
Benchmarking Graph Neural Network-based
Imputation Methods on Single-Cell Transcriptomics

Data

Han-Bo Li
University of Cambridge
hbl26@cam.ac.uk

Ramon Viñas Torné
University of Cambridge
rv340@cam.ac.uk

Pietro Lio
University of Cambridge
pl219@cam.ac.uk

Abstract

Single-cell RNA sequencing (scRNA-seq) provides vast amounts of gene expres-
sion data. In this paper, we benchmark several graph neural network (GNN)
approaches for cell-type classification using imputed single-cell gene expression
data. We model the data in the Paul15 dataset, describing the development of
myeloid progenitors, as a bipartite graph consisting of cell and gene nodes, with
edge values signifying gene expression. We train a 3-layer GraphSage GNN to
impute data by training it to reconstruct the dataset based on a downstream cell
classification task. For this, we use a cell-cell graph representation on a small graph
convolutional network (GCN) and an adjacency matrix predetermined by spectral
clustering. When combined with the data imputation model, GNN classification
performance is 58%, marginally worse than an SVM benchmark of 59.4%, however
exhibits better learning and generalisation characteristics along with producing an
auxiliary imputation model. Our findings catalyse the development of new tools to
analyse complex single-cell datasets.

1 Introduction

GNNs offer an enticing framework for representation learning on scRNA-seq data as they can provide
a natural and flexible model structure. Buterez et al. [2021] propose a variational graph autoencoder
architecture with graph attention layers for dimensionality reduction and clustering of challenging
scRNA-seq datasets. Wang et al. [2021] model cell-cell relationships and perform gene expression
imputation with autoencoders and GNNs. They outperform existing tools for gene imputation and cell
clustering on four benchmark datasets. Rao et al. [2021] combine graph convolution and autoencoder
neural networks to impute drop-out events in scRNA-seq datasets, and outperform state-of-the-art
techniques.

The primary goal of this paper is cell classification using gene expression data from scRNA-seq
datasets1. We approach this task in two ways. In Section 2 we represent the scRNA-seq data using a
bipartite graph, where cell samples and gene expressions are nodes, and observed gene expressions are
edge attributes between these. This representation is inspired by the GRAPE framework introduced
by You et al. [2020], and its application to scRNA-seq data is novel. We examine various extensions
to this framework including node representations in the bipartite graph, how its performance scales
with the dimensionality of the gene expression, and how adding a reconstruction penalty affects
downstream cell classification.

We find that using a small graph convolutional network with adjacency based on principal component
analysis (PCA) and k-nearest neighbours analysis (KNN) can achieve similar test accuracy than

1https://github.com/hbl4310/gnn_sc_transcript

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/hbl4310/gnn_sc_transcript

the SVM benchmark with a linear kernel. When we regularise against oversmoothing in the GNN,
performance improves to beat the benchmark. On a dataset with more gene expressions, the GNN
models outperform the benchmark. Combining these approaches with a GNN-based data imputation
framework [You et al., 2020], we achieve similar performance, but better learning characteristics.

2 Gene Expression Imputation Methods

Gene expression measurement is known to be difficult, with variability across experimental batches,
intrinsic transcriptional noise, extrinsic noise from cell cycles [Dal Molin and Di Camillo, 2019].
Cell classification can be impeded by missing or incorrect gene expression data. We explore methods
of imputing gene expression data with GNNs to facilitate cell classification downstream. While
learning a robust data imputation method is valuable due to the difficulties of experimental techniques,
another potential benefit is that the imputation training might act to regularise the cell classification
model if both models are trained simultaneously ameliorating overfitting issues. This could address
generalisation concerns observed in the application of GNN models directly to the gene expression
data.

