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ABSTRACT

Domain generalization (DG) methods aim to achieve generalizability to an un-
seen target domain by using only training data from the source domains. Al-
though there has been a growing interest to learn from multiple training domains
by applying different types of invariance across those domains, the improvements
compared to empirical risk minimization (ERM) are almost negligible under con-
trolled evaluation protocols. In this paper, we demonstrate that the disentangle-
ment of spurious and invariant features is a tough task in standard training, since
ERM simply minimize the loss and does not exploit invariance among domains.
To address the issue, we introduce a simple yet effective method called specific
domain training (SDT), which intensifies the trace of spurious features and make
them more discernible and exploit masking strategy to decrease their effect. We
provide a theoretical and experimental evidence to show the effectiveness of SDT
for out-of-distribution generalization. Notably, SDT outperforms previous state
of the art Cha et al. (2021) in DomainNet benchmarks 0.2pp in average. Further-
more, SDT improves accuracy of some domains such as Sketch in PACS, SUN09
in VLCS and L100 in TerraIncognita by clear margins 2.5pp, 3.4pp, and 5.4pp
respectively.

1 INTRODUCTION

Machine learning algorithms mostly rely on the assumption that training data and test data are sam-
pled from the same distribution. This assumption causes a fundamental problem when data comes
from different distributions and domains at training phase as well as new unseen distribution at test
time i.e. out of distribution (OoD) data. In a standard machine learning task, we gather a large
dataset and shuffle at random train and test data, bringing the test and train distributions closer to
each other. By shuffling, we discard the information about different domains and how the distribu-
tion of data changes among the environments. We also lose information about stable features and
spurious correlations. Empirical risk minimization (ERM) Vapnik (1999) forces the model to exploit
all features whether invariant or spurious to reduce the training error and this causes the error in new
environments when spurious features vary notably. As an example, consider a classification task of
images containing class label camel in which we have two training domains as D1 and D2 with 90%
and 80% of there’s data are camel photos with desert background that means there is a strong but
varying correlation between camel class and desert background in train domains. However, in test
domain D3, this spurious correlation diminishes and becomes 10% of the data since the photos are
mostly taken in jungle, which results in poor generalization and accuracy on test data. However, if
the model could recognize that while the landscapes change with climate (spurious features), the bi-
ological characteristics of the animals like humps, neck, legs, and etc remain invariant and use those
features to determine the species, we have a much better chance at generalizing to unseen domains.

Neural networks have tendency to learn simple features rather than complex ones even though their
predictive power may be less Kalimeris et al. (2019), Valle-Perez et al. (2018). In case of distribution
shift, this simplicity bias degrades performance and more complex invariant features are needed to
be extracted Lake et al. (2017),Shah et al. (2020). In a standard training, we sample batches from
each training domain and by feeding them to the network and calculating the loss, we update model
weights with mean of domain-level gradients. In this case, the disentanglement of spurious and in-
variant features becomes harder, since the variance among the domain-level gradients become small
as training proceeds. In order to recognize the spurious features and to let them show off themselves,
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we exploit a simple yet effective method, which we call specific domain training (SDT). In SDT,
we train each domain exclusively for some iterations. By this type of training, weights correspond
to spurious features of the specific domain are updated intensely, specially at the beginning of the
training interval. However, invariant weights have almost identical update patterns among different
domain training intervals. In order to avoid weights to be updated by the spurious gradients, we
devise a masking strategy in which update the weights if direction of current training domain gradi-
ent is the same as the direction of mean gradients of other training domains. Our masking strategy
is more flexible compared to previous works like Parascandolo et al. (2020) that apply AND mask
among all training domains or Mansilla et al. (2021), which zeros out the weight component if the
gradients have different directions.

Contribution:We present a method named SDT to discriminate the model weights related to spu-
rious and invariant features and use a masking strategy to avoid updating spurious weights. We
provide a theoretical and empirical evidence of our hypothesis. Notably, our empirical results on
DomainBed benchmark, validates our claim on real world dataset. In particular, we increase the
accuracy of PACS, VLCS and TerrraIncognita by 0.3pp and 0.6pp and 1.8pp respectively compared
to the previous SOTA Cha et al. (2021). We also improve per domain accuracy of some domains
such as Sketch in PACS, SUN09 in VLCS and L100 in TerraIncognita by 2.50pp, 3.4pp, and 5.4pp
respectively.

