similarity in terms of MACCS finger-
prints implies certain shared substructures of molecules. Hence, Sasp contains molecules that share
a certain percentage of substructures with aspirin. Sd>p is more complicated as it contains molecules
that share some substructures with paracetamol but also do not share many structures with a toxic
substance. Sd=p is the most complicated, as it cannot be described solely with substructures. Ssas
is technically more complicated than Sasp as its formula includes statistics about various fragments,
but on the other hand, the contribution of those statistics in the final score is too little; the score is
dominated by “easier” variables like number of atoms.

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

SELFIES Length

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f D
ist

in
ct

 S
EL

FI
ES

Sd = p

Sasp

Sd > p

Ssas

Figure 1: The statistics of the four sets of molecules we describe in Section 3.1. Ssas has a noticeably
different distribution of molecules compared to the other three sets, which might help to explain
certain divergences from the overall patterns seen in the later sections.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

For pretraining, we utilize a large subset of 848 million molecules from GDB-13 that explicitly
excludes the four sets defined above. We split this data into a training set and a 10,000-instance
validation set. We adopt most of the pretraining settings and model architecture from the OPT
1.3B model (Zhang et al., 2022), with additional information in A.1. We represent molecules using
SELFIES strings (Krenn et al., 2020). Note that while it guarantees that the generated strings in its
alphabet correspond to some molecules, it is not necessarily helpful for the quality of the generated
molecules as shown by Skinnider (2024). We perform experiments demonstrating the impacts of
the SELFIES representation in the analysis section. Canonical SELFIES correspond to a specific,
uniform, rule-based molecular structure traversal. Similarly, we define randomized SELFIES as
corresponding to random traversals of the molecule. Refer to the appendix for more details on
definitions of canonical and random SELFIES.

Training is performed from scratch for one epoch over the entire pretraining dataset, ensuring each
training string is used exactly once. For fine-tuning, we take our pretrained models and fine-tune
them on the four sets, from which we randomly select 1 million molecules as training data. For the
baseline models, we utilize the same OPT 1.3B architecture and employ the finetuning procedure on
the four subsets without pretraining.

We adopt the following methodology for each subset to construct evaluation sets encompassing
nearly all randomized versions of a given set of molecules. We randomly select 500 SELFIES
strings from each subset. For each selected SELFIES string, we loop 1 million times and ask the
RDKit library to generate an unrestricted randomized version. We finalized the set by removing all
duplicates to ensure a unique set of randomized versions for each molecule.

4.1 CHARACTERIZING DATA MODELLING DIFFICULTY WITH RECALL

Above, section 3.1 described the relative complexity of our molecular subsets based on domain
knowledge of the rules used to create them. Generating molecules from models trained on these sets,
in Table 2, we provide an interpretable characterization of the difficulty of modeling these sets by
directly evaluating recall for the trained language models, a unigram model trained on the same data,
and the i.i.d. upper bound sampling process described in section 3. Note that we show results for a
setting where the number of generations equals the number of molecules in the corresponding set.
Otherwise, the recall numbers between different subsets would not be directly comparable because
the size of the respective sets (M) varies. Here, the upper bound is the same for all sets: 63.21%.
The unigram model performs poorly compared to our models, confirming that a more sophisticated
language modeling approach is necessary to represent these molecular sets. The results for the
trained language models show that in terms of recall, Ssas is the easiest one, followed by Sasp, Sd>p

and Sd=p. The observed ranking of modeling difficulty across molecular subsets aligns with what
was proposed in 3.1 based on domain-informed analysis of the set definitions.

Table 2: Recall (%) of OPT-1.3B language models fine-tuned on four sets of molecules, on G = M
strings generated with random sampling.