2.1 GRAPE

You et al. [2020] introduce GRAPE, a general framework for feature imputation and label prediction
in the presence of missing data. Fundamental to GRAPE is the data representation: samples and
features are represented as a fully connected bipartite graph, where edge values denote a feature
occurring in a sample. Sample nodes have constant node features, and feature nodes are one-hot
encoded. Embeddings for each sample and feature node are learned with a GNN (we refer to this as
the data model) whose output node features are fed into an imputation model which predicts edge
values, denoting feature existence and values. In the original implementation, when used for node
classification, the loss from the node predictions are propagated through to the imputation and data
models. The authors apply this method to various UCI datasets. Their data model for the bipartite
graph is a 3-layer GraphSAGE model which accommodates edge value convolution. The imputation
and node classification models are MLPs.

Figure 1: Using the top 100 varying genes we
test the performance of the GRAPE framework on
cell classification using MLP and GCN models for
the prediction task. Learnable embeddings seem
to improve GCN performance, but degrade MLP
performance.

We apply the GRAPE framework to scRNA-
seq data, where we regard cells as samples and
gene expressions as features. The edge predic-
tion therefore corresponds to predicting missing
or incorrect gene expression measurements for
cell samples. This differs from existing GNN-
based data imputation methods designed for
scRNA-seq data, such as the single-cell GNN
(scGNN), introduced by Wang et al. [2021].
Their model uses a graph autoencoder and left-
truncated Gaussian mixture model to reconstruct
the data.

2.2 Experiments

We perform several experiments using GRAPE
on the Paul15 dataset [Paul et al., 2015] to as-
sess whether the augmentations to the GRAPE
framework are useful. We use the 3-layer Graph-
SAGE model with edge updates for the data
model, as this outperformed other layer types
such as GCN with edge updates in testing. The
imputation model is a 2-layer MLP.

Cell Classification Model

We use the 19 cell types labelled in the Paul15
dataset [Paul et al., 2015] as targets for the node
classification task. Node labels are one-hot en-

2

coded and loss is calculated using cross entropy. Appendix A briefly summarises various GNN
architectures. Appendix B outlines several assumptions and approaches to determining the graph
adjacency for gene expression data. Appendix C describes the ablation across different GNN architec-
tures and adjacencies to evaluate their performance for cell classification. Directly applying various
convolutional GNN models to cell classification on scRNA-seq data, we find that a simple GCN with
DGN and graph adjacency calculated using PCA and KNN can outperform a SVM classifier with a
linear kernel, by 59.4% vs 58.6%.

We make the following modifications to the GRAPE framework to adapt it to scRNA-seq analysis:

• Since the number of potential genes is large, instead of using one-hot encoded feature nodes,
we use a lower-dimension learnable embedding. The features for the cell nodes remain
constant, and the same size as the gene nodes’.

• Informed by our experiments in Appendix C, we use a GCN model for the downstream
node classification task. We experiment with both a 2-layer GCN without DGN and a
1-layer GCN with DGN. We compute the adjacency using PCA+KNN with k = 30 from
the imputed data at each update step2.

• Along with the cross entropy loss for cell classification, we also compute a reconstruction
loss between the imputed gene expression values and the original data. This may have
the effect of further regularising the downstream task of cell classification and aid in its
generalisation. The data, imputation and prediction models are trained simultaneously and
updated with both accuracy and reconstruction losses.

Throughout all experiments, the learning rate is 0.001, and the train/test split is 70/30%.

Gene Embeddings and Classification Model

To test whether using learnable embeddings improve downstream task performance, we restrict the
dataset to 100 of the most highly variable genes so that one-hot encodings for gene nodes are not too
large. We test learnable embeddings for gene nodes of sizes 16, 32 and 64 with different prediction
models: MLP, GCN, GCN with DGN. The hidden dimensions in all models are 64. The results are
shown in Figure 1. When one-hot encodings are used, test accuracies for all models are similar, at
around 36-37%. When learnable embeddings are used, both GCN models perform significantly better
while the MLP model performance degrades. Since the GCN without DGN outperforms the MLP for
all embedding sizes tested, and performs only marginally worse than GCN with DGN, we will focus
on GCN without DGN hereafter due to computational considerations.

