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A B S T R A C T

Mainstream few-shot segmentation methods meet performance bottleneck due to the data scarcity of novel
classes with insufficient intra-class variations, which results in a biased model primarily favoring the base
classes. Fortunately, owing to the evolution of the Internet, an extensive repository of unlabeled images has
become accessible from diverse sources such as search engines and publicly available datasets. However, such
unlabeled images are not a free lunch. There are noisy inter-class and intra-class samples causing severe feature
bias and performance degradation. Therefore, we propose a semi-supervised few-shot segmentation framework
named F4S, which incorporates a ranking algorithm designed to eliminate noisy samples and select superior
pseudo-labeled images, thereby fostering the improvement of few-shot segmentation within a semi-supervised
paradigm. The proposed F4S framework can not only enrich the intra-class variations of novel classes during
the test phase, but also enhance meta-learning of the network during the training phase. Furthermore, it can
be readily implemented with ease on any off-the-shelf few-shot segmentation methods. Additionally, based on
a Structural Causal Model (SCM), we further theoretically explain why the proposed method can solve the
noise problem: the severe noise effects are removed by cutting off the backdoor path between pseudo labels
and noisy support images via causal intervention. On PASCAL-5𝑖 and COCO-20𝑖 datasets, we show that the
proposed F4S can boost various popular few-shot segmentation methods to new state-of-the-art performances.
1. Introduction

Few-shot segmentation (FSS) [1] aims to segment the object regions
in query images of novel classes using a minimal number (N-shot) of
annotated support images. The most common experimental settings
for FSS use 1-shot and 5-shot annotated support samples, as shown
in Fig. 1(a) and (b). The primary challenge for FSS is how to effec-
tively utilize the information provided by the N-shot support images.
Prototype-based approaches [2–6] focus on generating representative
prototypes from the N-shot support images to accurately characterize
the novel classes. In contrast, the metric-based approaches [7–9] focus
on learning a class-agnostic similarity metric that can precisely measure
the regions similar to the N-shot support regions in the query image.
However, the most significant challenge of few-shot learning is how to
maximize the exploration of data distributions under data scarcity [10].
Increasing manually annotated data is the most direct and effective
method, but it is extremely time and labor-consuming.
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Thanks to semi-supervised learning (SSL), the pseudo-labeling meth-
ods have provided a practical solution for the data scarcity issue in
few-shot learning tasks, and there is already relevant research work
published on this. For example, the method in [11] combines semi-
supervised learning with few-shot classification and proposes the PLCM
network, which generates and selects good pseudo labels based on
loss distribution to enrich the dataset. the method in [12] proposes
a semi-supervised few-shot segmentation method in remote sensing
cases, which generates pseudo labels on super-pixels of backgrounds
for mining latent features to enhance the network’s generalization
capacity. The method in [13] combines semi-supervised learning with
few-shot object detection and proposes the APLDet network, which
utilizes a teacher model adaptively generating pseudo labels to guide
the training of a student model.

In this study, we combine semi-supervised learning (SSL) with
few-shot segmentation (FSS) and propose a novel semi-supervised
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Fig. 1. (a) 1-shot setting. (b) 5-shot setting. (c) 1-shot with additional 4 noise support
images with pseudo labels. There is a large performance gap between 1-shot and 5-
shot. Using 1-shot and 4 noise support can achieve comparable performance to 5-shot
without increasing annotation cost.

few-shot segmentation framework named F4S. Different from existing
method [12] that introduces super-pixels to generate pseudo labels and
only enhances the training phase of FSS, the proposed F4S framework
generates pseudo labels of unlabeled images directly, and quantitatively
evaluates the quality of pseudo labels based on a novel ranking algo-
rithm, and finally enhance both the training and test phases of any
off-the-shelf FSS models. A brief pipeline of F4S is shown in Fig. 1(c),
which consists of three steps. Firstly, pseudo labels are generated
using a pre-trained FSS model for noisy and unlabeled support images.
Secondly, pseudo labels with high confidence scores are selected as
ground truth to augment the support set. Thirdly, the augmented
support set is utilized to enhance the FSS model in both the training
and test phases.

However, unlabeled support images are not a free lunch, as there
are two problems that complicate pseudo-label selection (as shown in
Fig. 2). (1) Noisy Intra-Class Samples: The noisy intra-class samples
contain ambiguous objects that may strengthen the background and
weaken the foreground, e.g., noisy ‘‘background’’ dominates the image
as shown in Fig. 2(a). (2) Noisy Inter-Class Samples: The noisy inter-
class samples introduce irrelevant features to the task, which may
cause feature bias and thus confuse the FSS model, e.g., the FSS model
is confused by ‘‘elephant’’, ‘‘person’’ and ‘‘sheep’’ when segmenting
‘‘aeroplane’’ as shown in Fig. 2(b). We need to eliminate the two types
of samples.

To solve the two basic problems, we propose a ranking algorithm
in F4S to automatically eliminate the noisy intra-class samples and
inter-class samples. This ranking algorithm consists of two terms: an
intra-class confidence term 𝑅 and an inter-class confidence term 𝑇 .
The term 𝑅 aims to identify the noisy intra-class samples by cal-
culating three terms: 𝐸𝑠𝑐 , 𝐸𝑖𝑚𝑐 and 𝐸𝑐𝑦𝑐 . Specifically, 𝐸𝑠𝑐 measures
prediction uncertainty based on binary entropy, 𝐸𝑖𝑚𝑐 identifies different
types of errors based on the co-teaching framework [14,15], and 𝐸𝑐𝑦𝑐
measures object features completeness based on the cycle-consistency
strategy [16,17]. Besides, the term 𝑇 aims to identify the noisy inter-
class samples. It calculates the feature similarities between the support
prototypes and the pseudo labels of noisy images. Finally, a ranking
score 𝐸 is calculated by weighting 𝑅 and 𝑇 , and the top-scored pseudo
labels are treated as new support samples.
2

In order to theoretically explain the effectiveness of the ranking
algorithm, we design a Structural Causal Model (SCM), which mod-
els the relevance of input support samples, noisy support set, and
query labels. The SCM proves that the proposed ranking algorithm
can successfully remove the confounding bias in the noisy support
set (cf. Section 5). We also evaluate the proposed F4S framework on
two popular FSS benchmarks: PASCAL-5𝑖 [1], and COCO-20𝑖 [18] in
Section 6. Extensive quantitative and qualitative studies show that the
F4S achieves new SOTA performance compared with existing fully
supervised FSS methods.

This paper represents a very substantial extension of our previous
conference paper [19]. The main improvements compared with [19] lie
in threefold: (𝑖) We have improved the F4S framework by integrating
a new term, 𝐸𝑐𝑦𝑐 , derived from the cycle-consistency strategy, into
the proposed ranking algorithm. This enhancement notably boosts the
model’s ability to identify noisy samples without increasing its learn-
able parameters or memory cost, achieving improved performances.
(𝑖𝑖) We have added a justification section (Section 5), where we the-
oretically explain why the proposed method can work successfully
based on a Structural Causal Model (SCM), which models the causal
relevance of input data, generated pseudo labels, and output predic-
tions. (𝑖𝑖𝑖) We have conducted more comprehensive experiments to
evaluate the proposed method thoroughly. These experiments include
extensive evaluations on the PASCAL-5𝑖 dataset, along with additional
comparisons with both inductive and transductive FSS methods, as well
as recent semi-supervised FSS methods. Furthermore, we have included
visualization results, conducted more comprehensive ablation studies,
and performed additional experimental analysis.

Our main contributions are as follows:

∙ We incorporate semi-supervised learning into the few-shot seg-
mentation task and propose the F4S framework. It can benefit any
off-the-shelf few-shot segmentation models by solving the data
scarcity problem via introducing pseudo-labeled images, which
has less been studied.

∙ We design a ranking algorithm including an intra-class confidence
score 𝑅 and an inter-class confidence score 𝑇 to automatically
identify and eliminate the noisy samples in pseudo labels. The
designing of 𝑅 and 𝑇 are based on the underlying mechanism
of FSS models. To the best of our knowledge, this is the first
work that quantitatively evaluates the quality of pseudo labels in
semi-supervised few-shot segmentation.

∙ We offer a theoretical explanation of the ranking algorithm
grounded in a Structural Causal Model (SCM). This analysis
proves that the proposed method has the capability to mitigate
confounding bias within the noisy support set through causal
intervention.

2. Related work

2.1. Few-shot segmentation

Few-shot segmentation performs semantic segmentation in the few-
shot scenario, where only a few support images are given for a new
class. Two types of FSS methods, i.e., the prototype-based approaches
[2–6,20,21] and the metric-based approaches [7–9], are mainly used
to achieve accurate segmentation.

The prototype-based approaches try to generate prototypes that
describe the class well from the limited training samples. For example,
the method in [20] generates foreground and background prototypes
via a classifier trained by support images with image-level labels. The
method in [2] uses a prototype alignment strategy to make the proto-
types more consistent. Seeing the fact that one single prototype is hard
to fully describe the class, some methods [3,4] try to generate multiple
prototypes for each class. For example, the methods in [3,4] decompose

the single class representation into a set of part-aware prototypes that
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Fig. 2. Examples of two basic problems. (a) Noisy intra-class samples as support samples. (b) Noisy inter-class samples as support samples.
can describe diverse fine-grained object features more precisely. The
methods in [5,21] propose a parameter-free based prototype generation
method via feature clustering.