2 RELATED WORK

Deep domain generalization methods can be divided generally into three groups: (i) domain align-
ment (ii) meta learning and (iii) data augmentation.
Domain alignment. is the most intuitive method, which has extensively studied for domain adaption
(DA) problems. It aims to learn latent representations that have similar distribution across differ-
ent domains Sun and Saenko (2016),Li et al. (2018b),Shi et al. (2021),Rame et al. (2021). Ganin
et al. (2016) propose Domain Adversarial Neural Networks (DANN), a DA technique which uses
generative adversarial networks GANsGoodfellow et al. (2014), to learn a feature representation
that matches across training domains. Li et al. (2018b) employ GANs and the maximum mean dis-
crepancy Gretton et al. (2012) to align feature distributions across domains. Matsuura and Harada
(2020) exploits clustering techniques to learn domain invariant features even when environments are
not explicitly stated. Sun and Saenko (2016) and Rahman et al. (2020) match the feature covariance
(second order statistics) across training domains at some level of representation. Arjovsky et al.
(2019) propose IRM that learns an intermediate representation such that the optimal classifiers (on
top of this representation) of all domains are the same. The motivation is to exploit invariant causal
effects between domains while reducing the effect of domain-specific spurious correlations. Krueger
et al. (2021) propose an approximation to the IRM problem consisting in reducing the variance of
error averages across domains.

Meta learning: In the meta learning category, source domains are separated into two disjoint sets,
namely meta-train and meta-validation and a model is optimised on meta-train so as to boost the per-
formance on meta-validation. Li et al. (2018a) employ Model-Agnostic Meta-Learning, or MAML
Finn et al. (2017), to build a predictor that learns how to adapt fast between training domains. Dou
et al. (2019) use a similar MAML strategy, together with two regularizers that encourage features
from different domains to respect inter-class relationships, and be compactly clustered by class la-
bels.

Data augmentation is a common practice to train deep neural networks, e.g. flipping and rota-
tion. However, conventional data augmentation methods can not address the issue of distributional
shift and learning-based augmentation strategies are required. Wang et al. (2020) use mixup to blend
examples from the different training distributions. Carlucci et al. (2019) constructs an auxiliary clas-
sification task aimed at solving jigsaw puzzles of image patches. Wang et al. (2019) remove textural
information from images to focus on shape based information, so improve domain generalization.

A recent line of work aligns the gradients of loss with respect to model weight θ rather than aligning
features among domains. First, having similar domain-level gradient distributions is critical so that
the DNN has shared properties across domains. Second, gradients are more expressive and richer
than features. Specifically, gradients were shown to better cluster semantically close inputs Fort et al.
(2019). Several works such as Jo and Bengio (2017), Geirhos et al. (2018), McCoy et al. (2019) and
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Table 1: Performance comparison on the linear example

Method train acc. test acc. W
ERM 97% 57% [3.9, 4.3, 4.3, 0.0]
SDT 93% 93% [3.4, 3.0, 3.0,−0.1]

Oakden-Rayner et al. (2020) demonstrate that NNs tend to learn spurious features and low-level
statistical patterns rather than semantic features and high-level abstractions. So gradient alignment
could partially address the issue of poor out of domain performance. Huang et al. (2020) discards the
representations associated with the higher gradients at each epoch, and forces the model to predict
with remaining information. However, it does not utilize any knowledge of partitions of source
domains. On the contrary, SDT encourages the model to advertently intensify the spurious gradients
and then avoid the weight updates correspond to those spurious gradients. Koyama and Yamaguchi
(2020), Parascandolo et al. (2020), Shi et al. (2021), Rame et al. (2022) try to find a shared minima
among domains by tackling the domain-level gradients. Specifically, when we have domain set
E = {A,B}, IGA Koyama and Yamaguchi (2020) minimizes ∥ gA − gB ∥22; Fishr matches the
domain-level gradient covariances, i.e., the second moment of the gradient distributions. AND mask
Parascandolo et al. (2020) update weights only when gA and gB point to the same direction. Our
gradient alignment is similar to this work with a difference that we compare the gradients of current
training domain with the average of gradients of the rest of training domains, which is a relaxed
version of AND mask. Fish Shi et al. (2021) increase gA.gB . In section 4.3 we show that SDT also
increase the gradient inner products.