Scaling the number of genes

Next, we increase the number of genes and examine the performance of the GRAPE framework with a
GCN prediction model. The results are displayed in Figure 2. We can see that performance improves
as the number of genes in the dataset increases. Further, as the number of genes increases, greater
accuracy is achieved with larger gene embedding sizes, suggesting that the optimal embedding size
might be proportional to the number of genes. We can compare the classification performance against
the SVM and MLP baselines, shown in Figure 7 in the Appendix. With the full dataset, the GRAPE
framework, using a gene embedding size of 64, matches the performance of the SVM baseline and
the performance of a GCN (without GRAPE). Memory constraints inhibited testing performance
with larger embedding sizes.

Reconstruction

We now turn our attention to measuring the performance of the gene expression imputation of the
GRAPE framework, and the effect of incorporating reconstruction error into the cost function along
with a classification loss for the downstream task. We use a MSE loss function between the imputed
data and the original data, looking only at cell samples which are in the training data. This is a
similar approach to Wang et al. [2021], who introduce scGNN, however we do not use auxilliary
regularisation such as gene regulatory networks. The reconstruction loss is attenuated with a constant
multiplier, chosen such that the initial penalty is roughly 10% of the classification penalty. Figure 3
shows that performance over training epochs using the reconstruction loss is more stable, and that the
generalisation gap between train and test performance is much smaller. The final test performance

2We use torch.pca_low_rank and torch_cluster.knn to perform this step to preserve gradient infor-
mation, however, doing so introduces a minor source of randomness through the low-rank SVD step.

3

using the reconstruction penalty is lower, however we did not focus on optimising the regularisation
strength parameter.

Figure 2: Test accuracies for GRAPE with GCN
prediction model, trained on datasets of varying
size, and with varying gene embedding sizes. 685
genes is the full pre-processed dataset.

Also following Wang et al. [2021], we look at a
simulated dropout reconstruction metric, along
with downstream accuracy to assess the perfor-
mance of the framework. This involves ran-
domly dropping out certain cell gene expression
values with a fixed probability, and measuring
the divergence between the original dataset and
the reconstructed dataset built from the dropped
out dataset. Figure 4 shows MSE reconstruction
loss for varying data dropout rates. The model
with reconstruction loss achieves much lower
and consistent losses. As a comparison, we run
the VAE scGNN with no gene regulatory net-
work regularisation to impute the data, and on
higher dropout rates, it outperforms GRAPE.

3 Discussion

GNNs offer a promising avenue for single-cell
transcriptomics as they provide a flexible and
intuitive framework for representing interesting
relationships. We apply the GRAPE framework
to the task of data imputation and cell classi-
fication, and suggest several augmentations to
the procedure to accommodate cell classifica-
tion using scRNA-seq data. The resultant GNN
classification model test performance is similar
but worse than that of a SVM benchmark model
and a GNN classification model applied without
an imputation model. The GRAPE framework, with learnable embeddings for gene expressions,
has a regularising effect on the GCN cell prediction model and can achieve similar performance to
the GCN models applied directly to the data, but with better learning characteristics. With further
research, this modular framework has potential to harness the benefits of more sophisticated GNN
architectures to various scRNA-seq analysis tasks.

Figure 3: Performance over epochs for
GRAPE+GCN model with gene embedding
dimension of 64, with and without reconstruc-
tion loss penalty. The top 400 genes are used.

Figure 4: Reconstruction loss on simulated
data dropout using GRAPE+GCN model with
embedding size of 64 and trained on 400
genes.

4

References
David Buterez, Ioana Bica, Ifrah Tariq, Helena Andrés-Terré, and Pietro Liò. CellVGAE: an

unsupervised scRNA-seq analysis workflow with graph attention networks. Bioinformatics, 38
(5):1277–1286, 12 2021. ISSN 1367-4803. doi: 10.1093/bioinformatics/btab804. URL https:
//doi.org/10.1093/bioinformatics/btab804.

