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Abstract

We consider the task of learning how to act in collaboration with a human expert
based on observational data. The task is motivated by high-stake scenarios such as
healthcare and welfare, where algorithmic action recommendations are made to
a human expert, opening the option of deferring recommendation in cases where
the human might act better on their own. This task is especially challenging
when dealing with observational data, as using such data runs the risk of hidden
confounders whose existence can lead to biased and harmful policies. However,
unlike standard policy learning, the presence of a human expert can mitigate some
of these risks. We build on the work of Mozannar and Sontag [2020] on consistent
surrogate loss for learning with the option of deferral to an expert, where they
solve a cost-sensitive supervised classification problem. Since we are solving a
causal problem, where labels do not exist, we use a causal model to learn costs
which are robust to a bounded degree of hidden confounding. We prove that our
approach can take advantage of the strengths of both the model and the expert
to obtain a better policy than either. We demonstrate our results by conducting
experiments on synthetic and semi-synthetic data and show the advantages of our
method compared to baselines.

1 Introduction

Machine learning models are increasingly being developed to perform tasks performed by human
decision-makers in high-stakes settings such as clinical decision making [Adams et al., 2022, Ra-
jpurkar et al., 2022], criminal justice [Stevenson and Doleac, 2022] and social services [Behncke
et al., 2009, McBrien et al., 2022]. Some of these tasks involve recommending actions such as
medical treatment, releasing on bail, or receiving benefits. Typically the data used to train such
action-recommendation models is based on past human decisions and their outcomes. For example,
we might observe how patients were treated for diabetes and their subsequent health outcomes.

Learning to act better in the future based on past observed actions is a causal problem. For such
problems we face the fundamental problem of causal inference [Holland, 1986], i.e. the unknowability
of counterfactual outcomes: “Would this patient have been better had they been treated differently?”.
Estimating causal quantities based on observational data such as hospital records is risky, as there is
always the possibility of hidden confounding. Roughly speaking, this means there exist factors that
affected the human decision maker and the outcome, but are unavailable to the model during training.

Learning models from data which has hidden confounding can lead to biased and harmful treatment
assignment policies. However, human experts’ decisions can also be biased, sub-optimal, or wrong.
Thus, a setting in which both the human expert and the model can complement each other might be
the best choice, mitigating the potential weaknesses and leveraging the strengths of both the model
and the human expert [Bansal et al., 2020, Charusaie et al., 2022]. We believe this is especially
pertinent in causal inference, as the human expert typically has access to the hidden confounders.
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In this paper, we design a framework for learning a causal action recommendation model that can
jointly work with a human decision-maker, while using observational data where hidden confounders
might exist. We assume that the effect of the hidden confounders is limited (in a way we specify
below), as without any assumption about the nature of hidden confounding, learning would be
impossible. Our goal is to design a system consisting of a machine learning model estimating causal
effects and a human expert working in a complementary setting. In addition to learning treatment
assignment, the model learns the weaknesses and strengths of the human expert and will decide in
each case whether to recommend a certain treatment to the patient, or whether it is better to defer the
decision to the expert. The ultimate goal is to learn better policies and to reduce the burden on human
experts. We call our method Causal Action Recommendation with Expert Deferral (CARED).

CARED follows in the footsteps of Mozannar and Sontag [2020], who developed a method for
learning a classifier with the option of deferral to an expert. They propose a reduction of the problem
to a cost-sensitive learning problem, where costs are based on the true labels of data samples. They
give a surrogate loss for the cost-sensitive learning problem which generalizes the cross-entropy loss,
and prove this loss is consistent, i.e., converges to the optimal solution of the original problem. Our
problem can similarly be viewed as a classification problem with the option of deferring to an expert.
However, the causal case is more difficult: the correct label for each sample is the best treatment
to be prescribed to this sample based on its features, and due to the fundamental problem of causal
inference we cannot know this label. Thus, unlike Mozannar and Sontag [2020] we do not have the
true labels for our classification problem.

To overcome the challenges of the causal setting, we propose a set of costs that instead of being
based on the true labels, are based on estimated bounds on counterfactual outcomes. These costs
guide our model towards learning what is the right treatment for each patient while acknowledging
that the human expert has access to additional information the model cannot access. We prove a
generalization bound on the loss of the joint machine-expert system, and further prove that under
certain assumptions about the model used to estimate the bounds mentioned above, the joint machine-
expert system outperforms both the human expert and a pure machine learning model. Finally, we
evaluate CARED on synthetic and semi-synthetic data to demonstrate how we can learn policies that
outperform both pure machine learning policies and human experts. We further show that CARED
outperforms a recently proposed method by Gao and Yin [2023] that addresses the same problem
with an inverse-propensity weighted approach.

2 Related work
Many works focus on solving the problem of policy learning for action recommendations from
observational data. Some notable approaches include reweighting by inverse propensity weighting
(IPW) and other weighting techniques [Swaminathan and Joachims, 2015, Kallus, 2017, Beygelzimer
and Langford, 2009], and the approach of using doubly robust scores to determine the optimal
treatment assignment policy for binary treatments [Dudík et al., 2014, Athey and Wager, 2021,?,
Kallus and Zhou, 2020]. Other methods predict the Conditional Average Treatment Effect (CATE)
and use it as the guideline for treatment assignment for each sample, such as Jesson et al. [2021],
and Kallus et al. [2019]. Most of these works assume ignorability, i.e., that there are no hidden
confounders that affect both treatment assignment and the outcome in the data. As mentioned earlier,
this assumption rarely holds when observational data is in use, and its presence, if not accounted for,
can lead to biased and harmful policies. Our work builds on previous work for learning supervised
classification problems with the deferral option by Mozannar and Sontag [2020], and is inspired by
Athey and Wager [2021] who derive costs for learning policies from observational data under the
assumption of no hidden confounders.

