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ABSTRACT

Recently, the emergence of large language models (LLMs) has revolutionized the
paradigm of information retrieval (IR) applications, especially in web search, by
generating vast amounts of human-like texts on the Internet. As a result, IR sys-
tems in the LLM era are facing a new challenge: the indexed documents are now
not only written by human beings but also automatically generated by the LLMs.
How these LLM-generated documents influence the IR systems is a pressing and
still unexplored question. In this work, we conduct a quantitative evaluation of
IR models in scenarios where both human-written and LLM-generated texts are
involved. Surprisingly, our findings indicate that neural retrieval models tend to
rank LLM-generated documents higher. We refer to this category of biases in
neural retrievers towards the LLM-generated text as the source bias. Moreover,
we discover that this bias is not confined to the first-stage neural retrievers, but
extends to the second-stage neural re-rankers. Then, in-depth analyses from the
perspective of text compression indicate that LLM-generated texts exhibit more
focused semantics with less noise, making them easier for neural retrievers to
semantic match. To mitigate the source bias, we also propose a plug-and-play
debiased constraint for the optimization objective, and experimental results show
its effectiveness. Finally, we discuss the potential severe concerns stemming from
the observed source bias and hope our findings can serve as a critical wake-up call
to the IR community and beyond. To facilitate future explorations of IR in the
LLM era, the constructed two new benchmarks and codes are available in the link
https://anonymous.4open.science/r/Source-Bias-B44E.
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Figure 1: The overview evolution of IR paradigm from the Pre-LLM era to the LLM era.

With the advent of large language models (LLMs), exemplified by ChatGPT, the field of artificial
intelligence generated content (AIGC) has surged to new heights of prosperity Cao et al. (2023); Wu
et al. (2023). LLMs have demonstrated their remarkable capabilities in automatically generating
human-like text at scale, resulting in the Internet being inundated with an unprecedented volume
of AIGC content Wei et al. (2022); Spitale et al. (2023). This influx of LLM-generated content
has fundamentally reshaped the digital ecosystem, challenging conventional paradigms of content
creation, dissemination, and information access on the Internet Ai et al. (2023); Zhu et al. (2023).

Meanwhile, information retrieval (IR) systems have become indispensable for navigating and ac-
cessing the Internet’s vast information landscape Singhal et al. (2001); Manning (2009); Zhu et al.
(2023). As illustrated in Figure 1, in the era preceding the widespread emergence of LLMs, IR sys-
tems focused on retrieving documents solely from the human-written corpus in response to users’
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queries Liu et al. (2009); Li (2022); Xu & Li (2007). However, the proliferation of AIGC driven by
LLMs has expanded the corpus of IR systems to include both human-written and LLM-generated
texts. Consequently, this paradigm shift raises a fundamental research question: What is the im-
pact of the proliferation of generated content on IR systems? We aim to explore whether existing
retrieval models tend to prioritize LLM-generated text over human-written text, even when both con-
vey similar semantic information. If this holds, LLMs may dominate information access, particularly
as their generated content is rapidly growing on the Internet Hanley & Durumeric (2023).

To approach the fundamental research question, we decompose it into four specific research ques-
tions. The first question is RQ1: How to construct an environment to evaluate IR models in
the LLM era? Given the lack of public retrieval benchmarks encompassing both human-written
and LLM-generated texts, we propose an innovative and pragmatic method to create such a realis-
tic evaluation environment without the need of costly human annotation. Specifically, we leverage
the original human-written texts as the instruction conditions to prompt LLMs to generate rewritten
text copies while preserving the same semantic meaning. In this way, we can confidently assign
the relevant labels to LLM-generated data. Extensive empirical analysis validates the quality of our
constructed environment, demonstrating its effectiveness in mirroring real-world IR scenarios in the
LLM era. As a result, we introduce two new benchmarks, SciFact+AIGC and NQ320K+AIGC,
tailored for IR research in the LLM era.

With the constructed environment, we further explore RQ2: Are retrieval models biased towards
LLM-generated texts? We conduct comprehensive experiments with various representative re-
trieval models, ranging from traditional lexical models to modern neural models based on pretrained
language models (PLMs) Guo et al. (2020); Zhao et al. (2023); Yates et al. (2021); Guo et al. (2022).
Surprisingly, we uncover that neural retrievers are biased towards LLM-generated texts, i.e., tend to
rank LLM-generated texts in higher positions. We refer to this as source bias, as the neural retrievers
favor content from specific sources (i.e., LLM-generated content). Further experiments indicate that
the source bias not only extends to the second-stage neural re-rankers from the first-stage retrieval
but also manifests more severely. These findings corroborate the prevalence of source bias in neural
retrieval models.

