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ABSTRACT

City layout generation has gained substantial attention in the research commu-
nity with applications in urban planning and gaming. We introduce CityGPT, the
generative pre-trained transformers for modeling city layout distributions from
large-scale layout datasets without requiring priors like satellite images, road
networks, or layout graphs. Inspired by masked autoencoders (MAE), our key
idea is to decompose this model into two conditional ones: first a distribution of
buildings’ center positions conditioned on unmasked layouts, and then a distri-
bution of masked layouts conditioned on their sampled center positions and un-
masked layouts. These two conditional models are learned sequentially as two
transformer-based masked autoencoders. Moreover, by adding an autoregressive
polygon model after the second autoencoder, CityGPT can generate city layouts
with arbitrary building footprint shapes instead of boxes or predefined shape sets.
CityGPT exhibits strong performance gains over baseline methods and supports a
diverse range of generation tasks, including 2.5D city generation, city completion,
infinite city generation, and conditional layout generation.

1 INTRODUCTION
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Figure 1: Overview of CityGPT that generates 2D footprints as city layouts. The left image displays
a real-world city scene, with our model addressing the footprint layout of specific city blocks. Our
model is trained to reconstruct the original layout based on a few unmasked buildings.

City layout generation is a vital research area dedicated to automating the creation of realistic and
coherent building arrangements. While generating the entire 3D city structure presents challenges,
many studies focus on generating city footprints in vectorized form. This vectorized representation,
as opposed to rasterized data, offers greater accuracy and conciseness, enabling the depiction of
diverse symbols such as drawings (Ha & Eck, 2017), 3D wireframe structures (Nash et al., 2020),
and more. Due to the high dimensionality of vectorized data, this task remains challenging.

Prior works have approached city layout modeling in various ways. Some methods incorporate com-
puter vision recognition into the modeling process by reconstructing building layouts from satellite,
aerial imagery, or road networks (Cheng et al., 2019; Demir et al., 2018; He et al., 2023b; Li et al.,
2021; Mahmud et al., 2020; Musialski et al., 2013; Xu et al., 2022b; Zorzi et al., 2022; Lin et al.,
2023; He & Aliaga, 2023). Urban procedural modeling is another approach that generates city com-
ponents with expert knowledge (Müller et al., 2006; Chen et al., 2008; Nishida et al., 2016; Vanegas
et al., 2012; Benes et al., 2021; Aliaga et al., 2008; Lipp et al., 2011; Merrell et al., 2010; Feng
et al., 2016). There are also many works (Xu et al., 2021; He & Aliaga, 2023) that focus solely on
city layout generation. While these methods can generate realistic city layouts, they heavily rely on
complex priors, making them unsuitable for scenarios where such prior information is not available.
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In our work, we introduce CityGPT, a transformer-based model to advance city layout generation
capabilities. Our model draws inspiration from three key observations:

1. Transformers (Vaswani et al., 2023) are renowned for their ability to capture relations between
elements, which aligns well with city layouts since buildings are strongly interconnected. Trans-
formers are also capable of handling varied length data, suitable for the variable number of build-
ings and edges in building footprints. Additionally, the scalability of transformers during inference
can allow us to simplify the training procedure design. 2. In many city generation scenarios, such
as completing a city, extending a city, or generating a city from scratch, they all share a common
essential requirement: the need to generate buildings from a given set of buildings. Inspired by this,
we have designed a masked training strategy that has been explored in the field of natural language
processing (NLP) (Devlin et al., 2019) and computer vision (He et al., 2021). This pipeline design
allows for various user-generated choices within a single training mode. 3. The human construction
process for real-world cities involves selecting site positions and then designing buildings. Follow-
ing this natural human design procedure, our model consists of two stages: first generating positions
and then generating building footprints.

Our model mainly consists of two stages, as shown in Figure 2. The first stage conditions on given
existing buildings and generates positions for additional buildings, while the second stage conditions
on the existing buildings and predicted positions to generate building footprints. After training, our
iterative generation process can produce realistic arbitrary city layouts, consisting of any number of
buildings with arbitrary shapes. Moreover, due to the structure design of the model and the iterative
generation process, users can easily achieve non-overlapping generation and control the generation
procedure at any time by regenerating certain buildings while maintaining the past generated build-
ings, adding building footprints to the entire city layout, or masking undesired areas.

To the best of our knowledge, our method is the first to generate city layouts of arbitrary scales, con-
sisting of buildings with arbitrary shapes, without any prior conditions. Additionally, our model can
learn a strong representation of city layouts, as demonstrated by its performance in the classification
task. We adapt several prior related methods (Ha & Eck, 2017; Jyothi et al., 2021; Gupta et al.,
2021; Han et al., 2023; Inoue et al., 2023) to our specific task setting and compare our method qual-
itatively and quantitatively with them. We show that none of them support arbitrary building shapes
and infinite city layout generation from scratch. Furthermore, we showcase our model’s capacity in
various tasks, such as 2.5D city generation, infinite city generation, and city complementation. Our
primary contributions encompass the following:

1. We introduce a two-stage decomposition modeling approach for city layout and design a
transformer-based model with a masked training strategy. These innovations enable our model to
accomplish various city layout generation tasks. These tasks include, but are not limited to, from-
scratch generation, generating infinite variations, human-guided generation, city completion, and
more. 2. Our model also provides an effective way to learn a good city layout representation. In the
downstream classification task, our pre-trained model can enhance both the performance and conver-
gence rate of the vanilla benchmark. 3. We provide adaptations of various existing methodologies
in city layout generation, with the overarching goal of enhancing and propelling future research
endeavors in this research area.