Pretraining Fine-tuning Sasp Ssas Sd>p Sd=p

Canonical Canonical 48.36 58.44 40.72 12.40
Canonical Randomized 47.58 56.24 39.12 10.35
Randomized Canonical 48.21 57.97 41.00 12.89
Randomized Randomized 50.12 58.05 41.56 12.92

Upper bound (i.i.d.) 63.21 63.21 63.21 63.21

Unigram model 0.03 0.48 0.0034 0.0057

Figure 2 shows how true positives and unique true positive molecules grow as the number of gener-
ated strings grows. The plot indicates that the recall is close to saturation at 10 million generations,
implying that this model will not cover 90% of the molecules even with 50 million generations. This
result motivates us to look for other approaches to improve the recall scores of the language models
in section 4.3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 3: Precision (%) of OPT-1.3B language models fine-tuned on four sets of molecules, on 10
million strings generated with random sampling.

Pretraining Fine-tuning Sasp Ssas Sd>p Sd=p

Canonical Canonical 75.69 80.58 68.27 14.07
Canonical Randomized 70.59 73.26 61.63 10.86
Randomized Canonical 76.16 80.26 68.93 14.58
Randomized Randomized 75.15 76.17 65.66 13.67

Unigram model 0.05 15.72 0.02 0.01

0.0 0.2 0.4 0.6 0.8 1.0
Number of Generated SELFIES

1e7

0.0

0.2

0.4

0.6

0.8

1.0 1e7

55.02%

Ideal Case
Upper Bound (i.i.d.)
Size of the Set (M)
True Positives
Unique True Positives

Figure 2: Number of true positive strings and unique true positive molecules generated by the OPT-
1.3B model fine-tuned on aspirin-like molecules.

4.2 PREDICTING RECALL WITHOUT GENERATING

Given that evaluating recall provides a meaningful and interpretable measure of an approach’s abil-
ity to model data, estimating recall without needing to perform generations would be useful. This
subsection shows that this is possible and that the predicted recall can be derived from the autore-
gressive loss quantity on a representative set. We first compute the probability that the model will
generate a molecule from the validation set in G attempts. Let the j-th SELFIES string of the i-th
molecule si,j contain K tokens ski,j , k = 1, . . . ,K. The language model, when sampling a new
string, will select s1i,j as the first token with p(s1i,j) probability, the second token with p(s2i,j |s1i,j)
probability, continuing in this manner for subsequent tokens. Under this formulation, if we can
access the model, we can compute the expected probability of generating the entire string. Let us
denote this probability by pi,j . Then, the probability of the i-th molecule mi to be generated in a
single attempt is

∑∥mi∥
j=1 pi,j . The average probability of a desired molecule to be generated in a

single attempt becomes
∑M

i=1

∑∥mi∥
j=1 pi,j . Note that this is the expected precision of the model, as

the model will produce a correct string with exactly this probability at each sampling iteration.

To compute the expected value for recall in G sampling iterations, we take the probability
that the i-th given molecule will not be sampled in G iterations, and subtract it from one:

1 −
(
1−

∑∥mi∥
j=1 pi,j

)G

. The expected value of this quantity over all molecules is the expected
recall at G generations.

Assuming access to a small validation set of V molecules, one can estimate the precision and recall
using only those:

Precision =
M

V

V∑
i=1

∥mi∥∑
j=1

pi,j Recall =
1

V

V∑
i=1

1−

1−
∥mi∥∑
j=1

pi,j

G
 (1)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Note that this formula holds for any i.i.d. sampling method. For example, if the probabilities are
scaled by temperature or by removing the tail by top-p or top-K approaches, then pi,j scores in the
above formulas will correspond to the scaled values.

We use these formulas to estimate precision and recall for various combinations of pretraining and
fine-tuning, random sampling, and temperature sampling across various sets of molecules. The
Pearson correlation between predicted and actual precision scores is 0.99975 and 0.99982 for the
recall scores. Figure 3 shows the correlation between predicted and actual recall scores for 4 subsets.
Here we use the model with canonical fine-tuning after canonical pretarining and generate 1M and
10M SELFIES for each subset. These results demonstrate that we can reliably use the predicted
scores for model selection.