3 METHODOLOGY

Consider training dataset Dtr containing K domains {D1, D2, ..., DK} with each domain contains
samples {(xi, yi)}nk

i=1 and test dataset Dte with T domains {DK+1, ..., DK+T } all drawn i.i.d from
some probability distribution where Dtr ∩ Dte = ∅. The aim of domain generalization is to train
weights θ such that generalize well on unseen test dataset Dte. ERM approach trains θ on Dtr such
that:

LERM (Dtr; θ) = ED∼Dtr
E(x,y)∼Dl((x, y); θ), (1)

where l((x, y); θ) is the loss of model θ calculated on data (x, y).

The ERM objective does not consider the invariances among different domains and only minimizes
the loss of training dataset. In the following, we give a simple linear example adopted from Shi
et al. (2021) to show the reluctance of ERM to invariant features. Then, we observe the behavior
of weight gradients corresponding to invariant and spurious features while training ERM and SDT
distinctly.

3.1 ERM RELUCTANCE TO INVARIANT FEATURES: A LINEAR EXAMPLE

Consider a binary classification where data (x, y) ∈ B4 × B and a data instance is x =
[f1, f2, f3, f4], y. Training datasets are D1 and D2 and test domain is D3. A linear model is
Wx + b = y,W ∈ R4, b ∈ R is trained on the train dataset and tested on test domain. Data
setup for each domain is illustrated in Figure 1.

According to Figure 1, f1 is invariant feature, since correlation between f1 and y is the same for all
the domains. However, for features f2, f3 and f4 the correlation changes for each domain, so they
are called spurious features. For each domain, there exists a high predictive spurious feature, which
has higher correlation with y than invariant feature. For example, using only f2 attains 97% on D1.
However, using only f1 gains 93% on D1.

The poor performance of ERM on test domain has been shown in Table 1. As illustrated in the table
for W parameter, ERM puts higher weight for spurious features f2 and f3, while invarient feature
f1 receives less weight.
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Figure 1: There are 3 kinds of data as x1, x2 and x3, each shown in one column. First column
contains data x1 = [0, 0, 0, 0] and y = 0 for all domains and . In second column x2 changes for
each domain, y is always 1. In third column, x3 = [1, 0, 0, 0] and y = 1 for 30% of data of type 3
and y = 0 for 70% of this data type. Type 1,2, and 3 contains 50%, 40% and 10% of data for each
domain.

Figure 2: Absolute gradient of loss w.r.t W = [w1, w2, w3]. In left plot, we apply SDT training
with 500 epochs for each training domain {D1, D2} and repeat it till the end of training.

3.2 DOMAIN SPECIFIC TRAINING FOR DISENTANGLING SPURIOUS AND INVARIANT
FEATURES

In order to mitigate ERM pitfall in learning spurious features, we introduce a simple yet effective
method to discriminate spurious and invariant features and then we apply mechanisms to strengthen
the weights correspond to invariant features and weaken the weights correspond to spurious features.
In this regard, we train one domain specifically for some iterations, then switch to the next domain
and continue this process till the end of training. Intuitively, when we train one domain for some
iterations, weights correspond to spurious features of that domain become stronger (absolute value
of the weight increase), however, when we switch to the next domain, the absolute value of the
aforementioned weights stop increasing and may start to decrease as well. We validate our claim
by applying SDT (specific domain training) on the previous linear example and trace the gradients
of corresponding weights as an indicator of change for each weight at each step of training. As
presented in Figure 2, in SDT training, spurious features have the largest gradients at each training
interval. For example at interval [0, 500] we train D1, so the gradient w.r.t feature f2, which is a
highly predictive spurious feature for D1 has the largest gradient value. for the second interval, f3,
spurious for D2 is the highest value. On the contrary, in ERM training, gradients for all weights
change smoothly and can not be discriminated.

3.3 THE SPURIOUS AND INVARIANT FEATURES MODEL

We develop a framework, that helps us to rigorously refer to “invariant” and “spurious” features.
In particular, we present a set of definitions which enable us to formally describe our setup and
theoretical results.
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Setup. We consider binary classification, where (x, y) ∈ X × {±1} are sampled from Dtr =
{D1, D2, ..., DS}. The goal is to learn a classifier C : X → {±1} which predicts a label y given an
input x.

Feature is defined as a function mapping from the input space X to the real numbers, with
the set of all features thus being F = {f : X → R}. Features in F are considered to be
shifted/scaled to be mean-zero and unit-variance (i.e., so that ED∼Dtr

E(x,y)∼D[f(x)] = 0 and
ED∼DtrE(x,y)∼D[f(x)2] = 1), in order to make the following definitions scale-invariant.