2 RELATED WORKS

City Generation. City modeling is a multifaceted field that has witnessed diverse approaches. One
common approach integrates computer vision techniques into the modeling process, reconstructing
building layouts from satellite or aerial imagery (Cheng et al., 2019; Demir et al., 2018; He et al.,
2023b; Li et al., 2021; Mahmud et al., 2020; Musialski et al., 2013; Xu et al., 2022b; Zorzi et al.,
2022; Lin et al., 2023). Their innovative methodologies use image recognition to convert visual data
into city layouts. Urban procedural modeling (Müller et al., 2006; Chen et al., 2008; Nishida et al.,
2016; Vanegas et al., 2012; Benes et al., 2021; Aliaga et al., 2008; Lipp et al., 2011; Merrell et al.,
2010; Feng et al., 2016), on the other hand, focuses on generating city components through expert
knowledge. It employs rule-based or algorithmic frameworks to simulate urban element creation,
like buildings, roads, parks, and architectural features. While this expert-driven strategy has been
influential in producing realistic city models, it is heavily reliant on expert knowledge, limiting its
application in scenarios lacking comprehensive prior information. The central aim of our research
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is to democratize city design. We aspire to develop an approach that empowers novices, enabling
them to create captivating city layouts without being encumbered by intricate prerequisites.

Layout Generation. Beyond the realm of city modeling, a plethora of works have concentrated
on layout generation across diverse domains. These include document layout (Patil et al., 2020),

Arb. Num. Arb. Shape Order-free Infinite Uncond.

SketchRNN (Ha & Eck, 2017) " " % % "

LayoutVAE (Jyothi et al., 2021) " % " % "

LayoutGAN++ (Kikuchi et al., 2021) % % " % "

LayoutTrans (Gupta et al., 2021) " % % % "

AETree (Han et al., 2023) % % " % "

LayoutDM (Inoue et al., 2023) " % " " "

LayoutTrans++ (Jiang et al., 2023) " % % " "

GlobalMapper (He & Aliaga, 2023) " % " " %

Ours " " " " "

Table 1: Comparison with Existing Methods: Each col-
umn represents a generation capacity: arbitrary building
numbers, arbitrary building shapes, unordered layout gen-
eration, infinite generation, and unconditional generation.
Our method effectively addresses all of these generation
options, surpassing the capabilities of existing methods.

graph layout (Lee et al., 2020), and in-
door scene layout (Ritchie et al., 2019;
Wang et al., 2018; 2019), employ-
ing a spectrum of techniques such as
Variational Autoencoder (VAE) (Jyothi
et al., 2021; Arroyo et al., 2021;
Han et al., 2023), Generative Ad-
versarial Network (GAN) (Li et al.,
2019; Kikuchi et al., 2021), Trans-
former (Gupta et al., 2021; Arroyo
et al., 2021; Yang et al., 2021; Kong
et al., 2022), and diffusion (Inoue et al.,
2023; He et al., 2023a; Zhang et al.,
2023). A subset of these methodologies
treats layout as a graph structure (Nau-
ata et al., 2020; Xu et al., 2021; Bao
et al., 2013; He & Aliaga, 2023; Para
et al., 2020; Chang et al., 2021), and
some works (Zheng et al., 2019; Jiang
et al., 2023; Chai et al., 2023) focus on generating layouts based on content or human constraints.
However, these existing methods often grapple with inherent limitations pertaining to generation
scale, shape, or predefined graph connection conditions. These constraints can hinder their applica-
bility in various creative scenarios. In comparison to established techniques, our approach showcases
more diversified generation choices, as evidenced by the comparison presented in Table 1.

Transformer Based Model. Transformer has emerged as a prominent and influential approach
across various research areas. Transformer-based models, such as GPT (Radford et al., 2018), have
made significant strides in NLP tasks, with subsequent works (Radford et al., 2019; Brown et al.,
2020) building upon its success and achieving highly effective results. In the field of computer
vision, the Masked Autoencoder (MAE) (He et al., 2021) also based on the transformer architecture
has demonstrated substantial progress. Its masked learning structures have been demonstrated to be
remarkably effective across a diverse range of tasks, including, but not limited to (Guo et al., 2023;
Pang et al., 2022; Wang et al., 2023). Additionally, it has shown prowess in generation tasks (Li et al.,
2023). The remarkable versatility of the MAE’s architecture makes it a powerful and adaptable tool
applicable across numerous domains. In our work, we designed a transformer-based model and
a masked training strategy inspired by the above works. Leveraging these, our model has shown
remarkable effectiveness in diverse city layout generation scenarios and downstream tasks.

3 METHOD

3.1 PROBLEM FORMULATION

In our task, each building is represented as a 2D polygon, and we focus on generating build-
ing sets within certain city blocks. A building set, denoted as B = {fk}Nk=1, and fk =
[(x1

k, y
1
k), (x

2
k, y

2
k), . . . , (x

nk
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k )], where each fk represents a certain building’s footprint, and N
is the number of buildings inside the block. Each block is a 500×500 m2 square in the real world.
For each footprint fk, xi

k, y
i
k ∈ R, where 0 < xi
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i
k < 500, denotes the relative position of the i-th

vertex with respect to the block’s origin, and nk represents the number of edges in footprint fk. Ad-
ditionally, we introduce a position set P = {pk}Nk=1, where pk = 1

N

∑nk
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i
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building’s position by its mean center. Under this task setting, our method’s key idea is to model the
distribution of building sets as the following conditional distribution decomposition:

P(B) = P(B̄i | Bi)P(Bi) = P(B̄i | Bi, P̄i)P(P̄i | Bi)P(Bi | ∅, Pi)P(Pi | ∅) (1)
Here, B represents the entire building set, and Bi represents any non-empty subset of B. B̄i rep-
resents the complementary set of Bi. Pi and P̄i are the position sets corresponding to Bi and B̄i,
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Figure 2: CityGPT Pipeline. Our approach to city layout generation involves a two-stage process.
In Stage I, we focus on reconstructing the positional probability map for the target buildings. In
Stage II, we then proceed to reconstruct the actual buildings based on the provided positions.

respectively. Thus, our task can be divided into two main parts. The first part involves generating
the complementary position set given a polygon subset:

P(P̄i | Bi) (2)

The second part involves generating the complementary polygon set given a polygon subset and the
complementary position set:

P(B̄i | Bi, P̄i) (3)
By successfully modeling these processes, we can decompose the objective into a superposition of
sub-processes, enabling us to generate the entire set iteratively, one by one or set by set.