0 10 20 30 40 50 60
Recall

0

10

20

30

40

50

60

Pr
ed

ict
ed

 R
ec

al
l

Recall vs Predicted Recall
Subset
aspirin
sas
druglike
eqdist
Generation Length
10M
1M
x=y

Figure 3: The correlation plot of actual recall and predicted recall for all 4 subsets.

4.3 RECALL-ORIENTED GENERATION

The experiments so far used only random sampling. Over the past few years, many papers have
focused on improving the sampling procedures of language models. Here, we investigate how basic
sampling strategies affect precision and recall. We then present a new generation method motivated
by our findings to improve model recall. For the model pretrained on canonical SELFIES and fine-
tuned on canonical ones from Sasp, we performed generation with temperature sampling. High
temperature means high entropy and more diverse generations, simultaneously increasing the risk
of incorrect generations. Figure 4 shows how the true positive generations (i.e., precision) drop as
the temperature grows. It also shows that the optimal number of unique true positive molecules is
achieved with T = 0.8 temperature.

All generation methods studied above suffer from duplicates in G. Beam search, another commonly
used sampling strategy for language models, can be used to mitigate this issue. The regular beam
search is an extension of the greedy algorithm and uses a relatively small beam size to keep the
best B generations at each token. At the end of the generation, the algorithm produces B distinct
sequences, and the top one is selected. We propose to keep all generations of the beam search
and use a beam size equal to G. We used beam search with B = 106 and B = 107 on one of
the language models fine-tuned on Sasp. The results are presented in Table 4, demonstrating a
significant improvement in recall using this approach. Furthermore, the beam size can be adjusted
to modulate precision, or the selection can be limited to the top-ranked generated sequences. We
leave the prediction of the recall of the generations using beam search to future work.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Temperature

4

5

6

7

8

9

Re
ca

ll

40

50

60

70

80

90

Pr
ec

isi
on

Recall and Precision with temperature sampling.

Figure 4: Temperature sampling for the model fine-tuned on Sasp. G = 106 molecules are generated
to calculate Recall (%) and Precision (%).

Table 4: Precision and recall of the OPT-1.3B model trained on Sasp (only canonical SELFIES in
both phases) using different sampling methods, including beam search. Note that the upper bound
does not apply to beam search, as it is not an i.i.d. generation. We did not perform 107 generations
with low-temperature sampling.

Sampling Precision (%) Recall (%)

G = 106 G = 107 G = 106 G = 107

Random sampling 75.65 75.69 8.61 55.02
Temperature (T = 0.8) 83.02 83.02 9.16 51.21
Upper bound (i.i.d.) 100 100 11.37 70.01

Beam search (B = G) 93.08 71.03 10.71 69.17

4.4 RECALL-ORIENTED LOSS FUNCTION

Our next target is the loss function in the fine-tuning phase. One potential problem is that the
models “waste efforts” on generating multiple SELFIES strings of the same molecules. We notice
from Tables 3 and 8 that a model trained on randomized SELFIES during both training phases has
18.75 percentage points higher precision than recall, which means 1.875 million generated strings
are correct (i.e., they belong to Sasp), but represent the same molecules that are duplicated in the
56.40%. Some of these strings are duplicated SELFIES strings, but others are different SELFIES
representations of the same molecule. Notably, using canonical SELFIES for both training phases
does not improve this gap.

In this subsection, we perform an experiment explicitly forcing the network to focus on one SELF-
IES only. In contrast to earlier experiments, we enlarge the training set with 8 SELFIES for each
of the 1 million molecules. Then, we design the batches such that all variants of the same molecule
appear in the same batch. We use batch size 128, which covers 16 molecules with 8 variants each.
The loss function during fine-tuning first aggregates the loss over the 8 variants and then takes the
average across 16 distinct molecules.

