
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DYNAMIC DIFFUSION TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion Transformer (DiT), an emerging diffusion model for image generation,
has demonstrated superior performance but suffers from substantial computational
costs. Our investigations reveal that these costs stem from the static inference
paradigm, which inevitably introduces redundant computation in certain diffusion
timesteps and spatial regions. To address this inefficiency, we propose Dynamic
Diffusion Transformer (DyDiT), an architecture that dynamically adjusts its compu-
tation along both timestep and spatial dimensions during generation. Specifically,
we introduce a Timestep-wise Dynamic Width (TDW) approach that adapts model
width conditioned on the generation timesteps. In addition, we design a Spatial-
wise Dynamic Token (SDT) strategy to avoid redundant computation at unnecessary
spatial locations. Extensive experiments on various datasets and different-sized
models verify the superiority of DyDiT. Notably, with <3% additional fine-tuning it-
erations, our method reduces the FLOPs of DiT-XL by 51%, accelerates generation
by 1.73×, and achieves a competitive FID score of 2.07 on ImageNet.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021; Rombach et al., 2022; Blattmann et al.,
2023) have demonstrated significant superiority in visual generation tasks. Recently, the remarkable
scalability of Transformers (Vaswani et al., 2017; Dosovitskiy et al., 2020) has led to the growing
prominence of Diffusion Transformer (DiT) (Peebles & Xie, 2023). DiT has shown strong potential
across a variety of generation tasks (Chen et al., 2023; Ma et al., 2024b; Chen et al., 2024) and is
considered a foundational component in the development of Sora (Brooks et al., 2024), a pioneering
model for video generation. Like Transformers in other vision and language domains (Dosovitskiy
et al., 2020; Brown et al., 2020), DiT faces significant efficiency challenges during generation.

Existing approaches to improving DiT’s efficiency include efficient diffusion samplers (Song et al.,
2020a; 2023; Salimans & Ho, 2022; Meng et al., 2023; Luo et al., 2023) and global acceleration
techniques (Ma et al., 2023; Pan et al., 2024). In addition, reducing computational redundancy within
the DiT architecture using model compression techniques, such as structural pruning (Fang et al.,
2024; Molchanov et al., 2016; He et al., 2017), also shows significant promise.

However, pruning methods typically retain a static architecture across both the timestep and spatial
dimensions throughout the diffusion process. As shown in Figure 1(c), both the original DiT and
the pruned DiT employ a fixed model width across all diffusion timesteps and allocate the same
computational cost to every image patch. This static inference paradigm overlooks the varying com-
plexities associated with different timesteps and spatial regions, leading to significant computational
inefficiency. To explore this redundancy in more detail, we analyze the training process of DiT, during
which it is optimized for a noise prediction task. Our analysis yields two key insights:

a) Timestep perspective: We plot the loss value differences between a pre-trained small model (DiT-S)
and a larger model (DiT-XL) in Figure 1(a). The results show that the loss differences diminish
substantially for t > t̂, and even approach negligible levels as t nears the prior distribution (t→ T).
This indicates that the prediction task becomes progressively easier at later timesteps and could be
managed effectively even by a smaller model. However, DiT applies the same architecture across all
timesteps, leading to excessive computational costs at timesteps where the task complexity is low.

b) Spatial perspective: We visualize the loss maps in Figure 1(b) and observe a noticeable imbalance
in loss values across different spatial regions of the image. Loss values are higher in patches corre-
sponding to the main object, while patches representing background regions exhibit relatively lower

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

original DiT / pruned DiT

(c)

DyDiT (ours)

generation process
FLOPs on patches

low

high
model width

wide

narrow

� = � � = 0
noise data

original
 image

lo
w

 →
 h

ig
h

(b)

(a)

� = 200 � = 300 � = 400 � = 600 � = 800 � = 900
normalized loss maps

DiT-S: 6.07 GFLOPs 21.46 FID
DiT-XL: 118.68 GFLOPs 2.27 FID

|�(�)| around 1e-6

 0
� |�(�)|푑� ≫ �

� |�(�)|푑�
lo

ss
 d

iff
er

en
ce

�(�): loss difference between DiT-S and DiT-XL on ImageNet

↑↑

Figure 1: (a) The loss difference between DiT-S and DiT-XL across all diffusion timesteps (T = 1000).
The difference is slight at most timesteps. (b) Loss maps (normalized to the range [0, 1]) at different
timesteps, show that the noise in different patches has varying levels of difficulty to predict. (c)
Difference of the inference paradigm between the static DiT and the proposed DyDiT.

loss. This suggests that the difficulty of noise prediction varies across spatial regions. Consequently,
uniform computational treatment of all patches introduces redundancy and is likely suboptimal.

Based on the above insights, a promising approach to improve DiT’s computational efficiency is
dynamic computation. To this end, we propose Dynamic Diffusion Transformer (DyDiT), which
adaptively allocates computational resources during the generation process, as illustrated in Fig-
ure 1(c). Specifically, from the timestep perspective, we introduce a Timestep-wise Dynamic Width
(TDW) mechanism, where the model learns to adjust the width of the attention and MLP blocks
based on the current timestep. From a spatial perspective, we develop a Spatial-wise Dynamic Token
(SDT) strategy, which identifies image patches where noise prediction is relatively “easy”, allowing
them to bypass computationally intensive blocks, thus reducing unnecessary computation.

Notably, both TWD and SDT are plug-and-play modules that can be easily implemented on DiT
to build DyDiT. Moreover, our method contributes to significant speedup due to the hardware-
friendly design: 1) the model architecture at each timestep can be pre-determined offline, eliminating
additional overhead for width adjustments and enabling efficient batch processing (Section 3.2); and
2) the token gathering and scattering operations incur minimal overhead and are straightforward
to implement (Section 3.3). Such hardware efficiency distinguishes our approach from traditional
dynamic networks (Herrmann et al., 2020; Meng et al., 2022; Han et al., 2023b), which adapt their
inference graphs for each sample and struggle to improve practical efficiency in batched inference.

We conduct extensive experiments across multiple datasets and model scales to validate the effec-
tiveness of the proposed method. For example, compared to the static counterpart DiT-XL, our
DyDiT-XL reduces FLOPs by 51% and accelerates the generation by 1.73 times, with less than 3%
fine-tuning iterations, while maintaining a competitive FID score of 2.07 on ImageNet (256 × 256)
(Deng et al., 2009). Our method shows potential for further efficiency gains when combined with
efficient samplers, such as DDIM (Song et al., 2020a) and DPM Solver++ (Lu et al., 2022), or global
acceleration techniques like DeepCache (Ma et al., 2023). We anticipate that DyDiT will inspire
future research in the development of more efficient diffusion Transformers.

2 RELATED WORKS

Efficient Diffusion Models. Although diffusion models (Ho et al., 2020; Rombach et al., 2022) have
achieved remarkable performance in generation tasks, their generation speed has always hindered
their further applications primarily due to long sampling steps and high computational costs. Existing
attempts to make diffusion models efficient can be roughly categorized into sampler-based methods,
model-based methods, and global acceleration methods. The sampler-based methods (Song et al.,
2020a; 2023; Salimans & Ho, 2022; Meng et al., 2023; Luo et al., 2023) aim to reduce the sampling
steps. Model-based approaches (Fang et al., 2024; So et al., 2024; Shang et al., 2023; Yang et al., 2023)
attempt to compress the size of diffusion models via pruning (Fang et al., 2024; Shang et al., 2023) or

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

quantization (Li et al., 2023; Shang et al., 2023). Global acceleration methods like Deepcache (Ma
et al., 2023) tend to reuse or share some features across different timesteps.

Our DyDiT is mostly relates to the model-based approaches and orthoganal to the other two lines of
work. However, unlike the pruning methods yielding static architectures, DyDiT performs dynamic
computation for different diffusion timesteps and image tokens.

Dynamic Neural Networks. Compared to static models, dynamic neural networks (Han et al.,
2021) can adapt their computational graph based on inputs, enabling superior trade-off between
performance and efficiency. They generally realize dynamic architectures by varying the network
depth (Teerapittayanon et al., 2016; Bolukbasi et al., 2017; Yang et al., 2020; Han et al., 2022; 2023a)
or width (Herrmann et al., 2020; Li et al., 2021; Han et al., 2023b) during inference. Some works
explore the spatial redundancy in image recognition (Wang et al., 2021; Song et al., 2021; Rao et al.,
2021; Liang et al., 2022; Meng et al., 2022). Despite their promising theoretical efficiency, existing
dynamic networks usually struggle in achieving practical efficiency during batched inference (Han
et al., 2023b) due to the per-sample inference graph. Moreover, the potential of dynamic architectures
in diffusion models, where a timestep dimension is introduced, remains unexplored.

This work extends the research of dynamic networks to the image generation field. More importantly,
our TDW adjusts the network structure only conditioned on the timesteps, avoiding the sample-
conditioned tensor shapes in batched inference. Together with the efficient token gathering and
scattering mechanism of SDT, DyDiT shows preferable realistic efficiency.

3 DYNAMIC DIFFUSION TRANSFORMER

We first provide an overview of diffusion models and DiT (Peebles & Xie, 2023) in Section 3.1.
DyDiT’s timestep-wise dynamic width (TDW) and spatial-wise dynamic token (SDT) approaches are
then introduced in Sections 3.2 and 3.3. Finally, Section 3.4 details the training process of DyDiT.