Juexin Wang, Anjun Ma, Yuzhou Chang, Jianting Gong, Yuexu Jiang, Ren Qi, Cankun Wang,
Hongjun Fu, Qin Ma, and Dong Xu. scgnn is a novel graph neural network framework for
single-cell rna-seq analyses. Nature communications, 12(1):1–11, 2021.

Jiahua Rao, Xiang Zhou, Yutong Lu, Huiying Zhao, and Yuedong Yang. Imputing single-cell rna-seq
data by combining graph convolution and autoencoder neural networks. Iscience, 24(5):102393,
2021.

Jiaxuan You, Xiaobai Ma, Yi Ding, Mykel J Kochenderfer, and Jure Leskovec. Handling missing
data with graph representation learning. Advances in Neural Information Processing Systems, 33:
19075–19087, 2020.

Alessandra Dal Molin and Barbara Di Camillo. How to design a single-cell rna-sequencing ex-
periment: pitfalls, challenges and perspectives. Briefings in bioinformatics, 20(4):1384–1394,
2019.

Franziska Paul, Ya’ara Arkin, Amir Giladi, Diego Adhemar Jaitin, Ephraim Kenigsberg, Hadas Keren-
Shaul, Deborah Winter, David Lara-Astiaso, Meital Gury, Assaf Weiner, et al. Transcriptional
heterogeneity and lineage commitment in myeloid progenitors. Cell, 163(7):1663–1677, 2015.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI Open, 1:57–81, 2020a.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12,
2019.

Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. Towards deeper
graph neural networks with differentiable group normalization. Advances in Neural Information
Processing Systems, 33:4917–4928, 2020b.

Reuben Moncada, Dalia Barkley, Florian Wagner, Marta Chiodin, Joseph C Devlin, Maayan Baron,
Cristina H Hajdu, Diane M Simeone, and Itai Yanai. Integrating microarray-based spatial transcrip-
tomics and single-cell rna-seq reveals tissue architecture in pancreatic ductal adenocarcinomas.
Nature biotechnology, 38(3):333–342, 2020.

Sophia K Longo, Margaret G Guo, Andrew L Ji, and Paul A Khavari. Integrating single-cell and
spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics, 22(10):
627–644, 2021.

5

https://doi.org/10.1093/bioinformatics/btab804
https://doi.org/10.1093/bioinformatics/btab804

A Graph Neural Networks

A graph G = (V, E) consists of nodes V and edges E ⊆ V ×V . The graph edges define the adjacency
matrix A and degree matrix D. GNNs propagate features along a graph structure, and aggregate and
transform neighbourhood information to form node representations, and sometimes edge embeddings,
best suited to a given task.

A simple GNN convolutional layer is defined as

hi = ϕ

xi, ⊕
j∈Nj

ψ(xj)

 (1)

where hi represents the embedding and xi are the features of node i, and
⊕

is some permutation
invariant aggregation operation. In this report we will focus on homophilic graph representations,
where edges describe some form of interaction or relationship between nodes and so connected nodes
are assumed to have similar representations.

Convolutional GNN layers can be attributed to a general taxonomy [Zhou et al., 2020a] with two
categories: spectral and spatial. Spectral approaches define the convolution operation in the graph
spectral domain. The graph signal is transformed with a graph Fourier transform F(x) = U⊤x,
a convolution is applied, and the resultant signal is transformed back into the graph domain with
an inverse Fourier transform, F−1(x) = Ux. U is the matrix of eigenvectors of the normalised
graph Laplacian, L = I −D− 1

2AD− 1
2 . The convolution operation can be expressed with ψ(X) =

UgwU
⊤X , where gw is a learnable diagonal matrix.

ChebNet Defferrard et al. [2016] propose approximating gw with a Chebyshev polynomial truncated
to order k. The k-th order Chebyshev polynomial is defined recursively as Tk(x) = 2xTk−1(x)−
Tk−2(x), with initial conditions T0(x) = 1 and T1(x) = x. They write the convolution operation
with

H = σ

 k∑
j=0

Tj(L̃)XWj

 (2)

where L̃ = 2
λmax

L− I , λmax is the largest eigenvalue of L, and Wi is a learnable weight matrix.
This operation results in information passing between nodes which are connected by k hops in the
graph.