We use three kinds of aggregation functions: mean, minimum, and maximum. Mean aggregation
is equivalent to the regular loss function; it puts equal weight on all SELFIES strings available to
the model. Minimum aggregation forces the model to optimize only the best SELFIES string, i.e.,
the one with the lowest loss. The hypothesis is that the model will direct its capacity on the easiest
string only. We hypothesize that the rest of its capacity will be allocated to covering more molecules
(instead of more SELFIES of the “known” molecules), hence increasing the recall. Maximum ag-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

gregation has the opposite effect, it forces the model to put efforts on optimizing even the hardest
SELFIES string.

Table 5 shows that our hypothesis did not hold generally. Mean aggregation performs the best both
in terms of precision and recall. Diverging from the regular loss function in both directions does
not help. We thought that the 1.3B parameter model might have too much capacity. Hence, there
is no actual competition between storing information about diverse molecules vs. about various
SELFIES strings of the same molecule. We tried the same experiment with smaller 125M and 800K
parameter versions of OPT (pretrained on the same set of canonical SELFIES). Although the same
result was observed for the 125M parameter model, the 800K model benefited from the minimum
aggregation loss. This discrepancy suggests that there may be a relationship between total model
capacity and the benefit gained from the proposed loss formulations. A more detailed investigation
of this relationship belongs to future work.

Table 5: Performance of the fine-tuned models on Sasp with different aggregation functions and
model sizes.

Aggregation Precision (%) Recall (%)
OPT-1.3B OPT-125M OPT-800K OPT-1.3B OPT-125M OPT-800K

Minimum 74.35 73.68 56.4 8.48 8.39 6.43
Maximum 64.60 61.60 33.4 7.42 7.09 3.87
Mean 78.35 76.04 47.5 8.96 8.70 5.46

Designing recall-oriented loss functions for fine-tuning remains a challenge for future work.

5 ANALYSIS AND ADDITIONAL RESULTS

5.1 IMPACT OF PRETRAINING

First, we examine the impact of pretraining on model performance via recall. To make the compar-
ison, we performed the same fine-tuning as in section 4 on a randomly initialized OPT-1.3B model
for the Sasp set and generated 1 million molecules using random sampling. The results, presented in
Table 6, show that pretraining consistently helps across all sets of molecules for both precision and
recall.

Table 6: Precision and Recall of OPT-1.3B language models fine-tuned on four sets of molecules
(only on canonical SELFIES), on 1 million strings generated with random sampling.

Pretraining Precision (%) Recall (%)
Sasp Ssas Sd>p Sd=p Sasp Ssas Sd>p Sd=p

No pretraining 61.01 68.07 52.19 6.45 6.92 9.47 5.29 0.79
Canonical 75.64 80.55 68.31 14.04 8.61 11.25 6.95 1.72
Randomized 76.22 80.28 68.88 14.54 8.66 11.20 7.00 1.78

Upper bound 100 100 100 100 11.37 13.97 10.16 11.68

5.2 MOLECULAR REPRESENTATIONS

5.2.1 SMILES VS SELFIES REPRESENTATIONS

We represent molecules using SELFIES strings (Krenn et al., 2020). Note that while it guarantees
that the generated strings in its alphabet correspond to some molecules, it is not necessarily helpful
for the quality of the generated molecules as shown by Skinnider (2024). To verify this in terms of
precision and recall, we train two additional models with SMILES representations, one with canon-
ical SMILES and another with randomized SMILES. We compare the performance of these two
models with that of the SELFIES-based models. In Table 7, we present the differences in precision

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

and recall between SMILES and SELFIES. We evaluate the precision and recall of OPT-1.3B lan-
guage models, pretrained on randomized representations and fine-tuned on four molecular datasets.
After fine-tuning, 1 million strings were generated using random sampling. The results indicate that
SMILES performs better with canonical fine-tuning, while SELFIES excels with randomized fine-
tuning. It is important to note that all pretraining was conducted using the randomized versions for
both SMILES and SELFIES.

Table 7: The comparison of models’ performance trained with SMILES and SELFIES representa-
tions. For example, the precision difference between models trained with SMILES and SELFIES,
such as ∆Sasp = 1.74, highlights the performance gap between the two representations.