ρ-spurious features: For a given distribution Ds, we call a feature f ρ-spurious, if it is correlated
with the true label such that

E(x,y)∼Ds
[y.f(x)] = ρ ∧ ∀Di ∈ Ds, E(x,y)∼Di

[y.f(x)] < ρ. (2)

we consider positive correlations here (ρ > 0).

Standard Training. We consider a linear classifier which includes a set of features F , weight vector
W and an scalar bias b. Training a linear classifier is performed by minimizing a loss function via
ERM that decreases with the correlation between the weighted combination of the features and the
label. We use a simple loss function in our equation, however, more practical losses such as logistical
or hinge can be used instead.

LΘ(x, y) = −ED∼Dtr
E(x,y)∼D[y.(b+

∑
f∈F

wf .f(x))]. (3)

Theorem 1 Consider Dtr = {D1, D2} and feature f is ρ1 spurious feature for D1 i.e.
E(x,y)∼D1

[y.f(x)] = ρ1 and assume E(x,y)∼D2
[y.f(x)] = ρ2, where ρ1 > ρ2 and wf is corre-

sponding weight for feature f in our linear classifier. Then E(x,y)∼D1∪D2
[ ∂L
∂wf

] = −y.f(x) =

−ρ1+ρ2

2 .

As a result of the Theorem 1, when we train the model by ERM, at each step ∂L
∂wf

= −ρ1+ρ2

2 ,
which is constant. However, By applying SDT with one step interval, at each step we switch be-
tween {D1, D2}. So the corresponding gradient value swings between ρ1 and ρ2, hence the gap for
spurious gradients in SDT is |ρ1 − ρ2| and 0 for ERM at each training step. However, experiments
indicate that using more practical loss functions such as cross entropy with longer interval steps
increase the gradient gap corresponding to spurious features, notably, at the initial steps of domain
switches.

Masking strategy for spurious weights: By disentangling spurious and invariant weights applying
SDT, We exploit methods to strengthen invariant weights and diminish spurious weights. Consider
our current training domain in SDT is s, then we show the rest of domains with s. At each training
step, we calculate mean loss gradient w.r.t corresponding weight component j (we apply this method
only on final linear classifier) for s and s i.e. [∇Ls]j and 1

|s|
∑

e∈s[∇Le]j . Weight component j is
called invariant, if the two aforementioned gradients have the same sign, otherwise, it is a spurious
weight. We take two strategies to deal with spurious and invariant weights. For invariant weights,
we update them by the gradient calculated for domain s that is [∇Ls]j . For spurious weights, some
previous works like Parascandolo et al. (2020) don’t update them or Mansilla et al. (2021) zero out
the weight, which is a restrictive method and may cause the weight not to receive any gradients in
further updates, hence leads the network to stuck and poor performance. To address this problem,
we update the weight with the gradient [∇Ls]j in a direction which makes the weight to be closer to
zero, that is |Θt+1

j | <= |Θt
j |, which reduces the effect of spurious weight Θj in the classification.

Stochastic weight averaging: The SWA method Izmailov et al. (2018) is based on averaging model
weights θ along the trajectory of SGD with cyclical or constant learning rates. Empirical results
prove that SWA finds better flat minima and hence better generalization by approximating ensembles
of model weights in SGD trajectory. It is known that finding a flatter minima guarantees better
generalization performance He et al. (2019), So it has been useful in domain generalization tasks. We
apply SWA in our model training in order to avoid instability of training when each domain is trained
solely and to get better generalization as well. Given model weight space Ω = {ω0, ω1, ..., ωN},
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where N is the number of training steps. We start sampling weights at some initial step m and
proceed it for each future steps. In any step t, if the loss is higher than some threshold τ , then ωt is
not included in ωswa.

4 EXPERIMENTS

4.1 DATASETS AND SETTINGS

Benchmark dataset: We evaluate our method on five famous benchmarks on domain generalization
task and compare it’s results with other state of the art in DG. The datasets are PACS Li et al. (2017)
(9,991 images, 7 classes, and domains), VLCS Fang et al. (2013) (10,729 images, 5 classes, and
4 domains), OfficeHome Venkateswara et al. (2017) (15,588 images, 65 classes, and 4 domains),
TerraIncognita Beery et al. (2018) (24,788 images, 10 classes, and 4 domains), and DomainNet
Peng et al. (2019) (586,575 images, 345 classes, and 6 domains). For all datasets, as in Gulrajani
and Lopez-Paz Gulrajani and Lopez-Paz (2020), we train using the following data augmentations:
crops of random size and aspect ratio, resizing to 224 × 224 pixels, random horizontal flips, random
color jitter, grayscaling the image with 10% probability, and normalization using the ImageNet
channel means and standard deviations.