3.2 STAGE I: POSITION PREDICTION

Drawing inspiration from the design of MAE (He et al., 2021), we have devised a transformer-based
encoder and decoder structure to address the position prediction objective (Eq. 2), as depicted in
Figure 2. Here’s a breakdown of our model structure:

1. Random Masking: Initially, we randomly mask some polygons from a block. The remaining
polygons are then input into the transformer encoder, which produces a latent representation of these
buildings. 2. Discretization: The entire block is discretized into a 50 × 50 mesh, specifically used
for position prediction. In our dataset, a block represents roughly a 500-meter area in the real world,
and over 99.9% of buildings satisfy the 50 × 50 discretized condition. This ensures that almost no
two buildings appear in the same grid, which need to be discarded. 3. Latent Representation to
Grid: The encoder’s latent representations are placed into the corresponding grid positions within
the 50 × 50 mesh. 4. Patchify: To reduce the sequence length for the decoder transformer, we
employ a patchifying process on the 50 × 50 mesh before feeding it into the decoder. The decoder
then produces the output, which is unpatchified to obtain the final position prediction.

3.3 STAGE II: POLYGON PREDICTION

Similar to adapting the MAE (He et al., 2021) structure for the position prediction task, we also
employ a transformer-based encoder and decoder for polygon prediction given positions (Eq. 3).
The model structure is depicted in Figure 2. Here is a breakdown of our approach:

1. Random Masking: As in Stage I, we start by randomly masking some buildings. 2. Adding
Position Embedding: The transformer decoder takes the desired position sets P̄i as input, which
are continuous 2D coordinates. To incorporate this positional information, we utilize the position
embedding method described in (Vaswani et al., 2023). This embedding process maps both the
encoder position sets Pi and the complementary position sets P̄i into the same dimension as the
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decoder latent space. Then add them to the corresponding encoder latent variables or mask tokens.
3. Autoregressively Generating Polygons: Once we have the decoder’s output representing each
polygon, we concatenate this representation with all inputs of the autoregressive model to create the
polygons. And the condition Stage II contains sufficient information, enabling us to consider the
probability (Eq. 3) as a function δ(B̂) at a certain polygon set B̂. This means the autoregressive
model can directly generate all continuous coordinates of the polygons, rather than probabilities
over discretized coordinates. This approach, as demonstrated later, can generate an infinite variety
of results. If necessary, our model can also readily adapt to the standard sample generation pattern
by discretizing polygon vertices, as discussed in Appendix G.

3.4 TRAINING & INFERENCE

Training: Our model adopts two training pipelines. In the first stage, our model predicts 2500-
dimensional values between [0, l], representing the probabilities for each position to have a building.
We use the Binary Cross Entropy (BCE) loss between the predictions and the target position sets
P̄i. To address the class imbalance issue where the number of samples with label 0 and 1 may
differ significantly, we incorporate a positive weight in the BCE loss to give more importance to
the minority class. During the second stage training, we use ground truth positions in the decoder
process. For each polygon, we employ the translation of the polygon vertices sequence to train the
autoregressive model. Its output contains three dimensions: two for coordinates and one for the
end token. The loss function comprises two terms. The first is L2 Loss (Mean Squared Error),
which measures the mean squared difference between the predicted coordinates and the ground
truth coordinates. The second is BCE Loss (Binary Cross Entropy), which is applied to the end
token output of the autoregressive model.

Inference: In our generation process, we generate the buildings one by one. Initially, we uniformly
sample a position from the range [0, 50] × [0, 50]. Subsequently, we iteratively utilize the first and
second stage models to generate all the buildings. Throughout this generation process, we implement
several validation steps. Firstly, in most cases (with a probability of 0.9), we determine the next
position by selecting the one with the highest probability. Since the initial position is sampled from
a continuous space, each generated result is unique, and we can also demonstrate that it maintains
generation diversity by considering later metrics. Secondly, we discard positions that would generate
polygons overlapping with previous ones (if not, the overlap ratio is about 7%). Thirdly, we end our
generation process if all valid positions have predicted probabilities less than 0.5.

4 EXPERIMENTS

4.1 EXPERIMENTS DETAIL

Datasets. We collected datasets from Manhattan, covering 40,000 city blocks and 45,847 buildings.
The data was split into three parts, with 80%/10%/10% allocated for training, validation, and testing,
respectively. In the extraction process, we obtained blocks by selecting a fixed-size block centered
on each building, with a block size of 500 meters. Blocks with fewer than 6 buildings were excluded
from the dataset. Additionally, we simplified all polygons by reducing vertices to less than 20. This
was achieved by removing nodes with minimal triangle areas (the area of the triangle formed by the
node and its neighbors). This simplification had minimal observed impact on the original data.

Training Detail. We executed two end-to-end training pipelines corresponding to our two stages,
respectively. Both pipelines were trained on a single RTX8000 GPU, utilizing a learning rate of
0.001. Each stage required approximately 1 day to converge.

4.2 GENERATION RESULTS & COMPARISON

We provide quantitative and qualitative comparison between our model and some relative work. The
specific implementation detail of baselines can be found in Appendix E.