3.1 PRELIMINARY

Diffusion Models (Ho et al., 2020; Song et al., 2020b; Nichol & Dhariwal, 2021; Rombach et al.,
2022) generate images from random noise through a series of diffusion steps. These models typically
consist of a forward diffusion process and a reverse denoising process. In the forward process, given
an image x0∼q(x) sampled from the data distribution, Gaussian noise ϵ∼N (0, I) is progressively
added over T steps. This process is defined as q (xt |xt−1)=N

(
xt;
√
1− βtxt−1, βtI

)
, where t and

βt denote the timestep and noise schedule, respectively. In the reverse process, the model removes the
noise and reconstructs x0 from xT ∼N (0, I) using pθ (xt−1 |xt)=N (xt−1;µθ (xt, t) ,Σθ (xt, t)),
where µθ (xt, t) and Σθ(xt, t) represent the mean and variance of the Gaussian distribution.

Diffusion Transformer (DiT) (Peebles & Xie, 2023) exhibits the scalability and promising perfor-
mance of Transformers (Brooks et al., 2024). Similar to ViT (Dosovitskiy et al., 2020), DiT consists
of layers composed of a multi-head self-attention (MHSA) block and a multi-layer perceptron (MLP)
block, described as X← X+αMHSA(γX+β),X← X+α′MLP(γ′X+β′), where X ∈ RN×C

denotes image tokens. Here, N is the number of tokens, and C is the channel dimension. The
parameters {α, γ, β, α′, γ′, β′} are produced by an adaptive layer norm (adaLN) block (Perez et al.,
2018), which takes the class condition embedding Ecls and timestep embedding Et as inputs.

3.2 TIMESTEP-WISE DYNAMIC WIDTH

As aforementioned, DiT spends equal computation for different timesteps, although not all steps share
the same generation difficulty (Figure 1(a)). Therefore, the static computation paradigm introduces
significant redundancy in those “easy” timesteps. Inspired by structural pruning methods (He et al.,
2017; Hou et al., 2020; Fang et al., 2024), we propose a timestep-wise dynamic width (TDW)
mechanism, which adjusts the width of MHSA and MLP blocks in different timesteps. Note that
TDW is not a pruning method that permanently removes certain model components, but rather retains
the full capacity of DiT and dynamically activates different heads/channel groups at each timestep.

Heads and channel groups. Given input X∈RN×C , an MHSA block employs three linear layers
with weights WQ,WK,WV∈RC×(H×CH) to project it into Q, K, and V features, respectively. Here,
H denotes the head number and C =H×CH in DiT. An output projection is performed using another

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Timestep-wise Dynamic Width (TDW) (b) Spatial-wise Dynamic Token (SDT)

E�

0
1
0
0
0
1
0
0

element-wise addition

MLP

matrix multiplication

gather scatter

X 11 1
channel group masks

MHSA

MLP

O

Q K V

123�

�×�

1 00 1
head masks

1 32 �

0

1 32 �

�×�

�×��

�×�

hidden channel groups

attention heads

linear

linear
�

123�
N ×�

�×��

�×�

activated

deactivated

Rchannel

Rhead

Rtoken

token masks

Figure 2: Overview of the proposed dynamic diffusion transformer (DyDiT). It reduces the
computational redundancy in DiT (Peebles & Xie, 2023) from both timestep and spatial dimensions.

linear layer with WO ∈ R(H×CH)×C . The operation of the conventional MHSA can be expressed as:

MHSA(X) =

H∑
h=1

Xh
attnW

h,:,:
O =

H∑
h=1

(Softmax((XW:,h,:
Q)(XW:,h,:

K)⊤)XW:,h,:
V)Wh,:,:

O . (1)

An MLP block contains two linear layers with weights W1 ∈RC×D and W2 ∈RD×C , where D
represents the hidden channels, set as 4C by default in DiT. To dynamically control the MLP width,
we divide D hidden channels into H groups, reformulating the weights into W1∈RC×(H×DH) and
W2∈R(H×DH)×C , where DH =D/H . Hence, the operation in MLP can be formulated as:

MLP(X) =

H∑
h=1

σ(Xh
hidden)W

h,:,:
2 =

H∑
h=1

σ(XW:,h,:
1)Wh,:,:

2 , (2)

where σ denotes the activation layer.
Dynamic width control based on timestep. To dynamically activate the heads and channel groups at
each diffusion timestep, in each block, we feed the timestep embedding Et ∈ RC into routers Rhead
and Rchannel (Figure 2(a)). Each router comprises a linear layer followed by the Sigmoid function,
producing the probability of each head and channel group to be activated:

Shead = Rhead(Et) ∈ [0, 1]H , Schannel = Rchannel(Et) ∈ [0, 1]H . (3)

A threshold of 0.5 is then used to convert the continuous-valued Shead and Schannel into binary masks
Mhead∈{0, 1}H and Mchannel∈{0, 1}H , indicating the activation decisions for attention heads and
channel groups. The h-th head (group) is activated only when Mh

head=1 (Mh
channel=1). Benefiting

from the grouping operation, routers introduce negligible parameters and computation.

Inference. After obtaining the discrete decisions Mhead and Mchannel, each DyDiT block only
computes the activated heads and channel groups during generation:

MHSA(X) =
∑

h:Mh
head=1

Xh
attnW

h,:,:
O ,

MLP(X) =
∑

h:Mh
channel=1

σ(Xh
hidden)W

h,:,:
2 .

(4)

Let H̃head =
∑

h M
h
head and H̃channel =

∑
h M

h
channel denote the number of activated heads/groups.

TWD reduces the MHSA computation fromO(H×(4NCCH+2N2CH)) toO(H̃head×(4NCCH+

2N2CH)) and MLP blocks from O(H × 2NCDH) to O(H̃channel × 2NCDH). It is worth noting
that as the activation choices depend solely on the timestep Et, we can pre-compute the masks offline
once the training is completed, and pre-define the activated network architecture before deployment.
This avoids the sample-dependent inference graph in traditional dynamic architectures (Meng et al.,
2022; Han et al., 2023b) and facilitates the realistic speedup in batched inference.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 SPATIAL-WISE DYNAMIC TOKEN

In addition to the timestep dimension, the redundancy widely exists in the spatial dimension due to
the varying complexity of different patches (Figure 1(b)). To this end, we propose a spatial-wise
dynamic token (SDT) method to reduce computation for the patches where noise estimation is “easy”.
Bypassing the MLP block. As shown in Figure 2 (b), SDT adaptively identifies the tokens associated
with image regions that present lower noise prediction difficulty. These tokens are then allowed to
bypass the computationally intensive MLP blocks. Theoretically, this block-bypassing operation
can be applied to both MHSA and MLP. However, we find MHSA crucial for establishing token
interactions, which is essential for the generation quality. More critically, varying token numbers
across images in MHSA could result in incomplete tensor shapes in a batch, reducing the overall
throughput in generation. Therefore, SDT is applied only in MLP blocks in each layer.

Concretely, before each MLP block, we feed the input X∈RN×C into a token router Rtoken, which
predicts the probability Stoken ∈ RN of each token to be processed. This can be formulated as:

Stoken = Rtoken(X) ∈ [0, 1]N . (5)

We then convert it into a binary mask Mtoken using a threshold of 0.5. Each element Mi
token ∈ {0, 1}

in the mask indicates whether the i-th token should be processed by the block (if Mi
token = 1) or

directly bypassed (if Mi
token = 0). The router parameters are not shared across different layers.

Inference. During inference (Figure 2(b)), we gather the tokens based on the mask Mtoken and feed
them to the MLP, thereby avoiding unnecessary computational costs for other tokens. Then, we adopt
a scatter operation to reposition the processed tokens. This further reduces the computational cost
of the MLP block from O(H̃channelN × 2CDH) to O(H̃channelÑ × 2CDH), where Ñ =

∑
i M

i
token

denotes the actual number of tokens to be processed. Since there is no token interaction within the
MLP, the SDT operation supports batched inference, improving the practical generation efficiency.

3.4 FLOPS-AWARE END-TO-END TRAINING

In the following, we first present the details of end-to-end training, followed by the loss design for
controlling the computational complexity of DyDiT and techniques to stabilize fine-tuning.

End-to-end training. During training, in TWD, we multiply Mhead and Mchannel with their corre-
sponding features (Xattn and Xhidden) to zero out the deactivated heads and channel groups, respec-
tively. Similarly, in SDT, we multiply Mtoken with MLP(X) to deactivate the tokens that should not
be processed by MLP. Straight-through-estimator (Bengio et al., 2013) and Gumbel-Sigmoid (Meng
et al., 2022) are employed to enable the end-to-end training of routers.
Training with FLOPs-constrained loss. We design a FLOPs-constrained loss to control the compu-
tational cost during the generation process. We find it impractical to obtain the entire computation
graph during T timesteps since the total timestep T is large e.g. T = 1000. Fortunately, the timesteps
in a batch are sampled from t ∼ Uniform(0, T) during training, which approximately covers the
entire computation graph. Let B denote the batch size, with tb as the timestep for the b-th sample, we
compute the total FLOPs at the sampled timestep, F tb

dynamic, using masks {Mtb
head,M

tb
channel,M

tb
token}

from each transformer layer, as detailed in Section 3.2 and Section 3.3. Let Fstatic denote the total
FLOPs of MHSA and MLP blocks in the static DiT. We formulate the FLOPs-constrained loss as:

LFLOPs = (
1

B

∑
tb:b∈[1,B]

F tb
dynamic

Fstatic
− λ)2, (6)

where λ is a hyperparameter representing the target FLOPs ratio, and tb is uniformly sampled from
the interval [0, T]. The overall training objective combines this FLOPs-constrained loss with the
original DiT training loss, expressed as L = LDiT + LFLOPs.
Fine-tuning stabilization. In practice, we find directly finetuning DyDiT with L might occasionally
lead to unstable training. To address this, we employ two stabilization techniques. First, for a warm-
up phase we maintain a complete DiT model supervised by the same diffusion target, introducing an
additional item, Lcomplete

DiT along with L. After this phase, we remove this item and continue training
solely with L. Additionally, prior to fine-tuning, we rank the heads and hidden channels in MHSA
and MLP blocks based on a magnitude criterion (He et al., 2017). We consistently select the most
important head and channel group in TDW. This ensures that at least one head and channel group is
activated in each MHSA and MLP block across all timesteps, thereby alleviating the instability.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparison with diffusion models on ImageNet of 256×256 and 512×512 resolutions.
DyDiT-XL achieves competitive performance while significantly reducing the computational cost.