Gao and Yin [2023] present a framework for collaborative human-AI policy learning from obser-
vational data with deferral, building on earlier work [Gao et al., 2021] which did not allows for
hidden confounding. To the best of our knowledge, theirs is the only existing method that learns
a policy with the deferral option under hidden confounding. Their method minimizes an inverse
propensity weighted estimator of the worst-case risk over a class of differentiable policies, and over
an uncertainty set around the observed propensities. The uncertainty set is determined by constraints
motivated by the Marginal Sensitivity Model [Tan, 2006]. While our method employs both out-
come models and propensity scores, Gao and Yin [2023]’s approach focuses on propensity score
re-weighting. The re-weighted objective implies that only cases where the proposed policy agrees to a
high degree with the observed policy are taken into account. As we show in the experimental section
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below, this (along with the lack of outcome model) might lead to under-performance, especially
in the (common) case where the constraint set is not accurately known. Gao and Yin [2023] also
explore the case where there are multiple specific human experts the model is optimizing for, which
we plan to explore in future work. We also compare our method to Kallus and Zhou [2020], who take
a similar approach as Gao and Yin [2023] for learning a policy while allowing the violation of the
unconfoundedness assumption. However, they do not have the option of deferral.

In other related work, Stensrud et al. [2024] consider the case where the expert’s action can be used
as input to the method, motivated by the fact that the expert typically has access to unobserved
confounders. This is distinct from our use case but has interesting implications in identifying the
so-called “superoptimal regime” where the expert’s action can strictly improve over a policy derived
purely from the observables. Finally, Yin et al. [2024] offer a novel approach towards learning to
defer in the non-causal setting, which could be adapted to our use case in the future.

3 Setup

We work under an observational data setting with the Neyman-Rubin potential outcomes framework
[Rubin, 2005]. Let (X,A, Y (1), Y (0), U) be a sample drawn from the unobservable distribution
Pfull, where A ∈ A = {0, 1} is a binary treatment, X ∈ X ⊂ Rd is a set of baseline covariates, Y (1)
and Y (0) are the real-valued treated and untreated potential outcomes, respectively, and U ∈ Rk is
an unobserved confounder. We face the fundamental problem of causal inference and only observe
n draws from the coarsened distribution P over the observed variables Z = (X,A, Y ), where we
assume that Y = Y (A), i.e. (causal) consistency. We generally follow the convention that higher
outcomes are better, we mention when assumed differently. We use the Marginal sensitivity Model
(MSM) [Tan, 2006] as a way to model a limited degree of unobserved confounding. We are interested
in learning a policy with the option of deferral, such that given the patient’s covariates it either assigns
a treatment or defers the decision to an expert.

Let e(x) = P (A = 1 |X = x) and e(x, u) = Pfull(A = 1 |X = x, U = u) be the observed and full
propensity scores, under P and Pfull, the observed and the full unobserved distributions, respectively.

Assumption 1 (MSM Assumption). We assume e(x), e(x, u) ∈ (0, 1) and that the ratio between the
full odds of treatment e(x, u)/(1− e(x, u)) and the observed odds of treatment e(x)/(1− e(x)) is
bounded by at most a factor of Λ ≥ 1 almost surely under Pfull:

Λ−1 ≤ e(x, u)

1− e(x, u)

¡
e(x)

1− e(x)
≤ Λ.

Note that When Λ = 1, Assumption 1 is equivalent to the classic assumption of unconfoundedness
with respect to the observed X . As Λ increases, the MSM allows for greater levels of unobserved
confounding. Setting Λ is a matter of ongoing research, and is typically done by calibrating with
respect to observed confounders [McClean et al., 2024]. In our case, it is also tied to the fraction of
deferrals to the human expert and can be tuned to achieve a desired deferral rate.

For a treatment a ∈ {0, 1} and a covariate vector x ∈ X we define the Conditional Average Potential
Outcome (CAPO) as E [Y (a)|X = x]. The Conditional Average Treatment Effect (CATE) is
the difference τ(x) = E [Y (1)− Y (0)|X = x]. Let M(Λ) be the set of distributions P̃full that
agree with the observed P on (X,A, Y ) and that also agree with Assumption 1. Then Y +(x, a) =
supP̃full∈M(Λ) E [Y (a)|X = x] is the so-called sharp upper bound on the CAPO E [Y (a)|X = x], and

similarly for Y −(x, a), taking an infimum instead. We further let Ŷ +(x, a), Ŷ −(x, a) be estimated
upper and lower bound for the corresponding CAPO functions.

A policy with deferral is a function π : X → {0, 1,⊥} that maps covariates to a possible action,
or defers the decision to an expert, where ⊥ denotes deferral. A policy π can be assessed by its
policy value V (π) = E[Y (π)], where higher policy values are related to better policies unless stated
otherwise. The action when the algorithm chooses to defer is the action the human expert has taken,
see discussion of this in the limitations subsection (8). The learned policies will be assessed relative
to a baseline policy value, such as the policy value based solely on the human expert. Our goal is for
CARED to learn a policy that does no worse than the baseline policy and hopefully outperforms it.
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4 CAPO-Based Policies
We now present two baseline policies that can be defined based on the CAPO bounds.

The first is Bounds Policy Equation (1). This policy assigns treatment if the upper and lower bounds
on the CATE have the same sign, and otherwise it defers, i.e. it defers if the CATE interval crosses 0.
This approach was used in previous work, e.g. [Jesson et al., 2021, Oprescu et al., 2023]. The second
is the Pessimistic Policy Equation (2). It is pessimistic in the sense that it does not trust the human
expert, so it does not allow deferral to an expert. It agrees with the Bounds Policy in the cases where
that policy would not defer, and in the cases where the Bounds Policy would defer it decides based
on the lower bounds, which (assuming higher outcomes are better) are indeed pessimistic.

Let Q̂(x) = (Ŷ +(x, 0), Ŷ −(x, 0), Ŷ +(x, 1)), Ŷ −(x, 1)) be the CAPO bounds estimates for a sample
(X = x,A = a, Y = y). We further assume that the expert policy is reflected in the training data in
the sense that their policy is πexp(xi) = ai. Then, given a model that supplies CAPO bounds Q̂, we
define the following policies, which we consider as baselines henceforth:

Bounds Policy:

πQ̂
bounds(x) =


1 if Ŷ −(x, 1)− Ŷ +(x, 0) > 0

0 if Ŷ +(x, 1)− Ŷ −(x, 0) < 0

⊥ otherwise.
(1)

Pessimistic Policy:

πQ̂
pessimistic(x) =


1 if Ŷ −(x, 1)− Ŷ +(x, 0) > 0

0 if Ŷ +(x, 1)− Ŷ −(x, 0) < 0

1 otherwise, Ŷ −(x, 1)− Ŷ −(x, 0) > 0

0 otherwise

(2)

The above policies, while accounting for hidden confounding, even when allowing deferral to an
expert, do not learn the strengths and weaknesses of the expert, so they might not be the optimal
policies. We show this theoretically in Section 6.2, and empirically in Section 7.