Quantitative Results. For quantitative comparisons with other models, we use six metrics to high-
light the effectiveness of our approach. CitySim: Inspired by DocSim (Patil et al., 2020), we de-
signed CitySim to evaluate the similarity between pairs of city layouts. The specific formula for

5



Under review as a conference paper at ICLR 2024

CitySim ↑ IPR ↓ (%) FID ↓ WD ↓ (edge) WD ↓ (area) WD ↓ (ratio)

SketchRNN (Ha & Eck, 2017) 0.070 3.88 149.1 0.856 429.5 0.0983
LayoutVAE (Jyothi et al., 2021) 0.013 0.255∗ 222.6 2.64 1018 0.247
LayoutTrans (Gupta et al., 2021) 0.085 1.45 48.44† 1.04 436.1 0.0786
AETree (Han et al., 2023) 0.041 0.218∗ 153.3 3.16 1674 0.309
LayoutDM (Inoue et al., 2023) 0.068 9.38 100.5 1.26 319.2 0.0881
Ours 0.098 0.471 53.11 0.426 130.3 0.0777

Table 2: Quantitative Comparison. We generated 1000 city layouts and compared them to the same
number of real city layouts. The best values are in bold, and the second-best values are underlined.
∗: LayoutVAE and AETree excel in IPR because they still produce simple polygons, limiting their
complexity, as seen in the third metric. †: Although LayoutTrans achieves the best FID score, its
generation is constrained by order-dependent attributes, as explained further in Section 4.2.

SketchRNN LayoutVAE LayoutTrans AETree LayoutDM Ours Block1000 Rand. Flip Noise

(a) (b)

Figure 3: (a) Qualitative Comparison. It is evident that both SketchRNN and LayoutVAE struggle
to capture the intricate relationships between buildings. AETree struggles to generate diversified
polygons. Although LayoutTransformer manages to produce visually appealing outcomes, it re-
mains reliant on predefined order constraints, which hampers its adaptability to diverse generation
scenarios. LayoutDM encounters difficulties in producing valid polygons. (b) Qualitative Results
of Robustness Study. From left to right is the results of extending the block size, adding random
flip, and adding random noise respectively.

CitySim can be found in Appendix C. IPR (Invalid Polygon Ratio): IPR represents the percentage
of generated polygons that are invalid due to self-intersections, having less than three nodes, etc.
FID (Fréchet Inception Distance) (Heusel et al., 2017): FID is applied to rendered images at a pixel
resolution of 500 × 500, with buildings represented in blue and edges in black. WD (Wasserstein
Distance): Calculated in three scenarios: number of edges of each building, area of each build-
ing, and ratio of the area occupied by buildings to the total block area. All these five metrics are
computed across 1000 generated results. The comparison results are presented in Table 2.

Qualitative Results. The qualitative comparison is illustrated in Figure 3 (a). It is evident that
only the LayoutTransformer can produce results that are comparable to our model in the context
of city layout generation. However, the LayoutTransformer heavily relies on manually specified
prior settings for building order, a limitation commonly observed in autoregressive models. As a
result, it cannot exhibit the diverse generation capabilities within a single training phase that we will
demonstrate in Section 5, especially regarding infinite city generation and city complementation.

User Study. We conducted a user study to evaluate the perceptual realism of our method. Each
user was presented with 20 single-choice questions, each offering three options: the ground-truth
layout with minor noise (as the ground-truth data is often perfectly aligned, making it easy to dis-
tinguish; the noise scale is shown in Figure H.1), the layouts generated by our model, and those by
LayoutTrans (Gupta et al., 2021) (the only baseline method achieving comparable visual results).
Users had to select the most realistic option among these three choices. We received 24 submissions
from different users, totaling 480 responses. The results indicated that 36.68%, 47.49%, and 15.83%
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(a)

BCE ↓ FID ↓ WD ↓ (edge) WD ↓ (area) WD ↓ (ratio)
Ours−Decoder 0.82 109.3 0.450 326.6 0.0911
Ours−Patchify 0.75 62.21 0.533 219.6 0.0950
Ours 0.60 53.11 0.426 130.3 0.0777

(b)

IPR ↓ (%) FID ↓ WD ↓ (edge) WD ↓ (area) WD ↓ (ratio)
Combine Two Stages 0.494 71.34 0.512 286.9 0.101
Ours − VMT 0.612 54.91 0.465 166.6 0.0831
Ours (RN1=RN2=6-15) 0.585 64.35 0.787 323.5 0.188
Ours (RN1=0-6,RN2=6) 0.363 48.63 0.529 231.0 0.0901
Ours (RN2=6,RN2=0-6) 0.501 54.01 0.506 164.4 0.0770
Ours (RN2=RN2=0-6) 0.421 44.99 0.544 260.2 0.0976
Ours (RN2=RN2=6) 0.471 53.11 0.426 130.3 0.0777

Table 3: (a) Ablation Study for Stage I. The initial BCE metric is the Stage I loss function described
in Section 3.4, with a positive weight of 100. (b) Ablation Study. The best values are in bold, and
second best values are underlined. For detailed experiment explanations, refer to Section 4.3.

of the responses considered the ground-truth (with minor noise), Ours, and LayoutTrans to be the
most realistic, respectively. We also conducted a user study without noise on the ground-truth (21
submissions), and the results were 51.65%, 31.67%, and 16.68%, respectively. Regardless of the
setting chosen, the results show that our generation results are most similar to the ground-truth.

4.3 ABLATION STUDY

GroundTruth

Ours-Decoder

Ours-Patchify

Ours

Figure 4: Qualitative Comparison for Stage I. The
first row displays the ground truth city layout, with pur-
ple indicating existing buildings and blue representing
those that need to be predicted. In the subsequent rows,
whiter areas indicate a higher probability of buildings.

We have conducted a series of ablation
studies to showcase the sensitivity of key
components in our model. Additional ab-
lation studies regarding our overall model
architecture design can be found in Ap-
pendix F. To begin, let’s focus on the first
stage of our model. We compared our
approach against two variants: one with-
out our masked decoder, utilizing a direct
MLP to decode the transformer encoder’s
output; and another without the patchify
setting, where the decoder directly accepts
inputs with a sequence length of 50 ×
50. Both quantitative outcomes (Table 3
(a)) and qualitative comparisons (Figure 4)
underscore the effectiveness of our final
model structure.

