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ABSTRACT

Causal discovery from i.i.d. observational data is known to be generally ill-posed.
We demonstrate that if we have access to the distribution induced by a structural
causal model, and additional data from (in the best case) only two environments
that sufficiently differ in the noise statistics, the unique causal graph is identifiable.
Notably, this is the first result in the literature that guarantees the entire causal
graph recovery with a constant number of environments and arbitrary nonlinear
mechanisms. Our only constraint is the Gaussianity of the noise terms; however,
we propose potential ways to relax this requirement. Of interest on its own, we
expand on the well-known duality between independent component analysis (ICA)
and causal discovery; recent advancements have shown that nonlinear ICA can
be solved from multiple environments, at least as many as the number of sources:
we show that the same can be achieved for causal discovery while having access
to much less auxiliary information.

1 INTRODUCTION

Causal discovery seeks to recover cause–effect structure from data, which allows counterfactual
reasoning and prediction under interventions (Pearl, 2009; Peters et al., 2017; Spirtes, 2010; Spirtes
et al., 2000). However, learning causal structure from purely observational i.i.d. data is, in general, ill-
posed: multiple directed acyclic graphs (DAGs) are distributionally equivalent, i.e., indistinguishable
from the data distribution.

In the interventional causal discovery literature, hard interventions—directly modifying the causal
structure—are known to unlock identifiability of the underlying graph. Classic results from Eberhardt
et al. (2005) show that the number of sufficient hard interventions to identify the causal order scales
logarithmically with the number of nodes. A large corpus of intervention-based causal discovery
research has largely built on these findings (Eberhardt, 2008; He & Geng, 2008; Hauser & Bühlmann,
2012; Shanmugam et al., 2015; Kocaoglu et al., 2017; Wang et al., 2017; Lindgren et al., 2018; Eaton
& Murphy, 2007; Triantafillou & Tsamardinos, 2015; Lorch et al., 2022; Ke et al., 2023b).

Recent work has explored the problem of causal graph identifiability from multiple environments
and soft interventions (i.e., in the setting where non i.i.d. data might naturally occur and does not
stem from changes in the causal structure) (Perry et al., 2022; Huang et al., 2020; Heinze-Deml et al.,
2018; Peters et al., 2015; Ghassami et al., 2017; 2018; Jaber et al., 2020; Jalaldoust et al., 2025;
Brouillard et al., 2020; Heurtebise et al., 2025): however, from an identifiability perspective, these
results do not provide guarantees of recovery of the unique causal graph with a limited number of
environments under generic assumptions.

Our research overcomes this limitation. We prove that, for structural causal models (SCMs) with arbi-
trary nonlinear mechanisms, auxiliary information from only two sufficiently distinct environments is
enough to identify the unique causal graph. Our only constraint is the Gaussianity of the noise terms;
however, we outline potential ways to relax this requirement. To our knowledge, this is the first proof
of identifiability for full graphs of arbitrary size and generic functional mechanisms from a constant
number of environments. Strengthening our findings is the contrast with hard-intervention regimes,
where the number of experiments needs to scale with the number of nodes.

Our work is also of independent methodological interest. In particular, key to our theory is the
duality between causal discovery and independent component analysis (ICA). Reizinger et al. (2023)
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recently formalized that nonlinear ICA identifiability results naturally extend to structure learning
(well known in the linear case since Shimizu et al. (2006)). This is of great relevance in light of
the late advancements in multi-environment ICA identifiability pioneered by Hyvärinen & Morioka
(2016); however, directly bootstrapping these findings to causal discovery doesn’t carry great promise,
being ICA the harder problem of the two: we show that where ICA identifiability requires a number
of environments that scales linearly with the number of variables, causal graph identifiability can be
achieved with data from just two extra domains. This calls for causality-only identifiability results in
the multi-environment setting, as developed in our work. Inspired by the recent success of ICA with
multiple environments, we are hopeful that our approach paves the way to novel causality theory that
weakens the requirements in terms of heterogeneity of the data and parametric assumptions.

Our main contributions are summarized as follows:

• We show that the causal graph underlying an arbitrary invertible causal model with Gaussian
noise terms is identifiable from only two auxiliary environments, when they sufficiently vary.
Moreover, we outline potential avenues to relax the Gaussianity assumption.

• A methodological contribution consisting of proof techniques that are novel for causal
discovery and leverage the (well-known) duality between structural causal models and
independent component analysis; to the best of our knowledge, these are the first causality-
only identifiability results for nonlinear SCMs that stem from this connection.

• We empirically validate our theory. Our synthetic experiments on bivariate models reflect
that when the assumptions of our theory are met we can infer the causal direction, even for
cases that were previously known to be non-identifiable.

2 RELATED WORKS

Soft interventions and multiple environments for causal discovery. Several works in the liter-
ature have addressed causal discovery identifiability and estimation via non i.i.d. data (stemming
from soft interventions and multiple environments). Peters et al. (2015) and Heinze-Deml et al.
(2018) identify the parents of a designated target node via invariance across environments, yielding
partial identifiability of causal directions. They assume linear and nonlinear additive noise models,
respectively. Huang et al. (2020) use nonstationarity to recover the skeleton and orient some edges.
Perry et al. (2022) leverage sparse mechanism shifts, proving high-probability graph recovery with
bounds that improve as the number of environments grows. Rothenhäusler et al. (2015) is the
closest to our work, but their results are limited to linear models. Ghassami et al. (2017; 2018) and
Heurtebise et al. (2025), similarly to our work, study identifiability of structural causal models from
multiple environments, but their identifiability results are specialized to the linear case. Recently,
Jalaldoust et al. (2025) formulated a statistical test that can find a superset of the parents of a target
node. Yang et al. (2018); Brouillard et al. (2020); Jaber et al. (2020) characterize equivalence classes
identifiability from interventions. From a methodological perspective, Brouillard et al. (2020); Ke
et al. (2023a) introduce differentiable approaches to causal discovery with interventions; Mooij et al.
(2020) propose a unifying framework for causal discovery from observational and multi-environment
data. All of these results are complementary to our work, which is, to the best of our knowledge,
the first to provide guarantees of identifiability of the causal graph from a finite number of auxiliary
additional environments, potentially only two.

ICA and causal discovery. The seminal work of Shimizu et al. (2006) shows that if an SCM can be
expressed as a linear non-Gaussian ICA model, the underlying causal graph is identifiable. Reizinger
et al. (2023) generalize this to the nonlinear case. Monti et al. (2020) show that time contrastive
ICA (Hyvärinen & Morioka, 2016) can identify bivariate causal graphs with arbitrary nonlinear
mechanism. The common ground of these findings is that they adapt the existing ICA identifiability
theory to the problem of causal discovery. This approach is clearly important, especially in the
light of the recent advancement in multi-environment ICA identifiability (Hyvärinen et al., 2019;
Khemakhem et al., 2020a;b; Gresele et al., 2019; Hälvä & Hyvärinen, 2020; Hyvärinen & Morioka,
2017; Hälvä et al., 2021); however, in the nonlinear setting, it fails to capture the gap between the
two problems: while ICA attempts to recover the mixing function and the independent sources at
each point, causal discovery concerns the much simpler problem of structure identifiability. Our work
shows that this difference is key to demonstrating causal discovery identifiability from a constant

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

number of sufficiently different environments, where ICA requires at least as many as the number of
sources (see e.g. Theorem 1 in Hyvärinen & Morioka (2016)).

3 PRELIMINARIES

First, we define structural causal models, independent component analysis, and how they relate. Then,
we describe the problem of causal discovery from multiple environments and define identifiability of
causal graphs in this context.

3.1 STRUCTURAL CAUSAL MODELS AND ICA

Let us consider a set of causal variables X, with components generated according to a structural
causal model

Xi := Fi(XPAi , Si), ∀i = 1, ..., d, (1)
where XPAi

are the causes of Xi, specified by a directed acyclic graph (DAG) G with nodes X.
PAi ⊂ {1, ..., d} denotes the indices of the parents of Xi in the graph (see Appendix G.1 for precise
definitions on graphs). The functions Fi are the causal mechanisms that map causes to effects.
We assume mutually independent noise terms S = (S1, ..., Sd) with density pθ, where θ is a set of
parameters defining the density function. Further, we restrict to structural causal models where there
are no latent common causes.

Notational remarks. We use [d] := {1, ..., d}. We use uppercase letters for random variables (or
vectors), lowercase letters for their realizations. Vectors are denoted in bold, so that we have v =
(vi)

d
i=1, where vi are the scalar vector’s components. Probability density functions are differentiated

by their argument, where the distinction is clear from the context: for example, for a random
vector Z we only write p(z) to specify its density at a certain value z. Further, we define the
support to keep track of the nonzero entries in matrices: for M ∈ Rm×n, supp(M) := {(i, j)|i ∈
[m], j ∈ [n] and Mij ̸= 0}; for a matrix valued function M : Rd → Rm×n the support is defined
as supp(M) = {(i, j)|i ∈ [m], j ∈ [n] and there is x ∈ Rd s.t. Mij(x) ̸= 0}. Given a vector
V = (Vi)i∈[d] and a subset I ⊂ [d], we define VI := (Vi)i∈I . For indexing, we reserve superscripts
as in Vi to distinguish between environments (Definition 3).

It is well known that the SCM of Equation (1) can be expressed in the form of an ICA model

X = f(S), (2)

where f is the ICA mixing function, uniquely specified by the SCM (we show how to construct f in
Appendix G.2).
Definition 1 (ICA model). We define a pair (f , pθ) as an ICA model, where f is a diffeomorphism in
Rd, and pθ is a factorized density parameterized by θ.

A more detailed introduction to independent component analysis is presented in Appendix D.

It is known (Reizinger et al., 2023) that, under some faithfulness assumption, the support of the
Jacobian of the mixing function completely identifies the causal structure.
Definition 2 (Faithfulness). Consider x = f(s). We say that Jf−1(x) is faithful if for each i, j ∈ [d]
Jf−1(x)ij = 0 ⇐⇒ Si is constant in Xj on the entire domain. In other words:

supp(Jf−1(x)) = supp(Jf−1). (3)

Proposition 1 (Proposition 1 in Reizinger et al. (2023)). Let Jf−1(x) faithful. Then, for each i ̸= j:

Jf−1(x)ij = 0 ⇐⇒ j ̸∈ PAi .