Fine-tuning Precision (%) Recall (%)
∆Sasp ∆Ssas ∆Sd>p ∆Sd=p ∆Sasp ∆Ssas ∆Sd>p ∆Sd=p

Canonical 1.74 0.80 1.94 1.83 0.20 0.12 0.20 0.22
Randomized -2.28 -0.26 -0.63 -0.05 -0.26 -0.03 -0.07 -0.01

5.2.2 CANONICAL VS RANDOMIZED REPRESENTATIONS

In section 4, we use canonical SELFIES representations for pretraining and randomized SELFIES
for fine-tuning. We define Canonical SELFIES of molecules as SELFIES generated via conversion
from the canonical SMILES representation produced by the RDKit library. By assigning unique
numbers to each atom in a molecule, RDKit enables a consistent traversal of the molecular structure.
This process ensures that the SMILES string generated will always be the same for a given molecule.
Likewise, to achieve the random SELFIES representation, we randomize the SMILES strings and
then transform them into SELFIES. It is possible to obtain randomized SMILES by altering the
atom ordering, which does not change how the algorithm traverses the graph (e.g., depth-first in the
case of RDKit) but changes the starting point and the order in which branching paths are selected.
Arús-Pous et al. (2019) defines two versions of randomization: restricted and unrestricted. The
unrestricted version allows the graph to be traversed without any constraints, whereas the restricted
version imposes certain restrictions, such as prioritizing sidechains when traversing a ring. We used
restricted versions in the pretraining data, but we used the unrestricted version during fine-tuning.

We used random sampling with temperature 1.0 to generate 10 million molecules from each of the
four fine-tuned models to better understand the tradeoffs between training on canonical vs random-
ized SELFIES. Tables 3 and 2 show the key evaluation metrics. Surprisingly, there is little difference
between the models trained on randomized and canonical SELFIES. The largest difference in recall
is less than 3 percentage points over 10 million samples. This result is in contrast with the find-
ings of Arús-Pous et al. (2019) (note the sets of molecules are different). While the difference is
small, pretraining on randomized SELFIES is better for precision and recall on three out of four
sets, with Ssas being the only exception. For precision, fine-tuning only on canonical is better, while
fine-tuning on randomized is preferable for recall. Pretraining on canonical and fine-tuning on ran-
domized SELFIES performs the worst on all molecular sets. We do not have a clear understanding
of the causes of these patterns. The recall numbers from Table 8 are not directly comparable across
molecular sets because the size of the respective sets (M) varies. This is also evident from the upper
bound numbers. To make the numbers comparable, Table 2 shows the recall when the number of
generations equals the number of molecules in the respective set.

6 CONCLUSION

In this paper, we presented a benchmark for evaluating the recall of language models. We showed
how different factors affect the recall and highlighted a path toward improving the recall through
sampling methods and loss functions. We also present a novel method to predict generative recall
without doing generation. Whether pretraining or fine-tuning strategies of language models can
significantly improve their recall is still an open question. We will publicly release the sets of
molecules and the pretrained models to foster further research on methods for improved recall of
language models. Future work should develop methods covering much smaller datasets with few to
no training samples.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mubashara Akhtar, Chenxi Pang, Andreea Marzoca, Yasemin Altun, and Julian Martin Eisenschlos.
Tanq: An open domain dataset of table answered questions. ArXiv, abs/2405.07765, 2024. URL
https://api.semanticscholar.org/CorpusID:269757585.

Samuel Joseph Amouyal, Tomer Wolfson, Ohad Rubin, Ori Yoran, Jonathan Herzig, and Jonathan
Berant. Qampari: A benchmark for open-domain questions with many answers. In IEEE Games
Entertainment Media Conference, 2022. URL https://api.semanticscholar.org/
CorpusID:249062559.