We also conducted comparisons involving several crucial structural and parameter settings within
our complete model framework. These comparisons include:

1. Combined Two Stages: This involved merging our two stages into a single stage, sharing the
transformer encoder and decoder, while segregating the output MLP into two parts corresponding
to positional and polygon outputs respectively. 2. Ours - VMT: In this variation, instead of using
the first encoder output as the mask token, the model without VMT (Variant Masked Token) directly
employed a learnable parameter as the masked token, akin to the original MAE approach (He et al.,
2021). 3. Varying Remaining Building Numbers: We present results for various remaining build-
ing numbers during the training process. RN1 and RN2 denote the remaining building numbers for
stages I and II, respectively. The range 6-15 indicates that the remaining number varies from 6 to 15
during training, as does the range 0-6.

The outcomes, as presented in Table 3 (b), demonstrate the effectiveness of our model structure
when compared to scenarios 1 and 2. Additionally, in terms of the remaining building number
parameter, our experiments reveal that a large remaining number does not yield satisfactory results.
And employing a small remaining number can enhance overall performance metrics like the FID
score. However, it can compromise the diversity of generated polygons, as evidenced by the higher
values in the WD metric for polygon edges and areas.
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4.4 STUDY OF ROBUSTNESS

We conducted additional experiments to elucidate the robustness of our model, as outlined below:

IPR ↓ (%) FID ↓ BCE ↓ Recon. L1 ↓ Recon. Len. ↓

Ours + Block1000 1.89 65.75 0.35 10.2 1.4 × 10−3

Ours + Rand. Flip 0.783 55.13 0.64 12.3 1.3 × 10−3

Ours + Noise 0.347 62.24 0.59 7.1 1.0 × 10−3

Ours 0.471 53.11 0.60 4.5 3.5 × 10−4

Table 4: Quantitative Results of Robustness
Study. BCE , Recon. L1, and Recon. Len. are
the loss value described in Section 3.4. For detailed
experiment explanations, refer to Section 4.4.

1. Extending the Block Size: Expanding
the block size benefits our model by captur-
ing more global information. Importantly,
our model structure supports larger block
sizes without substantial computational costs,
thanks to the patchify operation in the first
stage, enabling seamless scalability. In the
second stage, the sequence length aligns with
the number of buildings, remaining within ac-
ceptable limits even with larger block sizes.
This contrasts with other models like Lay-
outTransformer (Gupta et al., 2021) or Lay-
outDM (Inoue et al., 2023), which rely on discretized coordinates and flattened sequence lengths.
They face significantly higher computation costs when extending their block size. For instance, with
a block size of 1000 meters, the sequence length can exceed 7,000. 2. Adding Random Flip: We
implemented a data preprocessing step that involves randomly flipping the blocks along their x or
y directions. 3. Adding Random Noise: Another preprocessing step we employed involved the
introduction of random noise to the polygons.

Quantitative and qualitative outcomes from these experiments are presented in Table 4 and Fig-
ure 3 (b). These results collectively exhibit a reasonable and acceptable performance.

5 FURTHER EXPERIMENTS: MORE CHALLENGING SETTINGS

Infinite City Generation. Our model effortlessly generates consistent and infinite city layouts using
the same training pipeline and results as previous. By smoothly shifting the generated window, we
can continuously produce endless city layouts, as visually demonstrated in Figure 5 (a).

City Complementation. Our model can accomplish city complementation tasks without the need
for additional retraining. We employ the same sliding window approach as in the infinite generation
process. Figure 5 (b) visually showcases our model’s capability in this task.

Generation Based on Road Network. Our model is highly adaptable for conditional generation
tasks. In scenarios where we aim to generate a city layout based on a given road network, since
the road network can be represented by a collection of polylines, we can employ the same encoder
structure to encode the road network data. Then, we can concatenate this condition embedding with
the mask tokens or directly append the road network embedding sequence to the end of the building
sequence. In our implementation, we choose the latter approach to give our model the capacity to
capture mutual attention between roads and buildings.. The results of this road conditional genera-
tion are illustrated in Figure 5 (c).

2.5D Generation. Recently, numerous efforts have aimed to generate infinite 3D scenes using data
sources like RGBD images or satellite imagery (Lin et al., 2023; Chen et al., 2023; Raistrick et al.,
2023). Additionally, some studies have focused on generation consistency (Shen et al., 2022). In this
context, our model are capable of generate coherent infinite 3D cityscapes devoid of any conditions
but with simple 3D building structure. To accomplish this task, we extended our output to include
an additional height dimension. The outcomes of this extension are depicted in Figure 5 (d).

Classification Task. For the classification task, we compiled an extensive dataset encompassing ur-
ban layouts from cities worldwide, including Tokyo, Berlin, New York, and others. This dataset in-
cluded 1,383,384 buildings, 300,000 blocks, and 15 distinct districts, with each district contributing
20,000 blocks. After training our model on this expanded dataset, we utilized the first-stage encoder
to create a classification model capable of distinguishing these 15 districts. In the fine-tuning phase,
our pretrained model achieved an impressive 95% accuracy within just one hour. Furthermore, by
employing linear probing (adding a simple linear layer to the encoder’s output), we achieved an 84%
accuracy. In contrast, using a transformer with the same structure but without prior pretraining re-
quired 8 hours to reach a 90% accuracy rate. This highlights the superior efficiency and effectiveness
of our pretrained model in the downstream classification task.

8
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(a)

(b)

(c)

(d)

Figure 5: (a) Results of Infinite Generation. The buildings represented in purple denote the prior
buildings, while the blue are the buildings generated by our model. (b) Results of City Comple-
mentation. In each pair, purple buildings represent the conditional city segment, while green and
blue buildings represent the ground truth and generated buildings, respectively. (c) Results Condi-
tioned on Road Network. In the images, the dark blue lines delineate the conditional road network,
while the blue represent the generated buildings. (d) Results of 2.5D City Generation. Within each
pair of images, the image on the right showcases the generated footprints layout. The orange arrow
indicates the direction of observation, which corresponds to the 3D scenes displayed on the left.