Evaluation protocols: For a fair comparison among DG methods, we follow the training and eval-
uation rules demonstrated in Gulrajani and Lopez-Paz Gulrajani and Lopez-Paz (2020), including
data augmentation, hyperparameter search and dataset splits. However, it’s evaluation protocol is
computationally too expensive. Hence, we reduce the search space of our method for computational
efficiency following the protocols illustrated in SWAD Cha et al. (2021). All performance scores
are evaluated by leave-one-out cross-validation. We choose one domain as the target(test) domain
and other remaining domains as training domains where 80% of it used for training and 20% used
for validation and model selection.

Implementation details: For weight initialization, ImageNet Russakovsky et al. (2015) trained
ResNet-50 He et al. (2016) is employed as the initial weight and batch normalization statistics are
frozen during training. For optimization, we exploit Adam Kingma and Ba (2014) with learning
rate 5e-5. Dropout probability and weight decay is set to 0. For each training iteration, we build up
mini-batches of size 32 of specific domain. Total number of iterations differ for each dataset: It is set
to 8000, 2000, 8000, 15000, 25000 for PACS, VLCS, OfficeHome, TerraIncognita and DomainNet
respectively. Averaging start iteration is selected based on the convergence iterations of each dataset.
Therefore, it is set to 1000 for PACS, VLCS and OfficeHome and 10000 for TerraIncognita and
DomainNet. SWA acceptance threshold is searched in 0, 0.1, 0.2, 0.3, 0.4, 0.5 in PACS dataset and
the searched value used in all other datasets. Finally, domain training interval is set to 100 for first
1000 iterations, then increased to 200 until 4000 iterations, and 400 for the end of iterations.

4.2 MAIN RESULTS

We report out-of-domain accuracies for each domain i.e., a model is trained and validated on training
domains and evaluated on the unseen target domain. For each domain, We train the model three
times with random data splits and report the average test results. We borrow the results of the Table
2 from SWAD Cha et al. (2021), in which the results for all other methods acquired by training with
resnet-50 backbone with the same training and validation protocols as described above. Domain-
specific training outperforms SWAD in PACS, VLCS and TerraIncognita by 0.5pp and 0.5pp and
1.8pp respectively and for the remaining datasets it’s lower than SWAD by small margins. In the
following, we compare our method with DG methods in each domain of the datasets.

Per domain comparison with SWAD: As presented in Tables 3, 4 and 5, Our method outperforms
SWAD in some domains by a magnificent margin. In PACS dataset, for sketch domain, we get 3pp
performance gain, In VLCS dataset, for Sun09 domain, we get 3.5pp increase in accuracy and In
TerraIncognita, L100 domain we achieve 5.4pp performance gain. We conjecture that for these test
domains our method avoid higher reliance on one train domain with spurious features and elicit
more invariant features among all training domains.
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Table 2: Out-of-domain accuracies of domain specific training (ours) with other DG methods on five
benchmarks.

Algorithm PACS VLCS HomeOffice TerraInc DomainNet Avg.
ERM 85.5 77.5 66.5 46.1 40.9 63.3
CORAL 86.2 78.8 68.7 47.7 41.5 64.5
SagNet 86.3 77.8 68.1 48.6 40.3 64.2
SWAD 88.1 79.1 70.6 50.0 46.5 66.9
Ours 88.6 79.6 70.2 51.8 45.4 67.1

Table 3: Out-of-domain accuracies of SDT and DG methods for PACS (left) and VLCS (right).

Algorithm Art Cartoon Photo Sketch Avg.
ERM 84.7 80.8 97.2 79.3 85.5
CORAL 88.3 80.0 97.5 78.8 86.2
SagNet 87.4 80.7 97.1 80.0 86.3
SWAD 89.3 83.4 97.3 82.5 88.1
SDT 89.3±0.4 83.2±0.3 97.2±0.2 84.6±0.4 88.6

Algorithm Caltech LabelMe Sun09 Voc2007 Avg.
ERM 97.7 64.3 73.4 74.6 77.5
CORAL 98.3 66.1 73.4 77.5 78.8
SagNet 97.9 64.5 71.4 77.5 77.8
SWAD 98.8 63.3 75.3 79.2 79.1
SDT 97.6±0.1 63.3±0.7 78.7±0.5 78.8±0.6 79.6

4.3 ANALYSIS

In-domain losses: SDT does not decrease in-domain losses, however, its out-of-domain loss im-
proves. In Figure 3, we show the validation losses of training on PACS dataset with both ERM and
SDT. Sketch is test domain while Art, Cartoon and Photo are training domains. As shown in Fig-
ure 3 in-domain losses of SDT are higher than ERM on all the domains, however, the test loss has
been dropped in our method. This means that SDT elicit more invariant features across domains.
The reason is that by specific domain training, the model avoids overfitting in training domains and
equipped with masking strategy it tries to learn more invariant features across domains.