Model Params. (M) ↓ FLOPs (G) ↓ FID ↓ sFID ↓ IS ↑ Precision ↑ Recall ↑

Static 256× 256
ADM 608 1120 4.59 5.25 186.87 0.82 0.52

LDM-4 400 104 3.95 - 178.22 0.81 0.55
U-ViT-L/2 287 77 3.52 - - - -
U-ViT-H/2 501 113 2.29 - 247.67 0.87 0.48

DiffuSSM-XL 673 280 2.28 4.49 269.13 0.86 0.57
DiM-L 380 94 2.64 - - - -
DiM-H 860 210 2.21 - - - -
DiT-L 468 81 5.02 - 167.20 0.75 0.57

DiT-XL 675 118 2.27 4.60 277.00 0.83 0.57
DiffiT 561 114 1.73 - 276.49 0.80 0.62

SiT-XL 675 118 2.06 4.49 277.50 0.83 0.59
DiMR-XL 505 160 1.70 - 289.00 0.79 0.63

Dynamic 256× 256
DyDiT-XLλ=0.7 678 84.33 2.12 4.61 284.31 0.81 0.60
DyDiT-XLλ=0.5 678 57.88 2.07 4.56 248.03 0.80 0.61

Static 512× 512
DiT-XL 675 514 3.04 5.02 240.80 0.84 0.54
ADM-G 731 2813 3.85 5.86 221.72 0.84 0.53

DiffuSSM-XL 673 1066 3.41 - 255.00 0.85 0.49
DiM-Huge 860 708 3.78 - - - -

SiT-XL 675 514 2.62 4.18 252.21 0.84 0.57
Dynamic 512× 512

DyDiT-XLλ=0.7 678 375.05 2.88 5.14 228.93 0.83 0.56

4 EXPERIMENTS

Implementation details. Our DyDiT can be built easily by fine-tuning on pre-trained DiT weights.
We experiment on three different-sized DiT models denoted as DiT-S/B/XL. For DiT-XL, we directly
adopt the checkpoint from the official DiT repository (Peebles & Xie, 2023), while for DiT-S and
DiT-B, we use pre-trained models provided in Pan et al. (2024). All experiments are conducted on a
server with 8×NVIDIA A800 80G GPUs. More details of model configurations and training setup
can be found in Appendix A.1 and A.2, respectively. Following DiT (Peebles & Xie, 2023), the
strength of classifier-free guidance (Ho & Salimans, 2022) is set to 1.5 and 4.0 for evaluation and
visualization, respectively. Unless otherwise specified, 250 DDPM (Ho et al., 2020) sampling steps
are used. All speed tests are performed on an NVIDIA V100 32G GPU.
Datasets. Following the protocol in DiT (Peebles & Xie, 2023), we mainly conduct experiments
on ImageNet (Deng et al., 2009) at a resolution of 256 × 256. To comprehensively evaluate our
method, we also assess performance and efficiency on four fine-grained datasets used by Xie et al.
(2023): Food (Bossard et al., 2014), Artbench (Liao et al., 2022), Cars (Gebru et al., 2017) and Birds
(Wah et al., 2011). We conduct experiments in both in-domain fine-tuning and cross-domain transfer
learning manners on these dataset. Images of these datasets are also resized into 256×256 resolution.
Metrics. Following prior works (Peebles & Xie, 2023; Teng et al., 2024), we sample 50,000 images to
measure the Fréchet Inception Distance (FID) (Heusel et al., 2017) score with the ADM’s TensorFlow
evaluation suite (Dhariwal & Nichol, 2021). Inception Score (IS) (Salimans et al., 2016), sFID (Nash
et al., 2021), and Prevision-Recall (Kynkäänniemi et al., 2019) are also reported for complementary.
Bold font and underline denote the best and the second-best performance, respectively.

4.1 COMPARISON WITH STATE-OF-THE-ART DIFFUSION MODELS

In Table 1, we compare our method with other representative diffusion models, including ADM (Dhari-
wal & Nichol, 2021), LDM (Rombach et al., 2022), U-ViT (Bao et al., 2023), DiffuSSM (Yan et al.,
2024), DiM (Teng et al., 2024), and DiT (Peebles & Xie, 2023), SiT (Ma et al., 2024a), Dif-
fiT (Hatamizadeh et al., 2025), DiMR (Liu et al., 2024) on ImageNet generation. All methods except

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2 3 4 5 6
FLOPs (G)

20

30

40

50

60
FI

D

=0.3

=0.4

=0.5

=0.7 =0.8 =0.9

DiT-S FLOPs-FID on ImageNet
pruned w/ Random
pruned w/ Magnitude
pruned w/ Taylor
pruned w/ Diff
pruned w/ ToMe r=22%
DiT-S
DyDiT-S

8 10 12 14 16 18 20 22
FLOPs (G)

9

12

15

18

21

24

27

=0.3

=0.4

=0.5

=0.7 =0.8 =0.9

DiT-B FLOPs-FID on ImageNet
pruned w/ Random
pruned w/ Magnitude
pruned w/ Taylor
pruned w/ Diff
DiT-B
DyDiT-B

40 50 60 70 80 90 100 110 120
FLOPs (G)

2.0

2.5

3.0

3.5

4.0

4.5

=0.3

=0.5 =0.6 =0.7

DiT-XL FLOPs-FID on ImageNet
pruned w/ Random
pruned w/ Magnitude
pruned w/ Taylor
pruned w/ Diff
DiT-XL
DyDiT-XL

Figure 3: FLOPs-FID trade-off for S, B, and XL size models on ImageNet. For clarity, we omit
the results of applying ToMe to DiT-B and DiT-XL, as it does not surpass the random pruning.

ours adopt a static architecture. DyDiT-XL is fine-tuned with fewer than 3% additional iterations
based on DiT to adapt the dynamic architecture, as detailed in Appendix A.1.

Notably, our model DyDiTλ=0.5 achieves a 2.07 FID score with less than 50% FLOPs of its counter-
part, DiT-XL, and outperforms most models obviously. This verify that our method can effectively
remove the redundant computation in DiT and maintain the generation performance. With around 80G
FLOPs, our DyDiTλ=0.7 method significantly outperforms U-ViT-L/2 and DiT-L, further validing
the advantages of our dynamic generation paradigm. Under the 512×512 resolution, our method can
also achieve performance comparable to SiT-XL with significantly fewer FLOPs.

4.2 COMPARISON WITH PRUNING METHODS

Benchmarks. The proposed timestep-wise dynamic width and spatial-wise dynamic token improve
efficiency from the model architecture and token redundancy perspective, respectively. To evaluate
the superiority of our approach, we compare our methods against representative static structure and
token pruning techniques. More details of this experiment can be found in Appendix A.3.

Pruning-based methods. We include Diff pruning Fang et al. (2024) in the comparison, which is
a Taylor-based (Molchanov et al., 2016) pruning method specifically optimized for the diffusion
process and has demonstrated superiority on diffusion models with U-Net (Ronneberger et al., 2015)
architecture (Fang et al., 2024). Following Fang et al. (2024), we also include Random pruning,
Magnitude pruning (He et al., 2017), and Taylor pruning (Molchanov et al., 2016) in the comparison.
We adopt these four pruning approaches to distinguish important heads and channels in DiT from
less significant ones, which can be removed to reduce the model width.

Token merging. We also compare our methods with a training-free token pruning technique, ToMe
(Bolya et al., 2022), which progressively prunes tokens in each vision transformer (Dosovitskiy et al.,
2020) layer through adaptive token merging. Its enhanced version (Bolya & Hoffman, 2023) can also
accelerate diffusion models based on U-Net architectures e.g. Stable Diffusion Rombach et al. (2022).
We directly apply the enhanced version in each layer of DiT.
Results. We present the FLOPs-FID curves for S, B, and XL size models in Figure 3. Across differ-
ense sizes, DyDiT significantly outperforms all pruning methods with similar or even lower FLOPs,
highlighting the superiority of dynamic architecture over static pruning in diffusion transformers.