5 Method
In this section, we present our method in which we design a machine-expert system for learning a
policy with the option of deferral to an expert under hidden confounding. In 5.1 we describe the
joint machine-expert objective we are interested in optimizing, the challenges it imposes, and how
to optimize a consistent surrogate cost-sensitive loss that converges to the optimal solution of the
original objective, based on Mozannar and Sontag [2020]. Then in 5.2 we introduce our proposed set
of costs based on the CAPO bounds for solving this cost-sensitive problem. Lastly, we explain the
step of CAPO estimation in 5.3. Our algorithm is summarized below in Algorithm 1.

5.1 Joint machine-expert objective function
We design a joint machine-expert system, where we aim to learn a policy π : X → A ∪ {⊥}. We
denote by m ∈ A the expert’s action that is assumed to be drawn from the distribution M |X =
x, U = u. Note that the expert might have access to additional information – the hidden confounder
U , which is unavailable to the model. We cast our problem as a cost-sensitive optimization objective

L(π) = Ex,y∼P (X,Y ),m∼M |x,u[C(x, π(x))Iπ(x) ̸=⊥ + C⊥(x,m, y)Iπ(x)=⊥], (3)

where C(x, a) is the cost incurred by the system if for a sample with covariates x, an action/treatment
a was chosen by the model, and C⊥(x,m, y) is the cost incurred when action m was chosen for
sample x by the expert. We explain below why C⊥ depends on y but C does not.

In the case of no unobserved confounding and no deferral, Athey and Wager [2021] have shown how
the costs above can be set such that the cost minimizer is the policy with optimal policy value. We
describe how we set costs that address both hidden confounding and deferral in the next subsection.

The above objective is non-convex and difficult to optimize. We deal with this challenge by building
on the approach of Mozannar and Sontag [2020] for learning classifiers with the option of deferral to
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an expert, where they have a similar objective as in Equation (3). They give a convex and consistent
surrogate loss for the cost-sensitive learning problem, which is a weighted cross-entropy loss, where
the weights are based on a set of costs they build using the true labels for the classification problem.

As explained earlier, our problem can also be viewed as a classification problem with the option
of deferring to an expert. However, due to the fundamental problem of causal inference [Holland,
1986] we do not have the true labels, which are in our case, the best treatment to be prescribed to this
sample based on its features, which is a challenge that we deal with in Section 5.2.

Following is the surrogate loss we optimize, in Section 5.2 we present our proposed set of costs, and
in Section 6 we give consistency and generalization guarantees for this surrogate loss.

Let πi : X → R be the raw output of the policy π corresponding to a class i ∈ {0, 1,⊥},
and define π(x) = argmaxi∈{0,1,⊥} πi(x). Let z = (x, a, y) be a sample, and Q̂(x) =

(Ŷ +(x, 0), Ŷ −(x, 0), Ŷ +(x, 1)), Ŷ −(x, 1)) the CAPO bounds. These bounds are then used to define
the scores c(0) = C(x, 0), c(1) = C(x, 1), and c(⊥) = C⊥(x,m, y) as we show in Section 5.2
below. Define wj(z, Q̂(x)) = maxk∈{0,1,⊥} c(k) − c(j). Then the surrogate loss function for
Equation (3) is given by:

LCE(π, z; Q̂) =
∑

j∈{0,1,⊥}

−wj(z, Q̂(x)) log

Ç
exp(πj(x))∑

k∈{0,1,⊥} exp(πk(x))

å
. (4)

The method we propose uses the above system loss for learning a policy from observational data with
the presence of a limited degree of hidden confounding and the ability to defer. The difficulty in this
case is constructing the costs C(x, 0), C(x, 1) and C⊥(x,m, y) which are used to derive the weights
wj , since ground truth labels are never available — a challenge we address now.

5.2 Action Costs
As mentioned earlier, our classification problem does not have the true labels, as opposed to Mozannar
and Sontag [2020]. We therefore propose a set of costs based on estimated bounds on counterfactual
outcomes rather than on the true labels, guiding our model in learning for which cases it can safely
recommend actions, and which to defer to the human expert. These costs are then used to derive the
weights in the objective Equation (4).

For i ∈ [n] let (xi, yi, ai) be the i-th observed sample, and let Ŷ +(xi, a), Ŷ
−(xi, a) be the estimates

of the upper and lower bounds of the CAPO for an action a ∈ A, and a covariates x ∈ X . We propose
setting the cost of assigning the action a to the i-th sample to be:

C(xi, a) = Ŷ +(xi, 1− a)− Ŷ −(xi, a).

This cost encourages the model to choose the action with the highest outcome. When this is not the
case, i.e. the model chooses another action than the one with the highest estimated outcome, then it
will incur a cost which is the difference between the lower bound of the outcome corresponding to the
action chosen, and the upper bound of the outcome corresponding to the action which was supposed
to be chosen based on the outcomes. This cost can be thought of as the worst-case regret of the model
relative to the optimal action. It is important to note that this is only one option among many options
for building a set of costs for this purpose. For instance, we can switch the roles of the upper and
lower bounds of the CAPOs to obtain various costs expressing differing levels of risk-aversion.

As for the cost of deferring to an expert, following the same logic, we propose two alternatives. Given
covariates xi, expert action m = ai and outcome yi the conservative deferral cost is:

C⊥(xi, ai, yi) = Ŷ −(xi, 1− ai)− yi,

and similarly the optimistic deferral cost is: C⊥(xi, ai, yi) = Ŷ +(xi, 1 − ai) − yi. These costs
represent to what extent are we willing to take an action different from the one the expert took
which resulted in the outcome actually seen in the data, i.e. m = ai which lead to outcome yi. In
the optimistic case, deferring to an expert results in incurring a greater cost in comparison to its
conservative counterpart, encouraging the model to make fewer deferrals and focusing on samples it
is highly uncertain about. It is optimistic in the sense of assuming the model’s estimates are likely
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correct. Choosing between these alternatives should to be done based on the characteristics of the
specific policy and use case. In Appendix A.3 we show a comparative analysis of the two alternatives.