Variances among domain gradients: As demonstrated in linear example and theoretical evidence
above, SDT is better than standard training in disentangling invariant and spurious features. We
investigate this in real world PACS dataset. As presented in Figure 3, domain gradients variances
in SDT are higher than ERM. We conjecture that the more domain gradient varinace for a weight
component [θ]j , the higher probability that it is a spurious weight. Because higher variance indi-
cates that domain gradients are not similar to each other either in direction or magnitude. In ERM,
domain gradient variances of weight components are too small for all weights which makes the
discrimination of spurious and invariant weights hard.

Gradients inner product: In Shi et al. (2021), they proposed an algorithm called Fish in which they
provide a theoretical and experimental evidence that Fish matches the domain-level gradients. In a
nutshell, Consider θ as current model weight and θ

′
as a copy of it. In each pass, Fish samples mini-

batches from each training domains and updates θ
′

one by one for each training domain. After one
pass and sampling from all training domains, It updates the original model weight θ = θ+ϵ(θ−θ

′
).

SDT is similar to Fish when training domain interval and ϵ both are set to 1. We compare the inter-
domain gradient inner products for both ERM and SDT. Gradient inner product (GIP) is calculated
by sum of inner products for any two training domains in classifier layer i.e.

∑i ̸=j
i,j∈S Gi.Gj . As

shown in Figure 3, SDT has higher GIP compared to ERM through the training epochs. It demon-
strates that SDT as Fish matches the domain-level gradients, as another clue that SDT extracting
more invariant features compared to ERM.

Table 4: Out-of-domain accuracies of SDT and DG methods for OfficeHome (left) and TerraInc
(right).

Algorithm Art Clipart Product Photo Avg.
ERM 61.3 52.4 75.8 76.6 66.5
CORAL 65.3 54.4 76.5 78.4 68.7
SagNet 63.4 54.8 75.8 78.3 68.1
SWAD 66.1 57.7 78.4 80.2 70.6
SDT 65.2±0.4 58.5 ±0.5 77.6±0.1 79.5 ±0.3 70.2

Algorithm L100 L38 L43 L46 Avg.
ERM 54.3 42.5 55.6 38.8 47.8
CORAL 51.6 42.2 57.0 39.8 47.7
SagNet 53.0 43.0 57.9 40.4 48.6
SWAD 55.4 44.9 59.7 39.9 50.0
SDT 60.8±0.2 46.1±0.7 58.5±0.3 41.8±0.3 51.8
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Table 5: Out-of-domain accuracies of SDT and DG methods for DomainNet.

Algorithm Clip Info Paint Quick Real Sketch Avg.
ERM 63.0 21.2 50.1 13.9 63.7 52.0 44.0
CORAL 59.2 19.7 46.6 13.4 59.8 50.1 41.5
SagNet 57.7 19.0 45.3 12.7 58.1 48.8 40.3
SWAD 66.0 22.4 53.5 16.1 65.8 55.5 46.5
SDT 64.5±0.2 22.3±0.4 52.2±0.1 14.2±0.3 63.9±0.4 55.3±0.2 45.4

(a) In-domain loss (b) Domain gradient variances (c) Inner gradient products

Figure 3: Comparison of SDT and ERM in PACS dataset for illustrated statistics in 4.3. Here
(Art, Cartoon, Photo) are train domains and sketch is test domain. In-domain loss is the average
validation loss of training domains. Gradient variances and gradient inner products are calculated
for the weight components in the classifier layer.

4.4 ABLATION STUDY

In Table 6, we compare ERM and variants of SDT by adding the components discussed in previous
sections i.e. SWA and masking strategy for PACS dataset. We can observe that SWA has a great
impact in rising the out of domain accuracy. Specifically, it increase the accruacy abut 3%. Masking
also increase the accuracy about 0.3% compared to pure SDT. However, applying both masking and
SWA has a negligible impact on the accuracy. One reason could be that both of the masking and
SWA try to decrease the spurious features effect and in this case SWA outperform masking as the
results in Table 6 validate this claim.