This formulation of faithfulness is well known and at the core of the LiNGAM algorithm for linear
SCMs (Shimizu et al., 2006), and is satisfied almost everywhere under some regularity conditions on
f . When this is the case, the above proposition means that for causal discovery we are interested in
the support of the inverse Jacobian, and, by Equation (3), this can be recovered by having access to
the support at a single point where faithfulness is satisfied.

Next, we introduce the notion of environment and define the causal discovery problem when multiple
environments are available.
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3.2 DEFINITION OF IDENTIFIABILITY FROM MULTIPLE ENVIRONMENTS

Intuitively, causal discovery is the inference problem of finding the causal graph underlying a structural
causal model from the data. We are interested in causal discovery from multiple environments, i.e.,
when data are collected from different but related structural causal models (which we express as ICA
models).
Definition 3 (Environment). Let X = f(S) be an ICA model. Consider the random variable Si ∼ pi.
For i = 1, ..., k, we call the ICA model Xi = f(Si) an auxiliary environment. We adopt the
convention that X0,S0 := X,S, and call i = 0 the base environment. pi denotes the probability
density of the sources defined by the ith environment.

The key part of our definition is that the mixing function is invariant across environments (real-world
examples where this is satisified can be found in Appendix G.5), while we allow for changes in the
sources distribution: if f is obtained from a structural causal model (as it is assumed across all of our
paper), all auxiliary environments share the same causal mechanisms and causal graph as the base
model X0 = f(S0).

Next, we formalize what we mean by identifiability in the context of causal discovery with multiple
environments. Intuitively, identifiability is achieved when the graph underlying the structural causal
model is uniquely specified by the causal variables’ distribution. In the definition, we denote the
pushforward of a density p by f with f∗p.
Definition 4 (Identifiability of the causal graph). Consider the auxiliary environments (f , piθ) obtained
from the base causal model of Equation (1), i = 1, ..., k. Let F be the space of diffeomorphisms
in Rd and P a family of factorized densities. We say that the causal graph underlying the SCM is
identifiable if, given (f̂ , pi

θ̂
) ∈ F × P , i = 1, ..., k, then:

f∗p
i
θ = f̂∗p

i
θ̂
∀i ∈ [k] =⇒ supp(Jf−1) = supp(Jf̂−1).

The above definition of identifiability, based on the support of the Jacobian inverse of the mixing
function, may be a bit unfamiliar, but it’s equivalent to what is commonly meant when asking that a
causal DAG is identifiable: any alternative causal model that matches the distribution of the data is
compatible only with the ground truth causal graph (represented with the inverse Jacobian’s support).

Relation with ICA identifiability. Compare Definition 4 of identifiability of the causal graph with
the notion of identifiability in ICA of Definition 5 in the appendix: for causal discovery, all we care
about is the support of Jf−1 , which can be identified from any point where the Jacobian is faithful; for
independent component analysis, we need to guarantee that the exact values of the Jacobian can be
recovered over each point of the domain, up to trivial indeterminacies. This phrasing clarifies that, in
the nonlinear setting (where the Jacobian varies with x), causal discovery is a much simpler problem
than ICA: it only requires identifying the support at a single point, rather than the value at any point.
This is reflected in our main identifiability result (Theorem 1): we will show that the causal graph of
a nonlinear SCM can be identified with the information from only two auxiliary environments; this
in stark contrast with ICA identifiability results for general mixing functions, that usually require a
number of environments that scales linearly (O(d)) with the number of sources.

Problem definition. We aim to characterize the conditions under which the causal graph G is
identifiable from the fewest possible environments.

4 THEORY

To develop our theory, we rely on the following assumptions on the ICA model of Equation (2).
Assumption 1. f is invertible and twice differentiable.
Assumption 2. Each environment is obtained as a rescaling of S, namely Si is distributionally
equivalent to LiS for each i ∈ [e], with Li = diag(λi

1, . . . , λ
i
d) and λi

j ̸= 0.

Assumption 3. For f−1(x) = s where s = µS, the mean of the vector of sources, the Jacobian is
faithful (Definition 2).
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Assumption 4. S has Gaussian density pθ with θ mean and covariance matrix parameters.

Discussion on the Assumptions 1-4. Assumption 1 is standard when proving identifiability: the
results in Hoyer et al. (2008); Zhang & Hyvärinen (2009); Immer et al. (2022) are based on higher-
order derivatives, and have strong requirements that guarantee diffeomorphic causal mechanisms
(Corollary 3.5 in (Dominguez-Olmedo et al., 2023)). Also Assumption 2 is mild and somewhat
necessary: it simply asks that the interventions are meaningful, i.e. that they affect the variance;
interventions on the mean, intuitively, are not informative as they shift the density graph by a constant,
without affecting its shape (the gradient and the Hessian of the density, where information about the
causal graph lies). Assumption 3 requires that the Jacobian of the inverse of the mixing function
is informative about the causal structure at the mean of S (and it’s almost surely verified over X
samples, under some generic regularity conditions on f ). The reason behind it is that we probe
the identifiability of the Jacobian’s support at the mean. The only real simplifying constraint is
Assumption 4 of the Gaussianity of the sources, which is, however, not new in the literature (see, e.g.,
Rolland et al. (2022)). Later, we discuss why this assumption is needed in the paper and potential
ways to relax it (Section 4.1).

In the remainder of the paper we demonstrate that, under these assumptions, leveraging the ICA
formalism we can prove the identifiability of causal graphs, potentially with as few as two auxiliary
environments. Our starting point is the invertibility f , so that we can write the density of X with the
change of variable for each value x = f(s) as:

p(x) = pθ(s)|Jf−1(x)|. (4)

Consider an alternative invertible ICA model (Definition 1) (f̂ , pθ̂) such that:

p(x) = pθ̂(s)|Jf̂−1(x)|. (5)

We define the indeterminacy function
h := f̂−1 ◦ f , (6)

which "quantifies" how different the two ICA solutions are. By the multivariate chain rule, the
following relation among Jacobian matrices holds:

Jf = Jf̂Jh. (7)

We show that (under Assumptions 1-4 on (f , pθ)) there is at least one point x = f(s) = f̂(ŝ) such that
the Jacobian Jh(s) is a scaled permutation, meaning that Jf−1 support is identifiable up to column per-
mutation. Given that for acyclic causal models permutations are easily removed (Shimizu et al., 2006),
this is equivalent to identifiability of the causal graph in the sense of Definition 4, as we discuss next.

4.1 IDENTIFIABILITY FROM SECOND ORDER DERIVATIVES OF THE LOG-LIKELIHOOD

In this section, we present our main theoretical result and the intuitions behind it. Our argument for
identifiability relies on the analysis of the Hessian of the log-likelihood of Xi for all environments.
We consider the case where f−1(x) = s = µS (by construction, there is a unique corresponding
ŝ = f̂−1(x)). We partition the set of e auxiliary environments into two groups I1 = {1, ..., e1} and
I2 = {e1 + 1, ..., e1 + e2}, where e = e1 + e2. Then, we define the following quantities:

Ω1 :=
∑
i∈I1

D2
s log pθ(s)−D2

s log p
i
θ(s)

Ω2 :=
∑
i∈I2

D2
s log pθ(s)−D2

s log p
i
θ(s),

(8)

where D2 denotes the differential operator that returns the Hessian matrix. Similarly, we define
Ω̂1, Ω̂2 by replacing θ with θ̂. The introduction of Ωl, Ω̂l, l = 1, 2, is instrumental for the next result.

Lemma 1. Let x = f(s) = f̂(ŝ), where s = µS. Let Assumptions 1,2 and 4 satisfied. Then:∑
i∈I1

D2
x log p(x)−D2

x log p
i(x) = Jf−1(x)TΩ1Jf−1(x) = Jf̂−1(x)

T Ω̂1Jf̂−1(x) (9)

∑
i∈I2

D2
x log p(x)−D2

x log p
i(x) = Jf−1(x)TΩ2Jf−1(x) = Jf̂−1(x)

T Ω̂2Jf̂−1(x) (10)
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The proof is derived by direct computation and can be found in Appendix C.2. We point to Lemma 7
in Varici et al. (2025) for related results that analyze the difference of first-order derivatives of the
log-likelihood, in the context of causal representation learning with soft interventions.

We can intuitively illustrate how the identifiability of the Jacobian’s support follows from our
Lemma 1. A first remark is that the Ωl, Ω̂l matrices are diagonal. That is because, for a vector of
mutually independent random variables, the Hessian of the log-density is diagonal (see Appendix G.3
for details about it). Second, by the chain rule, Equations (9) and (10) imply Jh(s)

T Ω̂lJh(s) = Ωl

for l = 1, 2, from which
Jh(s)

−1Ω̂−1
1 Ω̂2Jh(s) = Ω−1

1 Ω2. (11)

This means that Jh(s) maps one diagonal matrix to another: if the eigenvalues of Ω̂−1
1 Ω̂2 are distinct,

that is enough to force Jh(s) to a scaled permutation, which is exactly our goal. This sketched
argument is key to understanding how Equations (9) and (10) provide enough constraints to identify
the support of Jf−1 . Clearly, this discussion implicitly requires that Ωl and Ω̂l are full rank. This can
be achieved under the following conditions over the rescaling matrices Li = diag(λi

1, . . . , λ
i
d) that

define the multiple environments.
Assumption 5 (Sufficient variability). For each j ∈ [d]:

e1∑
i=1

1

(λi
j)

2
̸= e1 and

e1+e2∑
i=e1+1

1

(λi
j)

2
̸= e2.

The assumption basically requires that there is sufficient variability between the different environ-
ments. Similar requirements of sufficient variability are ubiquitous in the nonlinear ICA literature
(e.g. Hyvärinen & Morioka (2016); Khemakhem et al. (2020b); Lachapelle et al. (2022)). Intuitively
speaking, Assumption 5 is satisfied when, for each of the two groups of environments (1, ..., e1 and
e1 + 1, ..., e1 + e2), each source Sj is subject to rescaling. To see that, consider the LHS of the first
equation: λi

j = 1 for each i = 1, ..., e1 corresponds to the case when the variable Sj is never subject
to rescaling in any of the environments, and indeed yields a violation of the assumption. Note that
even if Sj is subject to rescaling for some index i, the values of (λi

j)i∈[e1] can always be tuned such
that the assumption is violated; however, this corresponds to pathological choices of the rescaling
coefficients, which never occur in general (shown in Proposition 3 in the appendix).