To summarize we present here the costs corresponding to the conservative approach:

C(xi, 1) = Ŷ +(xi, 0)− Ŷ −(xi, 1)

C(xi, 0) = Ŷ +(xi, 1)− Ŷ −(xi, 0)

C⊥(xi, ai, yi) =

®
Ŷ −(xi, 0)− yi, if ai = 1

Ŷ −(xi, 1)− yi, otherwise.

Taken together, these costs encourage the model to classify a sample as a = 1 or a = 0 in cases
where it is certain that particular action would be best, and to defer cases where the expert seems to
have made the correct decision (in the conservative case). An illustrative example of the costs choice
can be found in Appendix A. Additionally, we demonstrate costs’ coherence in Theorem 1.

5.3 CAPO Estimation
From an algorithmic point of view, any method that yields upper and lower bounds on the CAPO
given some degree of hidden confounding can be used to obtain the costs Section 5.2. As we will
see in the next section, our theoretical results require bounds with certain generalization and validity
properties to hold. In this work, we use the B-learner [Oprescu et al., 2023] for estimating the upper
and lower bounds of the CAPO, as it has the properties needed for the theoretical analysis and shows
good performance in practice, and being a meta-learner it can accommodate various base learners,
including random forests and neural networks.

Algorithm 1 CARED Policy Learner - The Conservative Approach

input Data {(xi, ai, yi) : i ∈ {1, ..., n}}
1: Use data {(xi, ai, yi) : i ∈ {1, ..., n}} to learn the CAPO bounds:

Q̂(xi) = (Ŷ +(xi, 0), Ŷ
−(xi, 0), Ŷ

+(xi, 1)), Ŷ
−(xi, 1))

//e.g. using B-learner [Oprescu et al., 2023]
2: Construct the conservative costs based on the CAPO bounds:

ci(1) = C(xi, 1) = Ŷ +(xi, 0)− Ŷ −(xi, 1)

ci(0) = C(xi, 0) = Ŷ +(xi, 1)− Ŷ −(xi, 0)

ci(⊥) = C⊥(xi, ai, yi) =

®
Ŷ −(xi, 0)− yi, if ai = 1

Ŷ −(xi, 1)− yi, otherwise

3: Calculate weights wj
i = maxk∈{0,1,⊥} ci(k)− ci(j)

4: Learn a policy: π ∈ argminπ′∈Π
1
n

∑n
i=1

∑
j∈{0,1,⊥} −wj

i log
(

exp(π′
j(xi))∑

k∈{0,1,⊥} exp(π′
k(xi))

)
.

output π

6 Theoretical Guarantees
We present theoretical guarantees for CARED as follows: In 6.1 we show that the optimum of the
surrogate loss function LCE (eq. 4) agrees with the optimum of the machine-expert loss function L
(eq. 3). Then, in 6.2 we show that the costs we use in LCE are coherent, in the sense that minimizing
them leads to a decision that is non-inferior to the decision either the expert or the machine would
have made on their own. Finally, in 6.3 we give a generalization bound for the loss LCE .

6.1 Consistency
Corollary 1. LCE is convex in π and is a consistent loss function for L:
Let π̃ = arg infπ E[LCE(π, z; Q̂)], then π̃ = arg infπ L(π).

This result is a straightforward adaptation of Proposition 1 of Mozannar and Sontag [2020], as their
result is not sensitive to the particular choice of costs (B.0.1). It motivates using the surrogate loss
function LCE which is much more amenable to optimization than the original machine-expert loss L.
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6.2 Costs Are Coherent
We now show that the costs C(x, 0), C(x, 1), C⊥(x, a, y) are coherent, in the sense that they indeed
work as intended: a policy that minimizes them locally is always at least as good as (and indeed, in
general better than) both the expert on their own and the machine on its own.

Definition 1. [Bound Validity] For a sample x with corresponding potential outcomes Y (0) and
Y (1), let Q̂(x) = (Ŷ +(x, 0), Ŷ −(x, 0), Ŷ +(x, 1)), Ŷ −(x, 1)) be the estimated CAPO bounds. Then
Q̂ is valid for (Y (0), Y (1)) if Y (a) ∈ [Ŷ −(x, a), Ŷ +(x, a)] for a ∈ {0, 1}.

Validity means that bounds indeed contain their respective potential outcomes. For example, Oprescu
et al. [2023] prove that their bounds are valid on average.

Theorem 1 (Costs are coherent). Let π̃(xi) ∈ argminLCE(π, zi; Q̂(xi)), πexp the expert’s policy,

and πQ̂
bounds(xi) the CAPO-based policy defined in 1. If Q̂(xi) is valid for (Yi(0), Yi(1)), then

Y (π̃(xi)) ≥ max
{
Y (πexp(xi)) , Y

(
πQ̂

bounds(xi)
)}

.

Furthermore, under certain technical conditions on the distribution of Y (0), Y (1) and Q̂, the
inequality is strong with non-zero probability for each sample.

Theorem 1 shows that whenever the bounds include the true potential outcome, the action that
minimizes our proposed loss function is at least as good as the action implied by the baseline πQ̂

bounds
policy, as well as the human expert policy.

6.3 Generalization Bound
We now show the generalization bound for our machine-expert system loss. We start with assumptions,
then we state the main theorem.

Assumption 2 (Policy learners). Let Π be the class of policies over which we optimize Equation (4).
We assume the class Π is with restricted complexity, specifically Rn(Π) = O( 1√

n
), where Rn(Π)

is the Rademacher Complexity of the policy class Π. Classes that have this property include linear
functions, logistic functions, decision trees with a bounded depth, and neural networks with weight
decay or dropout Kallus and Zhou [2020].

Assumption 3 (Policy Learner with Bounded Outputs). Let π ∈ Π and πj : X → R be the raw
output of the classifier π corresponding to a class/action j ∈ {0, 1,⊥}. We assume there exists a
constant Cπ such that |πj | ≤ Cπ for all j.

Assumption 4 (Boundedness of the Outcomes). Y is bounded, i.e. |Y | ≤ CY for CY > 0.