GCN Kipf and Welling [2016] propose a simplification of the operation in ChebNet to

H = σ((I +D− 1
2AD− 1

2)XW) (3)

by truncating at k = 1, assuming λmax = 2, and reducing the number of weight parameters. This is
further reduced to H = σ(D̃− 1

2 ÃD̃− 1
2XW) to address exploding gradients with Ã = I +A and D̃

the corresponding degree matrix.

Spatial approaches define the convolution operation in the graph domain directly. GCNs can also be
regarded as spatial convolutions.

GraphSAGE Hamilton et al. [2017] introduce a framework which uniformly samples within node
neighbourhoods and applies some aggregation. With mean aggregation, the convolutional update is

hi = σ

W1xi +
W2

|Ni|
∑
j∈Ni

xj

 (4)

With this aggregation, GraphSAGE can be viewed as an inductive version of the GCN layer, though
other aggregations can be used.

GAT Veličković et al. [2017] introduce an attentional spatial convoultional. They incorporate attention
into the propagation step, computing nodes’ hidden states by attending to their neighbours. With

6

linear attention, node embeddings are updated according to

H = σ

∑
j∈Ni

αi,jWxj

 (5)

αi,j =
exp (LeakyReLU(a⊤Wxi∥Wxj))∑

k∈Ni∪{i} exp(LeakyReLU(a⊤Wxi∥Wxk))
(6)

where a is a weight vector of a MLP.

GIN Xu et al. [2018] introduce the Graph Isomorphism Network, which is as powerful as the the
Weisfeiler-Lehman graph isomorphism test.

H = σ (f(A+ (1 + ϵ)I)X) (7)

where f is some neural network.

B Adjacency Assumptions

There are several options for the graph adjacency representation when either none is provided, or when
the provided adjacency is deficient in some way. Naïvely, we can assume either full or no adjacency.
With no edges, any GNN variant reduces to Deep Sets [Zaheer et al., 2017] since embeddings are
updated using only features of the receiver node. With all edges, convolutional GNNs are equivalent
to Deep Sets as the neighbourhood for each convolution is the entire graph. Alternatively, we can
precompute an adjacency using a standard algorithm such as KNN. This approach is relatively
inexpensive computationally, however relies on the gene expression data, and requires an extra
hyperparameter, k, the number of neighbours to consider. The usefulness of this adjacency may be
sensitive to the k, and choosing an optimal value systematically may be expensive. In a similar vein,
we could infer the adjacency from a distance metric between cell gene expressions, assigning an edge
for nodes with a distance less than a certain threshold.

The graph adjacency can also be calculated dynamically, rather than input statically. Wang et al.
[2019] introduce Dynamic Graph CNN (DGCNN) which computes adjacencies at each layer of the
network based on the node embeddings at that point. They use KNN to construct the adjacency based
on the embeddings and propagate information with this. The convolution operator is

hi = σ

 ∑
j∈N ′(i)

f(xi∥xj − xi)

 (8)

where f is a neural network taking as input the concatenation of the receiver node features and its
difference with features of nodes in its KNN adjacency. Using a dynamic adjacency may allow GNNs
more flexibility in learning.

C GNN Classification Experiments

In order to assess various GNN designs on classifying cells with gene expression data, we apply
the models to a standard dataset. We use the 19 cell types labelled in the Paul15 dataset [Paul
et al., 2015] as targets for the node classification task. Node labels are one-hot encoded and loss
is calculated using cross entropy. We apply a variety of convolutional GNN layers, described in
Appendix A, to cell classification using the cells’ measured gene expressions as node features and
test models’ performances under various graph adjacency assumptions outlined in Section B. For the
KNN adjacency, we apply the clustering algorithm on the raw data, as well as the top 40 principal
components. For the node similarity adjacency, we use the Euclidean distance metric and define
the threshold for edge existence by the quantile, q, over all distances. The various hyperparameters
for the adjacency methods are chosen such that the three methods produce similar levels of graph
sparsity (equivalently, similar numbers of edges). k = 10 for KNN after PCA produces an adjacency
sparsity of 0.6%, which is close to k = 20 for KNN on the gene expression data and q = 0.5% for
the Euclidean similarity threshold. k = 40 for KNN after PCA produces an adjacency sparsity of
1.7%, which is close to k = 50 for KNN on the gene expression data and q = 2% for the Euclidean
similarity threshold. Note that we do not include the full adjacency due to computational constraints.