The metric-based approaches try to learn a class-agnostic similarity
metric that measures the similarity of region pairs, by which the query
region similar to the support region can be obtained. For example, the
method in [7] proposes a dense comparison module to calculate the
similarity between support features and query features under multiple
levels. The method in [8] proposes a multi-scale decoder with atten-
tion prior masks to achieve better measurement. Besides, the methods
in [22,23] provide a fresh insight into the FSS task. The proposed BAM
network incorporates an auxiliary base learner into the conventional
FSS meta learner to identify and remove the feature-biased problem
caused by base-class objects, and thus learn a better class-agnostic
metric function. Moreover, the method in [24] introduces a divide-and-
conquer strategy in FSS, which divides coarse results into small regions
and conquers the segmentation failures by leveraging the information
derived from support image-mask pairs.

Different from these existing methods, we generalize few-shot seg-
mentation with more noisy and unlabeled images in both the training
and testing phases. Furthermore, we propose a new quality ranking
algorithm that can select good support samples from noisy samples
accurately.

2.2. Semi-supervised learning

Semi-supervised learning [25–31] trains neural networks on par-
tially labeled datasets, including both labeled and unlabeled data. The
labeled data provides discriminative information about classes, while
the unlabeled data provides the underlying structure of the input data.
Recent works based on semi-supervised learning not only improve the
performance of deep neural networks, but also significantly reduce the
cost associated with data labeling. For example, the method in [25]
generates and selects pseudo labels for unlabeled data that exhibit high
confidence above a specific threshold to enhance image classification.
The method in [29] utilizes the teacher–student framework, where the
teacher model learns to generate good pseudo labels from unlabeled
data to benefit the student model for object detection. The method
in [28] proposes a new confidence score based on the loss distribution
to select good pseudo labels and benefit few-shot classification. The
method in [27] generates and retains pseudo-labeled samples with high
confidence of the target domain for adversarial learning to solve the
domain adaptation problem. The method in [30] proposes a transfer
network, which is trained by pseudo labels and learns to exploit bene-
ficial feature representation knowledge in the extractor to enhance the
training of semantic segmentation network. In this paper, we propose
a semi-supervised FSS framework to expand the support image set with
unlabeled images and their pseudo labels.

2.3. Few-shot learning with noisy samples

Few-shot learning with noisy samples [32–36] represents a more
realistic scenario, where support sets are susceptible to mislabeled
3

samples. Robustness to noisy samples is crucial for practical few-
shot learning methods. Some existing works [32,33] focus on feature
similarity to identify and eliminate the noisy samples. For instance,
the method proposed in [32] employs soft k-means clustering to detect
noise within the support samples, given that the features of noisy
samples deviate significantly from the current support set. The method
described in [33] utilizes a feature-level similarity assessment to reveal
the heterogeneity and homogeneity within support samples.

Additionally, designing attention mechanisms is widely utilized
for suppressing noise. For example, the method in [34] introduces
a semantically-conditioned attention mechanism to estimate the im-
portance of training instances and bolster the model’s resilience to
noise. Similarly, the method outlined in [35] introduces an attention
mechanism based on a novel transformer architecture, to effectively
weigh mislabeled samples against correct ones. Moreover, the method
described in [36] presents an attention-based contrastive learning
model incorporating discrete cosine transform input. This model uti-
lizes transformed frequency domain representations obtained through
discrete cosine transform as input, effectively removing high-frequency
components to suppress input noise.

Furthermore, recent research effort [37] extends the handling of
noisy samples to the few-shot segmentation task. It proposes a noise
suppression module to eliminate noisy activations by analyzing the
correlation distribution between query and support features. How-
ever, [37] only considers the inter-class noisy samples and cannot be
generalized to a semi-supervised scenario, where both intra-class and
inter-class noisy samples abound. Therefore, semi-supervised few-shot
segmentation with noisy samples is a more crucial scenario and remains
largely unexplored. In this study, we introduce a novel quality ranking
algorithm designed to select high-quality support samples from noisy
pseudo-labeled data. This approach enhances few-shot segmentation
models in a semi-supervised way during both the training and testing
phases.

2.4. Causal inference

Causal inference [38,39] aims to formulate tasks in the view of
causalities and makes the network benefit from causal effects by remov-
ing the confounder. Recently, a growing number of methods combining
with causal inference are proposed [40–44] in computer vision. For
example, the method in [40] uses causal inference to solve the semi-
supervised semantic segmentation, where the co-occurrence context
is considered as a confounder making the model hard to distinguish
the category boundaries. A context adjustment method with causal
intervention is proposed to remove the confounding bias. The method
in [41] treats the pre-trained knowledge as a confounder in few-shot
learning, and uses causal intervention to remove the negative effect
of the pre-trained knowledge. The method in [42] tackles the out-
of-distribution (OOD) generalization problem with causality. A causal
invariant transformation is proposed to keep the causal features from
non-causal features. Similarly, the method in [43] designs a meta-
causal learner to capture common causal features from multiple tasks
and realize out-of-distribution generalization. In this paper, we propose
a structural causal model in Section 5.1 to analyze the causalities
among support samples, noisy support set, and query labels in our F4S

framework, and aim at improving the FSS performance.
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Fig. 3. (a) The pipeline of the proposed F4S framework, which consists of three phases. In phase I, a pretrained FSS network 𝑁𝜃 is used to obtain the pseudo labels. Then, in
phase II, a ranking algorithm is utilized to calculate quality scores 𝐸 of pseudo labels and rank them. Finally, in phase III, top-scored pseudo labels are selected as new support
samples to retrain 𝑁𝜃 . (b) The pipeline of the conventional FSS test. After retraining 𝑁𝜃 , it is tested on novel classes, e.g., ‘‘car’’, with an annotated initial support set. (c) The
pipeline of our FSS test based on the proposed semi-supervised framework. 𝑁𝜃 is tested on novel classes with a new support set, which is expanded following phase I and phase
II.
3. Formulation

We mathematically formulate the conventional few-shot segmenta-
tion methods and the proposed F4S for better understanding.

Conventional few-shot segmentation methods: ① In the train-
ing phase, a support set 𝑆𝑏𝑎𝑠𝑒 including images 𝐼𝑏𝑎𝑠𝑒𝑆 and pixel-level
annotations 𝑀𝑏𝑎𝑠𝑒

𝑆 of base classes is given. A few-shot segmentation
network 𝑁𝜃 parameterized by 𝜃 need to be trained on {𝐼𝑏𝑎𝑠𝑒𝑆 ,𝑀𝑏𝑎𝑠𝑒

𝑆 }
to segment objects from a query set 𝑄𝑏𝑎𝑠𝑒 within the meta-learning
paradigm. The ground truth 𝑀𝑏𝑎𝑠𝑒

𝑄 of 𝑄𝑏𝑎𝑠𝑒 is given for loss calculation
and backward propagation. ② In the test phase, {𝐼𝑛𝑜𝑣𝑒𝑙𝑆 ,𝑀𝑛𝑜𝑣𝑒𝑙

𝑆 } of novel
classes is given, which provides support features to help network 𝑁𝜃
predict segmentation masks 𝑀𝑛𝑜𝑣𝑒𝑙

𝑄 of novel objects from 𝑄𝑛𝑜𝑣𝑒𝑙. Then,
an evaluation metric, e.g. mIoU, is adopted to evaluate the performance
of 𝑁𝜃 , i.e. 𝑚𝐼𝑜𝑈 (�̂�𝑛𝑜𝑣𝑒𝑙

𝑄 ,𝑀𝑛𝑜𝑣𝑒𝑙
𝑄 ).

The proposed method F4S: ① Before training, {𝐼𝑏𝑎𝑠𝑒𝑆 ,𝑀𝑏𝑎𝑠𝑒
𝑆 } and

a set of noisy unlabeled images 𝐼𝑢𝑛𝑙𝑎𝑏𝑒𝑙 are given. Pseudo labels 𝑃
of 𝐼𝑢𝑛𝑙𝑎𝑏𝑒𝑙 are generated by the pretrained network 𝑁𝜃 based on the
support features of {𝐼𝑏𝑎𝑠𝑒𝑆 ,𝑀𝑏𝑎𝑠𝑒

𝑆 }. ② A ranking algorithm is proposed
here to obtain {𝐼𝑏𝑎𝑠𝑒𝑢𝑛𝑙𝑎𝑏𝑒𝑙 , 𝑃

𝑏𝑎𝑠𝑒}, where the noisy pseudo-labeled samples
are eliminated and superior pseudo-labeled samples of base classes are
retained. ③ In the training phase, based on {𝐼𝑏𝑎𝑠𝑒𝑆 ,𝑀𝑏𝑎𝑠𝑒

𝑆 , 𝐼𝑏𝑎𝑠𝑒𝑢𝑛𝑙𝑎𝑏𝑒𝑙 , 𝑃
𝑏𝑎𝑠𝑒},

the network 𝑁𝜃 is retrained within the meta-learning paradigm. ④

Before test, we implement ① and ② again based on {𝐼𝑛𝑜𝑣𝑒𝑙𝑆 ,𝑀𝑛𝑜𝑣𝑒𝑙
𝑆 } to

obtain {𝐼𝑛𝑜𝑣𝑒𝑙𝑢𝑛𝑙𝑎𝑏𝑒𝑙 , 𝑃
𝑛𝑜𝑣𝑒𝑙} of novel classes. ⑤ In the test phase, based on

{𝐼𝑛𝑜𝑣𝑒𝑙𝑆 ,𝑀𝑛𝑜𝑣𝑒𝑙
𝑆 , 𝐼𝑛𝑜𝑣𝑒𝑙𝑢𝑛𝑙𝑎𝑏𝑒𝑙 , 𝑃

𝑛𝑜𝑣𝑒𝑙}, the network 𝑁𝜃 outputs the predictions
�̂�𝑛𝑜𝑣𝑒𝑙

𝑄 of the query set 𝑄𝑛𝑜𝑣𝑒𝑙. Then, an evaluation metric 𝑚𝐼𝑜𝑈 (�̂�𝑛𝑜𝑣𝑒𝑙
𝑄 ,

𝑀𝑛𝑜𝑣𝑒𝑙
𝑄 ) is utilized to evaluate the performance.