Next, we are ready to state our main identifiability result.

Theorem 1. Consider the groundtruth ICA model (f , pθ) of Equation (2) and the alternative (f̂ , pθ̂).
Let Assumptions 1-5 be satisfied, and assume that the elements in the set {(Ω−1

1 Ω2)ii}di=1 are
pairwise distinct. Let x = f(s) = f̂(ŝ) and s = µS: then, the indeterminacy function h := f̂−1 ◦ f
satisfies Jh(s) = D, meaning that the causal graph G is identifiable.

Theorem 1 assumes that the elements in the set {(Ω−1
1 Ω2)ii}di=1 are pairwise distinct. This require-

ment excludes pathological choices of the coefficients of the rescaling matrices Li that define the
multiple environments, and it is generically satisfied (Proposition 4 in the appendix).

Proof sketch (full proof in Appendix C.4). By Lemma 1 we have

MTΩlM = Ω̂l, l = 1, 2, (12)

where M := Jh−1(ŝ). Define A := Ω̂−1
1 Ω̂2 and B := Ω−1

1 Ω2. From Equation (12) we can show
that A = M−1BM , i.e. that A and B are similar. Moreover, being {(Ω−1

1 Ω2)ii}di=1 elements
pairwise distinct, the diagonal elements of A and B are never repeated. Note that the eigenvectors of
a diagonal matrix with all distinct eigenvalues are aligned with the standard basis: given that M , by
definition of similarity, maps the eigenvectors of A to eigenvectors of B, we conclude that it is a scaled
permutation. The permutation is removed leveraging the acyclicity of the causal model, according
to Lemma 1 in Reizinger et al. (2023). Assumption 3 implies that the causal graph is identified.

Identifiability from two auxiliary environments. The theorem tells that, given that we have access
to two groups of auxiliary environments, both inducing changes in the variance of all sources, at
the mean of the sources the ground truth and the alternative models are equivalent up to rescaling.
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This constrains the support of Jf̂−1 of the alternative model to be equal to that of Jf−1 , which is
enough to guarantee identifiability of the causal graph. It is interesting to discuss the theorem when
e1 + e2 = 2, showing that the above result demonstrates identifiability with as few as two additional
environments. In this setting, if L1 = diag(λ1

j )
d
j=1 and L2 = diag(λ2

j )
d
j=1 with λ1

j , λ
2
j ̸= 1 for each

j ∈ [d], then we have two extra environments where the variance of all the sources is affected by
rescaling. This is sufficient to guarantee that the assumptions of Theorem 1 are met. An important
consequence is that the number of required environments does not scale with the number of nodes
in the graph, in contrast with similar findings for nonlinear ICA identifiability. As long as there is
sufficient variability in the sources of two environments (relative to the base model), we are always
guaranteed that the causal graph can be recovered.

Theorem 1 beyond Gaussianity. Theorem 1 inherits the assumption of Gaussianity from Lemma 1;
here, we briefly discuss potential ways to relax it. At a general point x = f(s) the Hessian of the
log-likelihood is equal to

Jf−1(x)TD2
s log p

i(s)Jf−1(x) +D2
x log |Jf−1(x)|+

d∑
j=1

∂sj log p
i(sj)D

2f−1
j (x).

The log-determinant term cancels by taking the difference between environments. To recover
Equations (9) and (10) in Lemma 1, we note that the summation of second-order derivatives vanishes
when ∇ log pi(s) = 0, namely at the mean of the Gaussian sources. However, this can hold for
any source distribution that has at least one point where the gradient is zero, a remark that naturally
extends Lemma 1 (and hence, Theorem 1) to a larger class of causal models. Moreover, from
a practical perspective, even if the gradient of the log-likelihood of the sources does not vanish,
Lemma 1 is approximately true when the gradient is sufficiently small. This can occur, e.g., for
heavy-tailed distributions. This analysis should convince that Gaussianity is a sufficient but not
necessary requirement, and hopefully inspire future research to extend our identifiability results.
Mathematical details on the steps in this paragraph, as well as an expanded discussion on the
generalization of our theory for more general classes of distributions, are found in Appendix E.4.

Next, we support the conclusions of our theory with experiments.

5 EMPIRICAL RESULTS

In this section, we report and analyse empirical results that validate our theory. Our experiments
on synthetic data show that if the assumptions of Theorem 1 hold, the causal direction can be
recovered from the data. In the main paper, we focus on bivariate graphs, commonly adopted as the
easiest yet non-trivial setting for testing identifiability (e.g., Hoyer et al. (2008); Zhang & Hyvärinen
(2009); Immer et al. (2022)). Additional experiments on multivariate causal graphs are discussed in
Appendix E.4.

5.1 SYNTHETIC DATA GENERATION

We generate synthetic data from bivariate causal models with independent noise terms, sampled from
a normal distribution with unit mean and covariance entries uniformly drawn between [1, 1.5]. Given
the variables x1, x2 and the graph x1 → x2 we consider the following causal mechanisms that comply
with the assumptions of Theorem 1: (i) x2 := s21 arctan(s2) + s32 (ii) x2 := s21s2 + arctan(s2) (iii)
x2 := s21 + arctan(s1)s2 + s1s

3
2. Note that any of these models can not be reparametrized to a post

nonlinear or location scale noise model, which are the most general SCMs identifiable from pure
observations (Zhang & Hyvärinen, 2009; Immer et al., 2022). Additionally, we consider data from
a linear Gaussian model, notably non-identifiable. We run experiments on datasets with {3, 6, 9}
environments. For each environment, we generate 2000 observations. In Appendix E.4, we discuss
experiments with non-Gaussian independent sources. Interestingly, these additional results seem
to support our hypothesis that Theorem 1 could be extended to other source distributions.

5.2 ANALYSIS OF THE EXPERIMENTAL RESULTS

In this section, we analyse the empirical results. First, we introduce an algorithm for inferring the
Jacobian support that leverages our theory.
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Algorithm 1: Estimating supp Jf−1 from the data (algorithm sketch)

Data: X̂ ∈ Rk×n×d // ∀ env: n d-dimensional observations.

I1, I2 ⊂ [k] // Set of indices splitting the environments in two groups

Result: Estimate of supp Jf−1

Ŝ ← score_estimate(X̂) ∈ Rk×n×d

Ĥ ← hess_estimate(X̂) ∈ Rk×n×d×d

// For each environment e, find the sample corresponding to the mean of the source

for e = 1, ..., k do
me ← i s.t. f−1(X̂[e, i]) ≈ µS

end

// Difference of Hessians at the mean (i.e. Equations (9) and (10))

Ĥdiffs ← 0 ∈ R2×d×d

for ℓ = 1, 2 do
for e ∈ Iℓ do

∆H = Ĥ[0,m1]− Ĥ[e,me] // m1 is the index for the base environment

Ĥdiffs[ℓ]← Ĥdiffs[ℓ] + ∆H .
end

end
M ← Ĥ−1

diffs[1]Ĥdiffs[2] ≈ JfΩ
−1
1 Ω2Jf−1 // Hdiffs[ℓ] ≈ JT

f−1ΩℓJf−1, by Equations (9) and (10)

Ĵf−1 ← diagonalize(M) ≈ Jf−1DP

return supp
(
Ĵf−1P−1

)
// P can be found using the acyclicity of the causal graph.

Algorithm. The simplified pseudocode is found in Algorithm 1 (a detailed version is presented
in Appendix E.3). The steps in our procedure closely follow the proof of Theorem 1: this approach
to algorithmic design is not necessarily the best, which is why we highlight that our method is not
within our main contributions. For a single inference, the input is the data tensor X̂ ∈ Rk×n×d:
for each environment from 1 to k it consists of a dataset with n observations of d causal variables.
Additionally, we are given the sets I1, I2 ⊂ [k] of indices that split the auxiliary environments into
two groups, as required by our theory. The first environment is taken as the base one. We have two
steps where statistical estimation is involved: (i) For each environment, the gradient and the Hessian
of the log-likelihood are approximated via the Stein gradient estimator, introduced in Li & Turner
(2018) and popularized in causal discovery by Rolland et al. (2022); Montagna et al. (2023b); (ii) For
each environment i ∈ [k], we need to find the observation j ∈ [n] such that f−1(X̂[i, j]) ≈ µS, that
is, the data point generated mixing the source vector at the mean. Fortunately, this can be consistently
estimated from the score ∇ log px, as we demonstrate in Proposition 2 in the appendix. These two
steps are achieved by Algorithm 1 at the end of the first for loop. At this stage, all statistical quantities
have been estimated: we note that, being the Stein estimator consistent, the algorithm is correct
in the infinite sample limit. In the second for loop, we take the points at the estimated mean that
we previously found, and compute the difference of the Hessians between the base and auxiliary
environments: this exactly mirrors the first equality in Equations (9) and (10) of Lemma 1. Next, in
the algorithm’s notation, we compute

M := Ĥ−1
diffs[1]Ĥdiffs[2] ≈ JfΩ

−1
1 Ω2Jf−1 . (13)

Then, we solve the linear system Ĥdiffs[1]M = Ĥdiffs[2] to find M . In the infinite samples limit
Equation (13) is a precise equality, such that M and Ω−1

1 Ω2 are similar: diagonalizing M we find Jf−1

up to a scaled permutation. The permutation indeterminacy is removed leveraging the assumption
that the causal graph is acyclic via standard arguments (see Shimizu et al. (2006) and Reizinger et al.
(2023)). Finally, the algorithm returns the estimated support of the inverse Jacobian.
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Figure 1: Average SHD (0 is best, 1 is worst) achieved by Algorithm 1 over 50 seeds on binary
graphs. When the assumptions of Theorem 1 are satisfied, the method can appropriately infer the
causal direction, both in the observationally identifiable setting (nonlinear ANM, PNL, LSNM) and
the observationally non-identifiable one (linear Gaussian model and the three SCMs with arbitrary
nonlinearity). The number of environments does not have a notable effect on the accuracy.