SDT intervals: First, we study the effect of domain training intervals on out-of-domain accu-
racies of PACS dataset. As demonstrated in Figure 4 we present the accuracies for intervals
{50,100,200,300,400}. We also do an experiment with the mixture of intervals where we start
with 100 iterations per domain at the beginning of training and increase the intervals as training
proceeds. Mixture of intervals results in the highest accuracy in our experiments. We postulate that
at the beginning of training as stated in Nam et al. (2020), the model learns easy features then it
learns hard features as far as possible. So, at the beginning we train with little iterations for each
domain and increase the interval in order to force the network learn harder features.

Averaging start iteration: we analyze the effect of starting iteration of weight averaging in domain
accuracies. In this regard, we set the start averaging iteration to {0,1000,2000,3000,4000}. In this
experiment on PACS dataset, our total iterations is 6000. In Figure 4 (left), the accuracies has been
shown.

SWA acceptance threshold: We investigate how domain generalization performance is impacted
by the choice of swa acceptance threshold. In all of our experiments, we assume that if half of the
training domains satisfy the threshold, then current model weight will be averaged by the final swa
model. We train the model with thresholds {0, 0.05, 0.1, 0.15, 0.2} and show the results in Figure

Table 6: Out-of-domain accuracies of SDT with the component variants for PACS.

model components Art Cartoon Photo Sketch Avg.
SDT + SWA + masking 89.3±0.3 83.2±0.4 97.2±0.1 84.5±0.5 88.6
SDT + SWA 89.4±0.4 83.3±0.3 97.2±0.1 84.1±0.6 88.5
SDT + masking 84.8±1.1 81.3±1.3 97.1±0.2 80.4±0.8 85.9
SDT 84.6±1.2 81.1±1.1 96.8±0.3 80.1±1.4 85.6
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Figure 4: Out-of-Domain accuracy for PACS dataset with varying model hyperparameters.

4. 0 threshold means that current model will be averaged into swa model without any constraint on
validation losses.

5 DISCUSSION AND LIMITATIONS

SDT slightly degrades performance for some domains. Compared to SWAD Cha et al. (2021),
some domain accuracies slightly degrade in SDT as shown in Tables 3, 4 and 5. In such cases, we
postulate that test domain features are more correlated to a dominant train domain (a domain which
has more predictive easy features to be learnt). Hence when SDT applied in these cases, the domi-
nant domain has less contribution in training compared to ERM, and consequently the test accuracy
drops. However, we think that this drop in accuracy is not because SDT does not learn invariant fea-
tures. On the contrary, since SDT is learning more invariant features and becuase spurious features
of test and dominant domain are highly correlated, such degradation in performance occurs.

SDT needs more iterations to converge. Training each domain exclusively at each interval causes
the model to diverge from optimal minima in loss landscape for some intervals hence convergence
needs more iterations. On the other hand, by SDT we seek more expansive areas in loss landscape
and by using swa method we may find more flatter minima among those areas. However, the issue of
late convergence become more extreme when the dataset is bigger and also the number of domains
increase. As an example, in DomainNet dataset, we increase the number of iterations form 15000 to
25000, however, the performance although higher than ERM but still lower than SWAD Cha et al.
(2021) in all domains as presented in Table 5.

Pure SDT sometimes diverges: When SDT is applied without masking mechanism or weight av-
eraging, it causes the model to diverge for some training domains. The reason is that these domains
have high easy and predictive spurious features and by learning them, the loss for other domains soar
and cause the model to diverge. However, by exploiting masking strategy we update the invariant
weights only and hence the loss of other domains does not change sharply. SWA also helps the issue
by averaging the weights for different domain. Specifically, by SWA, invariant weights are updated
for all training intervals. However, spurious weights are updated only for a specific domain, so by
averaging all the weights in different intervals, spurious weights become less effective.

6 CONCLUSION

In this paper, we investigate the spurious and invariant features disentanglement in the presence of
multiple domains. We claim that standard training doesn’t extract invariant features properly since
it focuses on only minimizing the loss and neglects the invariance among domains. To alleviate the
issue, we propose SDT in which trains the domains exclusively for some interval. We theoretically
and empirically observe that SDT discerns the spurious features better and using masking strategy
further avoids the model from learning these spurious features. Notably, SDT achieves comparable
results to SWAD Cha et al. (2021), current SOTA, in DomainBed benchmarks.