4. Method

4.1. Overview

Fig. 3(a) shows the proposed F4S framework, which consists of three
phases. In phase I, a pretrained FSS network 𝑁𝜃 is used to obtain
the pseudo labels of the noisy and unlabeled support images. Various
existing FSS models can be employed here.

In phase II, the ranking algorithm is utilized to evaluate the pseudo
labels. Specifically, an intra-class confidence term 𝑅 and an inter-class
confidence term 𝑇 are calculated for each pseudo label. Then, a final
ranking score 𝐸 is obtained by simply calculating the weighted sum of
𝑅 and 𝑇 :
4

𝐸 = 𝛼 ⋅ 𝑅 + 𝛽 ⋅ 𝑇 (1)
where 𝛼 and 𝛽 are weighting coefficients. Afterwards, the top 𝑘 scored
pseudo labels are selected to form a new annotation set:

𝑏𝑎𝑠𝑒
𝑛𝑒𝑤 ← 𝑏𝑎𝑠𝑒 + {(𝑋1, 𝑌𝑋1

), (𝑋2, 𝑌𝑋2
),… , (𝑋𝑘, 𝑌𝑋𝑘

)} (2)

where 𝑏𝑎𝑠𝑒 indicates the initial annotation set of base classes in the
training phase, 𝑌𝑋 indicates the pseudo label of image 𝑋.

Finally, in phase III, the new annotation set 𝑏𝑎𝑠𝑒
𝑛𝑒𝑤 is used to retrain

𝑁𝜃 and get better predictions. More details of the intra-class confi-
dence term 𝑅 and the inter-class confidence term 𝑇 are introduced
in Sections 4.2 and 4.3, respectively. Besides, in order to enhance the
inference of FSS models, we further propose a new test process based
on F4S in Section 4.4.

4.2. Intra-class confidence term 𝑅

The term 𝑅 aims to identify the noisy intra-class samples. The
calculation of 𝑅 is shown in Eq. (3):

𝑅 = 𝐸𝑠𝑐 × (𝐸𝑖𝑚𝑐 + 𝐸𝑐𝑦𝑐 ) (3)

where the segmentation confidence term 𝐸𝑠𝑐 estimates the prediction
uncertainty of pseudo labels, the instance mask consensus term 𝐸𝑖𝑚𝑐
identifies different types of errors in pseudo labels, and the cyclic mask
consensus term 𝐸𝑐𝑦𝑐 identifies pseudo labels with incomplete object
features. Now, we introduce the three terms 𝐸𝑠𝑐 , 𝐸𝑖𝑚𝑐 , and 𝐸𝑐𝑦𝑐 in
detail.

Segmentation Confidence Term 𝐸𝑠𝑐 . This term is calculated by
adopting a binary-entropy-based function to measure the prediction
uncertainty:

𝐸𝑠𝑐 = − 1
𝑁

∑

𝑖
𝐻(𝑖) + 𝐵 (4)

where 𝑖 indicates a pixel position, 𝐻(⋅) is the binary entropy function, 𝑁
is the total number of pixels, and 𝐵 is a bias term to ensure 𝐸𝑠𝑐 ∈ [0, 1].
The formulation of 𝐻(𝑥) is shown in Eq. (5), where 𝑝(𝑖) is the logit at
pixel position 𝑖.

𝐻(𝑥) = −𝑝(𝑖)𝑙𝑜𝑔(𝑝(𝑖)) − (1 − 𝑝(𝑖))𝑙𝑜𝑔(1 − 𝑝(𝑖)) (5)

Instance Mask Consensus Term 𝐸𝑖𝑚𝑐 . This term is motivated by
the co-teaching theory [14,15], which proves that two diverged net-
works can filter different types of errors. Therefore, if two diverged
few-shot segmentation networks output similar predictions to the same
wild image, the predictions contain less error and have high confidence.
The pipeline of getting 𝐸𝑖𝑚𝑐 is shown in Fig. 4(a) and its calculation is:

𝐸 = 𝑚(𝑌 1 , 𝑌 2 ) (6)
𝑖𝑚𝑐 𝑋 𝑋
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Fig. 4. (a) The pipeline of 𝐸𝑖𝑚𝑐 . The unlabeled image 𝑋 is processed by two FSS models 𝑁𝜃1, 𝑁𝜃2, with a given support sample {𝑆, 𝑌𝑆}. Then, a metric 𝑚(⋅, ⋅) is calculated between
the two output 𝑌 1

𝑋 , 𝑌 2
𝑋 . (b) The pipeline of 𝐸𝑐𝑦𝑐 , which consists of two stages. In stage 1, a FSS model 𝑁𝜃 makes prediction 𝑌𝑋 of the unlabeled image 𝑋 based on a given support

sample {𝑆, 𝑌𝑆}. In stage 2, 𝑁𝜃 makes prediction 𝑌𝑆 of 𝑆 based on {𝑋, 𝑌𝑋}. Finally, a metric 𝑚(⋅, ⋅) is calculated between 𝑌𝑆 and 𝑌𝑆 .
Fig. 5. (a) The causal graph for FSS. The confounder 𝐷 degrades FSS via 𝑋 ← 𝐷 →

𝑀 → 𝑌 , i.e., noisy intra-class and inter-class samples in 𝐷 are mistakenly selected as
support samples 𝑋 causing serious feature bias and bad query predictions of 𝑌 . (b)
The revised causal graph of our F4S, where the proposed ranking algorithm in F4S can
cut off the path towards 𝑋 by do(𝑋), and thus ensures the selected support samples
are noiseless.

where 𝑌 1
𝑋 and 𝑌 2

𝑋 are predictions of the same unlabeled image 𝑋 from
two diverged networks 𝑁𝜃1 and 𝑁𝜃2. 𝑚(⋅, ⋅) indicates a segmentation
metric score, e.g., mIoU.

Cyclic Mask Consensus Term 𝐸𝑐𝑦𝑐 . Inspired by the cycle-
consistency strategy of [16], we design a cyclic pipeline in FSS to
estimate the segmentation confidence. The detailed pipeline is shown
in Fig. 4(b). Specifically, it consists of two stages: in stage 1, a FSS
model 𝑁𝜃 makes a prediction 𝑌𝑋 of the unlabeled image 𝑋 based on
the annotated support sample {𝑆, 𝑌𝑆}; in stage 2, based on {𝑋, 𝑌𝑋}, 𝑁𝜃
makes a prediction 𝑌𝑆 of the support image 𝑆. Finally, the 𝐸𝑐𝑦𝑐 can be
calculated by:

𝐸𝑐𝑦𝑐 = 𝑚(𝑌𝑆 , 𝑌𝑆 ) (7)

4.3. Inter-class confidence term 𝑇

The term 𝑇 aims to identify the noisy inter-class samples based
on the feature similarities between the support prototypes and the
pseudo labels. First, the prototype of class 𝑐 of the initial support set
𝑐 = {𝑆𝑐

1 , 𝑆
𝑐
2 ,… , 𝑆𝑐

𝑛} are calculated by:

𝑐 = 1
𝑛

𝑛
∑

𝑖=1
𝜎(𝑆𝑐

𝑖
, 𝑌𝑆𝑐

𝑖
) (8)

where 𝑆𝑐
𝑖
∈ R𝐶×𝐻×𝑊 is the feature map of support 𝑆𝑐

𝑖 of class 𝑐, 𝑌𝑆𝑐
𝑖

is
the manual annotation, 𝜎(⋅) is the masked global average pooling, and
𝑐 ∈ R𝐶 is the prototype of class 𝑐. Then, the term 𝑇 can be calculated
by:

𝑇 = 𝑠(𝑐 , 𝜎(𝑋 , 𝑌𝑋 )) (9)

where 𝑋 ∈ R𝐶×𝐻×𝑋 is the feature map of 𝑋, 𝑌𝑋 is the generated
pseudo label, 𝑠(⋅, ⋅) is a similarity metric, e.g., cosine similarity.
5

4.4. A new test process based on F4S

To enhance the inference of FSS models, we can further expand
the initial support set of novel classes via F4S in the test phase, of
which the pipeline is shown in Fig. 3(c). Specifically, different from the
conventional FSS test (Fig. 3(b)), where only a small annotated support
set 𝑛𝑜𝑣𝑒𝑙 of novel classes is utilized, our test enriches 𝑛𝑜𝑣𝑒𝑙 following
the pipeline of phase I and phase II of the proposed F4S to obtain a
new support set 𝑛𝑜𝑣𝑒𝑙

𝑛𝑒𝑤 :

𝑛𝑜𝑣𝑒𝑙
𝑛𝑒𝑤 ← 𝑛𝑜𝑣𝑒𝑙 + {(𝑋1, 𝑌𝑋1

), (𝑋2, 𝑌𝑋2
),… , (𝑋𝑘, 𝑌𝑋𝑘

)} (10)

Then, the query images will be segmented with the new support set
𝑛𝑜𝑣𝑒𝑙
𝑛𝑒𝑤 to get better predictions.