Analysis of the experiments. In Figure 1 we illustrate the empirical performance of our method
on several synthetic datasets generated from a bivariate causal model. We consider SCMs with the
arbitrary nonlinear mechanisms (i), (ii), (iii) described in Section 5.1, and linear Gaussian models;
as a sanity check, we also experiment on nonlinear additive noise models (ANM), post-nonlinear
models (PNL), and location scale noise models (LSNM), which are all the nonlinear SCMs where
identifiability can be achieved from observational data (see Appendix E.2 for details). All datasets are
generated under the assumption that a causal effect exists (i.e., the ground truth graphs always have
one arrow). We measure the errors through the structural hamming distance (SHD). This is equivalent
to the number of edge additions, removals, or direction flips that are required to recover the ground
truth graph from the estimated one: SHD=0 corresponds to correct inference, SHD=1 to an error.
For each experimental configuration, consisting of function type and number of environments, we
consider 50 seeds over which we compute the empirical mean and deviation of the SHD. The results
are in line with our theory: we see that for the three models with arbitrary mechanisms, and the linear
Gaussian SCM (all non-identifiable from pure observations), the average SHD is close to 0, which is
especially evident when we do inference with only 3 environments. Interestingly, we see that adding
environments doesn’t always have a beneficial effect. This is not surprising, as we showed that two
auxiliary environments are sufficient for inference. The method can also infer the causal direction
for the ANM, PNL, and LSNM. We conclude that the empirical outcomes support our theory.

Remark on multivariate graphs. Multivariate experiments are delayed to the Appendix E.4. On linear
Gaussian SCMs, we find that our method can infer the causal order with only 3 environments for
graphs up to 50 nodes, which is strong evidence in support of our theory. In the nonlinear setting, our
method struggles to scale to high dimensions, and we limit our experiments to 5 nodes. A detailed
discussion on the scalability of our approach is provided in the Limitations section B.2: in practice,
scaling causal discovery with multiple environments beyond the bivariate setting is a well-known,
unaddressed challenge, already found in Reizinger et al. (2023) and Monti et al. (2020). Given that
algorithmic contributions fall beyond the scope of our paper, we leave this open problem for the future.

6 CONCLUSION

We demonstrated that the causal graph of a structural causal model with arbitrary nonlinear mech-
anisms is identifiable; surprisingly, this can be achieved given the auxiliary information of only two
(sufficiently different) environments. Our main assumption is the Gaussianity of the noise terms, for
which, however, we discuss potential relaxations. Our findings extend on the well-known duality
between ICA and causal discovery: the first problem concerns the identifiability of the independent
sources at each point, whereas causality only needs to access the support of the Jacobian mixing func-
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tion at a single point, when faithfulness is satisfied. The exciting consequence of this asymmetry is that
while ICA identifiability requires a number of environments that grows linearly with the number of
sources, for causal discovery, a constant number is sufficient: this makes our theoretical results appeal-
ing even in high dimensions. We hope that our work inspires novel identifiability theory beyond the
Gaussianity constraint. Moreover, in light of our results, finding an efficient and effective algorithm for
causal discovery with multiple environments and in high dimensions is a promising research direction.

Reproducibility statement. Section 5.1 describes the specifics for generating the synthetic data of
our experiments. Appendix E.1 discusses the computational resources that were required for their
execution. As supplementary material, we provide a zip folder that allows reproducing our empirical
analysis. Particularly, it contains the Python code for: Algorithm 2, the synthetic data generation, the
experiments execution, and the visualizations of the figures of this paper. For the theoretical results,
we explicitly state and discuss in detail all the assumptions (Assumptions 1-5) required in Theorem 1
(our main contribution). A proof sketch and a detailed demonstration are included in the main text
and the appendix, respectively (Appendix C.4).
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A LLM USAGE STATEMENT

In this work, LLMs were occasionally used for polishing and improving the writing. All research
contributions in terms of theory and experiments’ analysis were carried by the authors.

B LIMITATIONS

In this section, we discuss the limitations of our work and the open problems it leaves.

B.1 THEORY

The main constraint in our theory is the requirement of Gaussian noise terms. In the main text
(cf. Section 4.1, the paragraph Theorem 1 beyond Gaussianity), we discuss how this assumption
is sufficient but might not be necessary. In fact, our theory can be extended to a structural causal
model where the distribution of the sources has a vanishing gradient at some point. Our work does
not address how to extend these result to arbitrary continuous distributions, which remains an open
problem.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.2 EXPERIMENTS

B.2.1 SYNTHETIC DATA

One limitation in our work is that experiments are run on synthetic data. This is common in the causal
discovery literature due to the challenge of accessing data with a reliable ground truth causal graph.
Moreover, data collection often happens under the i.i.d. assumption: this hinders the application of
our algorithm on common benchmarks such as, e.g., the Sachs dataset (Sachs et al., 2005), which
doesn’t dispose of multiple environments.

B.2.2 HIGH DIMENSIONAL GRAPHS

In Appendix E.4 we analyse experiments over graphs with more than 2 nodes. We find that, for linear
Gaussian SCMs, our method can accurately infer the causal order of 50 nodes with as few as three
environments. However, for nonlinear structural causal models, performance quickly deteriorates with
the number of dimensions. In general, we find that in the nonlinear setting, developing an effective
algorithm for multivariate causal discovery with multiple environments is a challenging problem.
This doesn’t come as a surprise, being already well reported in the recent literature: Reizinger et al.
(2023) (Table 1) show that for graphs with 5 nodes, neural-based contrastive learning from multiple
views fails to even converge to a causal order on 40% of the test runs; on 10 nodes, convergence
occurs with a 27% rate. Perhaps even more remarkable are the findings of Monti et al. (2020) (Figure
2) showing that, as the causal mechanisms become nonlinear, contrastive-based nonlinear ICA fails
to recover the causal order better than a random baseline even for just two nodes. This highlights that
algorithmic multi-environment causal discovery, even for small graphs, is an open and challenging
problem that requires intensive research of its own–which is not in the scope of our paper.

Despite the clear limitation, it is important to keep in mind that the goal of our experiments is to
demonstrate that the assumptions of Theorem 1–our main contribution–are sufficient to identify the
causal direction, and not to present novel algorithmic contributions. To this end, bivariate models are
well-known to be the easiest yet non-trivial setting: in fact, our experimental setup is reminiscent of
that of Hoyer et al. (2008); Zhang & Hyvärinen (2009), two seminal papers in the identifiability theory
of causality which limit their theoretical and empirical studies to bivariate causal graphs. This also
aligns with several empirical and theoretical identifiability studies in causal discovery (e.g., Mooij
et al. (2011); Ghassami et al. (2017); Montagna et al. (2024); Immer et al. (2022); Xi et al. (2025);
Monti et al. (2020); Strobl & Lasko (2023)), which makes our choice to focus on two-variable graphs
well-justified. We leave the challenge of developing an algorithm suitable for multi-environment
causal discovery in higher dimensions as an open problem.

C PROOF OF THE THEORETICAL RESULTS

C.1 PRELIMINARY THEORETICAL RESULTS

In this section, we collect the theoretical results useful for the proof of Theorem 1.

Lemma 2 (Full rank of Ωl under rescalings). Assume Gaussian sources S with independent coordi-
nates, and environments generated by rescalings Si = LiS with Li = diag(λi

1, . . . , λ
i
d) and λi

j ̸= 0.
For l ∈ {1, 2} define the index sets I1 = {1, . . . , e1} and I2 = {e1 + 1, . . . , e1 + e2}, and recall

Ωl :=
∑
i∈Il

(
D2

s log pθ(s) − D2
s log p

i
θ(s)

)
,

evaluated at the same s. Then each Ωl is diagonal with entries

(Ωl)jj =
1

σ2
j

(∑
i∈Il

1

(λi
j)

2
− |Il|

)
,

and therefore

Ωl is full rank ⇐⇒ ∀j ∈ [d] :
∑
i∈Il

1

(λi
j)

2
̸= |Il|.
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Proof. For a univariate Gaussian, D2
sj log p(sj) = −1/σ

2
j . In environment i we have Si

j = λi
jSj , so

Si
j has variance (λi

jσj)
2, hence D2

sj log p
i(sj) = −1/(λi

jσj)
2. Thus(

D2
sj log p(sj)−D2

sj log p
i(sj)

)
=

1

σ2
j

( 1

(λi
j)

2
− 1
)
.

Summing over i ∈ Il gives the stated diagonal form. A diagonal matrix is full rank iff none of its
diagonal entries is zero, which yields the equivalence.

Lemma 3. Ωl is invertible implies Ω̂l invertible.

Proof. By Lemma 1, for l = 1, 2, we have:

Jf−1(x)TΩlJf−1(x) = Jf̂−1(x)
T Ω̂lJf̂−1(x).

Under Assumption 5, by Lemma 2 the LHS is a product of full rank matrices, and so is full rank; so
must be the RHS. Given that rank(AB) ≤ min (rank(A), rank(B)) (for generic matrices A,B) we
conclude that Ω̂l is also full rank.

C.2 PROOF OF LEMMA 1

We report the content of Lemma 1, followed by its proof.

Lemma 1. Let x = f(s) = f̂(ŝ), where s = µS. Let Assumptions 1,2 and 4 satisfied. Then:∑
i∈I1

D2
x log p(x)−D2

x log p
i(x) = Jf−1(x)TΩ1Jf−1(x) = Jf̂−1(x)

T Ω̂1Jf̂−1(x) (9)

∑
i∈I2

D2
x log p(x)−D2

x log p
i(x) = Jf−1(x)TΩ2Jf−1(x) = Jf̂−1(x)

T Ω̂2Jf̂−1(x) (10)

Proof. By direct computation, it can be verified that for each i = 0, ..., e1 + e2, we have:

D2
x log p

i(x) = D2
x log |Jf−1(x)|+ Jf−1(x)TD2

s log p
i
θ(s)Jf−1(x)

+

d∑
k=1

∂sk log p
i
θ(sk)D

2
xf

−1
k (x).

(14)

Given s = µS, Assumption 4 of Gaussianity, together with the fact that Si = LiS for some diagonal
Li, imply ∂sk log p

i
θ(sk) = 0 for all k. Then, the summation vanishes. It follows that, for all

environments i = 1, ..., e1 + e2:

D2
x log p(x)−D2

x log p
i(x) = Jf−1(x)T

(
D2

s log p
i
θ(s)−D2

s log p
i
θ(s)

)
Jf−1(x).