Then, what we are curious about is RQ3: Why are neural retrieval models biased towards LLM-
generated texts? Inspired by the recent studies positing LLMs as lossless compressors Delétang
et al. (2023), we analyze the cause of source bias from the viewpoint of text compression. Our anal-
ysis of singular values Klema & Laub (1980) in different corpora reveals that LLM-generated texts
exhibit more focused semantics with minimal noise, enhancing their suitability for semantic match-
ing. Furthermore, our in-depth perplexity analysis shows that LLM-generated texts consistently
achieve lower perplexity scores, which indicates a higher degree of comprehensibility and confi-
dence from the PLM’s perspective. These observations collectively suggest that LLM-generated
texts are more readily understandable to semantic match with PLM-based neural retrievers, thereby
resulting in source bias.

Finally, we try to answer RQ4: How to mitigate source bias in neural retrieval models? To tackle
this, we propose an intuitive yet effective debiased constraint. This constraint is designed to penalize
biased samples during the optimization process, thereby shifting the focus of retrieval models from
exploiting inherent shortcuts to emphasizing semantic relevance. Besides, our debiased constraint
is model-agnostic and can be plugged and played to the ranking optimization objectives of various
neural retrieval models. Furthermore, it offers the capability to control the degree of bias removal,
offering the flexibility to balance the treatment between the two sources of content based on specific
requirements and environmental considerations.

Last but not least, we discuss the potential emerging concerns stemming from source bias, high-
lighting the risk of human-written content being gradually inaccessible, especially due to the rapidly
increasing LLM-generated content on the Internet Hanley & Durumeric (2023); Bengio et al. (2023).
Furthermore, source bias could be maliciously exploited to manipulate algorithms and potentially
amplify the spread of misinformation, posing a threat to online security. In light of these pressing
issues, we hope that our findings serve as a resounding wake-up call to all stakeholders involved in
IR systems and beyond.

In summary, the contributions of this paper are as follows:
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Figure 2: The overall paradigm of the proposed evaluation framework for IR in the LLM era.

(1) We introduce a more realistic paradigm of IR systems considering the growing prosperity of
AIGC, where the retrieval corpus consists of both human-written and LLM-generated texts. We
then uncover a new inherent bias in both neural retrieves and re-rankers preferring LLM-generated
content, termed as source bias.

(2) We provide an in-depth analysis and insights of source bias from a text compression perspective,
which indicates that LLM-generated texts maintain more focused semantics with minimal noise and
are more readily comprehensible for neural retrievers.

(3) We propose a debiased constraint to penalize the biased samples during optimization, and exper-
imental results demonstrate its effectiveness in mitigating source bias in different degrees.

(4) We also provide two new benchmarks, SciFact+AIGC and NQ320K+AIGC, which contain both
high-quality human-written and various LLM-generated corpus and corresponding relevant labels.
We believe these two benchmarks can serve as valuable resources for facilitating future research.

2 RQ1: ENVIRONMENT CONSTRUCTION

With the increasing usage of LLMs in generating texts (e.g., paraphrasing or rewriting), the corpus
of IR systems includes both human-written and LLM-generated texts nowadays. Constructing an
IR dataset in the LLM era typically involves two steps: collecting both human-written and LLM-
generated corpora and then employing human evaluators to annotate relevance labels for each query-
document pair. Given that LLM-generated content is currently unidentifiable Sadasivan et al. (2023)
and the significant cost of human annotation, we introduce a natural and practical framework for
quantitatively evaluating retrieval models in the LLM era, as shown in Figure 2.

To better align with real-world scenarios, the evaluation environments should meet the following
three essential criteria. Firstly, it is imperative to distinguish between human-written and LLM-
generated texts within the corpus. Secondly, we need access to relevance labels for LLM-generated
data in response to queries. Thirdly, each human-written text should better have a corresponding
LLM-generated counterpart with the same semantics, ensuring the most effective and fair evaluation.

2.1 NOTATION

Formally, in the Pre-LLM era, given a query q ∈ Q where Q is the set of all queries, the traditional
IR system aims to retrieve a list of top-K relevant documents {d(1), d(2), . . . , d(K)} from a corpus
CH = {dH1 , dH2 , . . . dHN} which consists of N human-written documents. However, in the era of
LLMs, there is also LLM-generated text in the corpus. To evaluate the IR models in the LLM era,
we also create an additional corpus CG = {dG1 , dG2 , . . . , dGN} where each document is generated by a
LLM, e.g., dG1 can be created by ChatGPT by constructing a prompt that asks ChatGPT to rewrite dH1
while preserving its original semantics. Consequently, given a query q, the objective of a retriever
in the LLM era is to return the top-K relevant documents from the mixed corpus C = CH

⋃
CG.

