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Abstract

The extrapolative leaps from training to deployment are precisely where ML’s
best methods for system development succeed, and where most—and the most
consequential—failures occur. I argue that the leap is where beauty can and does
play a role. Beauty also serves to highlight some important aspects of the leap
that are not specific to beauty. Based on this, and drawing on research on beauty
from psychology, cognitive science, and philosophy of science, I articulate some
fundamental problems and suggest directions for potential solutions.

Should beauty play a role in machine learning (ML) research? If so, how? In many scientific fields,
particularly physics, beauty is valued. The mathematician and physicist Hermann Weyl famously
said, “My work always tried to unite the true with the beautiful; but when I had to choose one or
the other, I usually chose the beautiful” [1]. The physicist Steven Weinberg wrote, “The physicist’s
sense of beauty is also supposed to serve a purpose—it is supposed to help the physicist select ideas
that help us to explain nature” [2]. These ideas are intuitively appealing and have helped in the
development of successful theories, but putting them into practice is challenging. Beauty has been
used to describe different things by different scientists. There is also the risk of conflating it with truth
and using it as part of a non-empirical “logic of justification,” or reason to believe a theory without
empirical evidence [3, 4]. For example, the physicist Sabine Hossenfelder has argued at length that
an over-emphasis on beauty (particularly the elegance of string theory) was largely responsible for a
stagnation in the foundations of physics, making much of it “post-empirical” [5, 6]. So beauty might
be a good guide to individual scientists for developing novel theories, but a theory’s beauty should
not be its primary justification, particularly for the continued efforts of large groups of researchers.
Ultimately, it must be reconciled with empiricism. Is the situation the same in ML?

For concreteness, I take the following textbook example of supervised learning with empirical risk
minimized by gradient descent as my template for the development of an ML system, though it is
straightforward to adapt to less conventional examples. To start, an ML researcher has a training
set of labeled examples, say images of animals. The researcher also has an objective in mind, say
to obtain a function that predicts the label of the animal in an image with high accuracy, on more
images of animals. In our template, an ML researcher specifies a hypothesis class of functions or
distributions, H, and a loss function quantifying the accuracy of a prediction function, possibly
with a regularization term to encourage a solution with certain properties. A single hypothesis h∗
is selected as follows. Starting with some h0 ∈ H, the compatibility of h0 with the current data is
assessed by the empirical risk, i.e., the average loss on the training data. A response in the form
of a gradient-based update yields h1, and the process is iterated until the search is terminated with
some h∗. There may be an additional process for selecting h∗, such as cross-validation. The selected
hypothesis h∗ is now treated as a theory, and deployed as an explanation for the data generating
process or, increasingly, as part of a technology that relies on the predictions of h∗ on new inputs.

∗This really is a draft intended to be workshopped. It has evolved substantially (including a title change)
since the first draft was submitted to the workshop. All comments and feedback welcome.
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There is an important difference between this process and the process of developing a theory in most
sciences. Predictions of a scientific theory are tested, and empirical evidence allows scientists to
reason inductively [7]; as evidence accumulates the predictions of a theory are likely to hold (or
not hold), based on the evidence alone. In contrast, an ML system is typically developed using
one dataset, subject to a small battery of tests or selection criteria, and then deployed—potentially
in settings in which the system’s predictions have direct and major consequences for one or more
humans. In the act of deployment, there is an implicit, untested hypothesis that the system will
perform similarly on data encountered in deployment, and fulfill objectives in deployment that may
not have been considered during development. Here, except in special cases, a different mode of
reasoning is involved. Reasoning that the predictions of a theory may be true, before enough evidence
has accumulated to deem them probable or improbable, is abductive reasoning [8, 9]. In many
sciences, such as physics, abductive reasoning is often used as a “logic of pursuit,” i.e., using various
non-empirical arguments for pursuing the development of a theory before it has been sufficiently
tested [4]. Ultimately, the theory must be tested before it is deemed likely to hold, and usually it can
be tested experimentally without major, direct impact on the lives of humans who are not involved in
the research.1 In ML, however, similar testing may never be performed and if it is, testing occurs
after the deployed system has already had consequences.

The extrapolative leaps from training to deployment are precisely where ML’s best methods for
system development succeed, and where most—and the most consequential—failures occur. As
I argue below, the leap is where beauty can and does play a role. Beauty also serves to highlight
some important aspects of the leap that are not specific to beauty. Based on this, and drawing on
research on beauty from psychology, cognitive science, and philosophy of science, I articulate some
fundamental problems and suggest directions for potential solutions.