The same results hold if we replace f with f̂ and θ with θ̂. Then, Equation (9) follows summing the
above over all i = 1, ..., e1, and Equation (10) follows summing over i = e1 + 1, ..., e1 + e2.

C.3 IDENTIFIABILITY OF THE MEAN OF THE SOURCES

In this section, we show that under the assumptions of Theorem 1, the mean µS of the sources is
identifiable.
Proposition 2 (Identifiability of the sources mean). For each i = 1.., e1 + e2, suppose the diagonal
entries of the rescaling matrices Li generating the environments are randomly drawn from a joint
distribution that is absolutely continuous with respect to the Lebesgue measure on (R \ 0)d(e1+e2).
Then, the following is verified with probability one over the samples {Li}e1+e2

i=1 :

k∑
i=1

∇ log p(x)−∇ log pi(x) = 0 ⇐⇒ s = f−1(x) = µS. (15)

We introduce two lemmas instrumental to the proof of the proposition.
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Lemma 4. Consider the base ICA model of Equation (2), and let i = 1, ..., k be the index denoting
an auxiliary environment (Definition 3). Let Assumptions 1-4 to be satisfied. Given x = f(s) such
that Jf−1(x) is full rank, for each k ≤ e1 + e2:

k∑
i=1

∇ log p(x)−∇ log pi(x) = 0 ⇐⇒
k∑

i=1

∇ log p(s)−∇ log pi(s) = 0 (16)

Proof. By the change of variable formula for densities, we obtain the score of x for a generic
environment i = 0, ..., k (as usual, p = p0):

∇ log pi(x) = Jf−1(x)T∇ log pi(s) +∇ log |Jf−1(x)|.
Then, for each i = 1, ..., k:

∇ log p(x)−∇ log pi(x) = Jf−1(x)T
[
∇ log p(s)−∇ log pi(s)

]
.

Taking the summation:
k∑

i=1

∇ log p(x)−∇ log pi(x) =

k∑
i=1

Jf−1(x)T
[
∇ log p(s)−∇ log pi(s)

]
.

From the above equation, the right-to-left implication trivially holds. Considering the other direction
we have:

k∑
i=1

∇ log p(x)−∇ log pi(x) = 0 =⇒
k∑

i=1

Jf−1(x)T
[
∇ log p(s)−∇ log pi(s)

]
= 0.

Being the Jacobian of the inverse mixing function a full rank matrix, its null space is the zero vector,
which implies:

k∑
i=1

∇ log p(s)−∇ log pi(s) = 0.

Lemma 5. Consider the base ICA model X = f(S) of Equation (2). Let i = 1, ..., k be the index
of the auxiliary environment Xi = f(Si), with Si = LiS, Li = diag(λi

1, . . . , λ
i
d), and λi

j ̸= 0. Let
Assumptions 1 and 4 be satisfied. Assume the joint law of {λi

j : j = 1, . . . , d, i = 1, . . . , k} is
absolutely continuous with respect to Lebesgue measure on (R \ {0})dk. Then, for each k ≤ e1 + e2,
the following holds with probability one over {Li}ki=1 samples:

k∑
i=1

∇ log p(s)−∇ log pi(s) = 0 ⇐⇒ s = f−1(x) = µS. (17)

Proof. The backward direction is immediate, due to the Gaussianity assumption. Let’s focus on the
forward implication.

k∑
i=1

∇ log p(s)−∇ log pi(s) = 0 ⇐⇒
k∑

i=1

∂sj log p(sj)− ∂sj log p
i(sj) = 0, ∀j = 1, ..., d.

We denote with µj , σ
2
j respectively the mean and variance of Sj , and define λ0

j := 1. For each
i = 0, ..., k we have:

∂sj log p
i(sj) =

µj − sj
(λi

jσj)2
.

Then:
k∑

i=1

∂sj log p(sj)− ∂sj log p
i(sj) =

µj − sj
σ2
j

(
k −

k∑
i=1

1

(λi
j)

2

)
.

Therefore, the sum vanishes if and only if for every j, either sj = µj or
∑k

i=1(λ
i
j)

−2 = k. By
Proposition 3,

∑k
i=1(λ

i
j)

−2 = k occurs with probability zero, and thus the claim is verified.
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We are ready to prove the proposition.

Proof of Proposition 2. By Lemma 4 we have that for each k ≤ e1 + e2:

k∑
i=1

∇ log p(x)−∇ log pi(x) = 0 ⇐⇒
k∑

i=1

∇ log p(s)−∇ log pi(s) = 0

Then, the result follows by application of Lemma 5.

C.4 PROOF OF THEOREM 1

We repropose the statement of Theorem 1, followed by a detailed proof.

Theorem 1. Consider the groundtruth ICA model (f , pθ) of Equation (2) and the alternative (f̂ , pθ̂).
Let Assumptions 1-5 be satisfied, and assume that the elements in the set {(Ω−1

1 Ω2)ii}di=1 are
pairwise distinct. Let x = f(s) = f̂(ŝ) and s = µS: then, the indeterminacy function h := f̂−1 ◦ f
satisfies Jh(s) = D, meaning that the causal graph G is identifiable.

Proof. By Lemma 1, for l = 1, 2 we have:

Jf−1(x)TΩlJf−1(x) = Jf̂−1(x)
T Ω̂lJf̂−1(x),

which implies
MTΩlM = Ω̂l, l = 1, 2, (18)

where M := Jh−1(ŝ). By Lemma 2, Ωl is invertible, which also implies Ω̂l invertibility (by
Lemma 3). Then, we can define A := Ω̂−1

1 Ω̂2 and B := Ω−1
1 Ω2. From Equation (18) it follows:

A = M−1BM, (19)

which implies that A and B are similar, implying that they have the same set of eigenvalues. Take
λ,v eigenvectors of A. Then, the following chain of implication holds:

Av = λv ⇐⇒ MAv = λMv ⇐⇒ BMv = λMv, (20)

where the last step follows from Equation (19). So, M is mapping from eigenvectors of A to
eigenvectors of B. The next step is showing that each eigenspace of A and B is always spanned by
one vector in the standard basis. As a preliminary step, we show that the diagonal elements of A are
pairwise distinct: first, by similarity, we have that A and B have the same eigenvalues. Being both
matrices diagonal, the eigenvalues are the diagonal elements. Then:

Aii =
(Ω̂1)ii

(Ω̂2)ii
=

(Ω1)jj
(Ω2)jj

= Bjj , i, j = 1, ..., d. (21)

By assumption, we have that the elements in the set { (Ω1)ℓℓ
(Ω2)ℓℓ

}ℓ∈[d] are pairwise distinct. The above

equation implies the same for the set { (Ω̂1)ℓℓ
(Ω̂2)ℓℓ

}ℓ∈[d], i.e., for each i = 1, ..., d:

Aii ̸= Ajj , ∀j = 1, ..., d, j ̸= i. (22)

Now consider the eigenvalue λ of A: we show that the associated eigenspace is equal to the span
of a single vector in the standard basis. Being A diagonal, there is i = 1, ..., d such that λ = Aii.
Consider the eigenvector v = (v1, ..., vd) such that:

Av = λv = Aiiv. (23)

Being A diagonal, for each j = 1, ..., d, component-wise we have:

(Av)j = Ajjvj . (24)

Equations (23) and (24) together imply:

Aiivj = Ajjvj ⇐⇒ (Aii −Ajj)vj = 0, ∀j = 1, ..., d.
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By Equation (22), for i ̸= j, Aii ̸= Ajj , meaning that vj = 0. Then, v eigenvector of A must be
aligned with the basis vector ei:

Eλ(A) = span{ei}. (25)
With analogous computations, we find:

Eλ(B) = span{ej}, (26)
with ej potentially different from ei. Given that by Equation (20) we have MEλ(A) = Eλ(B), the
last two equations imply

M span{ei} = span{ej}, M = Jh(s).

We conclude that Jh(s) maps one vector in the standard basis to another (up to rescaling), proving
that Jh(s) = DP with D invertible diagonal and P permutation. We recall that by Equation (7) we
have Jf = Jf̂Jh, s.t.

Jf−1(x) = PTD−1Jf̂−1(x).
By Lemma 1 in Reizinger et al. (2023), the permutation indeterminacy can be uniquely determined
and thus removed. Given that by Assumption 3 the Jacobian of Jf−1(x) is faithful to the causal graph,
the claim is verified.

D INDEPENDENT COMPONENT ANALYSIS

In this section, we present a primer on the problem of Independent Component Analysis (ICA), based
on the content of Section 2 in Buchholz et al. (2022). ICA seeks to recover latent sources from their
observed mixtures. We assume a hidden random vector S ∈ Rd with independent coordinates and
observations generated by

X = f(S), p(s) =

d∏
i=1

pi(si), (27)

where f : Rd → Rd is a diffeomorphism. The goal of ICA is to find an unmixing map f̂−1 : Rd → Rd

such that the components of f̂−1(X) are independent—ideally achieving blind source separation
(BSS), meaning f̂−1 ≈ f−1 up to standard symmetries. Informally, for ŝ = f̂−1(x), we call f̂ an ICA
solution when

f̂(ŝ)
D
= f(s)

(equality is in distribution). In general, we would like an ICA solution to be as close as possible
to the real function f . To formalize this concept, known as identifiability, let F(A,B) be a class of
invertible maps A → B (assumed diffeomorphisms) and let P ⊂M1(R)⊗d be a family of product
measures. Let S denote the group of admissible symmetries (e.g., permutations and coordinate-wise
rescalings) up to which we agree to identify sources.

Definition 5 (Identifiability). ICA in (F ,P) is identifiable up to S if, for any f , f̂ ∈ F and P, P̂ ∈ P ,

f(S)
D
= f̂(Ŝ) with S ∼ P, Ŝ ∼ P̂ , (28)

implies the existence of h ∈ S such that h = f̂−1◦ f on the support of P .

In general (i.e., for (F ,P) arbitrarily large), the ICA problem is not identifiable for reasonable S.
Notable example comes from the Darmois construction or constructions based on measure-preserving
transformations. Several results in the literature have studied which conditions on (F ,P) can help
identifiability. Most notably, Buchholz et al. (2022) shows that when F represents the class of
conformal maps, identifiability is guaranteed up to trivial indeterminacies. If heterogeneous data
are considered (e.g., in the multi-environment setting of this paper), identifiability was shown in the
general case (Hyvärinen & Morioka, 2016).