Interestingly, Magnitude pruning shows slightly better performance among structural pruning tech-
niques on DiT-S and DiT-B, while Diff pruning and Taylor pruning perform better on DiT-XL. This
indicates that different-sized DiT prefer distinct pruning criteria. Although ToMe (Bolya & Hoffman,
2023) successfully accelerates U-Net models with acceptable performance loss, its application to DiT
results in performance degradation, as also observed in Moon et al. (2023). We conjecture that the
errors introduced by token merging become irrecoverable in DiT due to the absence of convolutional
layers and long-range skip connections present in U-Net architectures.
Scaling up ability. We can observe from Figure 3 that the performance gap between DyDiT and
DiT diminishes as model size increases. Specifically, DyDiT-S achieves a comparable FID to the
original DiT only at λ = 0.9, while DyDiT-B achieves this with a lower FLOPs ratio, e.g., λ = 0.7.
When scaled to XL, DyDiT-XL attains a slightly better FID even at λ = 0.5. This is due to increased
computation redundancy with larger models, allowing our method to reduce redundancy without
compromising FID. These results validate the scalability of our approach, which is crucial in the era
of large models, encouraging further exploration of larger models in the future.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Results on fine-grained datasets. The model marked with † corresponds to fine-tuning
directly on the target dataset. See the main texts for details.

Model s/image ↓ FLOPs (G) ↓ FID ↓
Food Artbench Cars Birds #Average

DiT-S 0.65 6.07 14.56 17.54 9.30 7.69 12.27
pruned w/ random 0.38 3.05 45.66 76.75 60.26 48.60 57.81

pruned w/ magnitude 0.38 3.05 41.93 42.04 31.49 26.45 35.44
pruned w/ taylor 0.38 3.05 47.26 74.21 27.19 22.33 42.74
pruned w/ diff 0.38 3.05 36.93 68.18 26.23 23.05 38.59

pruned w/ ToMe 20% 0.61 4.82 43.87 62.96 32.16 15.20 38.54
DyDiT-Sλ=0.5 0.41 3.16 16.74 21.35 10.01 7.85 13.98
DyDiT-Sλ=0.5† 0.41 3.17 13.03 19.47 12.15 8.01 13.16

D
yD

iT
-S

 D
iT

-S
pr

un
ed

 w
/

m
ag

ni
tu

de

Food Artbench Cars Birds

Figure 4: Qualitative comparison of images generated by the original DiT, DiT pruned with
magnitude, and DyDiT. All models are of “S” size. The FLOPs ratio λ in DyDiT is set to 0.5.

4.3 RESULTS ON FINE-GRAINED DATASETS

Quantitative results. We further compare our method with structural pruning and token pruning
approaches on fine-grained datasets under the in-domain fine-tuning setting, where the DiT is initially
pre-trained on the corresponding dataset and subsequently fine-tuned on the same dataset for pruning
or dynamic adaptation. Detailed experiment settings are presented in Appendix A.4. Results are
summarized in Table 2. With the pre-defined FLOPs ratio λ = 0.5, our method significantly reduces
computational cost and enhances generation speed while maintaining performance levels comparable
to the original DiT. To ensure fair comparisons, we set width pruning ratios to 50% for pruning
methods, aiming for similar FLOPs. Among structural pruning techniques, Magnitude pruning shows
relatively better performance, yet DyDiT consistently outperforms it by a substantial margin. With a
20% merging ratio, ToMe also speeds up generation but sacrifices performance. As mentioned, the
lack of convolutional layers and skip connections makes applying ToMe to DiT suboptimal.
Qualitative visualization. Figure 4 presents images generated by DyDiT-S on fine-grained datasets,
compared to those produced by the original or pruned DiT-S. These qualitative results demonstrate
that our method maintains the FID score while producing images of quality comparable to DiT-S.
Cross-domain transfer learning. Transferring to downstream datasets is a common practice to
leverage pre-trained generations models. In this experiment, we fine-tune a model pre-trained on
ImageNet to perform cross-domain adaptation on the target dataset while concurrently learning the
dynamic architecture, yielding DyDiT-Sλ=0.5† in Table 2. More details are presented in Appendix A.5.
We can observe that learning the dynamic architecture during the cross domain transfer learning does
not hurt the performance, and even leads to slight better average FID score than DyDiT-Sλ=0.5. This
further broadens the application scope of our method.

4.4 ABLATION STUDY

Main components. We first conduct experiments to verify the effectiveness of each component in
our method. We summarize the results in Table 3. “I” and “II” denote DiT with only the proposed
timstep-wise dynamic width (TDW) and spatial-wise dynamic token (SDT), respectively. We can find
that “I” performs much better than “II”. This is attributed to the fact that, with the target FLOPs

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Ablation Study on DyDiT-Sλ=0.5. All models evoke around 3.16 GFLOPs.

Model TDW SDT FID ↓
ImageNet Food Artbench Cars Birds #Average

I ✓ 31.89 15.71 28.19 19.67 9.23 20.93
II ✓ 70.06 23.79 52.78 16.90 12.05 35.12
III ✓ ✓ 28.75 16.74 21.35 10.01 7.85 16.94

I (random) 124.38 111.88 151.99 127.53 164.29 136.01
I (manual) 34.08 23.89 40.02 22.34 20.17 28.10

III (layer-skip) ✓ 30.95 17.75 23.15 10.53 9.01 18.29

M
H

S
A

 b
lo

ck
M

LP
 b

lo
ck

layer index

he
ad

 in
de

x

layer index

ch
an

ne
l g

ro
up

 in
de

x

layer index

he
ad

 in
de

x

layer index

he
ad

 in
de

x

layer index layer index

noise image
9.82% activated 30.80% activated 97.99% activated

20.53% activated 52.01% activated 91.29% activated

� = 225 � = 100 � = 25

ch
an

ne
l g

ro
up

 in
de

x

ch
an

ne
l g

ro
up

 in
de

x

Figure 5: Visualization of dynamic architecture. and indicates the deactivated and activated
heads in an MHSA block, while and denotes that the channel group is deactivated or activated in
an MLP block, respectively. We conduct 250-step DDPM generation.

ratio λ set to 0.5, most tokens in “II” have to bypass MLP blocks, leaving only MHSA blocks to
process tokens, significantly affecting performance (Dong et al., 2021). “III” represents the default
model that combines both TDW and SDT, achieving obviously better performance than “I” and “II”.
Given a computational budget, the combination of TDW and SDT allows the model to discover
computational redundancy from both the time-step and spatial perspectives.
Importance of routers in temporal-wise dynamic width. Routers in TDW adaptively adjust the
model width for each block across all timesteps. Replacing the learnable router with a random
selection, resulting in “I (random)”, leads to model collapse across all datasets. This is due to the
random activation of heads and channel groups, which hinders the model’s ability to generate high-
quality images. We also experiment a manually-designed strategy, termed “I (manual)”, in which we
activate 5/6, 1/2, 1/3, 1/3 of the heads and channels for the intervals [0, 1/T], [1/T , 2/T], [2/T ,
3/4T], and [3/4T , T] timesteps, respectively. This results in around 50% average FLOPs reduction.
Since this strategy aligns the observation in Figure 1(a) and allocates more computation to timesteps
approaching 0, “I (manual)” outperforms “I (random)” obviously. However, it does not surpass “I”,
highlighting the importance of learned routers.
Importance of token-level bypassing in spatial-wise dynamic token. We also explore an alternative
design to conduct token bypassing. Specifically, each MLP block adopts a router to determine whether
all tokens of an image should bypass the block. This modification causes SDT to become a layer-
skipping approach (Wang et al., 2018). We replace SDT in “III” with this design, resulting in “III
(layer-skip)” in Table 3. As outlined in Section 1, varying regions of an image face distinct challenges
in noise prediction. A uniform token processing strategy fails to address this heterogeneity effectively.
For example, tokens from complex regions might bypass essential blocks, resulting in suboptimal
noise prediction. The results presented in Table 3 further confirm that the token-level bypassing in
SDT, obviously improves the performance of “III” compared to “III (layer-skip)”.

4.5 VISUALIZATION

Learned timestep-wise dynamic strategy. Figure 5 illustrates the activation patterns of heads and
channel groups during the 250-step DDPM generation process. Throughout this process, TWD
progressively activates more MHSA heads and MLP channel groups as it transitions from noise to

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ge
ne

ra
te

d
im

ag
es

lo
w

 →
 h

ig
h

no
rm

. F
LO

P
s

Figure 6: Computational cost across different image patches. We quantify the FLOPs cost on
image patches over the generation process and normalize them into [0, 1] for better clarity.

Table 4: Combination with efficient samplers (Song et al., 2020a; Lu et al., 2022).

Model 250-DDPM 50-DDIM 20-DPM-solver++ 10-DPM-solver++
s/image ↓ FID ↓ s/image ↓ FID ↓ s/image ↓ FID ↓ s/image ↓ FID ↓

DiT-XL 10.22 2.27 2.00 2.26 0.84 4.62 0.42 11.66
DyDiT-XLλ=0.7 7.76 2.12 1.56 2.16 0.62 4.28 0.31 11.10
DyDiT-XLλ=0.5 5.91 2.07 1.17 2.36 0.46 4.22 0.23 11.31

image. As discussed in Section 1, prediction is more straightforward when generation is closer to
noise (larger t) and becomes increasingly challenging as it approaches the image (smaller t). Our vi-
sualization corroborates this observation, demonstrating that the model allocates more computational
resources to more complex timesteps. Notably, the activation rate of MLP blocks surpasses that of
MHSA blocks at t = 255 and t = 100. This can be attributed to the token bypass operation in the
spatial-wise dynamic token (SDT), which reduces the computational load of MLP blocks, enabling
TWD to activate additional channel groups with minimal computational overhead.
Spatial-wise dynamic token adapts computational cost on each image patch. We quantify
and normalize the computational cost on different image patches during generation, ranging from
[0, 1] in Figure 6. These results verify that our SDT effectively learns to adjust computational
expenditure based on the complexity of image patches. SDT prioritizes challenging patches containing
detailed and colorful main objects. Conversely, it allocates less computation to background regions
characterized by uniform and continuous colors. This behavior aligns with our findings in Figure 1(b).