6 CONCLUSION AND FUTURE WORK

We have introduced a method to generate city layouts of arbitrary building shapes in vectorized data.
Our approach is effective for generating realistic city layouts, showing flexibility in various scenarios
like infinite city generation, city complementation, and road-conditioned generation. Moreover, our
training pipeline not only yields a generation model but also offers a meaningful representation of
city layouts. Our results demonstrate superior performance compared to previous methods (Ha &
Eck, 2017; Jyothi et al., 2021; Gupta et al., 2021; Han et al., 2023; Inoue et al., 2023), and our user
study indicates that the results generated by our method are comparable to real-world data.

However, our approach does have certain limitations. Firstly, the iterative generation inference
process can be time-consuming. Secondly, our model lacks a latent space for complete generation
sampling, making it challenging to apply style transfer or interpolation within our model. Thirdly,
there is still room for improvement in aligning the building and road widths in our results.

As a future direction, our model can be extended to various conditional generation tasks, as road
conditioning has already been implemented. It holds promise to incorporate additional conditions
like terrain, satellite imagery, and more. Additionally, our model architecture provides an opportu-
nity to extend our 2D layout generation to the creation of realistic 3D city scenes.

9
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7 REPRODUCIBILITY STATEMENT

To make all our experiment results reproducible, we submit codes with hyperparameters used for
each method on each task in the supplementary material. We also provide an instruction on how to
use our code to reproduce the experiment results.
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A MODEL ARCHITECTURE

In our detailed model structure design, our model comprises the following components: a polygon
embedding, an encoder, a Stage I decoder, a Stage II decoder, and an autoregressive model. All
of these components are implemented using transformer architectures, and the specific parameter
settings can be found in Table 5.

layers hidden heads mlp ratio
Polygon embedding 1 512 8 1
Encoder 12 512 8 4
Stage I decoder 3 16× 25† 8 4
Stage II decoder 8 512 8 4
Autoregressive model 1 512 + 256∗ 8 1

Table 5: Specific Model Architecture Parameters. The symbol † indicates that each position has
a dimension of 16, and there are a total of 25 positions in each patch. The symbol ∗ denotes that the
latent representations generated by the decoder have a dimension of 512, while the input embedding
to the autoregressive model has a dimension of 256.

A more detailed model design of our base model, the model capable of generating 2.5D cities, and
the model that can generate city layouts based on the road network can be found in Figure A.1.
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Figure A.1: Detailed Structure in CityGPT. From top to bottom, there is the detailed model struc-
ture of the encoder used in both Stage I and Stage I, the decoder of Stage I, the subsequent sampling
process, and the autoregressive generation part at the end of Stage II. The overall structure can be
found in Figure 2.

For the classification task mentioned in Section 5, the specific model structure can be found in
Figure A.2. Note that the encoder part in the classification model has the same structure as the
encoder part in CityGPT (in both Stage I and Stage II). We have outlined three phases with different
training settings in Section 5. Firstly, in the fine-tuning setting, initialize the encoder with the trained
Stage I encoder of CityGPT, then fine-tune the entire model. Secondly, in the linear probing phase,
fix the encoder part initialized by CityGPT and only train the decoder. Thirdly, in training from
scratch, randomly initialize all parts and then train the entire model.
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Figure A.2: Classification Model: The encoder part is the same as the encoder in CityGPT, and the
decoder consists of a simple linear layer.

B DETAIL OF INFERENCE

The inference pipeline can be shown as the following Algorithm 1. Please note that in this algo-
rithm, ← denotes sampling from the corresponding distribution. As described in Section 3.4, in
most cases (with a probability of 0.9), we determine the next position by selecting the one with
the highest probability. We also discard positions that would generate polygons overlapping with
previous polygons (otherwise, the overlap ratio is approximately 7%)

Algorithm 1 Inference of CityGPT
Output: A set of building footprints B.

1: Uniformly sample initial position P0 from [0, 50]× [0, 50].
2: Obtain initial footprints F0 using Stage II.
3: B.append(F0 ← P2(F | ∅,P0))
4: Obtain position map M using Stage I.
5: M = P1(P̄ | B)
6: Mask positions with buildings in M to be 0.
7: t = 1
8: while min(M) > 0.5 and t < max len do
9: Mask positions with buildings in M to be 0.

10: while min(M) > 0.5 do
11: if Uniform([0, 1]) < 0.9 then
12: Pt ← Softmax(M)
13: else
14: Pt = max(M)

15: Ft ← P2(F | B,Pt)
16: if Ft intersects with B then
17: M(Pt) = 0
18: else
19: B.append(Ft)
20: Break
21: M = P1(P̄ | B)
22: t = t+ 1

We also conducted runtime performance analysis on our model inference pipeline, using the infer-
ence of LayoutTrans (Gupta et al., 2021) under the same computational conditions (single RTX3090)
as a basis for comparison. We chose LayoutTrans for comparison because it generates the entire city
layout autoregressively, similar to our inference setting where we generate buildings one by one iter-
atively, resulting in similar iteration steps during inference. The results are shown in Table 6. In this
table, Our-Intersection indicates the case where we perform generation without the intersection val-
idation mentioned above. These results reveal that the main reason for the increase in our inference
time is due to the intersection detection and resampling parts. According to our experiments, the
intersection detection part (Steps 16-17 in Algorithm 1) introduces a 0.8 times slowdown, while the
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resampling operation (if intersect, then resample) introduces about a 1.0 times slowdown (meaning,
on average, the 10th row in Algorithm 1 will cycle twice).

LayoutTrans Ours-Intersection Ours-Intersection (2.5D) Ours
Time (s) 2.5 2.4 2.5 9.4

Table 6: The first row shows the models and corresponding tasks, and the second row displays the
mean running time for generating a single city block layout.