2.2 CONSTRUCTING IR DATASETS IN THE LLM ERA

In this section, we prompt LLMs to rewrite human-written corpus to build two new standard re-
trieval datasets: SciFact+AIGC and NQ320K+AIGC. These two new datasets can serve as valuable
resources to facilitate future research of IR in the LLM era.
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Table 1: Statistics of the constructed two datasets. Avg. Doc / Query means the average number of
relevant documents per query.

Dataset # Test Queries # Avg. Query Length Human-Written Corpus Llama2-Generated

# Corpus Avg. Doc Length Avg. Doc / Query # Corpus Avg. Doc Length Avg. Doc / Query
SciFact+AIGC 300 12.38 5,183 201.81 1.1 5,183 192.66 1.1

NQ320K+AIGC 7,830 9.24 109,739 199.79 1.0 109,739 174.49 1.0

Human-Written Corpus. We first choose two widely used retrieval datasets written by humans
in the Pre-LLM era as the seed data: SciFact and NQ320K. SciFact1 Wadden et al. (2020) dataset
aims to retrieve evidence from the research literature containing scientific paper abstracts for fact-
checking. NQ320K2 Kwiatkowski et al. (2019) is based on the Natural Questions (NQ) dataset from
Google, where the documents are gathered from Wikipedia pages, and the queries are natural lan-
guage questions. Following the practice in BEIR benchmark Thakur et al. (2021), we process these
two datasets in a standard format: corpus CH , queries Q, and labels RH = {(qm, dHm, rm)}Mm=1,
where M is the number of labeled query-document pairs in the corpus.

LLM-Generated Corpus. For the LLM-generated corpus, we repurpose the original human-written
corpus as our seed data and instruct LLMs to rewrite each given text from the human-written corpus.
As the written text generated by LLM carries almost the same semantic information as the original
human-written text, we can assign the same relevance labels to new query-document pairs as those
assigned to the original query-document pairs.

Our instruction is straightforward: “Please rewrite the following text: {{human-written text}}”, as
illustrated in the left part of Figure 2. This straightforward instruction enables LLMs to generate text
without too many constraints while maintaining semantic equivalence to the original human-written
text. Specifically, we choose Llama2 Touvron et al. (2023) to rewrite each seed human-written
corpus, as Llama2 is the most widely-used open-sourced LLM.

As a result, we can obtain two corresponding LLM-generated corpora with SciFact and NQ320K
as seed data. After that, we extend the original labels of query and human-written text
RH = {(qm, dHm, rm)}Mm=1 to get the corresponding label of LLM-generated text RG =
{(qm, dGm, rm)}Mm=1. We will validate the quality of the datasets in the following section. Com-
bining each original human-written corpus CH with its corresponding LLM-generated corpus CG,
original queries Q, and labels RH

⋃
RG, we can create two new datasets, denoted as SciFact+AIGC

and NQ320K+AIGC. Table 1 summarize the statistics of the proposed two datasets.

2.3 STATISTICS AND QUALITY VALIDATION OF DATASETS

For the LLM-generated texts, a pivotal consideration is whether they faithfully preserve the under-
lying semantics of the corresponding human-written corpus. If they indeed do so, we then can con-
fidently assign them the same relevance labels as the labels of their corresponding original human-
written texts given each query.
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Figure 3: Distribution of cosine sim-
ilarity of semantic embedding be-
tween LLM-generated and human-
written corpora.

Semantic-based Statistics and Analysis. We first lever-
age the OpenAI embedding model3 to acquire seman-
tic embeddings for both the LLM-generated and human-
written texts. We then calculate the cosine similarity of se-
mantic embeddings between the LLM-generated text and
their corresponding human-written counterparts. The re-
sults, as shown in Figure 3, also indicate a high degree of
similarity, with most values exceeding 0.95, affirming the
faithful preservation of semantics in LLM-generated text.
Hence, for each query-document pair (q, dG), we can con-
fidently assign the relevant label r to be the same as that of (q, dH).

1https://allenai.org/data/scifact
2https://ai.google.com/research/NaturalQuestions
3text-embedding-ada-002:https://platform.openai.com/docs/guides/embeddings
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Table 2: Performance comparison of retrieval models on the sole human-written or Llama2-
generated corpus on SciFact+AIGC and NQ320K+AIGC datasets. For brevity, we omit the percent
sign ‘%’ of ranking metrics in subsequent tables and figures.