5. Justification

5.1. Structural causal model

We construct a causal graph to formulate the causalities among the
selected support sample, query prediction, and the noisy support set,
which is shown in Fig. 5(a). The causal graph consists of four nodes: 𝑋
indicates the selected support sample; 𝑌 is the query label; 𝐷 indicates
the noisy support set, which includes the noisy intra-class and inter-
class samples and acts as the confounder in the causal graph; 𝑀 is
the transformed representation of 𝑋 in the low-dimensional manifold
embedded in the latent high-dimension space via FSS model [40]. The
directed path between two nodes indicates the causalities : cause →

effect. Next, we detail the rationale of Fig. 5(a).
𝐷 → 𝑋. The support sample 𝑋 is sampled from the noisy support

set 𝐷.
𝑋 → 𝑌 . The support sample 𝑋 provides object cues to predict

query label 𝑌 . However, this latent relevance between 𝑋 and 𝑌 cannot
obtained directly, and therefore a FSS model 𝑓 (⋅) is needed here to learn
a transformed representation 𝑀 between 𝑋 and 𝑌 .

𝐷 → 𝑀 . The transformed representation 𝑀 is a subset of that of 𝐷
due to that the FSS model 𝑓 (⋅) is trained on 𝐷.

𝑋 → 𝑀 → 𝑌 . The support sample 𝑋 leads to the transformed
representation 𝑀 via FSS model, i.e., 𝑀 = 𝑓 (𝑋), and 𝑀 contributes to
the prediction of 𝑌 , i.e., 𝑃 (𝑌 |𝑋,𝑀). 𝑋 with less noise leads to better
𝑀 , and finally benefits the prediction of 𝑌 .

Based on the causal graph, one can see that the confounder 𝐷
degrades 𝑃 (𝑌 |𝑋) via the backdoor path 𝑋 ← 𝐷 → 𝑀 → 𝑌 . Re-
moving the backdoor path is the key challenge for improving F4S
performance. Next, we show how to remove the confounding effect by
causal intervention 𝑃 (𝑌 |𝑑𝑜(𝑋)).
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5.2. Causal intervention via backdoor adjustment

In this section, we propose to use the causal intervention
𝑃 (𝑌 |𝑑𝑜(𝑋)), which can remove the confounding effect by 𝑑𝑜(⋅) to get

better prediction of label 𝑌 . The key idea is to cut off the path
→ 𝑋 (Fig. 5(b)) via backdoor adjustment [38], i.e., identifying and

liminating noisy intra-class and inter-class samples when sampling 𝑋
rom 𝐷. Following [38,45], we have:

(𝑌 |𝑑𝑜(𝑋)) =
∑

𝐷={𝑑0 ,𝑑1}
𝑃 (𝑌 |𝑋,𝑀 = 𝑓 (𝑋,𝐷))𝑃 (𝐷)

=𝑃 (𝑌 |𝑋, 𝑓 (𝑋,𝐷 = 𝑑0))𝑃 (𝐷 = 𝑑0)

+ 𝑃 (𝑌 |𝑋, 𝑓 (𝑋,𝐷 = 𝑑1))𝑃 (𝐷 = 𝑑1)

=𝑃 (𝑌 |𝑋, 𝑓 (𝑋,𝐷 = 𝑑0)) ⋅ 𝛼

+ 𝑃 (𝑌 |𝑋, 𝑓 (𝑋,𝐷 = 𝑑1)) ⋅ 𝛽

(11)

where the noisy support set 𝐷 includes two types of noisy samples: 𝑑0
ndicates the noisy intra-class samples, and 𝑑1 indicates the noisy inter-
lass samples. 𝑃 (𝐷 = 𝑑0) and 𝑃 (𝐷 = 𝑑1) indicate the ratio of 𝑑0 and 𝑑1
n 𝐷. For simplicity, they are set as two constants: 𝛼 and 𝛽, respectively.
ext, we estimate 𝑃 (𝑌 |𝑋, 𝑓 (𝑋,𝐷 = 𝑑0)) and 𝑃 (𝑌 |𝑋, 𝑓 (𝑋,𝐷 = 𝑑1)).

.2.1. Estimation of 𝑃 (𝑌 |𝑋, 𝑓 (𝑋,𝐷 = 𝑑0))
Following [46], we implement the sampling process from the inter-

vened distribution to get 𝑃 (𝑌 = 𝑦|𝑋 = 𝑥, 𝑓 (𝑋 = 𝑥,𝐷 = 𝑑0)), abbreviated
as 𝑃 (𝑦|𝑥, 𝑓 (𝑥, 𝑑0)). It represents the probability of predicting the label
𝑌 = 𝑦 under the condition of input 𝑋 = 𝑥 with intra-class noise
𝐷 = 𝑑0. Intuitively, less intra-class noise 𝑑0 leads to a higher probability
𝑃 to predict the correct label 𝑌 = 𝑦, which can be reflected by a
segmentation metric score. To this end, we can get:

𝑃 (𝑦|𝑥, 𝑓 (𝑥, 𝑑0)) ∝ 𝑚(𝑦, �̂�) (12)

where �̂� is the prediction of label 𝑦, 𝑚(⋅, ⋅) indicates a segmentation
metric score, e.g., mIoU.

However, the label 𝑌 = 𝑦 is unavailable since the noisy support
set is not annotated, and thus 𝑚(𝑦, �̂�) cannot be calculated. Fortunately,
the proposed intra-class confidence score 𝑅 (Eq. (3)) can estimate the
credibility of prediction �̂� in a blind way, i.e., without annotated label
𝑦. Therefore, we can further obtain:

𝑃 (𝑦|𝑥, 𝑓 (𝑥, 𝑑0)) ∝ 𝑚(𝑦, �̂�) ∝ 𝑅 (13)

In this way, the proposed intra-class confidence term R can estimate
the target 𝑃 (𝑌 |𝑋, 𝑓 (𝑋,𝐷 = 𝑑0)) due to its correlation of metric score
𝑚(⋅, ⋅).

5.2.2. Estimation of 𝑃 (𝑌 |𝑋, 𝑓 (𝑋,𝐷 = 𝑑1))
Implementing the sampling process from the intervened distribu-

tion, we can get the term 𝑃 (𝑦|𝑥, 𝑓 (𝑥, 𝑑1)), which represents the prob-
ability of predicting the label 𝑌 = 𝑦 based on input 𝑋 = 𝑥 with
inter-class noise 𝐷 = 𝑑1. Intuitively, less inter-class noise 𝑑1 leads to
higher probability 𝑃 to predict label 𝑌 = 𝑦, which can be reflected
by the similarity between class prototype  and input noisy support
sample 𝑥. Therefore, we have:

𝑃 (𝑦|𝑥, 𝑓 (𝑥, 𝑑1)) ∝ 𝑠( , 𝑓 (𝑥𝑠)) (14)

where  is the class-specific prototype, 𝑓 (𝑥𝑠) is the feature map of
the input support sample 𝑥, 𝑠(⋅, ⋅) is a similarity metric, e.g., cosine
similarity. Combining Eq. (14) with Eq. (9), we get:

𝑃 (𝑦|𝑥, 𝑓 (𝑥, 𝑑1)) ∝ 𝑇 (15)

In this way, the proposed inter-class confidence term 𝑇 can estimate
the target 𝑃 (𝑌 |𝑋, 𝑓 (𝑋,𝐷 = 𝑑1)) based on the feature similarities.

Finally, combining Eq. (13) with Eq. (15), we can rewrite Eq. (11):

𝑃 (𝑌 |𝑑𝑜(𝑋)) ∝ 𝑅 ⋅ 𝛼 + 𝑇 ⋅ 𝛽 = 𝐸 (16)

Therefore, the proposed ranking mechanism can successfully remove
the confounding effect in the noisy support set 𝐷 following the causal
intervention 𝑃 (𝑌 |𝑑𝑜(𝑋)).
6

Table 1
The diverged networks in 𝐸𝑖𝑚𝑐 .