Josep Arús-Pous, Thomas Blaschke, Silas Ulander, Jean-Louis Reymond, Hongming Chen, and
Ola Engkvist. Exploring the gdb-13 chemical space using deep generative models. Journal of
cheminformatics, 11:1–14, 2019.

Josep Arús-Pous, Simon Johansson, Oleksii Prykhodko, Esben Jannik Bjerrum, Christian Tyrchan,
Jean-Louis Reymond, Hongming Chen, and Ola Engkvist. Randomized smiles strings improve
the quality of molecular generative models. Journal of Cheminformatics, 11, 2019. URL https:
//api.semanticscholar.org/CorpusID:208206203.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

Thomas Blaschke, Josep Arús-Pous, Hongming Chen, Christian Margreitter, Christian Tyrchan, Ola
Engkvist, Kostas Papadopoulos, and Atanas Patronov. Reinvent 2.0: an ai tool for de novo drug
design. Journal of chemical information and modeling, 60(12):5918–5922, 2020.

Lorenz C Blum and Jean-Louis Reymond. 970 million druglike small molecules for virtual screening
in the chemical universe database gdb-13. Journal of the American Chemical Society, 131(25):
8732–8733, 2009.

Florian Le Bronnec, Alexandre Verine, Benjamin Négrevergne, Yann Chevaleyre, and Alexandre
Allauzen. Exploring precision and recall to assess the quality and diversity of llms. In An-
nual Meeting of the Association for Computational Linguistics, 2024. URL https://api.
semanticscholar.org/CorpusID:267740404.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Joseph L Durant, Burton A Leland, Douglas R Henry, and James G Nourse. Reoptimization of mdl
keys for use in drug discovery. Journal of chemical information and computer sciences, 42(6):
1273–1280, 2002.

Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. Journal of cheminfor-
matics, 1:1–11, 2009.

Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor W. Coley. Sample efficiency matters: A
benchmark for practical molecular optimization. ArXiv, abs/2206.12411, 2022. URL https:
//api.semanticscholar.org/CorpusID:250072218.

Philipp Guevorguian, Menua Bedrosian, Tigran Fahradyan, Gayane Chilingaryan, Hrant Khacha-
trian, and Armen Aghajanyan. Small molecule optimization with large language mod-
els. ArXiv, abs/2407.18897, 2024. URL https://api.semanticscholar.org/
CorpusID:271516332.

Jeff Guo and Philippe Schwaller. Augmented memory: Capitalizing on experience replay to accel-
erate de novo molecular design. ArXiv, abs/2305.16160, 2023.

Jeff Guo and Philippe Schwaller. Saturn: Sample-efficient generative molecular design using mem-
ory manipulation. arXiv preprint arXiv:2405.17066, 2024.

11

https://api.semanticscholar.org/CorpusID:269757585
https://api.semanticscholar.org/CorpusID:249062559
https://api.semanticscholar.org/CorpusID:249062559
https://api.semanticscholar.org/CorpusID:208206203
https://api.semanticscholar.org/CorpusID:208206203
https://api.semanticscholar.org/CorpusID:267740404
https://api.semanticscholar.org/CorpusID:267740404
https://api.semanticscholar.org/CorpusID:250072218
https://api.semanticscholar.org/CorpusID:250072218
https://api.semanticscholar.org/CorpusID:271516332
https://api.semanticscholar.org/CorpusID:271516332

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Neu-
ral Information Processing Systems, 2017. URL https://api.semanticscholar.org/
CorpusID:326772.

Jan H Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search for
the exploration of chemical space. Chemical science, 10(12):3567–3572, 2019.

Hyeon-Seob Kim, Minsu Kim, Sanghyeok Choi, and Jinkyoo Park. Genetic-guided gflownets:
Advancing in practical molecular optimization benchmark. ArXiv, abs/2402.05961, 2024.

Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik. Self-
referencing embedded strings (selfies): A 100 Machine Learning: Science and Technology, 1
(4):045024, oct 2020. doi: 10.1088/2632-2153/aba947. URL https://dx.doi.org/10.
1088/2632-2153/aba947.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. In Neural Information Processing
Systems, 2019. URL https://api.semanticscholar.org/CorpusID:118648975.