E EXPERIMENTS APPENDIX

E.1 COMPUTATIONAL RESOURCES

All experiments have been run on a personal laptop, a Lenovo ThinkPad T14 Gen 5, for a run time of
approximately 6 hours.
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E.2 STRUCTURAL CAUSAL MODEL IDENTIFIABILITY FROM OBSERVATIONAL DATA

Without sufficiently restrictive modeling assumptions, causal discovery is ill-posed: the distribution
of the data is compatible with many distinct graphs that define an equivalence class, the most one
can hope to identify in the general case with i.i.d. observations. Unique graph recovery requires
restrictions on the class of functional mechanisms and noise distributions of the underlying causal
model: in what follows, we briefly introduce the four classes of causal models that are known to be
identifiable. We always assume that the underlying graph is a DAG.

Linear Non-Gaussian Model (LiNGAM). A linear SCM over X ∈ Rd is defined by

X = BX+ S, (29)

where B ∈ Rd×d collects the coefficients expressing each Xi as a linear function of its parents plus a
disturbance Si. With mutually independent, non-Gaussian noise terms, the model is identifiable; this
is known as the Linear Non-Gaussian Acyclic Model (LiNGAM) (Shimizu et al., 2006).

Additive Noise Model (ANM). An Additive Noise Model (ANM) (Hoyer et al., 2008; Peters et al.,
2014) defines each causal variable as a function of (potentially) nonlinear mechanisms and an additive
noise contribution:

Xi := fi(PAi) + Si, i = 1, . . . , d. (30)

The noise terms are required to be mutually independent.

Post-Nonlinear Model (PNL). The most general class with known sufficient conditions for identi-
fiability of the graph is the Post-Nonlinear (PNL) model (Zhang & Hyvärinen, 2009), in which

Xi := gi
(
fi(PAi) + Si

)
, i = 1, . . . , d, (31)

with fi and gi both potentially nonlinear, gi invertible, and mutually independent noises.

Location Scale Noise Model (LSNM) The LSNM (Immer et al., 2022) extends ANMs by allowing
heteroscedastic noise as follows:

Xi := fi(PAi) + gi(PAi)Si, i = 1, . . . , d, (32)

where fi and gi > 0 may be nonlinear and noise terms are jointly independent with zero mean and
unit variance.

E.3 DETAILED PSEUDOCODE OF ALGORITHM 1

Algorithm 2 provides a detailed pseudocode of the algorithm adopted in our experiments of Section 5,
and sketched in Algorithm 1.

E.4 EXPERIMENTS BEYOND GAUSSIANITY

In this section, we present additional experimental results on bivariate graphs underlying synthetically
generated structural causal models. The causal mechanisms are the same already described in
Section 5.1. The difference, here, is that we generate the independent sources from a Gamma
distribution, which violates the assumptions of our theory. We sample the scale parameter θ ∼
U(1.75, 2.25), and consider two different parameterizations of the shape α of the base environments:
in the first case, α ∼ U(0.5, 1); in the second case α ∼ U(2, 2.5). What makes the Gamma density
interesting it that it can be flexibly modified by changing the values of its parameters, as shown in
Figure 2.

Gamma distribution with no vanishing gradient. Figure 2a illustrate how the Gamma density
function varies at α = 1 and different values of θ. It is interesting to note that the gradient of the
density function never vanishes, making this setup adversarial to the assumptions of Theorem 1. In
line with this, in Figure 3 we see that generally our algorithm struggles to infer the causal direction
for this class of structural causal models.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 2: Estimating supp Jf−1 from the data

Data: D ∈ Rk×n×d // ∀ env: n d-dimensional observations.

I1, I2 ⊂ [k] // Set of indices splitting the environments in two groups

Result: Estimate of supp Jf−1

Ŝ ← score_estimate(D) ∈ Rk×n×d

Ĥ ← hess_estimate(D) ∈ Rk×n×d×d

mean_pairs_idxs ∈ Re×2 // Pair of indices corresponding to observations at the mean

// For each environment e, find i s.t. f−1(X[e, i]) ≈ µS

for e = 1, ..., k do
∆X ∈ Rn×n // norm of the difference of observations from distinct envs

pairs ∈ Nn // Pair of indices i, j such that X[0, i] ≈ X[e, j]

score_diffs← +∞ ∈ Rn // Container for norm of the differences in the score

for i = 1,...,n do
for j=1,...,n do

∆X [i, j]← ||X[0, i]−X[e, j]||2
end
j ← argmin∆X [i]

pairs[i]← j // X[0, i] ≈ X[e, j]

score_diffs[i]← ||Ŝ[0, i]− Ŝ[e, j]||2
end
m← argmin score_diffs // Paired observations between envs (0, e) s.t. score diff. ≈ 0.

mean_pairs_idxs[e]← m,pairs[m] // The score diff. vanishes when source = mean

end

// Difference of Hessians at the mean (i.e. Equations (9) and (10))

Ĥdiffs ← 0 ∈ R2×d×d

for ℓ = 1, 2 do
for e ∈ Iℓ do

m1,me ← mean_pairs_idxs[e]
∆H = Ĥ[0,m1]− Ĥ[e,me]

Ĥdiffs[ℓ]← Ĥdiffs[ℓ] + ∆H .
end

end
M ← Ĥ−1

diffs[1]Ĥdiffs[2] ≈ JfΩ
−1
1 Ω2Jf−1 // Hdiffs[ℓ] ≈ JT

f−1ΩℓJf−1, by Equations (9) and (10)

Ĵf−1 ← diagonalize(M) ≈ Jf−1DP

return supp
(
Ĵf−1P−1

)
// P can be found using the acyclicity of the causal graph.

Gamma distribution with vanishing gradient. Figure 2b illustrates how the Gamma density
function varies at α = 2 and different values of θ. We can see that, in this case, the density
achieves a maximum: we point to our analysis in Section 4.1 (the paragraph Theorem 1 beyond
Gaussianity), where we discuss when and why it is reasonable to expect that Theorem 1 extends to
any source distribution that achieves a maximum or minimum in the interior of its domain. A word of
caution is needed: despite the fact that the Gamma density with α ∈ [2, 2.5] does have a vanishing
gradient, the points of the domain at which the critical values occur are not preserved by our rescaling
interventions (as is clear by inspection of Figure 2b). Hence, the requirements of the Theorem 1
are not fully met (where it’s implicit that the rescaling interventions do not change the location of
the modes): this makes the experiments of Figure 4 an interesting challenge for our algorithm. The
outcomes are exciting: we see that increasing the number of available environments, despite the
assumption violations, imposes enough constraints to infer the causal direction in the majority of the
experimental setups with ≈ 80% accuracy. This is of double interest: first, we have some empirical
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(a) Gamma density with α = 1.
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(b) Gamma density with α = 2.

Figure 2: We plot the Gamma density for different values of shape and scale. The left plot fixes the
shape α = 1; the right plot fixes α = 2. We let θ vary to illustrate how the distribution changes
between the rescaling environments of our experiments. We note that for α = 1 the density doesn’t
have a finite critical point.
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Figure 3: Average SHD (0 is best, 1 is worst) achieved by Algorithm 1 over 50 seeds on binary
graphs. The sources are sampled from a gamma distribution with α ∈ [0.5, 1]. In line with our theory,
when the sources are generated according to a density that doesn’t have critical points, our algorithm
generally fails to infer the causal direction.

evidence supporting the hypothesis that our theory can be extended beyond Gaussianity. Second,
we see that this seems to be achieved thanks to the constraints from many environments, in contrast
with what we observe when experiments are run on SCMs with Gaussian noise (Figure 1), where
increasing environments do not translate into better accuracy. These empirical findings, despite being
preliminary, should provide an incentive to pursue identifiability theory beyond Gaussianity.

E.5 EXPERIMENTS ON HIGHER DIMENSIONAL GRAPHS

In this section, we present and analyse experimental results on graphs in dimensions higher than
2. Our finding shows that, according to our theory, 2 sufficiently different auxiliary environments
are enough to infer about the causal order, even in cases known to be non-identifiable with pure
observations.

Metric. We monitor the error in the inferred causal order via the topological order divergence, first
adopted in Rolland et al. (2022). Given a directed acyclic graph with d nodes, a causal order (or
topological order) is a permutation of the set [d] such that a node in the ordering can be a parent
only of the nodes appearing after it in the same ordering. For example, the only graphs compatible
with the topological order {2, 1} are X2 → X1 or the empty graph. Consider a causal order π̂, and
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Figure 4: Average SHD (0 is best, 1 is worst) achieved by Algorithm 1 over 50 seeds on binary
graphs. The sources are sampled from a gamma distribution with α ∈ [2, 2.5], which guarantees at
least one point where the gradient of the log-likelihood vanishes (see Figure 2b). Interestingly, this
appears to enable accurate inference of the causal graph when the number of environments increases.

a binary adjacency matrix A representing a directed acyclic graph (Aij = 1 ⇐⇒ i ∈ PAj). The
topological order divergence is defined as:

Dtop(π̂, A) =

d∑
i=1

∑
j:π̂i>π̂j

Aij ,

where π̂i > π̂j means that node i is successive to j in the order. If π̂ is the right topological order for
A, then Dtop(π̂, A) = 0. Else, Dtop(π̂, A) counts the number of edges that cannot be recovered due
to the choice of topological order. For example, given a graph X1 → X2 → X3 with adjacency A,
the causal order π̂ = {1, 3, 2} does not allow an edge X2 → X3, and Dtop(π̂, A) = 1. Given that
Theorem 1 concerns the identifiability of the causal order, and our goal is to empirically support our
theoretical findings, the topological order divergence is the right metric to monitor. In Figure 5 and
Figure 6 we report the average Dtop over 20 seeds, and the error bars are 95% confidence intervals.

Random baseline. The performance of our algorithm is compared with that of a random baseline:
in particular, in the graph we report the mean accuracy of an algorithm that randomly sample a causal
order among all possible permutations of the set {1, ..., d}, d being the number of nodes. If the upper
boundary of the 95% confidence intervals around the mean accuracy of our method are lower than
the mean of the random baseline, that’s statistically significant empirical evidence in support of our
theory.