4.6 COMBINATION WITH EFFICIENT SAMPLERS.

Our DyDiT is a general architecture which can be seamlessly incorporated with efficient samplers
such as DDIM (Song et al., 2020a) and DPM-solver++ (Lu et al., 2022). As presented in Table 4,
when using the 50-step DDIM, both DiT-XL and DyDiT-XL exhibit significantly faster generation,
while our method consistently achieving higher efficiency due to its dynamic computation paradigm.
When we further reduce the sampling step to 20 and 10 with DPM-solver++, we observe an FID
increasement on all models, while our method still achieves competitive performance compared to
the original DiT. These findings highlight the potential of integrating our approach with efficient
samplers, suggesting a promising avenue for future research.

5 DISCUSSION AND CONCLUSION

In this study, we investigate the training process of the Diffusion Transformer (DiT) and identify
significant computational redundancy associated with specific diffusion timesteps and image patches.
To this end, we propose Dynamic Diffusion Transformer (DyDiT), an architecture that can adaptively
adjust the computation allocation across different timesteps and spatial regions. Comprehensive
experiments on various datasets and model sizes validate the effectiveness of DyDiT. We anticipate
that the proposed method will advance the development of transformer-based diffusion models.
Limitations and future works. Similarly to DiT, the proposed DyDiT is currently focusing on image
generation. In future works, DyDiT could be further explored to be applied to other tasks, such as
video generation (Ma et al., 2024b) and controllable generation (Chen et al., 2024).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 22669–22679, 2023.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural networks for
efficient inference. In ICML, pp. 527–536. PMLR, 2017.

Daniel Bolya and Judy Hoffman. Token merging for fast stable diffusion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4598–4602, 2023.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. arXiv preprint arXiv:2210.09461, 2022.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In ECCV, pp. 446–461. Springer, 2014.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, et al. Pixart-alpha: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

Junsong Chen, Yue Wu, Simian Luo, Enze Xie, Sayak Paul, Ping Luo, Hang Zhao, and Zhenguo Li.
Pixart-{\delta}: Fast and controllable image generation with latent consistency models. arXiv
preprint arXiv:2401.05252, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pp. 248–255. Ieee, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth. In International Conference on Machine
Learning, pp. 2793–2803. PMLR, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models. Advances in
neural information processing systems, 36, 2024.

Timnit Gebru, Jonathan Krause, Yilun Wang, Duyun Chen, Jia Deng, and Li Fei-Fei. Fine-grained
car detection for visual census estimation. In AAAI, volume 31, 2017.

11

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):
7436–7456, 2021.

Yizeng Han, Yifan Pu, Zihang Lai, Chaofei Wang, Shiji Song, Junfeng Cao, Wenhui Huang, Chao
Deng, and Gao Huang. Learning to weight samples for dynamic early-exiting networks. In ECCV,
pp. 362–378. Springer, 2022.

Yizeng Han, Dongchen Han, Zeyu Liu, Yulin Wang, Xuran Pan, Yifan Pu, Chao Deng, Junlan Feng,
Shiji Song, and Gao Huang. Dynamic perceiver for efficient visual recognition. In ICCV, 2023a.

Yizeng Han, Zeyu Liu, Zhihang Yuan, Yifan Pu, Chaofei Wang, Shiji Song, and Gao Huang. Latency-
aware unified dynamic networks for efficient image recognition. arXiv preprint arXiv:2308.15949,
2023b.

Ali Hatamizadeh, Jiaming Song, Guilin Liu, Jan Kautz, and Arash Vahdat. Diffit: Diffusion vision
transformers for image generation. In European Conference on Computer Vision, pp. 37–55.
Springer, 2025.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE international conference on computer vision, pp. 1389–1397, 2017.

Charles Herrmann, Richard Strong Bowen, and Ramin Zabih. Channel selection using gumbel
softmax. In ECCV, pp. 241–257. Springer, 2020.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic
bert with adaptive width and depth. Advances in Neural Information Processing Systems, 33:
9782–9793, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 32, 2019.

Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang, Zhihui Li, and Xiaojun Chang. Dynamic
slimmable network. In CVPR, pp. 8607–8617, 2021.

Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang,
and Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 17535–17545, 2023.

Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song, Jue Wang, and Pengtao Xie. Not all patches
are what you need: Expediting vision transformers via token reorganizations. arXiv preprint
arXiv:2202.07800, 2022.

Peiyuan Liao, Xiuyu Li, Xihui Liu, and Kurt Keutzer. The artbench dataset: Benchmarking generative
models with artworks. arXiv preprint arXiv:2206.11404, 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Qihao Liu, Zhanpeng Zeng, Ju He, Qihang Yu, Xiaohui Shen, and Liang-Chieh Chen. Alleviating dis-
tortion in image generation via multi-resolution diffusion models. arXiv preprint arXiv:2406.09416,
2024.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378,
2023.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. arXiv preprint arXiv:2401.08740, 2024a.

Xin Ma, Yaohui Wang, Gengyun Jia, Xinyuan Chen, Ziwei Liu, Yuan-Fang Li, Cunjian Chen, and
Yu Qiao. Latte: Latent diffusion transformer for video generation. arXiv preprint arXiv:2401.03048,
2024b.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
arXiv preprint arXiv:2312.00858, 2023.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim
Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14297–14306, 2023.

Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan, Zuxuan Wu, Yu-Gang Jiang, and Ser-
Nam Lim. Adavit: Adaptive vision transformers for efficient image recognition. In CVPR, pp.
12309–12318, 2022.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

Taehong Moon, Moonseok Choi, EungGu Yun, Jongmin Yoon, Gayoung Lee, and Juho Lee. Early
exiting for accelerated inference in diffusion models. In ICML 2023 Workshop on Structured
Probabilistic Inference {\&} Generative Modeling, 2023.

Taehong Moon, Moonseok Choi, EungGu Yun, Jongmin Yoon, Gayoung Lee, Jaewoong Cho, and
Juho Lee. A simple early exiting framework for accelerated sampling in diffusion models. arXiv
preprint arXiv:2408.05927, 2024.

Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W Battaglia. Generating images with
sparse representations. arXiv preprint arXiv:2103.03841, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

Zizheng Pan, Bohan Zhuang, De-An Huang, Weili Nie, Zhiding Yu, Chaowei Xiao, Jianfei Cai,
and Anima Anandkumar. T-stitch: Accelerating sampling in pre-trained diffusion models with
trajectory stitching. arXiv preprint arXiv:2402.14167, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jeff Pool and Chong Yu. Channel permutations for n: m sparsity. Advances in neural information
processing systems, 34:13316–13327, 2021.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. NeurIPS, 34:13937–13949, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention–MICCAI
2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III
18, pp. 234–241. Springer, 2015.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on
diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1972–1981, 2023.

Junhyuk So, Jungwon Lee, Daehyun Ahn, Hyungjun Kim, and Eunhyeok Park. Temporal dynamic
quantization for diffusion models. Advances in Neural Information Processing Systems, 36, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Lin Song, Songyang Zhang, Songtao Liu, Zeming Li, Xuming He, Hongbin Sun, Jian Sun, and
Nanning Zheng. Dynamic grained encoder for vision transformers. NeurIPS, 34:5770–5783, 2021.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference via
early exiting from deep neural networks. In ICPR, pp. 2464–2469. IEEE, 2016.

Yao Teng, Yue Wu, Han Shi, Xuefei Ning, Guohao Dai, Yu Wang, Zhenguo Li, and Xihui Liu. Dim:
Diffusion mamba for efficient high-resolution image synthesis. arXiv preprint arXiv:2405.14224,
2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Kafeng Wang, Jianfei Chen, He Li, Zhenpeng Mi, and Jun Zhu. Sparsedm: Toward sparse efficient
diffusion models. arXiv preprint arXiv:2404.10445, 2024.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet: Learning dynamic
routing in convolutional networks. In Proceedings of the European conference on computer vision
(ECCV), pp. 409–424, 2018.

Yulin Wang, Rui Huang, Shiji Song, Zeyi Huang, and Gao Huang. Not all images are worth 16x16
words: Dynamic transformers for efficient image recognition. NeurIPS, 34:11960–11973, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Enze Xie, Lewei Yao, Han Shi, Zhili Liu, Daquan Zhou, Zhaoqiang Liu, Jiawei Li, and Zhenguo
Li. Difffit: Unlocking transferability of large diffusion models via simple parameter-efficient
fine-tuning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
4230–4239, 2023.

Jing Nathan Yan, Jiatao Gu, and Alexander M Rush. Diffusion models without attention. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
8239–8249, 2024.

Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and Gao Huang. Resolution adaptive networks
for efficient inference. In CVPR, pp. 2369–2378, 2020.

Xingyi Yang, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Diffusion probabilistic model made
slim. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 22552–22562, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

We organize our appendix as follows.

Response to reviewers:

• Section D.1: Visualization of DyDiT with different λ.
• Section D.2: Visualization of text-to-image generation on COCO.
• Section D.3: Frequently asked questions.

Experimental settings:

• Section A.1: Training details of DyDiT on ImageNet.
• Section A.2: Model configurations of both DiT and DyDiT.
• Section A.3: Implement details of pruning methods on ImageNet.
• Section A.4: Details of in-domain fine-tuning on fine-grained datasets.
• Section A.5: Details of cross-domain fine-tuning.