Seul Lee, Seanie Lee, Kenji Kawaguchi, and Sung Ju Hwang. Drug discovery with dynamic goal-
aware fragments. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=xuX2rDSSco.

Yuanbang Liang, Jing Wu, Yu-Kun Lai, and Yipeng Qin. Efficient precision and recall metrics
for assessing generative models using hubness-aware sampling. In International Conference
on Machine Learning, 2024. URL https://api.semanticscholar.org/CorpusID:
270974756.

Pietro Liguori, Erfan Al-Hossami, Vittorio Orbinato, Roberto Natella, Samira Shaikh, Domenico
Cotroneo, and Bojan Cukic. Evil: exploiting software via natural language. In 2021 IEEE 32nd
International Symposium on Software Reliability Engineering (ISSRE), pp. 321–332. IEEE, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Con-
ference on Learning Representations (ICLR), 2019. URL https://openreview.net/
forum?id=Bkg6RiCqY7.

Brendan D McKay and Adolfo Piperno. Practical graph isomorphism, ii. Journal of symbolic
computation, 60:94–112, 2014.

Dogyun Park and Suhyun Kim. Probabilistic precision and recall towards reliable evaluation of
generative models. 2023 IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 20042–20052, 2023. URL https://api.semanticscholar.org/CorpusID:
261530847.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
and Zaı̈d Harchaoui. Mauve: Measuring the gap between neural text and human text us-
ing divergence frontiers. In Neural Information Processing Systems, 2021. URL https:
//api.semanticscholar.org/CorpusID:244488758.

Tiago Pimentel, Clara Meister, and Ryan Cotterell. On the usefulness of embeddings, clusters and
strings for text generator evaluation. 2022. URL https://api.semanticscholar.org/
CorpusID:253735234.

Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing
generative models via precision and recall. ArXiv, abs/1806.00035, 2018. URL https://api.
semanticscholar.org/CorpusID:44104089.

Mikayel Samvelyan, Sharath Chandra Raparthy, Andrei Lupu, Eric Hambro, Aram H Markosyan,
Manish Bhatt, Yuning Mao, Minqi Jiang, Jack Parker-Holder, Jakob Foerster, et al. Rain-
bow teaming: Open-ended generation of diverse adversarial prompts. arXiv preprint
arXiv:2402.16822, 2024.

12

https://api.semanticscholar.org/CorpusID:326772
https://api.semanticscholar.org/CorpusID:326772
https://dx.doi.org/10.1088/2632-2153/aba947
https://dx.doi.org/10.1088/2632-2153/aba947
https://api.semanticscholar.org/CorpusID:118648975
https://openreview.net/forum?id=xuX2rDSSco
https://api.semanticscholar.org/CorpusID:270974756
https://api.semanticscholar.org/CorpusID:270974756
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://api.semanticscholar.org/CorpusID:261530847
https://api.semanticscholar.org/CorpusID:261530847
https://api.semanticscholar.org/CorpusID:244488758
https://api.semanticscholar.org/CorpusID:244488758
https://api.semanticscholar.org/CorpusID:253735234
https://api.semanticscholar.org/CorpusID:253735234
https://api.semanticscholar.org/CorpusID:44104089
https://api.semanticscholar.org/CorpusID:44104089

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Michael A. Skinnider. Invalid smiles are beneficial rather than detrimental to chemical language
models. Nature Machine Intelligence, 2024. URL https://api.semanticscholar.
org/CorpusID:268788258.

Benjamin Sykes, Loic Simon, and Julien Rabin. Unifying and extending precision recall met-
rics for assessing generative models. ArXiv, abs/2405.01611, 2024. URL https://api.
semanticscholar.org/CorpusID:269587938.

Taffee T Tanimoto. Elementary mathematical theory of classification and prediction. 1958.