Method 𝑁𝜃1 𝑁𝜃2

HSNet [50] ResNet50 ResNet101
VGG16 ResNet101

PFENet [8] VGG16 ResNet50
VGG16 ResNet101

6. Experiment

6.1. Setup

Datasets. We evaluate our method on PASCAL-5𝑖 [1] and COCO-
0𝑖 [18] datasets and use the unlabeled 123,403 images in COCO2017
47] for conducting experiments. Specifically, following the setup
n [1], 20 categories in the PASCAL VOC 2012 dataset [48] are
artitioned into 4 folds (i.e., fold-0, fold-1, fold-2, and fold-3) and each
old contains 5 categories. Following the setups in [18], 80 categories
n the COCO dataset [47] are also divided into 4 folds and each fold
ontains 20 categories. The experiments are conducted in a cross-
alidation manner and the validation episode is set to 1000 for each
old.
Evaluation metrics. Following previous works [3,4,21,49], we

dopt mean intersection over union (mIoU) and foreground-
ackground IoU (FB-IoU) as our evaluation metrics. The mIoU metric
s computed by averaging IoU of all classes: 𝑚𝐼𝑜𝑈 = 1

𝑛
∑𝑛

𝑖=1 𝐼𝑜𝑈𝑖.
he FB-IoU metric is calculated by averaging IoU of foreground and
ackground: 𝑚𝐼𝑜𝑈 = 1

2 (𝐼𝑜𝑈𝐹 + 𝐼𝑜𝑈𝐵).
Implementation details. All of our experiments are conducted on

wo NVIDIA Titan XP GPUs and Intel Core i9-9900k CPU @ 3.60GHz×
6. Our code is constructed on PyTorch. We build our F4S framework
ased on the open-sourced code of methods in [8,50]. In Section 4.2,
ultiple backbones are adopted as the two diverged networks 𝑁𝜃1, 𝑁𝜃2.

The detailed settings of 𝑁𝜃1, 𝑁𝜃2 are shown in Table 1. The publicly
eleased pretrained models in methods [8,50] are used directly. For
he PFENet (VGG16) on PASCAL-5𝑖 and PFENet (ResNet101) on COCO-
0𝑖, we train the models following the official settings in [8]. We set
(⋅, ⋅) to mIoU score in Section 4.2 and set 𝑠(⋅, ⋅) to cosine similarity in

Section 4.3. The feature maps  ∈ R𝐶×𝐻×𝑊 in Section 4.3 are extracted
from the last convolutional layer of the backbone. 𝛼 and 𝛽 in Eq. (1)
are set to 0.3 and 0.7, respectively. In the training phase, pseudo labels
with 𝐸 ≥ 0.65 are selected as new annotations of base classes. In the
test phase, top 4 scored pseudo labels are introduced into the support
set of novel classes. In phase III, the retraining setting strictly follows
the base model [8,50].

6.2. Quantitative results

We evaluate the proposed F4S on PASCAL-5𝑖 [1] and COCO-20𝑖

datasets and compare the metric scores with recent FSS methods [2,8,
50–54]. Table 2 shows the mIoU and FB-IoU values of our method and
the existing methods under 1-shot settings on PASCAL-5𝑖 and COCO-
20𝑖 datasets, where ‘‘F4S (HSNet)’’ indicates that F4S is implemented
on the HSNet [50]. Here, the F4S is set to 1-shot/5-shot with 4 noise
support (as shown in Fig. 1(c)) and our evaluation has two test ways:
the conventional test in Fig. 3(b) and our test in Fig. 3(c), which are
annotated as ‘‘†’’ and ‘‘‡’’ in Table 2, respectively.

Compared with the baseline (HSNet), we can observe that on the
PASCAL-5𝑖 dataset, ‘‘F4S (HSNet) †’’ achieves mIoU improvements of
1.6%, 0.8%, and 0.3% on three backbones under 1-shot, and achieves
mIoU improvements of 0.7%, 0.6%, and 0.5% under 5-shot. Mean-
while, on the COCO-20𝑖 dataset, ‘‘F4S (HSNet) †’’ also achieves further
improvements of mIoU and FB-IoU on different backbones under 1-
shot and 5-shot. These results demonstrate that the proposed F4S can

benefit FSS models from the unlabeled support images in the retraining
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Table 2
Performance of the proposed F4S on PASCAL-5𝑖 and COCO-20𝑖 datasets. ‘‘†’’ is the results of the conventional test. ‘‘‡’’ is the results
of our test based on the F4S. ‘‘Oracle’’ is the 5-shot performance. ‘‘±0.1’’ is the standard deviation of repeating 5 times.

Dataset Backbone Method Type 1-shot 5-shot

mIoU FB-IoU mIoU FB-IoU

PASCAL-5𝑖

VGG16

PFENet [8] Inductive 58.0 72.0 59.0 72.3
HSNet [50] Inductive 59.7 73.4 64.1 76.6
HPA [51] Inductive 61.5 75.2 66.2 79.3
DCP [24] Inductive 62.6 75.6 67.8 80.7
BAM [22] Inductive 64.4 77.3 68.8 81.1
BAMa [23] Inductive 65.3 77.5 69.6 81.3

F4S (HSNet)† Inductive 61.3 (±0.3) 74.4 (±0.2) 64.8 (±0.2) 76.9 (±0.2)
F4S (HSNet)‡ Inductive 67.9 (±0.2) 79.2 (±0.1) 68.2 (±0.3) 79.7 (±0.3)

ResNet50

RePRI [49] Transductive 59.1 – 66.8 –
PFENet [8] Inductive 60.8 73.3 61.9 73.9
HSNet [50] Inductive 64.0 76.7 69.5 80.6
HPA [51] Inductive 64.8 76.4 68.9 81.1
CDFS [52] Transductive 65.3 – 70.8 –
DCP [24] Inductive 66.1 77.6 70.3 81.5
BAM [22] Inductive 67.8 79.7 70.9 82.2
BAMa [23] Inductive 68.3 80.3 71.8 83.1

F4S (HSNet)† Inductive 64.8 (±0.2) 77.2 (±0.2) 70.1 (±0.2) 81.0 (±0.2)
F4S (HSNet)‡ Inductive 70.8 (±0.2) 81.5 (±0.1) 72.0 (±0.3) 82.3 (±0.2)

ResNet101

PFENet [8] Inductive 60.1 72.9 61.4 73.5
DCAMA [53] Inductive 64.6 77.6 68.3 80.8
HPA [51] Inductive 65.6 76.6 68.9 80.4
HSNet [50] Inductive 66.2 77.6 70.4 80.6
DCP [24] Inductive 67.3 78.5 71.5 82.7
BAM [22] Inductive 68.6 80.2 72.5 84.1

F4S (HSNet)† Inductive 66.5 (±0.2) 78.2 (±0.2) 70.9 (±0.3) 81.1 (±0.2)
F4S (HSNet)‡ Inductive 72.3 (±0.1) 82.3 (±0.1) 73.4 (±0.2) 82.6 (±0.3)

COCO-20𝑖

ResNet50

RePRI [49] Transductive 34.0 – 42.1 –
HSNet [50] Inductive 39.2 68.2 46.9 70.7
CDFS [52] Transductive 42.0 – 49.8 –
DCAMA [53] Inductive 43.3 69.5 48.3 71.7
HPA [51] Inductive 43.4 68.2 50.0 71.2
DCP [24] Inductive 45.5 – 50.9 –
BAM [22] Inductive 46.2 – 51.2 –
BAMa [23] Inductive 46.9 72.3 51.9 74.7

F4S (HSNet)† Inductive 40.9 (±0.3) 69.1 (±0.2) 49.0 (±0.4) 71.9 (±0.5)
F4S (HSNet)‡ Inductive 50.0 (±0.4) 72.6 (±0.5) 52.0 (±0.3) 74.0 (±0.3)

ResNet101

PFENet [8] Inductive 38.5 63.0 42.7 65.8
HSNet [50] Inductive 41.2 69.1 49.5 72.4
DCAMA [53] Inductive 43.5 69.9 51.9 73.3
HPA [51] Inductive 45.8 68.4 52.4 74.0
BAMa [23] Inductive 48.5 69.9 52.7 74.1

F4S (HSNet)† Inductive 42.8 (±0.2) 69.8 (±0.2) 51.2 (±0.5) 73.3 (±0.4)
F4S (HSNet)‡ Inductive 51.4 (±0.2) 73.3 (±0.3) 54.1 (±0.4) 75.5 (±0.4)

a Indicates the improved version of the base method.
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hase (Fig. 3(a)) without noise disturbance. Besides, following our test
Fig. 3(c)), ‘‘F4S (HSNet) ‡’’ achieves mIoU improvements of 8.2%,
.8%, and 6.1% on three backbones on PASCAL-5𝑖, and mIoU improve-
ents of 10.8%, and 10.2% on two backbones on COCO-20𝑖 under
-shot. Moreover, there are also remarkable performance improve-
ents achieved by ‘‘F4S (HSNet) ‡’’ under 5-shot. These quantitative

esults verify that extending the support set with unlabeled support
mages via F4S can directly benefit the inference of FSS models in the
est phase.