Additional results:

• Section B.1: The inference speed of DyDiT and its acceleration over DiT across models of
varying sizes and specified FLOP budgets.

• Section B.2: The generalization capability of our method on the U-ViT (Bao et al., 2023)
architecture.

• Section B.3: Further fine-tuning the original DiT to show that the competitive performance
of our method is not due to the additional fine-tuning.

• Section B.4: The effectiveness of DyDiT on 512×512 resolution image generation.
• Section B.5: The effectiveness of DyDiT in text-to-image generation, based on PixArt (Chen

et al., 2023).
• Section B.6: Integration of DyDiT with a representative distillation-based efficient sampler,

the latent consistency model (LCM) (Luo et al., 2023).
• Section B.7: Comparison between DyDiT with the early exiting diffusion model (Moon

et al., 2023).
• Section B.8: Fine-tuning efficiency of DyDiT. We fine-tune our model by fewer iterations.
• Section B.9: Data efficiency of DyDiT. Our model is fine-tuned on only 10% of the training

data.
• Section B.10: We combined our method with DeepCache (Ma et al., 2023).

Visualization:

• Section C.1: Additional visualizations of loss maps of DiT-XL.
• Section C.2: Additional visualizations of computational cost across different image patches.
• Section C.3: Visualization of images generated by DyDiT-XLλ=0.5 on the ImageNet dataset

at at resolution of 256× 256.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL SETTINGS.

A.1 TRAINING DETAILS OF DYDIT ON IMAGENET

In Table 6, we present the training details of our model on ImageNet. For DiT-XL, which is pre-
trained over 7,000,000 iterations, only 200,000 additional fine-tuning iterations (around 3%) are
needed to enable the dynamic architecture (λ = 0.5) with our method. For a higher target FLOPs
ratio λ = 0.7, the iterations can be further reduced.

model DiT-S DiT-B DiT-XL

optimizer AdamW (Loshchilov, 2017), learning rate=1e-4
global batch size 256
target FLOPs ratio λ [0.9, 0.8, 0.7, 0.5, 0.4, 0.3] [0.9, 0.8, 0.7, 0.5, 0.4, 0.3] [0.7, 0.6, 0.5, 0.3]
fine-tuning iterations 50,000 100,000 150,000 for λ = 0.7 200,000 for others
warmup iterations 0 0 30,000
augmentation random flip
cropping size 224×224

Table 6: Experimental settings of our adaption framework.

A.2 DETAILS OF DIT AND DYDIT MODELS

We present the configuration details of the DiT and DyDiT models in Table 7. For DiT-XL, we use
the checkpoint from the official DiT repository1 Pan et al. (2024). For DiT-S and DiT-B, we leverage
pre-trained models from a third-party repository2 provided by Pan et al. (2024).

Table 7: Details of DiT and DyDiT models. The router in DyDiT introduce a small number of
parameters. † denotes that the architecture is dynamically adjusted during generation.

model params. (M) ↓ layers heads channel pre-training source

DiT-S 33 12 6 384 5M iter Pan et al. (2024)
DiT-B 130 12 12 768 1.6M iter Pan et al. (2024)

DiT-XL 675 28 16 1152 7M iter Peebles & Xie (2023)
DyDiT-S 33 12 6 † 384 † - -
DyDiT-B 131 12 12 † 768 † - -

DyDiT-XL 678 28 16 † 1152 † - -

A.3 COMPARISON WITH PRUNING METHODS ON IMAGENET.

We compare our method with structure pruning and token pruning methods on ImageNet dataset.

• Random pruning, Magnitude Pruning (He et al., 2017), Taylor Pruning (Molchanov et al.,
2016), and Diff Pruning (Fang et al., 2024): We adopt the corresponding pruning strategy
to rank the importance of heads in multi-head self-attention blocks and channels in MLP
blocks. Then, we prune the least important 50% of heads and channels. The pruned model
is then fine-tuned for the same number of iterations as its DyDiT counterparts.

• ToMe (Bolya & Hoffman, 2023): Originally designed to accelerate transformer blocks in
the U-Net architecture, ToMe operates by merging tokens before the attention block and
then unmerging them after the MLP blocks. We set the token merging ratio to 20% in each
block.

A.4 IN-DOMAIN FINE-TUNING ON FINE-TRAINED DATASETS.

We first fine-tune a DiT-S model, which is initialized with parameters pre-trained on ImageNet, on
a fine-grained dataset. Following the approach in (Xie et al., 2023), we set the training iteration to

1https://github.com/facebookresearch/DiT
2https://github.com/NVlabs/T-Stitch

17

https://github.com/facebookresearch/DiT
https://github.com/NVlabs/T-Stitch

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

24,000. Then, we further fine-tune the model on the same dataset by another 24,000 iterations to
adapt the pruning or dynamic architecture to improve the efficiency of the model on the same dataset.
We also conduct the generation at a resolution off 224 × 224. We search optimal classifier-free
guidance weights for these methods.

• Random pruning, Magnitude Pruning (He et al., 2017), Taylor Pruning (Molchanov et al.,
2016), and Diff Pruning (Fang et al., 2024): For each method, we rank the importance of
heads in multi-head self-attention blocks and channels in MLP blocks, pruning the least
important 50%.

• ToMe (Bolya & Hoffman, 2023): Originally designed to accelerate transformer blocks in
the U-Net architecture, ToMe operates by merging tokens before the attention block and
then unmerging them after the MLP blocks. We set the token merging ratio to 20% in each
block.

A.5 CROSS-DOMAIN TRANSFER LEARNING

In contrast to the aforementioned in-domain fine-tuning, which learns the dynamic strategy within
the same dataset, this experiment employs cross-domain fine-tuning. We fine-tune a DiT-S model
(pre-trained exclusively on ImageNet) to adapt to the target dataset while simultaneously learning the
dynamic architecture. The model is fine-tuned over 48,000 iterations with a batch size of 256.

B ADDITIONAL RESULTS

B.1 INFERENCE ACCELERATION.

In Table 8, we present the acceleration ratio of DyDiT compared to the original DiT across different
FLOPs targets λ. The results demonstrate that our method effectively enhances batched inference
speed, distinguishing our approach from traditional dynamic networks (Herrmann et al., 2020; Meng
et al., 2022; Han et al., 2023b), which adapt inference graphs on a per-sample basis and struggle to
improve practical efficiency in batched inference.

Table 8: We conduct batched inference on an NVIDIA V100 32G GPU using the optimal batch size
for each model. The actual FLOPs of DyDiT may fluctuate around the target FLOPs ratio.

model s/image ↓ acceleration ↑ FLOPs (G) ↓ FID ↓ FID ∆ ↓

DiT-S 0.65 1.00 × 6.07 21.46 +0.00
DyDiT-Sλ=0.9 0.63 1.03 × 5.72 21.06 -0.40
DyDiT-Sλ=0.8 0.56 1.16 × 4.94 21.95 +0.49
DyDiT-Sλ=0.7 0.51 1.27 × 4.34 23.01 +1.55
DyDiT-Sλ=0.5 0.42 1.54 × 3.16 28.75 +7.29
DyDiT-Sλ=0.4 0.38 1.71 × 2.63 36.21 +14.75
DyDiT-Sλ=0.3 0.32 2.03 × 1.96 59.28 +37.83

DiT-B 2.09 1.00 × 23.02 9.07 +0.00
DyDiT-Bλ=0.9 1.97 1.05 × 21.28 8.78 -0.29
DyDiT-Bλ=0.8 1.76 1.18 × 18.53 8.79 -0.28
DyDiT-Bλ=0.7 1.57 1.32 × 16.28 9.40 +0.33
DyDiT-Bλ=0.5 1.22 1.70 × 11.90 12.92 +3.85
DyDiT-Bλ=0.4 1.06 1.95 × 9.71 15.54 +6.47
DyDiT-Bλ=0.3 0.89 2.33 × 7.51 23.34 +14.27

DiT-XL 10.22 1.00 × 118.69 2.27 +0.00
DyDiT-XLλ=0.9 9.73 1.05 × 110.73 2.15 -0.12
DyDiT-XLλ=0.8 8.66 1.18 × 96.04 2.13 -0.14
DyDiT-XLλ=0.7 7.76 1.32 × 84.33 2.12 -0.15
DyDiT-XLλ=0.6 6.86 1.49 × 67.83 2.18 -0.09
DyDiT-XLλ=0.5 5.91 1.73 × 57.88 2.07 -0.20
DyDiT-XLλ=0.3 4.26 2.40 × 38.85 3.36 +1.09

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B.2 EFFECTIVENESS ON U-VIT.

We evaluate the architecture generalization capability of our method through experiments on U-
ViT (Bao et al., 2023), a transformer-based diffusion model with skip connections similar to U-
Net (Ronneberger et al., 2015). The results, shown in Table 9, indicate that configuring the target
FLOPs ratio λ to 0.4 and adapting U-ViT-S/2 to our dynamic architecture (denoted as DyUViT-
S/2 λ=0.4) reduces computational cost from 11.34 GFLOPs to 4.73 GFLOPs, while maintaining
a comparable FID score. We also compare our method with the structure pruning method Diff
Pruning (Fang et al., 2024) and sparse pruning methods ASP (Pool & Yu, 2021; Mishra et al., 2021)
and SparseDM (Wang et al., 2024). The results verify the superiority of our dynamic architecture
over static pruning.