Assumption 5. [Rates for ERM CAPO Bounds Estimators] The CAPO bounds estimators Ŷ ⋄(x, a)

for a ∈ {0, 1} and ⋄ ∈ {+,−} satisfy: ∥Ŷ ⋄(x, a)− Y ⋄(x, a)∥ ≲ Op(n
−1/(2+r)) with 0 < r < 2.

Assumption 5 implies that the convergence rate of the L2 norm of the estimation error of the CAPO
bounds converges not too slowly (in probability).Notably, the B-Learner bound estimates satisfy
Assumption 5 under some assumption on the class of policy learners and the nuisance estimators,
according to Corollary 1 from Oprescu et al. [2023].

We now give a generalization bound on the loss of the joint machine-expert system:

Theorem 2 (Generalization Bound). Given a policy class Π satisfying Assumption 2, Assumption 3
with a constant Cπ , Assumption 4 with a constant CY , and Assumption 5 with 0 < r < 2.

Let π ∈ Π, be a policy, and let Q, Q̂ be the CAPO bounds and the estimated CAPO bounds
respectively. Then there exists a constant C > 0 such that with a probability of at least 1 − δ the
following holds:

LD(π;Q)− LS(π; Q̂) ≤ 2Rn(Π) + 24 · Cπ ·

(
CY

 
2 ln(4/δ)

n
+ C ·

Ä
n−1/(2+r)

ä)
(5)

where LS(π; Q̂) = 1
n

∑n
i=1 LCE(π, zi; Q̂(xi)) is the training loss, and LD(π;Q) =

Ez∼p(z) [LCE(π, z;Q(x))] is the expected loss for the combined machine-expert system loss in
4, and Rn(Π) is the Rademacher Complexity of the policy class Π.
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7 Experiments
Here we examine the utility of CARED by conducting experiments on synthetic and semi-synthetic
data in Section 7.1 and Section 7.2, respectively. Further details about the experiments, datasets,
models, and hyper-parameters can be found in Appendix C.

Our main comparison is to Gao and Yin [2023]’s method (ConfHAI) that allows for a bounded
degree of confounding in addition to allowing the option of deferral to a human expert. They learn
a policy by optimizing a minimax reweighting-based risk estimate over an uncertainty set around
the observed propensities. The uncertainty sets are determined by the MSM assumption, which is
the same assumption we employ to bound the degree of hidden confounding. Another baseline we
consider is Kallus and Zhou [2020]’s method (CRLogit) which proceeds under a similar approach
and allows for a bounded degree of confounding, but does not allow deferral to a human. Additionally,
we evaluate all methods against the following baselines: Oracle Policy which is the best policy
that assigns for each patient the true best treatment. In both experiments, this policy is available
to us, as we have the true potential outcomes. Current Expert/ Baseline Policy this is the default
policy that we refer to in cases of deferral. Typically, it is the policy of the current expert, but it
can be any other policy of our choice. Pessimistic Policy: Using the Equation (2) policy with the
bounds Q̂ given by the B-learner Oprescu et al. [2023]. B-Learner Policy: Using the πQ̂

bounds policy
of Equation (1) with the bounds Q̂ given by the B-learner [Oprescu et al., 2023]. We use the exact
same Q̂ in Algorithm 1, and in the B-learner and pessimistic policies. Random Deferral Policy: this
is a variant of the B-Learner policy which introduces a different approach to deferral, where samples
are deferred randomly based on a specified deferral rate.

7.1 Synthetic data
In this experiment, we replicate the study from Gao and Yin [2023] using synthetic data, comparing
our method to ConfHAI and CRLogit. Since this experiment is measuting regret, we follow Gao
et al. [2021] and compare to a Baseline Policy that assigns treatment a = 0 for all patients and is
denoted by π0. In this experiment lower outcomes are better.

Data The data is generated according to the following data generation process:

ξ ∼ Bern(0.5), X ∼ N ((2ξ − 1)µx, I5),

U = I[Y (1) < Y (0)],

Y (A) = β⊤
0 x+ I[A = 1]β⊤

treatx+ 0.5αξI[A = 1] + η + ωξ + ϵ

where β0 = [0, 0.5,−0.5, 0, 0], βtreat = [−1.5, 1,−1.5, 1, 0.5], µx = [−1, 0.5,−1, 0,−1], η = 2.5,
α = −2, ω = 1.5, and ϵ ∼ N (0, 1). The nominal propensity is logistic by X , e(X) = σ(β⊤X) with
β = [0, 0.75,−0.5, 0,−1, 0]. The confounder is denoted by U , and the true propensity score is given
by: e(X,U) = (Λ0U+1−U)e(X)

[1+2(Λ0−1)e(X)−Λ0]U+Λ0+(1−Λ0)e(X) , with the true Λ0, such that log(Λ0) = 2.5.

Experiment We replicate the experiment from Gao and Yin [2023] and run 10 trials, with different
instances of the above data, a train data size of 2000, and test data of size 10000. For each trial,
we vary the sensitivity parameter Λ in {0.01, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}, corresponding to various
levels of assumed hidden confounding. We compare the policy regret for the returned policy for
each method relative to the Baseline Policy. In addition, we report the policy regret for the human
expert in the dataset (Human’s Policy) which is reflected by the variable A in the dataset. As for
the CARED policy, we obtain it by applying Algorithm 1 with a logistic policy implemented as a
single-layer MLP network.

Results In Figure 1 we see that CARED outperforms all other methods, specifically improving over
the expert for all Λ values. In contrast, the ConfHAI and CRLogit improve over the expert for a
limited range of values of Λ, which is for a range around the true value of the sensitivity parameter
Λ0 showed in the plot, and perform noticeably worse than the expert for many Λ values when the Λ
is mis-specified. In contrast, CARED shows robustness to all Λ values, making it a safer choice, as
correctly specifying Λ is challenging [McClean et al., 2024].