Model Model Corpus SciFact+AIGC NQ320K+AIGC

Type NDCG@1 NDCG@3 NDCG@5 MAP@1 MAP@3 MAP@5 NDCG@1 NDCG@3 NDCG@5 MAP@1 MAP@3 MAP@5

Lexical
TF-IDF Human-Written 42.0 49.5 52.7 40.7 47.1 49.0 12.2 15.8 16.8 12.2 14.9 15.5

LLM-Generated 43.0 49.8 52.6 40.8 47.5 49.2 9.4 12.6 13.9 9.4 11.8 12.5

BM25 Human-Written 46.0 54.2 56.3 43.8 51.5 52.8 12.9 16.3 17.6 12.9 15.5 16.2
LLM-Generated 46.3 53.6 55.3 44.1 51.1 52.2 11.9 15.3 16.5 11.9 14.5 15.1

Neural

ANCE Human-Written 38.7 44.3 46.5 36.3 41.9 43.3 50.6 60.0 62.2 50.6 57.7 58.9
LLM-Generated 41.0 46.0 48.2 37.8 43.5 45.0 49.3 58.8 61.2 49.3 56.5 57.8

BERM Human-Written 37.0 42.1 44.2 34.7 39.7 41.3 49.2 58.3 60.4 49.2 56.1 57.3
LLM-Generated 40.7 44.5 46.2 37.7 42.3 43.5 48.4 57.5 59.8 48.4 55.3 56.5

TAS-B Human-Written 52.7 58.1 60.2 49.9 55.6 57.2 53.4 63.0 65.4 53.4 60.7 62.0
LLM-Generated 50.7 57.0 58.9 48.0 54.6 55.9 51.9 62.3 64.7 51.9 59.8 61.1

Contriever Human-Written 54.0 61.8 63.2 51.4 58.9 60.0 58.2 68.4 70.3 58.2 65.9 67.0
LLM-Generated 55.7 62.0 64.8 52.9 59.5 61.5 57.1 67.5 69.8 57.1 64.9 66.2

Retrieval Performance Evaluation. To further validate the accuracy of the relevance label assign-
ments, we conduct an evaluation of retrieval models on the human-written corpus and the LLM-
generated corpus, respectively. The following representative retrieval models are adopted in the
experiments: (1) Lexical Retrieval Models: TF-IDF Sparck Jones (1972) and BM25 Robertson
et al. (2009) and (2) Neural Retrieval Models: ANCE Xiong et al. (2020), BERM Xu et al. (2023),
TAS-B Hofstätter et al. (2021), Contriever Izacard et al. (2021).

The results on each sole source corpus on the proposed two new benchmarks are presented in Table 2.
It is evident that all retrieval models exhibit no significant performance discrepancies in terms of
various ranking metrics between the human-written and LLM-generated corpora across all datasets.
This observation reinforces the confidence in the quality of our newly constructed datasets. Note that
in our constructed datasets, LLMs were instructed to rewrite human-written texts based solely on
the original human-written text, without any query-related input, thereby preventing the additional
query-specific information during rewriting.

3 RQ2: UNCOVERING SOURCE BIAS

In this section, we conduct extensive experiments on the constructed datasets to explore the source
bias from various aspects. With the constructed simulated environment, we first introduce the eval-
uation metrics to quantify the severity of source bias. We then conduct experiments with different
retrieval models on both the first-stage retrieval and the second-stage re-ranking.

3.1 EVALUATION METRICS FOR SOURCE BIAS

To quantitatively explore source bias, we calculate ranking metrics, targeting separately either
human-written or LLM-generated corpus. Specifically, for each query, an IR model produces a rank-
ing list that comprises documents from mixed corpora. We then calculate top-K Normalized Dis-
counted Cumulative Gain (NDCG@K) and Mean Average Precision (MAP@K), for K ∈ {1, 3, 5},
independently for each corpus source. When assessing one corpus (e.g., human-written), documents
from the other (e.g., LLM-generated) are treated as non-relevant, though the original mixed-source
ranking order is maintained. This approach allows us to independently assess the performance of IR
models on each corpus source.

To better normalize the difference among different benchmarks, we also introduce the relative per-
centage difference as follows:

Relative ∆ =
MetricHuman-written − MetricLLM-generated

1
2 (MetricHuman-written + MetricLLM-generated)

× 100%,

where the Metric can be NDCG@K and MAP@K. Note that Relative ∆ > 0 means retrieval
models rank human-written texts higher, and Relative ∆ < 0 indicates LLM-generated texts are
ranked higher. The greater the absolute value of Relative ∆, the greater the ranking performance
difference on two corpora.