7

As baselines, we use a support vector machine (SVM) with a linear kernel, and a multi-layer
perceptron (MLP) with a hidden dimensionality of 64 and 3 layers. For all analyses we take a random
70-30% train-test transductive split, and run GNN models 5 times over 2000 epochs per run for each
setting with a constant learning rate of 0.001.

C.1 Results

Figure 5: Convolutional GNN model performances based on different adjacency assumptions. Boxes
are mean final test accuracies over 5 training runs while the single dashes of the same colour represent
the highest and lowest final test accuracies over those runs. The dashed lines signify the performance
of the benchmark techniques.

The performances of standard convolutional GNN layers are presented in Figure 5. We look at the
average model performances over all runs for each setting, and select the best hyperparameter settings
from a narrow hyperparameter search for each model. None of the GNN models outperform SVM
(58.65% test accuracy) on average, and most do not outperform a 2-layer MLP (52.8% test accuracy).
Only the GCN model achieves similar performance to SVM in settings with an adjacency computed
from PCA+KNN.

Adjacency Assumptions

We tested models with a variety of hyperparameters, including with 1 and 2 layers (of the same type).
The models’ hidden dimensions, where relevant, are set constant to 64. The DGCNN models with
1 layer do not use dynamically calculated adjacency. The GCN model is also tested with a 4 layer
setting. Interestingly, most model performances are relatively consistent across all adjacency choices,
except GCN and GAT, which perform significantly better on PCA+KNN adjacency methods. GIN
models underperform their peers in most adjacency settings suggesting it may be better suited to
graph level tasks rather than node level tasks. A 2-layer GraphSAGE model performs the best out
of GNN models for empty, Euclidean and KNN adjacencies, while a 2-layer GCN and a 1-layer
GAT model with 32 attention heads outperform with PCA+KNN adjacencies. Compared to the GCN
model, the GAT model has roughly 10 times the number of parameters, and took roughly twice as
long to train and test. We also observe that while the 2-layer GCN outperforms the 4-layer variant
on PCA+KNN, the 4-layer variant performs to best on other adjacency settings. This might be an
indication of over-smoothing, where adding more layers to the model leads to node representations
becoming more similar and thus hindering node classification.

8

We ran further experiments for models with multiple layers, where the first layer was a DGCNN,
and its calculated adjacency was used for subsequent layers. These models did not see any marginal
improvement.

Oversmoothing

Figure 6: Model predictions are displayed as a heat map, with white-hot squares representing high
prediction of a particular label for a particular ground truth. As the number of layers increases, the
predictions collapse to the most common labels. A histogram of labels in the data is shown on the
right for reference.

We briefly look for evidence of mode collapse by inspecting the distribution of label predictions for
each cell label, using the GCN model with varying layers. From Figure 6 we can see that as the
number of GCN layers increase, predictions collapse to the most over-represented class labels in the
training data, with the 6-layer model only predicting 5 unique labels out of the 19 in the data.

This mode collapse is indicative of oversmoothing, where node features become more similar as
information is propagated and averaged. Several remedies exist to address oversmoothing of node
features in GNNs. Skip connections can partly alleviate the problem as earlier node representations
may be more distinct than those after several convolution operations. Zhou et al. [2020b] introduce
Differentiable Group Normalisation (DGN) which normalises nodes within the same group, and
separates node distributions from different groups. The number of groups is user-defined. This simul-
taneously ensures representations of similarly labelled nodes remain smooth, while representations
for differently labelled nodes are distinct.