Theories of beauty Before making any attempts to address the role of beauty in ML research,
we need a working definition of beauty, and how it might possibly manifest in ML. Philosophers,
artists, and scientists have debated the meaning of beauty for millennia—the Western historical
record of such debates dates at least 2,500 years [10]. Historically, much of the debate focused on
the distinction between objective beauty (it is a feature of an object, independent of any perceiver)
and subjective beauty (completely “in the eye of the beholder” [10]), eventually leading to Kant,
Hume, and others to postulate an intersubjective theory (having a social aspect with which we might
reason). Modern theories have combined elements of those two traditions with empirical research
from psychology and neuroscience to understand beauty as interactionist: “emerg[ing] from patterns
in the way people and objects interact” [11].

The interactionist perspective is adopted here. Within ML research, there are two main categories of
interaction to which beauty might be relevant. The first category consists of the interactions between
an ML system and data. In these types of interactions, the system processing data has much in
common with a human brain processing sensory input. Viewed this way, research on beauty from
cognitive science is informative. I explore this in detail in Section 1. The second category involves
ML researchers interacting with ML systems in the course of research. For these types of interactions,
philosophical investigations of the role of beauty in scientific research are relevant. This is the subject
of Appendix A.

1 Processing fluency in ML systems

From an interactionist perspective, the role of beauty in ML systems, if there is one, is determined
by the interactions between those systems and objects represented by the data they process. A
particularly potent cognitive theory of beauty is the theory of processing fluency, summarized by
the psychologists Reber, Schwarz, and Winkielman [11] as follows: “[A]esthetic experience is a
function of the perceiver’s processing dynamics: The more fluently the perceiver can process an
object, the more positive is his or her aesthetic response” [11, p. 365]. Crucially, specific assumptions
of processing fluency theories [12] adapted to ML systems entail three aspects:

(A1) a compatibility between the system and certain features of data that might be processed;

1An important exception to this is, of course, an experiment on human subjects, though ethical standards and
protocols are in place to mitigate negative impacts. In general, there also may be indirect impact in the form of
taxes funding research, etc.
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(A2) an internal signal indicating the compatibility of the system with the current data being
processed; and

(A3) a response that is more positive with higher compatibility.

Our textbook example of supervised learning attempts to find an ML system that satisfies (A1) by iter-
atively assessing compatibility (A2) using empirical risk and responding (A3) with a gradient-based
update. The standard assessment of (A1)-style compatibility is out-of-training-sample generalization
error, under the assumption that all data that might be processed will be drawn from the same
distribution as the training data. This has long been and remains the dominant framework in ML.
Adopting processing fluency as our framework for beauty, we find that certain aspects of processing
fluency already play significant roles in ML systems, particularly those to which the template is well
suited. We might also understand some of the shortcomings of current ML systems as failures to
be properly compatible with the data they might process (A1) or with the task on which they are
deployed, and the lack of a reliable, integrated, real-time “compatibility response” (A2-A3).

1.1 “Objective” beauty in ML: quantifiable usefulness

Some of ML’s best methods rely on notions of beauty that are conceptually similar to aspects of
perceptual fluency, or “the ease of identifying the physical identity of the stimulus,” [11, p. 366]
which humans rely on to perceive physical stimuli. On these types of problems, ML has made,
and continues to make, exceptional progress. Reber, Schwarz, and Winkielman [11] listed three
features that, based on a large body of empirical evidence, might be considered “objectively” beautiful
features: simplicity/amount of information, symmetry, and contrast/clarity. Moreover, those features
contribute primarily to perceptual fluency. For ML problems that correspond to this type of fluency,
the purposeful beauty of these features can be found throughout ML; we review some of them here.