7.2 IHDP Hidden Confounding
In this experiment, we aim to demonstrate how our method can adapt to the human expert using a
semi-synthetic dataset: the IHDP hidden confounding dataset.
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Figure 1: Synthetic Data: Policy regret, lower policy regret is better. x-axis is levels of hidden
confounding according to the MSM model. The true Λ0 is reported as a black vertical line. Human’s
Policy is the human expert’s choices (A) as observed in the data. CRLogit Policy [Kallus and Zhou,
2020]: learn a policy with an IPW approach under hidden confounding, without deferral. ConfHAI
Policy [Gao and Yin, 2023] similarly learns a policy with IPW approach under hidden confounding
with deferral. CARED: our proposed method Pessimistic Policy and B-Learner Policy are based
on CAPO bounds from the B-Learner [Oprescu et al., 2023] and are defined in Equation (2) and
Equation (1), respectively. Oracle Policy assigns the best true treatment to each patient.

Dataset The hidden-confounding version of the IHDP dataset [Hill, 2011] was introduced by Jesson
et al. [2021]. The Infant Health and Development Program (IHDP) dataset [Hill, 2011] is a dataset
consisting of real covariates and a treatment that were collected from an RCT that targeted low-birth-
weight, premature infants. The treatment was providing both intensive high-quality child care and
home visits from a trained provider, while the outcomes were simulated according to the response
surface B described by Hill [2011]. Jesson et al. [2021] induced hidden confounding onto the dataset
by hiding the x9 covariate; however, the response surface B from Hill [2011] is still used to generate
the observed outcomes. In this dataset higher outcomes are better, thus we build the loss function
using the appropriate set of costs for this assumption.

Semi-Synthetic Expert (Current Expert) We design a semi-synthetic expert, based on the original
observed expert’s policy, and the Oracle policy. The new semi-synthetic expert is designed as follows:
when the feature x17 -“worked during pregnancy” receives the value 1, then the new expert is identical
to the Oracle policy, and otherwise, it is identical to the original expert. This way, the new expert is
perfect when x17, which happens in probability 0.59. See details in Appendix C.2.1.

Experiment We conduct this experiment on the modified IHDP Hidden Confounding consisting
of tuples (X,A′, Y ′), where the A′ is the new expert, and the Y ′ is the outcome corresponding to
the expert A. We generate 1000 realizations of the dataset. For each realization, we train the policy
model for different values of the causal uncertainty parameter Λ and calculate: the rate of the samples
deferred to the expert, and the policy value of the learned policy. We then plot the average policy
value per causal uncertainty level - the parameter Λ in Figure 2a, and the average policy value per
average deferral rate over all trials in Figure 2b. As for our method, we obtain our policy by applying
Algorithm 1 with a logistic policy implemented as a single-layer MLP network.

Results In Figure 2a We observe that CARED consistently improves upon the expert’s policy,
yielding a higher average policy value across all levels of the causal uncertainty parameter, Λ.
Notably, it outperforms the baseline methods for reasonable values of Λ, and achieves a policy value
closest to that of the optimal Oracle Policy. As in the previous experiment, CARED demonstrates
greater robustness to variations in the assumed level of confounding. For high Λ values, CARED’s
performance trends toward that of the expert policy, which is expected, as larger Λ values result in
less informative and thus less reliable CAPO intervals. In contrast, ConfHAI only begins to improve
when the assumed confounding level closely matches the true sensitivity parameter.

These results highlight the robustness and reliability of our policy, showing that it performs well even
when the sensitivity parameter is misspecified by the data analyst. Moreover, when the sensitivity
parameter reaches very high levels, CARED avoids unnecessary risk by converging towards the
expert policy, reflecting its conservative response to high causal uncertainty.

9



In Figure 2b we compare our method only to baselines that incorporate deferral. Here, instead
of regret, we assess the policies by their average policy value across all trials, and we plot the
performance according to the average deferral rate over all trials. Our results show that our policy
consistently outperforms the other methods at equivalent deferral rates.

The peak of the plot of the CARED Policy is when both the model and the expert work in collaboration
and take advantage of the strengths of both the ML model and the expert. This happens at a deferral
rate that is close to ∼ 0.6, which is almost precisely the percentage of the cases where the expert does
as well as the oracle policy according to how the expert was designed. This indicates that our model
learns the strength of the expert, and knows when to defer to the expert. While ConfHAI defers only
a small fraction of samples on average, which might indicate that this method does not learn the
weaknesses and strengths of the expert.
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(a) Policy Value for different values of Λ
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(b) Policy Value for different levels of deferral

Figure 2: IHDP Hidden Confounding: Figure 2a shows policy value for different levels of allowed
hidden confounding in the data according to the MSM model Assumption 1. The x-axis represents
different values of the uncertainty parameter Λ, and the true Λ0 is reported as a black vertical line.
Figure 2b shows policy value for different rates of deferral. The x-axis represents different levels of
practitioner caution by varying the percentage of recommendations deferred. The methods shown
here are the same as in Figure 1, in addition to Random Deferral Policy that defers a randomly chosen
fraction of samples to the expert at each deferral rate.

8 Discussion
In this paper we proposed CARED: a method for learning policies from observational data where the
model can recommend a treatment or defer to an expert. When learning to act from observational
data which includes experts’ actions, hidden confounders are by necessity factors that influenced
the experts’ decisions, and are thus available to them even though they are unavailable to the model.
This makes our setting pertinent to the problem of safely learning to recommend actions based on
observational data where the actions were taken by human experts, as is the case in many medical and
legal settings, for example. CARED thus mitigates some of the risk of learning causal models from
observational data. A further advantage is that we might not need to know the true Λ for the system
to be useful: instead we might wish to calibrate the rate of deferral instead, as that might be the more
practical constraint the system faces, in terms of human labor vs. the joint system’s policy value.

We showed both theoretically and by experiments in synthetic and semi-synthetic data that our method
outperforms relevant baselines for this task, and can combine in a synergistic manner the expert’s and
machine learning model’s capabilities.

Limitations and future work Our current method requires access to the experts actions in the
observational data; it cannot accommodate directly a different expert, since we cannot know the
potential outcomes corresponding to how that new expert would have acted. A further limitation is the
assumption that at test time the experts would behave the same for the deferred cases as they would
have before system deployment. Realistically, deploying an action recommendation system might
change the experts’ behavior more broadly. Accounting for this would require testing and modeling
the experts behavior in such conditions. Future work will explore this more dynamic setting, taking
into account the ongoing interactions and learning between the human expert and the system.
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A Action Costs
In this section, we present examples that illustrate our choice of the costs. Then we prove the consistency of our
costs for some base cases, that is, we show that the lowest cost corresponds to the right action for our choice for
the set of costs.