Figure 7: Performance of GCN model vs bench-
marks for datasets with varying numbers of genes.
Genes are selected during the preprocessing stage
according to their expression variance. GCN per-
formance scales better than benchmarks despite
underperforming until the full dataset is used.

The authors introduce the group distance ratio
(GDR) to measure oversmoothing, which is a
ratio of inter-group distance over intra-group dis-
tance using the Euclidean metric. Lower GDR
may be indicative of greater oversmoothing. Us-
ing the group distance ratio described in Zhou
et al. [2020b], the 1, 2, 4, 6-layer GCN models
produce metrics of 0.0630, 0.0640, 0.0624 and
0.0640 respectively. These metrics do not ap-
pear to correlate to the mode collapse shown in
Figure 6 which might be due to the number of
unique labels predicted decreases (10, 7, 7, 5)
as the number of layers increase.

We retrain the GCN models with an appended
DGN layer with groups set to 10, on the
PCA+KNN adjacencies with k = 30. With
DGN, the 1-layer GCN marginally outper-
forms the SVM benchmark. The 1-layer
model achieves an average final test accuracy
of 59.44%, which marginally outperforms the
SVM benchmark of 58.65%. The 2-layer
model achieves an average final test accuracy of
58.48%, which is only slightly better than the 2-
layer GCN model without DGN normalisation.

Scaling the number of genes

9

To understand how the GNNs’ performances scale with the number of different gene expressions,
we select the top n genes by their expression variance in the preprocessing stage. We train a GCN
model with 1, 2 and 4 layers with PCA+KNN adjacency for k = 10 and k = 30 on the reduced
datasets. The results are displayed in Figure 7 where the result from using all 685 genes is displayed
for comparison. The performance of the GCN model appears to scale better than the benchmarks’, as
the gap in performances decreases as the dimensionality of the gene expression increases.

The preprocessed PBMC3K data provided by the ScanPy API has 2638 cell samples with 1838 genes
and 8 provided cell labels. Fitting 1, 2 and 4 layer GCN models to this unseen dataset, we find that
all settings outperform the SVM and MLP benchmarks. The GCN models achieve test accuracies of
95.2%, 95.6% and 95.6% respectively, while SVM achieves 94.2% and the best MLP setting achieves
90.3%. While the GNN outperformance on this dataset may be due to the higher gene expression
dimensionality, it might be confounded by the reduced number of target classes. Performance with
DGN is similar to without, suggesting that oversmoothing is less of an issue, possibly due to fewer
target classes.

C.2 Discussion

Directly applying various convolutional GNN models to cell classification on scRNA-seq data, we
find that a simple GCN with DGN can outperform a SVM benchmark. Performance of other models
was mixed, relative to benchmarks. It is unclear why GCN and GAT models perform better with
adjacencies determined by PCA+KNN. This is more marked in the GCN case, where performance
under KNN adjacency is dramatically different to PCA+KNN adjacency. Since the PCA+KNN is
a form of spectral clustering, one might think that it might favour spectral convolutions, however
ChebNet models did not see a significant performance gain, and GAT models are spatial. These
results suggest that finding an informative adjacency for GNN models in cell classification using
scRNA-seq data is challenging. Further work could be done on incorporating PCA+KNN adjacency,
instead of KNN, to dynamic adjacency techniques such as DGCNN.

Alternatively, future work could explore combining cell spatial transcriptomics data with scRNA-seq
data in a GNN model to improve cell classification performance. Several recent attempts have been
made integrating the data [Moncada et al., 2020, Longo et al., 2021], however the application of
GNNs to this augmented data has not been studied. The spatial data would provide a natural adjacency
structure which could be augmented with gene expression node features.

10

	Introduction
	Gene Expression Imputation Methods
	GRAPE
	Experiments

	Discussion
	Graph Neural Networks
	Adjacency Assumptions
	GNN Classification Experiments
	Results
	Discussion