We also compare the proposed method with recent transductive
nd inductive methods. In Table 2, one can observe that the proposed
ethod ‘‘F4S (HSNet) ‡’’ with different backbones obtains new state-

f-the-art performances. On PASCAL-5𝑖 and with ResNet101 backbone,
ur 1-shot and 5-shot results of ‘‘F4S (HSNet)‡’’ respectively achieve
.7% and 0.9% of mIoU improvements over BAM [22]. On COCO-
0𝑖 and with ResNet101 backbone, ‘‘F4S (HSNet)‡’’ also outperforms
ecent methods with a sizable margin as well, achieving 2.9% and
.4% of mIoU improvements over BAM∗ [23]. These results verify the
uperiority of the proposed method in the few-shot segmentation task.
7

i

Furthermore, we also evaluate F4S in the test phase directly with-
ut the retraining phase to save the training cost. Two popular FSS
odels, i.e., HSNet [50] and PFENet [8], are adopted to implement

4S. The quantitative results are shown in Table 3. One can ob-
erve that on PASCAL-5𝑖 dataset and under the 1-shot setting, ‘‘F4S
PFENet)’’ achieves mIoU improvements of 1.8%, and 1.6% on VGG16
nd ResNet50 backbones compared with PFENet performance (base-
ine), and ‘‘F4S (HSNet)’’ achieves mIoU improvements of 6.8%, 6.6%,
nd 5.9% on three different backbones compared with HSNet per-
ormance (baseline). On COCO-20𝑖 dataset, ‘‘F4S (HSNet)’’ and ‘‘F4S
PFENet)’’ also obtain superior performance compared with the base-
ine. These quantitative results prove that the proposed F4S can benefit
he inference of FSS models directly without extra training.

It is worth noting that in both Tables 2 and 3, the performance
f F4S (1-shot with 4 noise support) surprisingly surpasses the 5-
hot performance of HSNet in some cases. This can be attributed to
wo aspects. First, the training of models is enhanced due to the
dditional support features from noisy and unlabeled support images
ntroduced by F4S. Second, the annotated support samples in ‘‘Oracle’’
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Table 3
Performance of the proposed F4S without the retraining phase on PASCAL-5𝑖 and COCO-20𝑖 datasets. ‘‘Oracle’’ is the 5-shot
performance. ‘‘±0.1’’ is the standard deviation of repeating 5 times.

Dataset Backbone Method Type 1-shot 5-shot

mIoU FB-IoU mIoU FB-IoU

PASCAL-5𝑖

VGG16

PFENet [8] Inductive 58.0 72.0 59.0 72.3
HSNet [50] Inductive 59.7 73.4 64.1 76.6
HPA [51] Inductive 61.5 75.2 66.2 79.3
DCP [24] Inductive 62.6 75.6 67.8 80.7
BAM [22] Inductive 64.4 77.3 68.8 81.1
BAMa [23] Inductive 65.3 77.5 69.6 81.3

F4S (PFENet)‡ Inductive 59.8 (±0.2) 72.1 (±0.2) 60.3 (±0.3) 72.5 (±0.3)
F4S (HSNet)‡ Inductive 66.5 (±0.2) 78.4 (±0.1) 67.1 (±0.2) 78.9 (±0.3)

ResNet50

RePRI [49] Transductive 59.1 – 66.8 –
PFENet [8] Inductive 60.8 73.3 61.9 73.9
HSNet [50] Inductive 64.0 76.7 69.5 80.6
HPA [51] Inductive 64.8 76.4 68.9 81.1
CDFS [52] Transductive 65.3 – 70.8 –
DCP [24] Inductive 66.1 77.6 70.3 81.5
BAM [22] Inductive 67.8 79.7 70.9 82.2
BAMa [23] Inductive 68.3 80.3 71.8 83.1

F4S (PFENet)‡ Inductive 62.4 (±0.2) 73.3 (±0.2) 62.9 (±0.3) 73.5 (±0.2)
F4S (HSNet)‡ Inductive 70.6 (±0.2) 81.4 (±0.1) 71.7 (±0.3) 82.0 (±0.3)

ResNet101

PFENet [8] Inductive 60.1 72.9 61.4 73.5
DCAMA [53] Inductive 64.6 77.6 68.3 80.8
HPA [51] Inductive 65.6 76.6 68.9 80.4
HSNet [50] Inductive 66.2 77.6 70.4 80.6
DCP [24] Inductive 67.3 78.5 71.5 82.7
BAM [22] Inductive 68.6 80.2 72.5 84.1

F4S (HSNet)‡ Inductive 72.1 (±0.1) 82.1 (±0.1) 72.6 (±0.3) 82.2 (±0.3)

COCO-20𝑖

ResNet50

RePRI [49] Transductive 34.0 – 42.1 –
HSNet [50] Inductive 39.2 68.2 46.9 70.7
CDFS [52] Transductive 42.0 – 49.8 –
DCAMA [53] Inductive 43.3 69.5 48.3 71.7
HPA [51] Inductive 43.4 68.2 50.0 71.2
DCP [24] Inductive 45.5 – 50.9 –
BAM [22] Inductive 46.2 – 51.2 –
BAMa [23] Inductive 46.9 72.3 51.9 74.7

F4S (HSNet)‡ Inductive 49.7 (±0.4) 72.2 (±0.2) 51.0 (±0.5) 72.9 (±0.4)

ResNet101

PFENet [8] Inductive 38.5 63.0 42.7 65.8
HSNet [50] Inductive 41.2 69.1 49.5 72.4
DCAMA [53] Inductive 43.5 69.9 51.9 73.3
HPA [51] Inductive 45.8 68.4 52.4 74.0
BAMa [23] Inductive 48.5 69.9 52.7 74.1

F4S (PFENet)‡ Inductive 41.5 (±0.2) 63.8 (±0.2) 43.3 (±0.3) 66.4 (±0.4)
F4S (HSNet)‡ Inductive 51.1 (±0.4) 73.1 (±0.5) 52.4 (±0.4) 74.5 (±0.4)

a Indicates the improved version of the base method.
re randomly sampled from datasets and may include noisy intra-class
amples, while the proposed F4S guarantees the exclusion of such noisy
ntra-class samples.

Finally, we also compare the proposed method with recent semi-
upervised methods [12,55] to show the superior performance in Ta-
le 4. One can see that on PASCAL-5𝑖 dataset and with ResNet50

backbone, the proposed ‘‘F4S (HSNet)‡’’ achieves 3.8% of mIoU im-
provement in 1-shot setting and 3.1% of mIoU improvement in 5-shot
setting over UaFSS [55]. Besides, with ResNet101 backbone, the pro-
posed method also outperforms recent methods with a sizable margin as
well, achieving 3.8% (1-shot) and 3.9% (5-shot) of mIoU improvements
over UaFSS [55]. Besides, on COCO-20𝑖 dataset and with ResNet50 and
ResNet101 backbones, the 1-shot and 5-shot results of ‘‘F4S (HSNet)‡’’
are also superior to both UaFSS [55] and CLRS [12] with a remarkable
margin.

6.3. Qualitative results

Fig. 6 shows the qualitative results of ‘‘F4S (HSNet)’’ with
ResNet101 backbone on PASCAL-5𝑖 and COCO-20𝑖 datasets. As can be
noticed, (e) F4S predictions include more complete and accurate object
regions compared with the (d) baseline, and are close to the (c) ground
8

truth, which demonstrates that the proposed F4S achieves a comparable
performance to 5-shot without increasing annotation cost.

6.4. Ablation study

We conduct a series of ablation studies to investigate the effective-
ness of each component in the proposed F4S and the results are shown
in Table 5. Without loss of generality, the ablation study experiments
are performed on ‘‘F4S(HSNet)’’ with ResNet101 backbone on COCO-
20𝑖 dataset. In Table 5, one can observe that when only with the
𝐸𝑠𝑐 , 𝐸𝑖𝑚𝑐 , or 𝐸𝑐𝑦𝑐 , the proposed method achieves mIoU improvement
of 0.4%, 0.7%, and 0.6% respectively, and their combination leads
to 2.3% mIoU improvement. Then, when only using the inter-class
confidence term 𝑇 , the proposed method achieves mIoU improvements
of 8.9%, and FB-IoU improvements of 2.6%. Next, with the existence of
𝑇 , each component (𝐸𝑠𝑐 , 𝐸𝑖𝑚𝑐 , and 𝐸𝑐𝑦𝑐) of the intra-class confidence
term 𝑅 contributes further mIoU improvements to different extents,
which are shown in the 7th to 9th rows. Finally, the full combination
of 𝑅 and 𝑇 achieves the best mIoU of 51.4% and FB-IoU of 73.3%. The
ablation studies prove the effectiveness of both 𝑅 and 𝑇 in the F4S.