In Table 10, we apply our method to the largest model, U-ViT-H/2, and conduct experiments on
ImageNet. The results demonstrate that our method effectively accelerates U-ViT-H/2 with only a
marginal performance drop. These results verify the generalizability of our method in U-ViT.

Table 9: U-ViT (Bao et al., 2023) performs image generation on the CIFAR-10
dataset (Krizhevsky et al., 2009). Aligning with its default configuration, we generate images
using 1,000 diffusion steps with the Euler-Maruyama SDE sampler (Song et al., 2020b).

model s/image ↓ acceleration ↑ FLOPs (G) ↓ FID ↓ FID ∆ ↓

U-ViT-S/2 2.19 1.00 × 11.34 3.12 0.00
DyU-ViT-S/2λ=0.4 1.04 2.10 × 4.73 3.18 +0.06

pruned w/ Diff - - 5.32 12.63 +9.51
pruned w/ ASP - - 5.76 319.87 +316.75

pruned w/ SparseDM - - 5.67 4.23 +1.11

Table 10: U-ViT (Bao et al., 2023) performs image generation on the ImageNet (Deng et al.,
2009). Aligning with its default configuration, we generate images using 50-step DPM-solver++(Lu
et al., 2022).

model s/image ↓ acceleration ↑ FLOPs (G) ↓ FID ↓ FID ∆ ↓

U-ViT-H/2 2.22 1.00 × 113.00 2.29 0.00
DyU-ViT-H/2λ=0.5 1.35 1.57 × 67.09 2.42 +0.13

B.3 FURTHER FINE-TUNE ORIGINAL DIT ON IMAGENET.

Our method is not attributed to additional fine-tuning. In Table 11, we fine-tune the original DiT for
150,000 and 350,000 iterations, observing a slight improvement in the FID score, which fluctuates
around 2.16. “DiT-XL′” denotes that we introduce the same routers in DiT-XL to maintain the
same parameters as that of DyDiT. Under the same iterations, DyDiT achieves a better FID while
significantly reducing FLOPs, verifying that the improvement is due to our design rather than extended
training iterations.

Table 11: Further fine-tuneing original DiT on ImageNet.

model pre-trained iterations fine-tuning iterations FLOPs (G) ↓ FID ↓ FID ∆ ↓

DiT-XL 7,000,000 - 118.69 2.27 +0.00
DiT-XL 7,000,000 150,000 (2.14%) 118.69 2.16 -0.11
DiT-XL 7,000,000 350,000 (5.00%) 118.69 2.15 -0.12
DiT-XL′ 7,000,000 150,000 (2.14%) 118.69 2.15 -0.12

DyDiT-XLλ=0.7 7,000,000 150,000 (2.14%) 84.33 2.12 -0.15

B.4 EFFECTIVENESS IN HIGH-RESOLUTION GENERATION.

We conduct experiments to generate images at a resolution of 512×512 to validate the effectiveness
of our method for high-resolution generation. We use the official checkpoint of DiT-XL 512×512 as

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

the baseline, which is trained on ImageNet (Deng et al., 2009) for 3,000,000 iterations. We fine-tune
it for 150,000 iterations to enable its dynamic architecture, denoted as DyDiT-XL 512×512. The
target FLOP ratio is set to 0.7. The experimental results, presented in Table 12, demonstrate that
our method achieves a superior FID score compared to the original DiT-XL, while requiring fewer
FLOPs.

Table 12: Image generation at 512×512 resolution on ImageNet (Deng et al., 2009). We sample
50,000 images and leverage FID to measure the generation quality. We adopt 100 and 250 DDPM
steps to generate images. “FLOPs (G)” denotes the average FLOPs in one timestep.

model DDPM steps s/image ↓ acceleration ↑ FLOPs (G) ↓ FID ↓ FID ∆ ↓

DiT-XL 512×512 100 18.36 1.00× 514.80 3.75 0.00
DyDiT-XL 512×512 λ=0.7 100 14.00 1.31× 375.35 3.61 -0.14

DiT-XL 512×512 250 45.90 1.00× 514.80 3.04 0.00
DyDiT-XL 512×512 λ=0.7 250 35.01 1.31× 375.05 2.88 -0.16

B.5 EFFECTIVENESS IN TEXT-TO-IMAGE GENERATION.

We further validate the applicability of our method in text-to-image generation, which is more
challenging than the class-to-image generation. We adopt PixArt-α (Chen et al., 2023), a text-to-
image generation model built based on DiT (Peebles & Xie, 2023) as the baseline. PixArt-α is
pre-trained on extensive private datasets and exhibits superior text-to-image generation capabilities.
Our model is initialized using the official PixArt-α checkpoint fine-tuned on the COCO dataset (Lin
et al., 2014). We further fine-tune it with our method to enable dynamic architecture adaptation,
resulting in the DyPixArt-α model, as shown in Table 13. Notably, DyPixArt-α with λ = 0.7 achieves
an FID score comparable to the original PixArt-α, while significantly accelerating the generation.

Table 13: Text-to-image generation on COCO (Lin et al., 2014). We randomly select text prompts
from COCO and adopt 20-step DPM-solver++ (Lu et al., 2022) to sample 30,000 images for evaluating
the FID score.

Model s/image ↓ acceleration ↑ FLOPs (G) ↓ FID ↓ FID ∆ ↓

PixArt-α 0.91 1.00 × 141.09 19.88 +0.00
DyPixArt-αλ=0.7 0.69 1.32 × 112.44 19.75 -0.13

B.6 EXPLORATION OF COMBINING LCM WITH DYDIT .

Some sampler-based efficient methods (Meng et al., 2023; Song et al., 2023; Luo et al., 2023) adopt
distillation techniques to reduce the generation process to several steps. In this section, we combine
our DyDiT, a model-based method, with a representative method, the latent consistency model
(LCM) (Luo et al., 2023) to explore their compatibility for superior generation speed. In LCM, the
generation process can be reduced to 1-4 steps via consistency distillation and the 4-step generation
achieves an satisfactory balance between performance and efficiency. Hence, we conduct experiments
in the 4-step setting. Under the target FLOPs ratio λ = 0.9, our method further accelerates generation
and achieves comparable performance, demonstrating its potential with LCM. However, further
reducing the FLOPs ratio leads to model collapse. This issue may arise because DyDiT’s training
depends on noise prediction difficulty, which is absent in LCM distillation, causing instability at
lower FLOPs ratios. This encourage us to develop dynamic models and training strategies for
distillation-based efficient samplers to achieve superior generation efficiency in the future.

B.7 COMPARISON WITH THE EARLY EXITING METHOD.

We compare our approach with the early exiting diffusion model ASE (Moon et al., 2023; 2024), which
implements a strategy to selectively skip layers for certain timesteps. Following their methodology,
we evaluate the FID score using 5,000 samples. Results are summarized in Table 15. Despite
similar generation performance, our method achieves a better acceleration ratio, demonstrating the
effectiveness of our design.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 14: Combining DyDiT with Latent Consistency Model (LCM) (Luo et al., 2023) . We
conduct experiments under the 4-step LCM setting, as it achieves a satisfactory balance between
performance and efficiency.

model s/image ↓ FLOPs (G) ↓ FID ↓ FID ∆ ↓

DiT-XL+250-step DDPM 10.22 118.69 2.27 +0.00
DiT-XL + 4-step LCM 0.082 118.69 6.53 +4.26

DyDiT-XLλ=0.9 + 4-step LCM 0.076 104.43 6.52 +4.25

Table 15: Comparison with the early exiting method (Moon et al., 2023; 2024). As methods may
be evaluated on different devices, we report only the acceleration ratio for speed comparison.

model acceleration ↑ FID ↓ FID ∆ ↓

DiT-XL 1.00 × 9.08 0.00
DyDiT-XLλ=0.5 1.73 × 8.95 -0.13
ASE-D4 DiT-XL 1.34 × 9.09 +0.01
ASE-D7 DiT-XL 1.39 × 9.39 +0.31

B.8 TRAINING EFFICIENCY

Our approach enhances the inference efficiency of the diffusion transformer while maintaining
training efficiency. It requires only a small number of additional fine-tuning iterations to learn the
dynamic architecture. In Table 16, we present our model with various fine-tuning iterations and their
corresponding FID scores. The original DiT-XL model is pre-trained on the ImageNet dataset over
7,000,000 iterations with a batch size of 256. Remarkably, our method achieves a 2.12 FID score
with just 50,000 fine-tuning iterations to adopt the dynamic architecture-approximately 0.7% of the
pre-training schedule. Furthermore, when extended to 100,000 and 150,000 iterations, our method
performs comparably to DiT. We observe that the actual FLOPs during generation converge as the
number of fine-tuning iterations increases.

Table 16: Training efficiency. The original DiT-XL model is pre-trained on the ImageNet dataset
over 7,000,000 iterations with a batch size of 256.

model fine-tuning iterations FLOPs (G) ↓ FID ↓ FID ∆ ↓

DiT-XL - 118.69 2.27 +0.00
DyDiT-XLλ=0.7 10,000 (0.14%) 103.08 45.95 43.65
DyDiT-XLλ=0.7 25,000 (0.35%) 91.97 2.97 +0.70
DyDiT-XLλ=0.7 50,000 (0.71%) 85.07 2.12 -0.15
DyDiT-XLλ=0.7 100,000 (1.43%) 84.30 2.17 -0.10
DyDiT-XLλ=0.7 150,000 (2.14%) 84.33 2.12 -0.15

B.9 DATA EFFICIENCY

To evaluate the data efficiency of our method, we randomly sampled 10% of the ImageNet
dataset (Deng et al., 2009) for training. DyDiT was fine-tuned on this subset to adapt the dy-
namic architecture. As shown in Table 17, when fine-tuned on just 10% of the data, our model
DyDiT-XLλ=0.7 still achieves performance comparable to the original DiT. When we further reduce
the fine-tuning data ratio to 1%, the FID score increase slightly by 0.06. These results indicate that
our method maintains robust performance even with limited fine-tuning data.