C DETAIL OF CITYSIM

Inspired by DocSim (Patil et al., 2020), we designed CitySim to evaluate the similarity between
pairs of city layouts. We treat each pair of city layouts (B1, B2) as a bipartite graph, where each
node represents the polygon footprints in the layout. Then we define the edge weight between two
nodes as:

W (f i
1, f

j
2 ) =

√
MinArea(f i

1, f
j
2 ) · 2−∆e(f

i
1,f

j
2 )−Ca(

√
Area(fi

1)−
√

Area(fj
2 )),

where f i
1 ∈ B1 and f j

2 ∈ B2. MinArea(f i
1, f

j
2 ) represents the smaller occupancy area of these

two footprints. ∆e(f
i
1, f

j
2 ) represents the Euclidean distance between the mean centers of these

two footprints. In (Patil et al., 2020), they chose Ca = 2; however, in our setting, the polygons are
relatively smaller than the boxes in their setting compared to the whole canvas. Therefore, we choose
Ca = 20 to ensure that both terms in the exponent are meaningful to the weight. Our experiments
show that regardless of changing Ca from 0 to 50, our model consistently outperforms other models.
Thus, choosing Ca = 20 is not a painstaking decision. Then we find a maximum weight matching
M(B1, B2) in this bipartite graph using the well-known Hungarian method (Kuhn, 1955). So the
similarity between two city layouts can be defined as:

Sim (B1, B2) =
1

|M (B1, B2)|
∑

W (f1, f2) ,

where the sum is over all pairs (f1, f2) ∈M (B1, B2). Then we define CitySim as:

CitySim (B ∈ GEN) = min
Bgt∈GT

(Sim(B,Bgt)) ,

where GEN is the set of city layouts generated by our model, and GT is the set of groundtruth city
layouts.

D DISCUSSION OF OVERFITTING

Inspired by the ”Novel” score and ”Unique” score in SkexGen (Xu et al., 2022a), our goal is to em-
ploy a similar score to demonstrate that our model isn’t overfitting to the training dataset. However,
since there are never two layouts exactly the same (given that we generate layouts in a continuous
space), we prefer using pixel similarity between two sets of layouts to assess these scores. We define
PixelSim as the same pixel ratio (same pixel/total pixel) between two layouts. The rendered images
used to compute this similarity are at a pixel resolution of 500 × 500, with buildings represented in
blue and edges in black.

We compute the similarity score between any two samples from the training sets (Train-Train),
between any two samples from the generated set (Gen-Gen), and between any two samples from
the training set and the generated set respectively (Gen-Train). Specifically, in the Gen-Train case,
for each layout in the generated set, we identify the layout in the training set (comprising 32,000
layouts) with the highest PixelSim score (most similar) and assign that highest score to it. The
mean-PixelSim is then calculated as the mean score over these 1000 generated samples. Then in the
Gen-Gen case, the score for each generated layout is computed by finding the most similar layout in
the remaining 999 generated layouts. To ensure fairness between the Gen-Train case and Train-Train
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case, we randomly sample 1000 samples from the training set. For each of them, we find the most
similar layout in the remaining 31,999 layouts.

The results are presented in Table 7 and Figure D.1. It’s important to note that Gen-Gen serves
as a metric to evaluate the diversity of generation results, while Gen-Train serves as a metric to
evaluate the novelty of generation results. For comparison purposes, we provide the same scores
for 1000 sampled training data (Train-Train), which serves as a baseline for comparison. It’s worth
mentioning that our rendered layouts are very dense images with only three types of pixels (white,
blue, and black), so a 90% similarity at the pixel level still maintains a considerable distance between
layouts.

Train-Train (Baseline) Gen-Gen (Uniqueness) Gen-Train (Novelness)
mean-PixelSim (%) 63.8 50.7 53.5

Table 7: The value from left to right represents the pixel similarity score between the training set
and the training set, between the generated set and the generated set, and between the generated set
and the training set, respectively.

Figure D.1: Distribution of the PixelSim Score Among 1000 Samples. From left to right are the
distributions of PixelSim in the Train-Train case, Gen-Gen case, and Gen-Train case, respectively.

E IMPLEMENTATION DETAIL OF BASELINE

SketchRNN (Ha & Eck, 2017): We modify the datasets to fit SketchRNN in the following way: we
consider each data block as a picture that SketchRNN needs to draw. Each time it finishes drawing
one polygon inside the block, the pen lifts up from the canvas and moves to another place to start
drawing the next polygon. During testing time, we modify the last line to directly connect to the
start point of each polygon, thereby making all polygons closed shapes.

AETree (Han et al., 2023): We have improved the original AETree model so that it can not only
generate buildings of simple box shapes. Specifically, we added an MLP network to the end of the
AETree model, which transforms the simple box into a polygon with multiple vertices. Since the
number of vertices in the polygon is not fixed, during the training process, in addition to using the
L1 loss function to constrain the predicted polygon shape, we also adopted the BCE loss function to
constrain the number of predicted polygon vertices.

LayoutVAE (Li et al., 2019): We customized the LayoutVAE model to suit our specific tasks by
incorporating our polygon embedding class before the embedding layer and an autoregressive gen-
eration class after the final output layer. Notably, in our context, we only have a single class. As
a result of these adaptations, the modified LayoutVAE is capable of generating the entire building
layout from scratch.

LayoutTrans (Gupta et al., 2021): We have directly adapted the structure of the LayoutTrans-
former, but applied it to our specific dataset. Our initial step involved arranging all polygons within
each block in ascending order based on the x-coordinate of their mean center. Subsequently, we
flattened all these polygons into a single long sequence, adding four extra tokens corresponding
to the start token (S), terminal polygon token (T ), end token (E), and pad token (P ). And we
have also discretized the polygon coordinates in line with the original paper, employing a quanti-
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Figure F.1: Qualitative Comparison of Ablation Study in Box Setting: The first row displays the
results of our model with a graph structure, while the second row showcases our final configuration.

zation approach with a precision of unit8. Then we represent each block in the following format:
(S, x1

1, y
1
1 , . . . , x

n1
1 , yn1

1 , T, x1
2, . . . , x

nN

N , ynN

N , E).