We notice that 𝑇 contributes to larger mIoU improvement while

R provides limited improvement. The reason is that the feature bias
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Fig. 6. Qualitative results of the proposed F4S and its baseline. The left panel is from PASCAL-5𝑖, and the right panel is from COCO-20𝑖. From top to bottom: (a) 1-shot support
images with ground truth, (b) 4 noise support images with pseudo labels via F4S, (c) query images with ground truth, (d) baseline predictions, (e) F4S predictions.
Table 4
Performance comparison with recent semi-supervised few-shot segmentation methods on PASCAL-5𝑖 and
COCO-20𝑖 datasets.
Dataset Backbone Method 1-shot 5-shot

mIoU FB-IoU mIoU FB-IoU

PASCAL-5𝑖

ResNet50

CLRS [12] 56.4 – 67.7 –
UaFSS [55] 67.0 79.2 68.9 80.2

F4S (HSNet)† 64.8 (±0.2) 77.2 (±0.2) 70.1 (±0.2) 81.0 (±0.2)
F4S (HSNet)‡ 70.8 (±0.2) 81.5 (±0.1) 72.0 (±0.3) 82.3 (±0.2)

ResNet101

CLRS [12] 64.3 – 68.2 –
UaFSS [55] 68.5 79.4 69.5 79.4

F4S (HSNet)† 66.5 (±0.2) 78.2 (±0.2) 70.9 (±0.3) 81.1 (±0.2)
F4S (HSNet)‡ 72.3 (±0.1) 82.3 (±0.1) 73.4 (±0.2) 82.6 (±0.3)

COCO-20𝑖

ResNet50

CLRS [12] 33.0 – 36.3 –
UaFSS [55] 41.3 68.9 46.4 70.9

F4S (HSNet)† 40.9 (±0.3) 69.1 (±0.2) 49.0 (±0.4) 71.9 (±0.5)
F4S (HSNet)‡ 50.0 (±0.4) 72.6 (±0.5) 52.0 (±0.3) 74.0 (±0.3)

ResNet101
UaFSS [55] 43.6 69.9 46.8 70.7

F4S (HSNet)† 42.8 (±0.2) 69.8 (±0.2) 51.2 (±0.5) 73.3 (±0.4)
F4S (HSNet)‡ 51.4 (±0.2) 73.3 (±0.3) 54.1 (±0.4) 75.5 (±0.4)
caused by inter-class noise is greater than intra-class noise, which
explains the greater performance improvement of T. However, this does
not mean that intra-class noise can be ignored. The results in the 2nd
to 5th rows of Table 5 show that R is also essential for eliminating
intra-class noise to improve FSS performance.

6.5. Analysis

6.5.1. Computational analysis
In Table 6, the 1st row shows the computational complexity of the

base model HSNet, which is regarded as the baseline. The 2nd row
shows the computational complexity of the proposed method in whole
stages, including generating (Stage I) and selecting (Stage II) pseudo
labels. The 3rd to 5th rows show the computational complexity of each
stage respectively.

Specifically, in stage I (3rd row), the trained models of HSNet are
officially provided to generate pseudo labels. Therefore, there are no
9

learnable params in this stage, and the FPS and FLOPs are also close to
the baseline. In stage II (4th row), a diverged network 𝑁𝜃2 is adopted
here to compute 𝐸𝑖𝑚𝑐 in Eq. (6) and the base network 𝑁𝜃 is utilized
to compute 𝐸𝑐𝑦𝑐 in Eq. (7). Therefore, the FLOPS increases to 40.62G
and the FPS decreases to 8.51. In stage III (5th row), F4S (HSNet) is
retrained with pseudo labels. Therefore, the learnable params is 2.6M,
which is the same as the baseline. Besides, the FPS and FLOPs of F4S
(HSNet) are 16.45 and 20.52G, respectively, which are also close to the
baseline (16.33 and 20.56G).

Here we emphasize that although the proposed method has a high
computational complexity in whole stages (2nd row), the stage I and
stage II only need to be performed once before the training and testing
stages, and do not affect the computational complexity of the training
and testing stages (5th row). Therefore, in the actual testing process,
the computational complexity of the inference remains unchanged
compared to the baseline.
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Table 5
Ablation study of F4S with different design choices. The results represent the mean metric scores of running 5 times. ‘‘±0.1’’ indicates the
standard deviation of running 5 times.

R T Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU

𝐸𝑠𝑐 𝐸𝑖𝑚𝑐 𝐸𝑐𝑦𝑐

37.2 44.1 42.4 41.3 41.2 69.1
✓ 37.9 45.7 41.8 41.1 41.6 (±0.4) 69.3 (±0.3)

✓ 38.5 44.6 42.3 42.0 41.9 (±0.3) 69.8 (±0.4)
✓ 38.7 45.1 41.8 41.7 41.8 (±0.5) 69.6 (±0.6)

✓ ✓ ✓ 39.7 47.0 44.4 42.8 43.5 (±0.7) 70.6 (±0.6)
✓ 47.1 53.4 50.3 49.7 50.1 (±0.4) 71.7 (±0.5)

✓ ✓ 46.7 56.2 50.8 48.7 50.6 (±0.8) 72.0 (±0.4)
✓ ✓ 47.6 55.8 49.6 49.0 50.5 (±0.6) 71.9 (±0.3)

✓ ✓ 47.6 55.6 51.3 49.6 51.0 (±0.4) 72.4 (±0.4)
✓ ✓ ✓ ✓ 46.6 56.7 51.5 50.7 51.4 (±0.2) 73.3 (±0.3)
Table 6
Computational complexity of F4S compared with the baseline.

Method Stage Learnable params ↓ FPS ↑ FLOPS(G) ↓

I II III

HSNet (baseline) – – – 2.6M 16.33 20.56

F4S (HSNet)

✓ ✓ ✓ 2.6M 5.08 81.66
✓ 0 15.80 20.52

✓ 0 8.51 40.62
✓ 2.6M 16.45 20.52

Table 7
Performance scores of different weight values. The results represent the mean met-
ric scores of running 5 times. ‘‘±0.1’’ indicates the standard deviation of running
5 times.
𝛼 𝛽 Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU

0.5 0.5 72.3 74.7 68.3 70.4 71.4 (±0.1) 81.5 (±0.1)
0.4 0.6 72.5 75.0 69.6 70.1 71.8 (±0.2) 81.9 (±0.1)
0.2 0.8 72.2 74.5 69.5 71.9 72.0 (±0.1) 82.0 (±0.1)
0.3 0.7 72.3 75.4 71.1 70.6 72.3 (±0.1) 82.3 (±0.1)

6.5.2. Weights settings
Table 7 shows the quantitative scores when 𝛼 and 𝛽 in Eq. (1) are

et to different values. The experiments are conducted on ‘‘F4S(HSNet)’’
ith ResNet101 backbone on PASCAL-5𝑖. One can observe that when
= 0.3 and 𝛽 = 0.7, the best quantitative scores (72.3% mIoU

nd 82.3% FB-IoU) are obtained. Besides, we also find that by using
ifferent 𝛼 and 𝛽, the quantitative scores fluctuate within a narrow

range (<1.0%), which demonstrates the stability of the proposed F4S
to 𝛼 and 𝛽.

Moreover, we conduct experiments of precomputed 𝛼 and 𝛽 to
obtain the ‘‘oracle’’ performance. The 𝛼 and 𝛽 indicate the ratio of intra-
and inter-class samples in the noisy unlabeled images. Therefore, we
count the quantity of intra- and inter-class samples of each class. We
conduct experiments on PASCAL-5𝑖 dataset and the precomputed 𝛼 and
𝛽 of each class are shown in Table 8 and the ‘‘Oracle’’ results are shown
in Table 9.

In Table 9, one can observe that with the precomputed 𝛼 and 𝛽, the
‘‘Oracle’’ results of the proposed method achieve 73.4% (1-shot) and
73.9% (5-shot) of mIoU with ResNet101 backbone, which outperform
‘‘F4S (HSNet) ‡’’ with a sizable margin (1.1% and 1.1%). Besides, with
VGG16 and ResNet50 backbones, the ‘‘Oracle’’ results also achieve
remarkable mIoU improvements. These results verify the effectiveness
of precomputed 𝛼 and 𝛽.

6.5.3. Statistical analysis of term 𝑅
To further investigate the terms 𝐸𝑠𝑐 , 𝐸𝑖𝑚𝑐 , 𝐸𝑐𝑦𝑐 in the intra-class con-

fidence term 𝑅, we sample the image 𝑋 from the annotated PASCAL-5𝑖

to calculate 𝑚(𝑌𝑋 , 𝑌𝑋 ), where the ground truth 𝑌𝑋 is available and
𝑚(⋅, ⋅) is set to mIoU score. Then, we calculate 𝐸𝑠𝑐 , 𝐸𝑖𝑚𝑐 , 𝐸𝑐𝑦𝑐 fol-
lowing Section 4.2. In Fig. 7, we plot the scatter graphs of (a) 𝐸𝑠𝑐

̂ ̂ ̂
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and 𝑚(𝑌𝑋 , 𝑌𝑋 ), (b) 𝐸𝑖𝑚𝑐 and 𝑚(𝑌𝑋 , 𝑌𝑋 ), (c) 𝐸𝑐𝑦𝑐 and 𝑚(𝑌𝑋 , 𝑌𝑋 ), (d)
𝑅 and 𝑚(𝑌𝑋 , 𝑌𝑋 ) on the 4 folds of PASCAL-5𝑖. As can be noticed in
Fig. 7(a)–(c), there is a positive correlation between 𝑚(𝑌𝑋 , 𝑌𝑋 ) and 𝐸𝑠𝑐 ,
𝐸𝑖𝑚𝑐 , 𝐸𝑐𝑦𝑐 . In Fig. 7(d), the score 𝑅 combining the three components
contributes to better scatter dots distribution: the dots mainly follow
the line 𝑦 = 𝑥, which presents a better positive correlation between
𝑅 and 𝑚(𝑌𝑋 , 𝑌𝑋 ). Therefore, the results of the scatter graphs prove that
the intra-class confidence term 𝑅 can estimate the credibility of pseudo
labels, i.e., 𝑚(𝑌𝑋 , 𝑌𝑋 ), and thus identify the noisy intra-class samples.