3.2 BIAS IN NEURAL RETRIEVAL MODELS

In our assessment of various retrieval models on SciFact+AIGC and NQ320K+AIGC datasets, we
observe distinct behaviors when evaluating against human-written and LLM-generated corpora, as
reported in Table 3. Our key findings are as follows:
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Table 3: Performance comparison of retrieval models for mixed human-written and LLM-generated
corpora on SciFact+AIGC and NQ320K+AIGC dataset. The numbers indicate that retrieval
models rank human-written documents in higher positions than LLM-generated documents (i.e.,
Relative ∆ > 0%). Conversely, the numbers mean retrieval models rank LLM-generated docu-
ments in higher positions than human-written documents (i.e., Relative ∆ ≤ 0%). The intensity of
the color reflects the extent of the difference. In the subsequent tables, we will continue with this
color scheme.

Model Model Target Corpus SciFact+AIGC NQ320K+AIGC

Type NDCG@1 NDCG@3 NDCG@5 MAP@1 MAP@3 MAP@5 NDCG@1 NDCG@3 NDCG@5 MAP@1 MAP@3 MAP@5

Lexical

TF-IDF
Human-Written 22.0 36.9 39.7 21.2 33.0 34.7 7.1 11.0 12.3 7.1 10.0 10.8
LLM-Generated 17.0 33.8 37.2 16.2 29.5 31.5 3.4 8.1 9.4 3.4 7.0 7.7

Relative ∆ 25.6 8.8 6.5 26.7 11.2 9.7 70.5 30.4 26.7 70.5 35.3 33.5

BM25
Human-Written 26.7 40.3 44.4 25.7 36.7 39.1 7.2 11.6 12.9 7.2 10.6 11.3
LLM-Generated 21.0 38.8 41.5 19.6 34.3 35.9 6.1 10.9 11.9 6.1 9.7 10.3

Relative ∆ 23.9 3.8 6.8 26.9 6.8 8.5 16.5 6.2 8.1 16.5 8.9 9.3

Neural

ANCE
Human-Written 15.3 30.1 32.7 14.2 26.2 27.7 22.2 41.2 44.6 22.2 36.9 38.8
LLM-Generated 24.7 35.8 37.7 23.3 32.4 33.6 29.1 45.9 49.0 29.1 42.0 43.8

Relative ∆ -47.0 -17.3 -14.2 -48.5 -21.2 -19.2 -26.9 -10.8 -9.4 -26.9 -12.9 -12.1

BERM
Human-Written 16.3 30.2 31.8 15.7 26.5 27.5 18.6 37.5 40.7 18.6 33.1 34.9
LLM-Generated 23.7 34.1 36.4 21.7 30.8 32.2 31.6 47.0 50.0 31.6 43.5 45.1

Relative ∆ -37.0 -12.1 -13.5 -32.1 -15.0 -15.7 -51.8 -22.5 -20.5 -51.8 -27.2 -25.5

TAS-B
Human-Written 20.0 40.2 43.1 19.5 35.2 36.9 25.7 45.4 48.8 25.7 40.9 42.8
LLM-Generated 31.7 44.8 47.5 29.7 41.1 42.7 27.6 46.5 50.0 27.6 42.2 44.2

Relative ∆ -45.3 -10.8 -9.7 -41.5 -15.5 -14.6 -7.1 -2.4 -2.4 -7.1 -3.1 -3.2

Contriever
Human-Written 24.0 43.7 47.8 23.3 38.8 41.2 25.9 48.5 51.9 25.9 43.3 45.3
LLM-Generated 31.0 47.8 50.5 29.6 43.2 44.8 32.5 51.9 55.4 32.5 47.5 49.4

Relative ∆ -25.5 -9.0 -5.5 -23.8 -10.7 -8.4 -22.6 -6.8 -6.5 -22.6 -9.3 -8.7

Lexical models prefer human-written texts. Lexical models like TF-IDF and BM25 show a ten-
dency to favor human-written texts over LLM-generated texts across most ranking metrics in both
datasets. A plausible explanation for this phenomenon lies in the term-based distinctions between
text generated by LLMs and human-written content. Additionally, the queries are crafted by humans
and thus exhibit a style more closely aligned with human-written text.

Neural retrievers are biased towards LLM-generated texts. Neural models, which rely on se-
mantic matching with PLMs, demonstrate a pronounced preference for LLM-generated texts, often
performing over 30% better on these compared to human-written texts. These findings suggest an in-
herent bias in neural retrievers towards LLM-generated text, which we named the source bias. This
source bias may stem from PLMs-based neural retrievers and LLMs sharing similar Transformer-
based architectures Vaswani et al. (2017) and pretraining approaches, leading to potential exploita-
tion of semantic shortcuts in LLM-generated text during semantic matching. Additionally, LLMs
seem to semantically compress information in a manner that makes it more comprehensible to neural
models. A deeper exploration into the causes of source bias is presented in the following section.