Simplicity: generalization and theory selection As summarized in [11], experimental research
in psychology indicates that visual stimuli with less information (as measured by high redundancy
and/or symmetry; see below) are identified faster and are found more pleasing, consistent with the
theory that simpler objects are processed more fluently by the human brain. In textbook ML system
development, out-of-training-sample generalization error has a notion of beauty-in-simplicity built
in. Statistical learning theory provides bounds on generalization error (e.g., PAC-Bayes [13, 14] or
bounds based on the VC dimension or Rademacher complexity [15]) with the general form:

Generalization error of h∗ ≤ Empirical error of h∗ + Complexity of h∗ . (1)

The practical guidance provided by this bound is clear: in order to select the most compatible theory
from those that achieve the same empirical error, we should select the simplest. There is a fluency in
(1): one can obtain general compatibility between system and possible data (A1) by obtaining specific
compatibility between system and observed data (A2) and imposing the requirement that the system
be no more complex than necessary. This is the conceptual basis of Occam’s Razor, information
criteria for statistical model selection (e.g., AIC and BIC) [16], the minimum description-length
principle [17], and the maximum entropy principle [18], among others.

Symmetry: decomposition and simplification Symmetry is widely held to be a beautiful feature
[11]. From a perceptual fluency perspective, an object with high degree of symmetry is easier to
process; in fact, it has been used in psychology experiments as a proxy for information content [11].
Symmetry also has a long history in statistics and ML as a reliable way to obtain appropriately simple
and accurate models. For example, we might specify a model familyHsymm ⊂ H that only contains
symmetric models (e.g., CNNs or families of invariant distributions). Alternatively, we might ask for
an algorithm that yields a model from the fullH that is “almost” inHsymm, or approximately invariant
(e.g., data augmentation). If the symmetry assumption is accurate—that is, if the underlying process
really does obey those symmetries—then something useful happens: compared to a non-symmetric
method, a symmetric method is simpler (lower complexity) and the empirical risk is at least as good.
This fluency can be quantified in a number of ways: statistical benefits are quantified by generalization
bounds specializing (1) [19, 20, 21]; in information theoretic terms, invariance is compressible [22];
and CNNs have a smaller number of parameters than their fully connected counterparts [23, 24].

Contrast and clarity: signal-to-noise In the same way that high-contrast images are processed
more fluently [11], data with high signal-to-noise ratio is learned from more efficiently, and results in
lower generalization error.

3



1.2 Objectifying beauty

Perhaps a better name for these aspects of “objective” beauty is “objective function” beauty. In
each case, the beautiful feature can be described well in information theoretic terms, leading to a
quantifiable statistical and computational benefit. More generally, to the extent that an aesthetic
feature can be quantified, it can be incorporated into ML methods as a term in an objective function.
Indeed, regularization towards lower complexity has been standard practice for some time [e.g., 25,
26], and regularization towards invariance through data augmentation has become standard practice
in deep learning in recent years. So—is the inclusion of beauty necessary for a good ML method?
The statistical and computational usefulness of “objective function” beauty suggest an answer in the
affirmative, not as an end unto itself, but as an indicator of a system well suited to its environment.

But beauty is not sufficient, and observed compatibility can be misleading. The compatibility
assessment in (1) implies (A1)—compatibility between system and data that will be processed—
only under a certain condition: new data is drawn from the same distribution as the training data.
Relatively newer2 lines of ML research pertaining to robustness, causality, fairness, accountability,
and transparency have highlighted the risks posed by an over-reliance on that particular version of
compatibility which, in many settings, turns out to be restrictively myopic. As an example, consider
the well-known problem of distribution shift: after an ML system is optimized for performance
with (1) on data from distribution P , it is deployed and encounters data from distribution P ′ 6= P .
The generalization guarantee of (1) is no longer a guarantee; it can be arbitrarily, catastrophically
bad. Without anticipating how the distribution might change in deployment, no notion of objective
function beauty can salvage the situation. Within the context of processing fluency, the system is not
compatible with the data it processes. Particularly problematic for ML system deployment is the
lack of reliable real-time signal of and response to the lack of compatibility. Although many types
of incompatibility arise from a distribution shift, others can arise from various types of bias [27], or
incompatibility between a system and its intended use (e.g., a lack of interpretability [28, 29]).

1.3 Towards increased processing fluency in ML systems

How can we address the risks presented by incompatibility between an ML system and the data it
processes? One general purpose approach is to imitate human processing fluency with a separate,
meta-cognitive system for assessing compatibility. Crucially, the loss function should be only one
part of such a system: If the only signal for compatibility in deployment is high prediction error, then
by the time that signal is given the system has erred, potentially with unacceptable consequences.