6.5.4. F4S performance change with different numbers of unlabeled exam-
ples

We have investigated the F4S performance change with differ-
ent numbers of unlabeled examples. We choose ‘‘F4S (HSNet)’’ with
ResNet101 backbone as the model to conduct the experiments. Here,
Tables 10 and 11 show the results on PASCAL-5𝑖 and COCO-20𝑖

datasets, respectively.
In Tables 10 and 11, the ‘‘baseline’’ indicates the F4S performance

under the 1-shot setting without any additional unlabeled examples
in the test phase. The ‘‘+ N examples’’ indicates the F4S performance
with additional unlabeled N examples, which are pseudo-labeled and
selected by F4S. In Table 10, the ‘‘baseline’’ performance is 66.5% mIoU
score and 78.2% FB-IoU score over 4 folds on the PASCAL-5𝑖 dataset.
Then, with the increasing number of unlabeled examples, the perfor-
mance scores of F4S also gradually improve. Finally, when with ‘‘+ 29
examples’’, the proposed F4S achieves 7.3% of mIoU improvements and
5.5% of FB-IoU improvements over the ‘‘baseline’’. In Table 11, when
with ‘‘+ 29 examples’’ on the COCO-20𝑖 dataset, the proposed F4S also
outperforms ‘‘baseline’’ with a sizable margin as well, achieving 9.9% of
mIoU improvements and 4.0% of FB-IoU improvements. Furthermore,
we observed that with ‘‘+ 29 examples’’, the performance eventually
plateaus in both PASCAL-5𝑖 and COCO-20𝑖 datasets. This outcome is
attributed to the increased number of pseudo-labeled examples with
lower scores 𝐸.

6.6. Discussion

In this section, we introduce the task settings of few-shot learn-
ing and semi-supervised learning, and summarize the similarities and
differences between them.

Setting of Few-shot Learning. Few-shot learning (FSL) has a few
available samples per class as the support set and aims to recognize the
objects in the query set. In fact, FSL does not classify the data specifi-
cally, but makes a cluster to learn the similarity metric function [10].
Increasing the number of support images is a direct way to improve the
performance of FSL models. However, it requires manual annotation
and selection of high-quality intra-class data as new support images,
which is a time- and labor-consuming process.

Setting of Semi-Supervised Learning. Semi-supervised learning
(SSL) concerns with using labeled as well as unlabeled data to perform
certain learning tasks. It permits harnessing the large amounts of un-
labeled data available in many use cases in combination with typically
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Table 8
Precomputed 𝛼 and 𝛽 on PASCAL-5𝑖 dataset.

Fold-1 Fold-2

aeroplane bicycle bird boat bottle bus car cat chair cow

𝛼 0.14 0.19 0.20 0.22 0.11 0.27 0.25 0.16 0.10 0.26
𝛽 0.86 0.81 0.80 0.78 0.89 0.73 0.75 0.84 0.90 0.74

Fold-3 Fold-4

diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor

𝛼 0.21 0.27 0.26 0.18 0.34 0.12 0.29 0.17 0.30 0.24
𝛽 0.79 0.73 0.74 0.82 0.66 0.88 0.71 0.83 0.70 0.76
Table 9
‘‘Oracle’’ performance by precomputed 𝛼 and 𝛽 on PASCAL-5𝑖 dataset.
Backbone Method 1-shot 5-shot

mIoU FB-IoU mIoU FB-IoU

VGG16
F4S (HSNet) † 61.3 (±0.3) 74.4 (±0.3) 64.8 (±0.2) 76.9 (±0.2)
F4S (HSNet) ‡ 67.9 (±0.2) 79.2 (±0.1) 68.2 (±0.3) 79.7 (±0.3)
Oracle 68.2 79.4 68.6 80.2

ResNet50
F4S (HSNet) † 64.8 (±0.2) 77.2 (±0.2) 70.1 (±0.2) 81.0 (±0.2)
F4S (HSNet) ‡ 70.8 (±0.2) 81.5 (±0.2) 72.0 (±0.3) 82.2 (±0.2)
Oracle 71.9 82.4 72.5 83.0

ResNet101
F4S (HSNet) † 66.5 (±0.2) 78.2 (±0.2) 70.9 (±0.3) 81.1 (±0.2)
F4S (HSNet) ‡ 72.3 (±0.2) 82.3 (±0.2) 72.8 (±0.2) 82.6 (±0.3)
Oracle 73.4 83.0 73.9 83.3
Fig. 7. Scatter graphs of each term in score 𝑅. The 𝑦-axis indicates the mIoU score based on ground truth. The 𝑥-axis indicates the values of: (a) 𝐸𝑠𝑐 , (b) 𝐸𝑖𝑚𝑐 , (c) 𝐸𝑐𝑦𝑐 , and (d)
𝑅. Each row shows the scatter graphs on the 4 folds of PASCAL-5𝑖.
11
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Table 10
F4S performance change with different numbers of unlabeled examples on PASCAL-5𝑖.

Setting Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU

Baseline 1-shot 67.8 72.2 62.4 63.4 66.5 (±0.2) 78.2 (±0.2)

F4S

+ 4 examples 72.3 75.4 71.1 70.6 72.3 (±0.1) 82.3 (±0.1)
+ 9 examples 73.0 76.0 72.2 71.6 73.2 (±0.1) 83.4 (±0.1)
+ 19 examples 73.4 76.4 72.6 72.2 73.6 (±0.1) 83.5 (±0.2)
+ 29 examples 73.5 76.5 72.8 72.6 73.8 (±0.1) 83.7 (±0.1)
Table 11
F4S performance change with different numbers of unlabeled examples on COCO-20𝑖.

Setting Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU

Baseline 1-shot 38.4 47.8 43.2 41.8 42.8 (±0.2) 69.8 (±0.2)

F4S

+ 4 examples 46.6 56.7 51.5 50.7 51.4 (±0.2) 73.3 (±0.3)
+ 9 examples 47.5 56.6 52.1 50.6 51.7 (±0.6) 73.6 (±0.5)
+ 19 examples 47.2 57.9 52.7 50.5 52.1 (±0.6) 73.7 (±0.6)
+ 29 examples 48.2 58.9 52.8 50.8 52.7 (±0.8) 73.8 (±0.7)
smaller sets of labeled data [56]. Existing SSL methods based on deep
neural networks can be categorized into: deep generative methods, con-
sistency regularization methods, graph-based methods, pseudo-labeling
methods, and hybrid methods [57]. Our proposed method falls within
the category of pseudo-labeling methods.

Similarities. Both few-shot learning and semi-supervised learning
ace the challenge of data scarcity. In the FSL, there are typically
ery few samples available for training each category, while in the
SL, there is a small portion of labeled training data and the rest
s unlabeled. Besides, both FSL and SSL place great demand on the
odel’s generalization capability. The FSL and SSL models need to
ake accurate predictions on new data under data scarcity.
Differences. Few-shot learning and Semi-supervised learning dif-

er in their primary objectives and approaches. FSL emphasizes how
o effectively recognize novel classes with very few labeled samples.
herefore, existing FSL methods focus on the designing of network
rchitectures, loss functions, and optimizers to improve FSL perfor-
ance. However, SSL concerns with the utilization of unlabeled data

o enhance supervised learning tasks. Taking pseudo-labeling methods
s an illustration, this type of method concentrates on the generation
f pseudo labels and the reduction of noise in order to enhance the
iversity of classes within the dataset, consequently facilitating the
upervised training of models.

. Conclusion

We have presented a novel semi-supervised few-shot segmentation
ramework named F4S, where noisy and unlabeled support images,
.g., from other available datasets, are utilized to benefit both the
raining and test of few-shot segmentation networks via generating
seudo labels. Due to the feature-biased problem caused by noisy intra-
nd inter-class samples and resulting in FSS performance degradation,
e propose a ranking algorithm in F4S to identify and eliminate the
oisy samples via calculating and ranking confidence scores of noisy
upport images. Specifically, the ranking algorithm consists of an intra-
lass confidence score 𝑅 to identify noisy intra-class samples based on
heir prediction confidence, and an inter-class confidence score 𝑇 to

identify noisy inter-class samples based on channel-wise feature simi-
larity. Additionally, we have theoretically explained the effectiveness of
the proposed method based on a Structural Causal Model (SCM) from
the view of causal inference. We have conducted extensive experiments
on PASCAL-5𝑖 and COCO-20𝑖 datasets to validate the proposed method.
Compared with recent inductive and transductive FSS methods, the
proposed method achieves superior performance under 1-shot and 5-
shot settings. Besides, the ablation studies prove the effectiveness of
each component in the score 𝑅 and score 𝑇 .

The proposed work still has some primary limitations: (1) the
computational complexity in the stage II of the proposed method is
12
costly. How to optimize the selection of pseudo labels to reduce the
computational complexity is a crucial concern in the future. (2) The
underlying characteristics of noisy samples need further investigation
for designing the confidence score 𝐸 and making the selection of
pseudo labels more reliable. We hope our work may inspire the study
of exploring the combination of semi-supervised learning with few-shot
segmentation task.
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