3.3 BIAS IN RE-RANKING STAGE
Table 4: Bias evaluation of re-ranking models on
SciFact+AIGC dataset. The re-ranking methods
rerank the top-100 retrieved hits from a first-stage
BM25 model.

Metrics Target Corpus Llama2-generated ChatGPT-generated

BM25 +MiniLM +monoT5 BM25 +MiniLM +monoT5

NDCG@1
Human-Written 26.7 21.3 19.7 24.3 18.3 21.3
LLM-Generated 21.0 32.7 39.7 24.3 35.7 39.3

Relative ∆ 23.9 -42.2 -67.3 0.0 -64.4 -59.4

NDCG@3
Human-Written 40.3 42.8 45.9 38.5 41.4 46.4
LLM-Generated 38.8 47.8 52.9 40.2 50.1 54.2

Relative ∆ 3.8 -11.0 -14.2 -4.3 -19.0 -15.5

NDCG@5
Human-Written 44.4 46.9 49.0 42.7 45.6 48.9
LLM-Generated 41.5 50.2 54.7 42.7 53.0 56.1

Relative ∆ 6.8 -6.8 -11.0 0.0 -15.0 -13.7

MAP@1
Human-Written 25.7 20.8 18.9 23.7 17.9 20.5
LLM-Generated 19.6 30.8 37.8 23.1 33.8 37.8

Relative ∆ 26.9 -38.8 -66.7 2.6 -61.5 -59.3

MAP@3
Human-Written 36.7 37.5 39.7 34.8 35.8 40.3
LLM-Generated 34.3 43.6 48.9 35.8 45.9 50.0

Relative ∆ 6.8 -15.0 -20.8 -2.8 -24.7 -21.5

MAP@5
Human-Written 39.1 40.0 41.6 37.3 38.3 41.7
LLM-Generated 35.9 45.0 50.1 37.3 47.6 51.4

Relative ∆ 8.5 -11.8 -18.5 0.0 -21.7 -20.8

In typical IR systems, there are two primary
stages of document filtering: the first stage re-
trieval, and the subsequent second stage re-
ranking. While we have revealed the presence
of the source bias in the first stage, a natural piv-
otal research question remains: does this bias
also manifest in the re-ranking stage? To delve
into this, we select two representative and state-
or-the-art re-ranking models: MiniLM Wang
et al. (2020) and monoT5 Nogueira et al.
(2020) to rerank the top-100 document list re-
trieved by a first-stage BM25 model. The re-
sults on the SciFact+AIGC dataset with Llama-
generated corpus and ChatGPT-generated corpus are presented in Table 4. From the results, while
even the first-stage retrievers (BM25) may exhibit a preference for human-written content, the
second-stage re-rankers once again demonstrate a bias in favor of LLM-generated content. Re-
markably, the bias in re-ranking models appears to be more severe, as evidenced by the relative
percentage difference of 67.3% and 59.4% in NDCG@1 for monoT5, respectively. These findings
further confirm the pervasiveness of source bias in neural ranking models that rely on PLMs, regard-
less of the retrieval stage or re-ranking stage.
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4 RQ3: THE CAUSE OF SOURCE BIAS

In this section, we delve deeper into why neural retrieval models exhibitsource bias. Our objective
is to determine whether the LLM-generated texts, characterized by reduced noise and more concen-
trated semantic topics, are inherently easier for neural retrieval models to semantically match. We
conduct a series of analyses from the perspective of text compression and provide valuable insights.

4.1 VIEWPOINT FROM TEXT COMPRESSION

We first explore the cause of source bias from a compression perspective, drawing inspiration from
recent studies that suggest LLMs are lossless compressors Delétang et al. (2023). We hypothe-
size that LLMs efficiently focus on essential information, minimizing noise during generation, in
contrast to human-written texts, which may include more diverse topics and incidental noise. To
verify this, we employ Singular Value Decomposition (SVD) Klema & Laub (1980) to compare
topic concentration and noise in human-written and LLM-generated texts. The dimension of the
SVD corresponds to the maximum number of topics, and the singular value associated with each
topic represents its strength. High singular values predominantly capture primary topic information,
whereas low singular values indicate noise.
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Figure 4: Comparision of the relative
singular value (SV) of the different cor-
pus after SVD. The SVs are sorted in
descending order from left to right.