Computational models of meta-cognitive processes already exist. For example, recent work in [30]
models the so-called “Aha! moment” using methods similar to those for predicting algorithm runtime
[31, 32]. Alternatively, uncertainty quantification has played the role of incompatibility signal in
statistics and other fields, but a reliable, general purpose, efficiently computable method has remained
elusive for most ML systems, particularly those using deep neural networks. Ultimately, the design of
a reliable compatibility assessment system should fulfill various criteria—but which criteria? Again,
perceptual fluency can provide a framework.

Experiential and meta-perceptive beauty Clearly, human experiences of beauty are more com-
plicated than the types of beauty we can currently encode in an objective function. Research indicates
that numerous other temporal and learning factors including repeated exposure, prototypicality of a
stimulus, implicit learning of structure, and the development of expertise all play important roles,
as features influencing processing fluency [11]. For lack of a better term, I will categorize these as
“experiential.” Moreover, high-level features and meta-cognitive processes appear to moderate our
perception of beauty. These include assessing how processing fluency deviates from expectations, the
attribution of processing fluency to relevant sources, and internal competition between perceptual and
conceptual fluency [11]. I will categorize these as “meta-perceptive” features.

Whereas the usefulness of objective function beauty can be formalized by statistical and computational
quantities, experiential and meta-perceptive beauty appear more complicated; to my knowledge, no
broadly applicable formalism exists. If one does, it does not appear to be widespread in ML research.3

2Robustness, causality, interpretability, etc., have long histories in statistics, related applied fields, and small
sub-areas of ML; they are somewhat newer to mainstream ML.

3The only work I am aware of that does anything like this combines reinforcement learning with processing
fluency as a computational model for certain cognitive processes [33, 12].
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However, recent research in structured representation learning aims to learn implicit structure; causal
learning attempts to learn causal attribution; and continual learning naturally adapts the system
to changes in data. Quantities derived from those lines of research could provide ingredients for
analogues to the compatibility determined by experiential and meta-perceptive processes. Suitable
variations of statistical learning theory and information theory, respectively, seem like sensible starting
points, though much work remains.

Note: In order to respect the workshop’s page limits, a section exploring philosophical considerations
is relegated to Appendix A. A version without this relegation is available at https://www.stat.
ubc.ca/~benbr/.
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A Stronger reasoning in the leap

The success of methods based on objective function beauty is tied to our ability to reason about the
leap from training to deployment in terms of quantifiable hypotheticals. For example, (1) makes a
strong argument for a balance between minimal training error and simplicity when the question is,
“How should we minimize expected loss if more data from the same distribution, P , is input into the
trained system?” The bound in (1) allows us to pass from abductive reasoning [8] (suggestive that a
theory may hold but has not been tested) to induction (a theory does hold with certain probability);
from inferring that h∗ may perform well on other data drawn from P , to concluding that it will
perform well with quantifiably high probability.

The leap from abduction to induction depends on the relationship between the tests performed and
methods used to select h∗, on the one hand, and the settings and purposes for which we imagine h∗

will be applied, on the other. The relationship between a sample from P (on which h∗ is trained)
and other samples from P is very different from the relationship between a sample from P and a
sample from a mixture of P and another distribution P ′, for example. Minimizing expected risk is
very different from minimizing worst-case risk.

The general hypothetical in ML is something like, “How should we achieve criteria Q if data from
a set P of distributions is input?” How can we reason about the likelihood of an ML system
achieving (P,Q) when we cannot test it directly before deployment? Passage from abductive to
inductive reasoning requires a specific (P,Q), its relationship to the training setting, and observable
constraints on the properties of h∗, such as complexity. In practice, at least one of these ingredients
is missing. Especially difficult for ML researchers developing a new method is the challenge of
anticipating the widest possible range of (P,Q)-settings in which their method might be used. This
is precisely where beauty and other values can (and do) enter: in the absence of empirically testable
properties and standards or known deployment conditions. In their absence, most research problems
are underdetermined. Beauty can impose useful constraints, as can other values.