Let z = (x, a, y) be a sample, and assume Y (0) > Y (1) w.l.o.g, that is, the right treatment is A = 1.
Ŷ +(x, 0), Ŷ −(x, 0), Ŷ +(x, 1), Ŷ −(x, 1) are the CAPOs corresponding to this sample.

We recall our proposed costs:

C(x, 1) = Ŷ +(x, 0)− Ŷ −(x, 1)

C(x, 0) = Ŷ +(x, 1)− Ŷ −(x, 0)

Ccons
⊥ (x, a, y) =

®
Ŷ −(xi, 0)− yi, if ai = 1

Ŷ −(xi, 1)− yi, otherwise.

Copt
⊥ (x, a, y) =

®
Ŷ +(x, 0)− y, if a = 1

Ŷ +(x, 1)− y, otherwise.

where Ccons
⊥ (x, a, y), and Copt

⊥ (x, a, y) correspond to the conservative and optimistic deferral costs respectively.

A.1 No overlap between CAPOs intervals
Example In this example, we show a case where the CAPOs intervals don’t overlap, we provide a visual diagram
for this example in Figure 3a, where we let Ŷ +(x, 0) = 4, Ŷ −(x, 0) = 1, Ŷ +(x, 1) = 9, Ŷ −(x, 1) = 5, and
Y (0) = 2, Y (1) = 6. Then we have that:

C(x, 1) = −1

C(x, 0) = 8

As for the deferral cost, there are two possible cases: if the expert is right, meaning a = 1, y = Y (1), the
deferral costs are:

Ccons
⊥ (x, a, y) = −5

Copt
⊥ (x, a, y) = −2

for both alternatives, we have the lowest costs corresponding to the deferral cost, which means that we will guide
the model to choose the expert’s decision, which is in this case, the right treatment.

On the other hand, when the expert is wrong, i.e. a = 0, y = Y (0), the deferral costs are:

Ccons
⊥ (x, a, y) = 3

Copt
⊥ (x, a, y) = 7

Where for both alternatives, the lowest cost is the cost of the treatment a = 1, which is the right treatment.

Proof of the general case We show a visualization for the general case where the CAPOs intervals don’t overlap
in Figure 3b. In the general case we have that:

C(x, 1) = −d

C(x, 0) = ℓ0 + d+ ℓ1

As for the deferral cost, when expert is right, meaning a = 1, y = Y (1), the deferral costs are:

Ccons
⊥ (x, a, y) = −

Ä
ℓ0 + d+ ℓ−1

ä
Copt

⊥ (x, a, y) = −
Ä
d+ ℓ−1

ä
for both alternatives, we have the lowest costs corresponding to the deferral cost, which means that we will guide
the model to choose the expert’s decision, which is in this case, the right treatment.
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On the other hand, when the expert is wrong, i.e. a = 0, y = Y (0), the deferral costs are:

Ccons
⊥ (x, a, y) = ℓ+0 + d

Copt
⊥ (x, a, y) = ℓ1 + d+ ℓ+0

Where for both alternatives, the lowest cost is the cost of the treatment a = 1, which is the right treatment.

(a) Example

(b) The general case
Figure 3: No overlap between CAPOs intervals visualization

A.2 CAPOs intervals overlap
We now focus on the cases where the CAPOs intervals overlap. In Figure 4 we present two examples for cases
where the CAPOs intervals overlap and show how this affects the costs.

Example 1. In the example presented in Figure 4a, where we let Ŷ +(x, 0) = 5, Ŷ −(x, 0) = 1, Ŷ +(x, 1) =

9, Ŷ −(x, 1) = 4, and Y (0) = 2, Y (1) = 6. Then we have that:

C(x, 1) = 1

C(x, 0) = 8

As for the deferral cost, there are two possible cases: if the expert is right, meaning a = 1, y = Y (1), the
deferral costs are:

Ccons
⊥ (x, a, y) = −5

Copt
⊥ (x, a, y) = −1

for both alternatives, we have the lowest costs corresponding to the deferral cost, which means that we will guide
the model to choose the expert’s decision, which is in this case, the right treatment.

On the other hand, when the expert is wrong, i.e. ai = 0, yi = Y (0), the deferral costs are:

Ccons
⊥ (x, a, y) = 2

Copt
⊥ (x, a, y) = 7

Where for both alternatives, the lowest cost is the cost of the treatment a = 1, which is the right treatment.

Example 2. In the example presented in Figure 4b, we show an interesting case, where although Y (1) >

Y (0), the value of Y (1) lies into the intersection of the two intervals. We let Ŷ +(x, 0) = 5, Ŷ −(x, 0) =

1, Ŷ +(x, 1) = 9, Ŷ −(x, 1) = 4, and Y (0) = 2, Y (1) = 4.5. Then we have that:

C(x, 1) = 1

C(x, 0) = 8

As for the deferral cost, there are two possible cases: if the expert is right, meaning a = 1, y = Y (1), the
deferral costs are:

Ccons
⊥ (x, a, y) = −3.5

Copt
⊥ (x, a, y) = 0.5
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for both alternatives, we have the lowest costs corresponding to the deferral cost, which means that we will guide
the model to choose the expert’s decision, which is in this case, the right treatment.

On the other hand, when the expert is wrong, i.e. ai = 0, yi = Y (0), the deferral costs are:

Ccons
⊥ (x, a, y) = 2

Copt
⊥ (x, a, y) = 7

Where for both alternatives, the lowest cost is the cost of the treatment a = 1, which is the right treatment.

(a)

(b)
Figure 4: CAPOs intervals overlap visualization

A.3 A Comparative Analysis of the Conservative and Optimistic Costs
We provide an analysis that highlights the scenarios where each of the conservative and optimistic approaches
proves superior to the other.

For a sample (x, a, y, Y (0), Y (1)) ∼ Pfull, where w.l.o.g it holds that Y (1) > Y (0), that is, the right treatment
for this sample is 1.