Specifically, we utilize OpenAI embedding model to ob-
tain embedding matrices for each corpus in the Sci-
Fact+AIGC dataset and then conduct SVD. The result-
ing singular values are arranged in descending order, and
their comparison to the human-written corpus is visual-
ized in Figure 4. As we can see, LLM-generated texts ex-
hibit larger singular values at the top large singular values,
while smaller singular values at the tail small singular val-
ues. This observation suggests that LLM-generated texts
tend to have more focused semantics with less noise, ren-
dering them more suitable for precise semantic matching.
In contrast, human-written texts often contain a wider
range of latent topics and higher levels of noise, mak-
ing them harder for neural retrievers to understand. As
a result, this difference in semantic concentration may contribute to the observed bias in neural
retrievers.

4.2 FURTHER ANALYSIS FROM PERPLEXITY

Considering that most modern neural retrievers are grounded on PLMs Yates et al. (2021); Guo et al.
(2020); Zhao et al. (2023), such as BERT Devlin et al. (2019), Roberta Liu et al. (2019), and T5 Raf-
fel et al. (2020), we analyze the perplexity of PLMs to further support the conclusion above from the
viewpoint of compression that LLM-generated texts can be better understood by PLMs. Perplexity
is an important metric for evaluating how well a language model can understand a given text Az-
zopardi et al. (2003); Wang et al. (2019). For a specific language model (LM) and a document d =
(d0, d1, · · · , dS), the log perplexity is defined as the exponentiated average negative log-likelihood
of each token in the tokenized sequence of d4: PPL(d) = − 1

S

(∑S
s=1 logPLM(ds|context)

)
, where

S is the token length of text d and PLM(ds) is the predicted likelihood of the s-th token conditioned
on the context. Lower perplexity suggests more confidence and understanding of LM for text pat-
terns, while higher perplexity implies greater uncertainty in predictions, often arising from complex
or unpredictable text patterns.
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Figure 5: Comparision of the
PPL of the different corpus.

Using the most widely-used LM, BERT Devlin et al. (2019), as
an example, we employ it to calculate the PPL for different cor-
pus. As BERT is not an autoregressive LM, we follow standard
practices Wang et al. (2021); Wang & Cho (2019) to calculate the
likelihood of each token conditioned on the other tokens, i.e.,

PLM(ds|context) := PBERT(ds|d≤S\{s}).

4For simplicity, we denote the log perplexity as PPL.
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The distribution of perplexity for different corpus in the SciFact+AIGC dataset is shown in Fig-
ure 5. Notably, LLM-generated texts consistently exhibit significantly lower perplexity, indicating
enhanced comprehensibility and higher confidence from BERT’s perspective. Consequently, PLMs-
based neural retrievers can more effectively model the semantics of LLM-generated texts, leading
to the observed source bias in favor of LLM-generated texts.

5 RQ4: MITIGATING SOURCE BIAS

In this section, we propose a simple but effective approach to mitigate source bias by introducing
a debiased constraint to the optimization objective. In this way, we can force the neural IR models
to focus on modeling semantic relevance rather than the inherent semantic shortcut of the LLM-
generated content.

5.1 OUR METHOD: A DEBIASED CONSTRAINT

Our earlier findings of source bias indicate that neural retrievers tend to rank LLM-generated
documents in higher positions. Thus, the motivation of our debiased method is straightforward,
which is to force the retrieval models to focus on modeling the semantic relevance and not as-
sign higher predicted relevance scores to the LLM-generated documents. Specifically, following
the practice in Section 2.2, we first generate the corresponding LLM-generated corpus CG for the
original human-written training corpus CH . In this way, we can get the new paired training data
D = {(qm, dHm, dGm)}Mm=1, where each element (qm, dHm, dGm) is a <query, human-written docu-
ment, LLM-generated document> triplet. dHm and dGm are the corresponding human-written and
LLM-generated relevant documents for the query q, respectively. Then we introduce the debiased
constraint, which can be defined as

Ldebias =
∑

(qm,dH
m,dG

m)∈D

max{0, r̂(q, dG; Θ)− r̂(q, dH ; Θ)} (1)

where r̂(q, dG; Θ) and r̂(q, dH ; Θ) are the predicted relevance scores of (q, dG) and (q, dH) by the
retrieval models with parameters Θ, respectively. This constraint can penalize biased samples when
the predicted relevance score of (q, dG) is greater than that of (q, dH).