9



Under review as a conference paper at ICLR 2023

REFERENCES

M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019.

S. Beery, G. Van Horn, and P. Perona. Recognition in terra incognita. In Proceedings of the European
conference on computer vision (ECCV), pages 456–473, 2018.

F. M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T. Tommasi. Domain generalization by
solving jigsaw puzzles. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2229–2238, 2019.

J. Cha, S. Chun, K. Lee, H.-C. Cho, S. Park, Y. Lee, and S. Park. Swad: Domain generalization by
seeking flat minima. Advances in Neural Information Processing Systems, 34, 2021.

Q. Dou, D. Coelho de Castro, K. Kamnitsas, and B. Glocker. Domain generalization via model-
agnostic learning of semantic features. Advances in Neural Information Processing Systems, 32,
2019.

C. Fang, Y. Xu, and D. N. Rockmore. Unbiased metric learning: On the utilization of multiple
datasets and web images for softening bias. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1657–1664, 2013.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep net-
works. In International conference on machine learning, pages 1126–1135. PMLR, 2017.

S. Fort, P. K. Nowak, S. Jastrzebski, and S. Narayanan. Stiffness: A new perspective on generaliza-
tion in neural networks. arXiv preprint arXiv:1901.09491, 2019.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and
V. Lempitsky. Domain-adversarial training of neural networks. The journal of machine learning
research, 17(1):2096–2030, 2016.

R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel. Imagenet-
trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness.
arXiv preprint arXiv:1811.12231, 2018.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. Advances in neural information processing systems, 27,
2014.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample test.
The Journal of Machine Learning Research, 13(1):723–773, 2012.

I. Gulrajani and D. Lopez-Paz. In search of lost domain generalization. arXiv preprint
arXiv:2007.01434, 2020.

H. He, G. Huang, and Y. Yuan. Asymmetric valleys: Beyond sharp and flat local minima. Advances
in neural information processing systems, 32, 2019.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

Z. Huang, H. Wang, E. P. Xing, and D. Huang. Self-challenging improves cross-domain generaliza-
tion. In European Conference on Computer Vision, pages 124–140. Springer, 2020.

P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson. Averaging weights leads to
wider optima and better generalization. arXiv preprint arXiv:1803.05407, 2018.

J. Jo and Y. Bengio. Measuring the tendency of cnns to learn surface statistical regularities. arXiv
preprint arXiv:1711.11561, 2017.

D. Kalimeris, G. Kaplun, P. Nakkiran, B. Edelman, T. Yang, B. Barak, and H. Zhang. Sgd on neural
networks learns functions of increasing complexity. Advances in neural information processing
systems, 32, 2019.

10



Under review as a conference paper at ICLR 2023

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

M. Koyama and S. Yamaguchi. Out-of-distribution generalization with maximal invariant predictor.
2020.

D. Krueger, E. Caballero, J.-H. Jacobsen, A. Zhang, J. Binas, D. Zhang, R. Le Priol, and
A. Courville. Out-of-distribution generalization via risk extrapolation (rex). In International
Conference on Machine Learning, pages 5815–5826. PMLR, 2021.

B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. Building machines that learn and
think like people. Behavioral and brain sciences, 40, 2017.

D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales. Deeper, broader and artier domain generalization.
In Proceedings of the IEEE international conference on computer vision, pages 5542–5550, 2017.

D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales. Learning to generalize: Meta-learning for domain
generalization. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018a.

H. Li, S. J. Pan, S. Wang, and A. C. Kot. Domain generalization with adversarial feature learning.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5400–
5409, 2018b.

L. Mansilla, R. Echeveste, D. H. Milone, and E. Ferrante. Domain generalization via gradient
surgery. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
6630–6638, 2021.

T. Matsuura and T. Harada. Domain generalization using a mixture of multiple latent domains. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 11749–11756,
2020.

R. T. McCoy, E. Pavlick, and T. Linzen. Right for the wrong reasons: Diagnosing syntactic heuristics
in natural language inference. arXiv preprint arXiv:1902.01007, 2019.

J. Nam, H. Cha, S. Ahn, J. Lee, and J. Shin. Learning from failure: De-biasing classifier from biased
classifier. Advances in Neural Information Processing Systems, 33:20673–20684, 2020.

L. Oakden-Rayner, J. Dunnmon, G. Carneiro, and C. Ré. Hidden stratification causes clinically
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7 APPENDIX

You may include other additional sections here.
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