B.10 COMBINATION WITH GLOBAL ACCELERATION.

DeepCache (Ma et al., 2023) is a train-free technique which globally accelerates generation by
caching feature maps at specific timesteps and reusing them in subsequent timesteps. As shown
in Table 18, with a cache interval of 2, DyDiT achieves further acceleration with only a marginal
performance drop. In contrast, DiT with DeepCache requires a longer interval (e.g. 5) to achieve

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 17: Data efficiency. The slight difference in FLOPs of our models is introduced by the learned
TDW and SDT upon fine-tuning convergence.

model fine-tuning data ratio FLOPs (G) ↓ FID ↓ FID ∆ ↓

DiT-XL - 118.69 2.27 +0.00
DyDiT-XLλ=0.7 100% 84.33 2.12 -0.15
DyDiT-XLλ=0.7 10% 84.43 2.13 -0.14
DyDiT-XLλ=0.7 1% 84.37 2.31 +0.06

Table 18: Combined with DeepCache. “interval” denotes the interval of cached timestep in
DeepCache (Ma et al., 2023).

Model interval s/image ↓ FID ↓

DiT-XL 0 10.22 2.27
DiT-XL 2 5.02 2.47
DiT-XL 5 2.03 6.73

DyDiT-XLλ=0.5 0 5.91 2.08
DyDiT-XLλ=0.5 2 2.99 2.43
DyDiT-XLλ=0.5 3 2.01 3.37

comparable speed with ours, resulting in an inferior FID score. These results demonstrate the
compatibility and effectiveness of our approach in conjunction with DeepCache.

C VISUALIZATION

C.1 ADDITIONAL VISUALIZATION OF LOSS MAPS

In Figure 10, we visualize the loss maps (normalized to the range [0, 1]) for several timesteps,
demonstrating that noise in different image patches exhibits varying levels of prediction difficulty.

C.2 ADDITIONAL VISUALIZATION OF COMPUTATIONAL COST ON IMAGE PATCHES

In Figure 11, we quantify and normalize the computational cost across different image patches during
generation, ranging from [0, 1]. The proposed spatial-wise dynamic token strategy learns to adjust
the computational cost for each image patch.

C.3 VISUALIZATION OF SAMPLES FROM DYDIT-XL

We visualize the images generated by DyDiT-XLλ=0.5 on the ImageNet (Deng et al., 2009) dataset at
a resolution of 256× 256 from Figure 12 to Figure 25. The classifier-free guidance scale is set to 4.0.
All samples here are uncurated.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D RESPONSE TO REVIEWERS

D.1 VISUALIZATION OF DYDIT WITH DIFFERENT λ

We visualize images generated from DyDiT with different λ. Images generated from DyDiT-S and
DyDiT-XL are presented in Figure 7 and Figure 8, respectively.

DiT-S

DyDiT-S
λ=0.3

DyDiT-S
λ= 0.5

DyDiT-S
λ=0.7

DyDiT-S
λ=0.9

Figure 7: DyDiT-S.

D.2 VISUALIZATION OF TEXT-TO-IMAGE GENERATION ON COCO

We visualize images generated from the original PixArt-α Chen et al. (2023) and our DyPixArt-α
with λ = 0.7 in Figure 9. The visual quality of images generated from DyPixArt-α is comparable to
that from the original PixArt-α.

D.3 FREQUENTLY ASKED QUESTIONS

Question: It is unclear how the "pre-define" in L214 benefit the sampling stage?

Pre-define enables batched inference of our method. The activation of heads and channel groups in
TWD relies solely on the timestep t, allowing us to pre-calculate activations prior to deployment.
By storing the activated indices for each timestep, we can directly access the architecture during
generation for a batch of samples. This approach eliminates the sample-dependent inference graph

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

DyDiT-XL
λ= 0.5

DyDiT-XL
λ=0.3

DyDiT-XL
λ= 0.7

DiT-XL

Figure 8: DyDiT-XL.

A man with glasses and his
eyes closed dressed in a
black shirt and a necktie.

PixArt-α DyPixArt-α

A group of young people
getting ready to go ski.

This is a person holding a
cellular telephone on the side
of a street.

A bus is parked in front
of a building.

A cat laying on the front
of a car.

A man sitting on a couch
playing with a game system.

The white van is parked
beside the sidewalk near a
cone.

Meal with carrots broccoli
and rice

PixArt-α DyPixArt-α

Figure 9: DyPixArt-α with λ = 0.7.

typical in traditional dynamic architectures, enabling efficient and realistic speedup in batched
inference.

Question: The proposed modules to efficient samplers or to samplers with varying sampling
steps remains unclear.

Consistent with standard practices in samplers such as DDPM, varying the sampling steps translates
to differing timestep intervals. We adopt its official code to map t into the range 0–1000, aligning with
the 1000 total timesteps used during training. For example, in DDPM with 100 and 250 timesteps:

a) 250-DDPM timestep: t ∈ [249,5, 4, 3, 2, 1, 0] maps to t250-DDPM ∈
[999, 995,20, 16, 12, 8, 4, 0].

b) 100-DDPM timestep: t ∈ [99, 98, ...2, 1, 0] maps into t100-DDPM ∈ [999, 989, ...20, 10, 0].

In TWD, we adopt t250-DDPM and t100-DDPM to predict activation masks. When t250-DDPM = t100-DDPM,
the denoising process is at the same stage**, resulting in identical activation masks from TWD.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Some suggestions about the selection of λ.

a) Depending on computational resources, users may select different λ values during fine-tuning to
balance efficiency and performance.

b) We recommend initially setting λ = 0.7, as it generally delivers comparable performance. If the
results are satisfactory, consider reducing λ (e.g., to 0.5) for further optimization. Conversely, if
performance is inadequate, increasing λ may be beneficial.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

original
image

normalized loss maps
� = 200 � = 300 � = 400 � = 600 � = 800 � = 900

Figure 10: Additional visualization of loss maps from DiT-XL. The loss values are normalized to
the range [0, 1]. Different image patches exhibit varying levels of prediction difficulty.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 11: Additional visualizations of computational cost across different image patches.
Complementary to Figure 6, we visualize more generated images and their corresponding FLOPs
cost across different image patches. The map is normalized to [0, 1] for clarity.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 12: Uncurated 256×256 DyDiT-XLλ=0.5 samples. Loggerhead turtle (33).

Figure 13: Uncurated 256×256 DyDiT-XLλ=0.5 samples. Macaw (88).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 14: Uncurated 256×256 DyDiT-XLλ=0.5 samples. Kakatoe galerita (89).

Figure 15: Uncurated 256×256 DyDiT-XLλ=0.5 samples. Golden retriever (207).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 16: Uncurated 256×256 DyDiT-XLλ=0.5 samples. Siberian husky (250).

Figure 17: Uncurated 256×256 DyDiT-XLλ=0.5 samples. Lion (291).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 18: Uncurated 256×256 DyDiT-XLλ=0.5 samples. Lesser panda(387).

Figure 19: Uncurated 256×256 DyDiT-XLλ=0.5 samples. Panda (388).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 20: Uncurated 256×256 DyDiT-XLλ=0.5 samples. Dogsled (537).

Figure 21: Uncurated 256×256 DyDiT-XLλ=0.5 samples. Space shuttle (812).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 22: Uncurated 256×256 DyDiT-XLλ=0.5 samples. Ice cream (928).

Figure 23: Uncurated 256×256 DyDiT-XLλ=0.5 samples. liff(972).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 24: Uncurated 256×256 DyDiT-XLλ=0.5 samples. Lakeside (975).

Figure 25: Uncurated 256×256 DyDiT-XLλ=0.5 samples. Volcano (980).

34

	Introduction
	Related Works
	Dynamic Diffusion Transformer
	Preliminary
	Timestep-wise Dynamic Width
	Spatial-wise Dynamic Token
	FLOPs-aware end-to-end Training

	Experiments
	Comparison with State-of-the-Art Diffusion Models
	Comparison with Pruning Methods
	Results on fine-grained datasets
	Ablation Study
	Visualization
	Combination with efficient samplers.

	Discussion and Conclusion
	Experimental Settings.
	Training details of DyDiT on ImageNet
	Details of DiT and DyDiT models
	Comparison with pruning methods on ImageNet.
	In-domain fine-tuning on fine-trained datasets.
	Cross-domain transfer learning

	Additional Results
	Inference acceleration.
	Effectiveness on U-ViT.
	Further fine-tune original DiT on ImageNet.
	Effectiveness in High-resolution Generation.
	Effectiveness in Text-to-Image Generation.
	Exploration of Combining LCM with DyDiT .
	Comparison with the Early Exiting Method.
	Training efficiency
	Data efficiency
	Combination with global acceleration.

	Visualization
	Additional Visualization of Loss Maps
	Additional Visualization of Computational Cost on Image Patches
	Visualization of samples from DyDiT-XL

	Response to Reviewers
	Visualization of DyDiT with different
	Visualization of text-to-image generation on COCO
	Frequently asked questions