Based on the debiased constraint defined in equation 1, we can define the final loss for training an
unbiased neural retriever:

L = Lrank + αLdebias (2)

where the Lrank can be any common-used loss for the ranking task, e.g., contrastive loss or regression
loss Zhao et al. (2023); Guo et al. (2020; 2022). And α is the debiased co-efficient that can balance
the ranking performance and the degree of the source bias. The larger α indicates the greater penalty
on the biased samples, leading to the retriever being more likely to rank the human-written texts in
higher positions.

5.2 RESULTS AND ANALYSIS
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Figure 6: Performance comparison of neural retrievers on
SciFact+AIGC with different co-efficient α in our proposed
debiasing method. The grey dashed line represents Relative
∆ = 0. The results on other metrics and datasets have a
similar tendency and are omitted due to space limitations.

To evaluate the effectiveness of our
proposed debiased method, we equip
the debiased constraint defined in
Eq. equation 1 to two representative
neural retrievers: ANCE Xiong et al.
(2020) and BERM Xu et al. (2023).
In the experiments, we vary the de-
biased co-efficient α within the range
of {1e-4, 5e-4, 1e-3, 5e-3, 1e-2}. The
original retrieval models learned
without the debiased constraint are
denoted as “w/o debias”. The results
on the SciFact+AIGC dataset are pre-
sented in Figure 6.
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Figure 7: Performance comparison of neural retrievers
on only human-written SciFact dataset with different
co-efficient α in our proposed debiased method.

As we can see, as the debiased co-efficient
α increases, the Relative ∆ gradually
shifts from negative to positive across
almost all metrics and mixed datasets.
This trend indicates that the neural re-
trieval models can rank human-written text
higher than LLM-generated text with large
α. This can be attributed to the inclusion
of our debiased constraint into the learning
objective, which can penalize the biased
samples and compel the retrieval models
not to assign higher predicted relevance
scores to LLM-generated content. More-
over, as shown in Figure 7, our method
not only maintains the retrieval performance on the sole human-written corpus but also provides
improvements, especially with BERM as the backbone. This improvement is likely due to the in-
clusion of LLM-generated samples, which might enhance the model’s ability to discern relevance
among similar documents.

In summary, these empirical results have demonstrated the efficacy of our proposed debiased method
in mitigating source bias to different extents by adjusting the debiased coefficient α. This flexibility
allows for customizing debiasing mechanisms to meet diverse perspectives and demands. Notably,
the decision to maintain equality between the two content sources or favor human-written content
can be tailored based on specific requirements and environmental considerations. The optimal strat-
egy for enhancing the IR ecosystem remains an open question for further exploration.

6 CONCLUSION AND FUTURE WORK

Conclusion. In this paper, we provide a preliminary analysis of the impact of the proliferation of
generated content on IR systems, which is a pressing and emerging problem in the LLM era. We
first introduce two new benchmarks, SciFact+AIGC and NQ320K+AIGC, and build an environment
for evaluating IR models in scenarios where the corpus comprises both human-written and LLM-
generated texts. Through extensive experiments within this environment, we uncover an unexpected
bias of neural retrieval models favoring LLM-generated text. Moreover, we provide an in-depth
analysis of this bias from the perspective of text compression. We also introduce a plug-and-play
debiased strategy, which shows the potential to mitigate the source bias to different degrees. Finally,
we discuss the crucial concerns and potential risks of this bias to the whole web ecosystem.

Discussion. Our study offers valuable insights into several promising directions for future research,
including exploring source bias in other information systems (e.g., recommender and advertising
systems), and examining source bias in neural models towards AIGC data across multiple data
modalities, not limited to text. Moreover, with the burgeoning proliferation of LLMs and AIGC,
source bias may raise significant concerns for a variety of aspects.

First, the presence of source bias poses a significant risk of gradually rendering human-written
content less accessible, potentially causing a disruption in the content ecosystem. More severely,
the concern is escalating with the growing prevalence of LLM-generated content onlineHanley &
Durumeric (2023); Bengio et al. (2023). Second, there is the risk that source bias may amplify
the spread of misinformation, especially considering the potential of LLMs to generate deceptive
content, whether intentionally or not Chen & Shu (2023); Pan et al. (2023); Aslett et al. (2023).
Third, source bias may be maliciously exploited to attack against neural retrieval models within
today’s search engines, creating a precarious vulnerability that could be weaponized by malicious
actors, reminiscent of earlier web spam link attacks against PageRank Gyöngyi et al. (2004).

As discussed above, since LLMs can be readily instructed to generate texts at scale, source bias
presents potential tangible and serious threats to the ecosystem of web content, public trust, and
online safety. We hope this discussion will sound the alarm regarding the risks posed by source bias
in the LLM era.
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