Pursuing beauty Of the possible values that might impose useful constraints, suppose that ML
researchers as a whole value beauty. How, then, should it be pursued, by individual researchers and
the field as a whole? How should ML researchers judge a system to have beautiful properties? The
mathematician Gian-Carlo Rota wrote, “Mathematicians may say that a theorem is beautiful when
they really mean to say that the theorem is enlightening,” used as a device “to avoid facing up to the
messy phenomenon of enlightenment,” or understanding [34, pp. 181-2]. In ML, as in mathematics,
we may use “beautiful” to describe an experiment or a theoretical result that “gives away the secret
... [that] leads us to perceive the actual” [34, p. 182]. In other words, there is a certain conceptual
fluency present (and it’s messy). Within ML, there have been calls for this type of enlightenment. A
well-known recent example was the 2017 NeurIPS Test of Time Award acceptance speech by Rahimi
and Recht [35, 36], which articulated a need for better understanding of the methods researchers
develop and use. Better understanding of our methods enables stronger reasoning about them for
a wider range of (P,Q). In this sense, beauty as something that gives enlightenment or encodes
understanding can play a key part. But as Rota wrote, enlightenment is messy, at least partially
subjective—how can we achieve it?

One possible bridge is conceptual fluency, described in [11, p. 366] as “the ease of mental operations
concerned with stimulus meaning and its relation to semantic knowledge structures.” For ML
researchers, building such a bridge requires work from both end-points: the development of ML
methods that are able to infer meaning from data and relate it to (human) semantic knowledge
structures; and the development of the appropriate knowledge structures with which to understand
ML methods. In many ways, researchers regularly cross such a bridge individually and informally.
Using simple models that are widely interpretable and easy to reason about is one path, but it seems
limiting. Alternatively, researchers can do the hard work of illuminating the inner workings of a new
method, of its strengths, limitations, and potential performance under a wide range of specific (P,Q).
Broadly, this seems to require new empirical and theoretical tools, such as those being pursued by
researchers working in interpretability and explainability [28, 29]. Work causality-inspired ML and
structured representation learning is also directly relevant. Given the growing role of ML systems in
our everyday lives, the development of such tools should be considered at least as important as the
development of the next benchmark dataset leader or new large language model.
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Crossing the bridge Perhaps conceptual fluency provides a bridge. However, even a sturdy bridge
does not provide a single complete answer. Researchers may use the bridge differently. For example,
the discussion of enlightenment ignores the fact that the degree of understanding obtained by one
human may be completely different from the degree of understanding obtained by another. Semantic
knowledge structures vary from human to human. As with aesthetic preferences, they depend on
one’s cultural environment, one’s lived experience, one’s education [11]. To illustrate, Rota [34,
p. 173] gives an example of mathematical beauty in “the Galois theory of equations,” which in
all likelihood I would find incomprehensible (though perhaps with some study, I might come to
appreciate the theory’s beauty). In the context of ML, simplicity and interpretability don’t have
universally agreed-upon definitions [37]. There may not be a one-size-fits-all solution to the problem.

This is true more generally, and the diversity can be a good thing, especially when researchers
carefully articulate their reasoning. Diversity here is broadly construed to encompass all of the factors
that influence how a researcher arrives at the varied and complex decisions involved in the course
of conducting research. These largely overlap with the factors that influence one’s perception of
beauty, whether inherited, learned, or experienced. As the philosopher of science T. S. Kuhn wrote,
research decisions, or “application of values,” are “sometimes considerably affected by the features
of individual personality and personal biography that differentiate” researchers, and that “individual
variability in the application of shared values may serve essential functions in science” [38]. These
essential functions are “risk-spreading” (i.e., efficient exploration of the space of possible solutions)
and the paradigm-shifting discoveries that often require high-risk research [39]. Combining Kuhn
with perceptual fluency, in the pursuit of the shared value of beauty, ML researchers with diverse
aesthetic preferences will, collectively, develop ML systems that are more compatible with their
inputs and tasks.

Beauty is one of an infinitude of values. The philosopher G. J. Morgan extrapolated Kuhn’s arguments
from the diversity of applying shared values, to the diversity of values themselves, which may or may
not include aesthetic preferences [3]. Morgan concluded that ultimately, “[t]here must also be what
might be called the spontaneity of individual values” [3, p. 14]. Scientists might vary in their aesthetic
preferences and the relative value they assign to them, and a scientist might not value beauty at all.
Although Morgan justifies such spontaneity with the freedom of inquiry, the benefits of diverse values
within a research community are largely the same as those articulated by Kuhn. This is particularly
important for ML research into systems deployed a large scales, and whose predictions can have
meaningful consequences. Greater diversity translates into consideration of a wider set of P’s and
Q’s, better exploration of the solution space and the formulation of important new solution spaces.
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