Next, we proceed to analyse the experiments. We separately consider the case of inference on linear
and nonlinear structural causal models.

E.5.1 EXPERIMENTS ON LINEAR SCMS

When synthetic data are generated according to a linear model X = AS (A being the mixing matrix),
the Hessian of the log-likelihood is equal to the inverse of the covariance matrix ΣX (the Hessian,
in this case, takes the name of precision matrix). For this reason, in the linear setting, we replace
the Stein gradient estimator of the Hessian with a simple approximation of the covariance ΣX via
averaging. The motivation is two-fold: (i) Hessian estimation via the Stein gradient is unstable as the
dimension of the graph grows (see, e.g., (Montagna et al., 2023a)); (ii) the average estimator is much
faster, which allows us to scale our experiments to higher dimensions. In the linear case, our method
is similar to the BACKSHIFT algorithm (Rothenhäusler et al., 2015).

Synthetic data generation. We analyse the performance of Algorithm 1 on graphs with {10, 20, 50}
nodes, respectively with number of edges {10, 40, 100}. Graphs are generated via the Erdös–Rényi
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Figure 5: Mean Dtop (the lower, the better) of Algorithm 1 on data generated with a synthetic linear
SCM and graphs with different number of nodes (10, 20, 50). Error bars are 95% confidence intervals.
k refers to the number of environments. We note that, in line with our theory, 3 environments are
sufficient to infer causality much better than random.

model (Erdos & Renyi, 1960). For each graph, we run experiments with {3, 6, 9} environments.
Rescaling coefficients for the source variance are uniformly sampled between 2 and min(2|G|, 10),
|G| being the number of nodes in the considered graph. A dataset from a single environment consists
of 2000 i.i.d. samples. The linear regression coefficients are uniformly sampled from [2, 5], and the
sign of the coefficient is randomly flipped.

Analysis of the experiments. In Figure 5 we see that even in high dimensions, our method can
infer causality on linear Gaussian models with as few as three environments. In particular, on 10
nodes, the mean error is reduced by ≈ 75% compared to the random baseline; on 20 nodes, we
see improvements of ≈ 45%; on 50 nodes, the error decreases by ≈ 30%. It’s remarkable how the
method’s accuracy does not improve with more than 3 environments. This is in line with our theory,
which demonstrates that 3 sufficiently different environments guarantee identifiability of the causal
graph.

E.5.2 EXPERIMENTS ON NONLINEAR SCMS

We now consider the empirical performance of Algorithm 1 on nonlinear structural causal models with
5 nodes. With already 10 nodes, we observe that our method infers a causal order that is, on average,
no better than random, suggesting that further research for a good algorithmic implementation of our
theoretical findings is necessary. To put this in perspective, we remark the goal of our experiments,
and more generally, of the paper: the contribution of our work is devoted to establishing novel
identifiability results for causal discovery with multiple environments, leveraging the duality between
ICA and structural causal models; on the contrary, the goal is not to present novel algorithmic solutions
based on these results. With this in mind, we design Algorithm 1 as a simple implementation of the
steps in the proof of Theorem 1; we do not claim that this is a good strategy beyond our purpose
of validating the theory with toy examples. In fact, according to the literature and our experience,
multi-environment causal discovery with ICA is a challenging problem on its own (see the discussion
in Appendix B.2): as such, we leave it to future research. Our experiments only serve the purpose of
demonstrating that our theoretical results and our proof techniques are correct. In line with this goal,
we find that our method only requires 3 environments to infer causal directions significantly better
than random on 5 nodes, even in challenging nonlinear scenarios.

Synthetic data generation. We consider synthetic data generated with nonlinear structural causal
models that are not identifiable from pure observations, and satisfy the assumptions of Theorem 1.
In particular, given a variable xj and its parents xPAj , our mechanisms are defined as follows: first
we define a cause random variable c := 1

|PAj |
∑

k∈PAj
xk as the mean of the parents; then, given

the noise sj , we consider the following causal mechanisms: (i) xj := cos(c)sj + arctan(sj); (ii)
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Figure 6: Mean Dtop (the lower, the better) of Algorithm 1 on data generated with a synthetic
nonlinear SCMs with 5 variables. Error bars are 95% confidence intervals. k refers to the number of
environments. We note that, in line with our theory, 3 environments are sufficient to infer causality
better than random, and adding environments does not decrease the error.

tanh(c) arctan(sj) + s3j ; (iii) sin(c) + arctan(c)sj + cos(c)s3j . Note that, differently from the
experiments in Section 5 on bivariate graphs, we wrap the cause in trigonometric functions and avoid
polynomials. This is to prevent the variance from growing polynomially in the causal direction (a
well-known phenomenon in simulated SCMs (Reisach et al., 2021)), which we observed to cause
all values in the Hessian of the log-likelihood to collapse to zero. Graphs are generated via the
Erdös–Rényi model (Erdos & Renyi, 1960). For each graph, we run experiments with {3, 6, 9}
environments. The rescaling coefficients per-environment of the source covariance are uniformly
sampled between 2 and 10. A dataset from a single environment consists of 2000 i.i.d. samples.

Analysis of the experiments. Figure 6 shows that, for structural causal models with 5 nodes,
5 edges and nonlinear mechanisms, information about the causal order can be inferred by our
method: in particular, compared to a random baseline, whose expected Dtop is 2.5, our method with
3 environments yields improvements between ≈ 30% (on nonlinear mechanisms of type (i)) and
≈ 25% (for mechanisms of type (iii)). Notably, in line with our theory, adding environments does not
decrease the average error across seeds, showing that only 3 sufficiently different environments are
needed for inference.

F ASSUMPTIONS DEEPDIVE

We present further discussion on the assumptions of our theory and potential extensions beyond them.

F.1 BEYOND GAUSSIANITY

One of the key restrictions of our theory is that it requires the independent noise terms to be Gaussian.
In the main paper, we discuss how this can be relaxed to noise distributions whose gradient of the
log-likelihood has a critical point. Here, we expand on the discussion of Section 4.1 to illustrate the
fundamental limit of our proof technique to address the case of general noise distributions. To begin,
we provide a step-by-step mathematical intuition of why Gaussianity is crucial for our proof. The
key ingredient of our theory is the analysis of the Hessian of the log-likelihood. By the chain rule
of differentiation, it can be verified that the score function at a data point x, under environment i,
satisfies:

∇ log pi(x) = Jf−1(x)T∇ log pi(s). (33)
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Applying once again the chain rule, one can easily verify the following expression of the Hessian of
the log-likelihood:

Jf−1(x)TD2
s log p

i(s)Jf−1(x) +D2
x log |Jf−1(x)|+

d∑
j=1

∂sj log p
i(sj)D

2f−1
j (x). (34)

The information about the causal graph is contained in the product of Jacobians
Jf−1(x)TD2

s log p
i(s)Jf−1(x) (the diagonal Hessian in between doesn’t play a significant role).

To access this information from the Hessian of the log-likelihood, we need to get rid of:

1. The log-det term D2
x log |Jf−1(x)|;

2. The summation
∑d

j=1 ∂sj log p
i(sj)D

2f−1
j (x).

Being the mechanisms f invariant across the environments, it is immediate to see that log |Jf−1(x)|
vanishes in the difference D2

x log p(x)−D2
x log p

i(x). The assumption of Gaussianity, instead, is
crucial to get vanishing summation: in fact, we know that the mean of the sources s = µS is a critical
point of log pS. This clarifies why the assumption of Gaussianity is crucial for our theory.

A natural question is whether our theory can extend to structural causal models with more general
classes of noise distributions. Beyond density functions with a critical point, the answer is generally
negative. To show why this is the case, we consider the exponential family, which encompasses a
large class of common distributions. Let S distributed according to the exponential family with the
vector of parameters θ (in the Gaussian case, θ = (µS,ΣS)). Then:

log p(s) = log h(s) + η(θ) · T (s)−A(η), (35)

where h(s) is the so called base measure, η(θ) is the vector of the natural parameters, T (s) is
the vector of sufficient statistics, and A(η) is the partition function. Now, assume that, akin to the
Gaussian case, we define auxiliary environments (Definition 3) by changing θi parameters for each
environment i. The difference of the score of the observed variables x, in this case, becomes:

∇ log p(s)−∇ log pi(s) = T (s) · (η(θ)− η(θi)).

Assuming that θ ̸= θi in each component, we get that the score of the sources vanishes if and only
if T (s) = 0 or orthogonal to η(θ) − η(θi). Clearly, orthogonality can not be enforced unless we
carefully craft the intervention on θ. It remains to consider whether the T (s) vanishes at any point. A
simple inspection of the sufficient statistics of the density functions in the exponential family reveals
that this is often not the case.

The takeaway of our discussion are: (i) that, as far as it concerns our methodology, vanishing gradient
of the log-likelihood at one point at least is necessary; when this is not the case, we can not extract the
product of Jacobian matrices (hence, the DAG information) from the Hessian of the log-likelihood.
This is in line with previous work (Montagna et al., 2023a; 2025), showing that the Hessian matrix
can only inform about the equivalence class of the ground truth graph. (ii) For wider classes of noise
distributions, in general, we can not hope that the vanishing gradient condition is satisfied. Thus,
extension of our results requires substantial additional research in terms of proof techniques.

F.2 BEYOND CAUSAL SUFFICIENCY

In this section, we address the question of whether our methodology can be adapted to demonstrate
the identifiability of parts of the causal graph in potentially confounded scenarios. The duality
between ICA and causal discovery that is key to this paper remains relevant even in this scenario.
This was explicitly highlighted in Ding et al. (2019), where, in the context of linear SCMs with
latent confounders, causal discovery is phrased and analysed as an overcomplete ICA problem. For
general nonlinear structural causal models, the presence of latent confounders induces an ICA model
X = f(S) with f : Rds → Rdx and ds > dx. First, we discuss why our proof technique can not be
generalized to this scenario when f is nonlinear. Then, we show that in the case of linear structural
causal models, our findings can be used to derive known theory of identifiability of SCMs without
causal sufficiency.
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We remind that the key theoretical result that enables identifiability in our setting (Theorem 1) is
Lemma 1, which we report below.