LayoutDM (Inoue et al., 2023): We have made adaptation to the primary structure of LayoutDM,
except for some techniques that are not applicable to our task setting, such as Modality-wise diffu-
sion and Adaptive Quantization. We experimented with two flattened sequence settings to integrate
their model into our task. The first sequence setting mirrors the adaptation of LayoutTransformer as
described above. In the second sequence setting, we padded each polygon to 40 dimensions since
our maximum vertex count per polygon is 20. So the second representation sequence is as fol-
lows: (x1

1, y
1
1 , . . . , x

n1
1 , yn1

1 , Pad, Pad, . . . , x1
2, . . . , x

nN

N , ynN

N , Pad, . . . , Pad). And we found that
the second setting yields relatively better results. The subsequent results are based on this second
sequence setting.

F MORE ABLATION STUDIES

Rcon. L1 ↓ Rcon. Giou ↓ FID ↓ WD ↓ (area)
Patch with matching 0.17 0.74 −− −−
Patch with chamfer 0.20 0.78 −− −−
Graph embedding 0.095 0.47 98.9 0.0407
Ours 0.082 0.42 83.2 0.0158

Table 8: Quantitative Results of Ablation Study in Box Setting: We present four metrics for
comparing different model structures. The initial two metrics correspond to the reconstruction loss,
specifically L1 and Giou. The subsequent two metrics, FID and WD, are as described in section 4.2.
It is evident that our final configuration outperforms the others across all metrics.

In this section, we delve into a series of experiments involving a simpler task aimed at generating
box layouts. These layouts encompass 32 boxes, each representing the bounding box of a building’s
footprint. These bounding boxes are defined by 5 dimensions: bi = (x, y, h, w, angle), capturing
the box’s central coordinate, height, width, and main axis angle.

To achieve flexible generation choices and consistent infinite generation, we design a reconstruction
task describe in section 3 which is our main idea. Then the remaining question is to design a model
based on part of the existing layouts and then generate the complement layout. Some work (Kong
et al., 2022; Gupta et al., 2021) achieve this complement task by pre-define the order of each box in
the layout. but this order will constrain the generation choice in many cases, such as complementing
a central part of a city as described in section 5. So without this predefined order, the main challenge
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Figure G.1: Results of generation in a discretized situation that supports sampling in polygon gen-
eration based on given positions.

in the task is to define a correspondence between the ground-truth layout boxes and the target layout
boxes.

In our model, we handle this correspondence by introducing a position prediction part, then we
can use the position to build a correspondence between the target layout and generate layout. And
also try some other way to build this correspondence. The first is directly finding a match with the
minimal distance, this is an idea of the DETR (Carion et al., 2020), and similar to the famous distance
metric Chamfer Distance has been widely used in point cloud generation. But unfortunately, both of
them can not converge to our desired pattern. We think it may be caused by the high dimensionality
and relative sparsity in our dataset.

The second solution is considering constructing a graph structure G(V,E) for the layout.

V = {bi} = {(xi, yi, hi, wi, anglei)}
Where each node corresponds to a box.

E ∈ {e1, e2, e3, e4}
Our edges contain four types. and for each node (box) there are at most four out edges with corre-
spond to four different types. Each type connects to the certain box that is most near to the node in
axis −x, +x, −y, +y. And we have an easy way to represent this graph structure by assigning each
node with extra two dimension information with respect to its orders in the x and y axis. Then if the
order is seen to be the position with a certain constraint that no two positions have the same x or y
coordinate, we can use the same model structure to fit this setting. Although the results show that the
graph construction can give us sensible results, it suffers from the setting with arbitrary node num-
bers. The quantitative comparison and qualitative comparison are shown in table 8 and figure F.1.
Based on these results, it is evident that our model with a graph structure acting as a correspondence
link experiences a decrease in the diversity of the generated boxes.

G POLYGON GENERATION WITH SAMPLING

We can readily adapt our model to the discretized situation, enabling us to perform sampling in
polygon generation based on given positions. To achieve this, we employ a discretization approach
wherein we divide our 500-meter block into a 250 by 250 mesh. Within this mesh, we map each
continuous vertex of the polygons into the grid of the mesh. In cases where two vertices of a
particular polygon map to the same grid cell, we merge these vertices. Subsequently, we retrain our
model and replace the L1 loss from the original setup with cross-entropy loss. This modification
allows us to obtain favorable generation results, as demonstrated in Figure G.1.

In this case, we can use beam search to get the top k possible city layouts given the same positions
as shown in figure G.2. We can discover that the difference between different samples from beam
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Figure G.2: Results of sampling different city layouts from a given set of positions. In each set,
the left image showcases the position set, while the right two images showcase the results generated
from the same position set.

search is little, which can certify the quality of our method in using the δ function to approximate
the probability of the second stage in section 3.

H MORE RESULTS

The comparison between ground-truth and ground-truth with minor noise is shown in Figure H.1.
The breakdown visualization of a single layout generation process is shown in Figure H.2.

Figure H.1: Comparison between different settings of the user study. The first row shows the
ground-truth samples, and the second row shows the ground-truth samples with minor noise.

Figure H.2: The first row shows the generated layout at a certain timestamp, and the second row
shows the predicted positional map at these corresponding timestamps. From left to right are the
timestamps of 0, 1, 2, 3, 6, 9, 16, and 24.
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More visualized results are shown in Figure H.3, H.4, H.5, and H.6.

Figure H.3: Results of Reconstruction for the Second Stage: For each pair, the left side depicts
the ground truth building layout, while the right side displays the reconstruction result. In the recon-
struction, purple represents the remaining buildings, and blue represents the predicted buildings.

Figure H.4: More Results of City Complementation.
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Figure H.5: More Results of Generation.
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Figure H.6: More Results of Generation Trained with Random Flip.
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