Haorui Wang, Marta Skreta, Cher Tian Ser, Wenhao Gao, Lingkai Kong, Felix Streith-Kalthoff,
Chenru Duan, Yuchen Zhuang, Yue Yu, Yanqiao Zhu, Yuanqi Du, Alán Aspuru-Guzik, Kirill
Neklyudov, and Chao Zhang. Efficient evolutionary search over chemical space with large lan-
guage models. ArXiv, abs/2406.16976, 2024. URL https://api.semanticscholar.
org/CorpusID:270711201.

K Shawn Watts, Pranav Dalal, Robert B Murphy, Woody Sherman, Rich A Friesner, and John C
Shelley. Confgen: a conformational search method for efficient generation of bioactive conform-
ers. Journal of chemical information and modeling, 50(4):534–546, 2010.

Guang Yang, Yu Zhou, Xiang Chen, Xiangyu Zhang, Tingting Han, and Taolue Chen. Exploitgen:
Template-augmented exploit code generation based on codebert. Journal of Systems and Software,
197:111577, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
moyer. Opt: Open pre-trained transformer language models. ArXiv, abs/2205.01068, 2022. URL
https://api.semanticscholar.org/CorpusID:248496292.

ZJUNLP. Molgen-large. https://huggingface.co/zjunlp/MolGen-large, 2024. Ac-
cessed: 2024-05-22.

13

https://api.semanticscholar.org/CorpusID:268788258
https://api.semanticscholar.org/CorpusID:268788258
https://api.semanticscholar.org/CorpusID:269587938
https://api.semanticscholar.org/CorpusID:269587938
https://api.semanticscholar.org/CorpusID:270711201
https://api.semanticscholar.org/CorpusID:270711201
https://api.semanticscholar.org/CorpusID:248496292
https://huggingface.co/zjunlp/MolGen-large

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 MODEL TRAINING DETAILS

Our models were trained using the AdamW optimizer (Loshchilov & Hutter, 2019) with the follow-
ing hyperparameters: β1 = 0.9, β2 = 0.95 and ϵ = 10−5. The learning rate follows a linear schedule,
annealing to zero, with a peak learning rate of 4e−4 and 2,588 warmup steps. We use a weight de-
cay of 0.1, gradient clipping of 1.0, and a batch size of 128 with gradient accumulation steps of 32.
The maximum sequence length is 64, and dropout is set to 0. We employ mixed-precision training
(fp16). All training was conducted using the Hugging Face library. We pretrain a 1.3B parameter
model on eight A100 GPUs, each with 40GB of VRAM. Training on our dataset, which comprises
20 billion tokens, takes approximately two days.

For tokenization, we use an off-the-shelf tokenizer from ZJUNLP (2024) with a vocabulary size of
192, including a few additional tokens for debugging the models.

A.2 ADDITIONAL TABLES

Table 8: Recall of OPT-1.3B language models fine-tuned on four sets of molecules, on 10 million
strings generated with random sampling.

Pretraining Fine-tuning Sasp (%) Ssas (%) Sd>p (%) Sd=p (%)

Canonical Canonical 55.02 64.76 46.83 15.19
Canonical Randomized 53.74 62.21 44.90 12.39
Randomized Canonical 54.80 64.18 46.76 15.67
Randomized Randomized 56.40 64.10 47.48 15.33

Upper bound (i.i.d.) 70.09 77.79 65.76 71.12

14

	Introduction
	Related Work
	Evaluating Molecular Generation
	Recovering Molecular Datasets
	Recall of Generative Models

	Problem Definition
	Molecular Datasets

	Experiments
	Characterizing Data Modelling Difficulty with Recall
	Predicting recall without generating
	Recall-oriented Generation
	Recall-oriented Loss Function

	Analysis and Additional Results
	Impact of pretraining
	Molecular Representations
	SMILES vs SELFIES Representations
	Canonical vs Randomized Representations

	Conclusion
	Appendix
	Model Training Details
	Additional Tables