Lemma 1. Let x = f(s) = f̂(ŝ), where s = µS. Let Assumptions 1,2 and 4 satisfied. Then:∑
i∈I1

D2
x log p(x)−D2

x log p
i(x) = Jf−1(x)TΩ1Jf−1(x) = Jf̂−1(x)

T Ω̂1Jf̂−1(x) (9)

∑
i∈I2

D2
x log p(x)−D2

x log p
i(x) = Jf−1(x)TΩ2Jf−1(x) = Jf̂−1(x)

T Ω̂2Jf̂−1(x) (10)

Clearly, the result above relies on the invertibility of the causal mechanism f . Moreover, it is easy to
show that Ωi, Ω̂i are diagonal, which is key to the proof of Theorem 1. Unfortunately, in overcomplete
ICA:

1. It is trivial that f is not invertible.

2. Less trivially, computations based on the coarea formula (Negro, 2021) show that Ωi, Ω̂i are
non-diagonal.

From this, we conclude that generalizing our method for arbitrary nonlinear and confounded SCMs
is not a feasible route, and more elaborate tools and ideas are required. We note that, exceptionally,
the Hessian of the log-likelihood is still informative about the causal graph in case of linear and
overcomplete SCMs: in fact, its inverse is the covariance of the data, namely, (D2

x log p(x))
−1 =

ΣX = AΣSA
T , for a structural model of the form X = AS, with A rectangular, wide, matrix.

Notably, in this setting, rank constraints and trek separations (Sullivant et al., 2010) are informative
about the causal graph.

G ADDITIONAL CONTENT

In this section, we collect some useful results and notes relevant to the main paper.

G.1 GRAPH THEORY

Directed graphs and DAGs. Let X1, . . . , Xd be a vector of random variables. A graph G =
({Xi}di , E) consists of a vertex set {Xi}di and an edge set E. We recall a few basic notions for
directed graphs.

A directed edge Xi → Xj indicates that Xi is a parent of Xj (and Xj a child of Xi). PAi ⊂ [d]
denotes the index of the parent nodes of Xi in the graph G, CHi ⊂ [d] denotes the children. A path
in G is a sequence of at least two distinct vertices π = Xi1 , . . . , Xim such that each consecutive
pair Xik and Xik+1

is joined by an edge for k = 1, . . . ,m − 1. If every edge along the path is
oriented forward, Xik → Xik+1

, we call it a directed path; then Xi1 is an ancestor of Xim and Xim
a descendant of Xi1 .

G.2 FROM SCM TO ICA MODELS

Equation (2) claims that structural causal models can be expressed in the form of ICA models. Here,
we show how this can be achieved. Consider a set of causal variables X = (Xi)

d
i=1, and without loss

of generality, assume that the causal order is 1, ..., d. According to Equation (1), for each i = 1, ..., d,
we have:

Xi := Fi(XPAi
, Si),

with S = (Si)
d
i=1 the vector of mutually independent noise terms. An inductive argument shows the

existence of a function fi : SANi
7→ Xi, where ANi denotes the indices of the ancestor nodes of Xi

in the causal graph. Given the causal order 1, ..., d, the base case is given for X1 := F1(S1), such that
f1 := F1. The inductive step is as follows: assume that there is n < d such that Xi = fi(SANi

, Si)
for all i = 1, ..., n. Then, there is a map S[n] 7→ X[n]. The causal order 1, ..., d implies ANn+1 ⊂ [n],
so that there is a map S[n] 7→ XANn+1 : given that PAn+1 ⊆ ANn+1, there is a map g : S[n] 7→
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XPAn+1
: from the structural equation Xn+1 := Fn+1(XPAn+1

, Sn+1) = Fn+1(g(SANn+1
), Sn+1),

we conclude that there is fn+1 : SANn+1
, Sn+1 7→ Xn+1. Then, we define f := (fi)

d
i=1 and find

X = f(S).

An important note is that the DAG structure of the causal graph is reflected in the Jacobian of the
mixing function f , which can be shown to be lower triangular.

G.3 HESSIAN OF THE LOG-DENSITY OF INDEPENDENT RANDOM VARIABLES

In the main paper we mention that the Ω1,Ω2 matrices defined in Equation (8) are diagonal; here, we
discuss why this is true. More generally, it is well known that for a vector of independent random
variables Z ∈ Rd with density p, the following holds:

∂2

∂Zi∂Zj
log p(Z) = 0 ⇐⇒ Zi |= Zj |Z \ {Zi, Zj}, (36)

where Zi |= Zj |Z \ {Zi, Zj} indicates that Zi, Zj are independent conditional on all the remaining
random variables in the vector Z. This result was shown in Lin (1997) and Spantini et al. (2018)
(Lemma 4.1) and extensively adopted in the context of causal discovery (e.g., Montagna et al.
(2023a; 2025)). By Equation (36) it is immediate to see that independence of Z entries implies that
D2

Z log p(Z) is diagonal.

G.4 MEASURE THEORETIC ARGUMENTS IN SUPPORT OF THE ASSUMPTIONS

First, we show that Assumption 5 generically holds.
Proposition 3 (Assumption 5 holds almost surely). Let Li = diag(λi

1, . . . , λ
i
d) and λi

j ̸= 0, i =
1, ..., k. Assume the joint law of the array Λ = (λi

j)j∈[d], i∈[k] is absolutely continuous with respect to

Lebesgue measure on
(
R \ {0}

)dk
. Then, with probability one over the draw of Λ: for every j ∈ [d],∑

i∈[k]

1

(λi
j)

2
̸= k.

Proof. Fix j ∈ [d]. Write k = |Il| and λ := (λi
j)i∈[k] ∈ (R \ {0})k. Consider the smooth map

F : (R \ {0})k → R,

F (λ) =

k∑
r=1

λ−2
r − k.

Its gradient is ∇F (λ) = (−2λ−3
1 , . . . ,−2λ−3

k ) ̸= 0 on the domain, so 0 is a regular value. By
the regular level–set theorem, F−1(0) is a (k − 1)-dimensional embedded submanifold of Rk and
hence has Lebesgue measure zero. Because the k-tuple λ = (λi

j)i∈[k] has a distribution absolutely
continuous with respect to Lebesgue measure, we get

P

(∑
i∈Il

1

(λi
j)

2
= k

)
= 0.

Taking the finite union over j = 1, . . . , d preserves measure zero, so with probability one none of
these equalities occurs.

Next, we show that the assumption of pairwise distinct {(Ω1Ω
−1
2 )ii}i∈[d] elements (definition at

Equation (8)) generically holds.
Proposition 4 (Pairwise distinct diagonal ratios hold almost surely). Let I1, I2 ⊂ [k] ≥ 3. For
each environment i let Li = diag(λi

1, . . . , λ
i
d) with λi

j ̸= 0. Assume the joint law of the array

Λ = (λi
j)j∈[d], i∈[k] is absolutely continuous with respect to Lebesgue measure on

(
R \ {0}

)dk
.

Suppose moreover that Ωℓ is diagonal with entries

(Ωℓ)jj =
1

σ2
j

(∑
i∈Iℓ

(λi
j)

−2 − |Iℓ|
)
̸= 0. ℓ ∈ {1, 2}, j ∈ [d],
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Then, with probability one over the draw of Λ, Ω1 is invertible and the diagonal entries of Ω−1
1 Ω2

are pairwise distinct.

Proof. Write

(Ω−1
1 Ω2)jj =

∑
i∈I2

(λi
j)

−2 − |I2|∑
i∈I1

(λi
j)

−2 − |I1|
=:

Bj

Aj
, Aj :=

∑
i∈I1

(λi
j)

−2−|I1|, Bj :=
∑
i∈I2

(λi
j)

−2−|I2|.

By Proposition 3, Aj ̸= 0 and Bj ̸= 0 for all j with probability one, such that Ω1 is invertible.

Fix j ̸= ℓ. The collision event (Ω−1
1 Ω2)jj = (Ω−1

1 Ω2)ℓℓ is equivalent to

Bj

Aj
=

Bℓ

Aℓ
⇐⇒ Fjℓ(Λ) := AjBℓ −AℓBj = 0.

Let tih := (λi
h)

−2 and view Fjℓ as a smooth function of the 2k variables {tij}i∈[k] ∪ {tiℓ}i∈[k]. For
any fixed i0 ∈ I1,

∂Fjℓ

∂t i0j
=

∂Aj

∂t i0j
Bℓ −Aℓ

∂Bj

∂t i0j
= 1 ·Bℓ −Aℓ · 0 = Bℓ.

Since Bℓ ̸= 0, we have∇Fjℓ ̸= 0 on the set under consideration, so 0 is a regular value of Fjℓ. By
the regular level-set theorem, the set {Fjℓ = 0} is a (2j − 1)-dimensional embedded submanifold of
R2k, hence it has Lebesgue measure zero. Because the law of Λ is absolutely continuous w.r.t. the
Lebesgue measure,

P
(
(Ω−1

1 Ω2)jj = (Ω−1
1 Ω2)ℓℓ

)
= 0.

Taking the finite union over all pairs j ̸= ℓ yields that, with probability one, no two diagonal entries
coincide; that is, {(Ω−1

1 Ω2)jj}dj=1 are pairwise distinct.

G.5 FIXED MECHANISMS ENVIRONMENTS IN REAL-WORLD DATA

In this section we briefly discuss the assumption of fixed mechanisms across environments implied
by Definition 3: given two environments Xi = f(Si), Xj = f(Sj), they share the same causal
mechanism f . In particular, we present examples from the domain of single-cell and gene perturbation
causality studies where multiple environments with fixed mechanisms are commonly hypothesized.
This suggests that our modeling assumptions, hence our theory, have practical relevance.

Liu et al. (2025) and (Lopez et al., 2023) assume an SCM and explicitly model gene and single-
cell (respectively) perturbations as changes in the distribution of causal variables, while leaving all
SCM mechanisms fixed. Similarly, but without an explicit assumption of a structural causal model,
Zhang et al. (2023) consider interventions on latent factors that leave causal mechanisms unchanged.
Meinshausen et al. (2016) studies the problem of gene perturbation through the Invariance Causal
Prediction framework (Peters et al., 2015): in this context, they discuss the example of environments
defined with fixed causal mechanisms and noise variance affected by a multiplier that is environment
dependent. This is precisely in line with the modelling assumptions of our theory.
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