We distinguish between two main cases:

The expert is right:
When the expert is right, i.e. πexp(x) = 1, and Y (πexp(xi)) = Y (1), then,a policy with this set of costs will
predict the wrong treatment π̃(x) = 0 when the following condition holds:

C(x, 0) < min{C(x, 1), C⊥(x, a = 1, y = Y (1))} (6)

For the conservative approach, this holds when:

Ŷ +(x, 1)− Ŷ −(x, 0) < Ŷ −(x, 0)− Y (1) (7)

As for the the optimistic approach, this holds when:

Ŷ +(x, 1)− Ŷ −(x, 0) < Ŷ +(x, 0)− Y (1) (8)

When Equation (7) holds and Equation (8) does not hold, these are the cases where the optimistic approach
outperforms the conservative approach, i.e.:

Ŷ +(x, 0) + Ŷ −(x, 0) < Ŷ +(x, 0) + Y (1) < 2Ŷ −(x, 0) (9)

We note that Equation (14) never holds, and thus when the expert is right, the optimistic approach cannot
outperform its conservative counterpart.

On the other hand, when Equation (8) holds and Equation (7) does not hold, these are the cases where the
conservative approach outperforms the optimistic approach, i.e.:

2Ŷ −(x, 0) < Ŷ +(x, 1) + Y (1) < Ŷ −(x, 0) + Ŷ +(x, 0) (10)

The expert is wrong
When the expert is wrong, i.e. πexp(x) = 0, and Y (πexp(xi)) = Y (0), then, a policy with this set of costs will
predict the wrong treatment π̃(x) = 0 when the following condition holds:

min{C(x, 0), C⊥(x, a = 0, y = Y (0))} < C(x, 1) (11)

For the conservative approach, this holds when:

Ŷ −(x, 1)− Y (0) < Ŷ +(x, 0)− Ŷ −(x, 1) (12)
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As for the the optimistic approach, this holds when:

Ŷ +(x, 1)− Y (0) < Ŷ +(x, 0)− Ŷ −(x, 1) (13)

When Equation (12) holds and Equation (13) does not hold, these are the cases where the optimistic approach
outperforms the conservative approach, i.e.:

2Ŷ −(x, 1) < Ŷ +(x, 0) + Y (0) < Ŷ +(x, 1) + Ŷ −(x, 1) (14)

On the other hand, when Equation (13) holds and Equation (12) does not hold, these are the cases where the
conservative approach outperforms the optimistic approach, i.e.:

Ŷ −(x, 1) + Ŷ +(x, 1) < Ŷ +(x, 0) + Y (0) < 2Ŷ −(x, 1) (15)

We note that Equation (14) never holds, and thus when the expert is wrong, the conservative approach cannot
outperform its optimistic counterpart.

B Proof of Main Theorems
In this section, we provide the proof of our main theorems.

B.0.1 Consistency
Proof of Corollary 1. we can apply Proposition 1 from Mozannar and Sontag [2020] directly to our setting
yielding the statement of our Corollary.

Note that we used a slightly different statement of Proposition 1 from Mozannar and Sontag [2020] from
readability considerations and consistency with our setup and problem formulation.

The formulation of the original statement using our notation is as follows:

Corollary 2. LCE is convex in π and is a consistent loss function for L: Let π̃ = arg infπ E[LCE(π, z; Q̂)],
then argmaxi∈{0,1,⊥} π̃i = argmini∈{0,1,⊥} E[c(i)|Z = z].

with c(0) = C(x, 0), c(1) = C(x, 1), and c(⊥) = C⊥(x, a, y) defined in Section 5.

We recall that the surrogate loss LCE[4] is defined for policies πi : X → R be the raw output of the policy
π corresponding to a class i ∈ {0, 1,⊥}, such that π(x) = argmaxi∈{0,1,⊥} πi(x). Therefore, this holds
especially for π̃ = arg infπ E[LCE(π, z; Q̂)], i.e.

π̃ = arg max
i∈{0,1,⊥}

π̃i (16)

As for optimizing the original loss function L(π)[3], the optimization problem is given by,

π̇ = arg inf
π′

E[L(π′)] (17)

according to Mozannar and Sontag [2020], this problem can be solved as a cost-sensitive problem with the costs
c(0) = C(x, 0), c(1) = C(x, 1), and c(⊥) = C⊥(x, a, y) for each sample (x, a, y), i.e., the solution of this
optimal optimization problem satisfies the following for each sample z: π̇ = argmini∈{0,1,⊥} E[c(i)|Z = z]
Thus, our adaptation of the results is equivalent to the original results from Mozannar and Sontag [2020].

B.1 Costs Are Coherent
In this section, we prove the coherency of our costs as defined in Section 6.2, and show the improvement of the
CARED policy over policies that depend solely on either a human expert or a machine.

Proof of Theorem 1. For a sample (x, a, y, Y (0), Y (1)) ∼ Pfull, where w.l.o.g it holds that Y (1) > Y (0), that
is, the right treatment for this sample is 1. We assume Definition 1 holds with probability 1− δ. Then we prove
this theorem in two steps: Comparison against the human expert policy (πexp), and comparison against the
bounds policy(πbounds).

Comparison Against the Expert:

We distinguish between two main cases:

The expert is right:

When the expert is right, i.e. πexp(x) = 1, and Y (πexp(xi)) = Y (1), then our policy will predict the wrong
treatment π̃(x) = 0 when the following condition holds:

C(x, 0) < min{C(x, 1), C⊥(x, a = 1, y = Y (1))} (18)
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That is:

Ŷ +(x, 1)− Ŷ −(x, 0) < min{Ŷ +(x, 0)− Ŷ −(x, 1), Ŷ −(x, 0)− Y (1)} (19)

In simple words, we recall that our method assigns the treatment with the minimal cost among all other treatments.
Thus, when the cost of the wrong treatment is the minimal cost among the other costs, our method will make
mistakes.

We note that it holds that:

Ŷ −(x, 0)− Y (1) ≤
Ŷ −(x,1)≤Y (1)

Ŷ −(x, 0)− Ŷ −(x, 1) ≤
Ŷ +(x,0)≥Ŷ −(x,0)

Ŷ +(x, 0)− Ŷ −(x, 1)

⇒ min{Ŷ +(x, 0)− Ŷ −(x, 1), Ŷ −(x, 0)− Y (1)} = Ŷ −(x, 0)− Y (1)

Thus, π̃(x) is wrong when:

Ŷ +(x, 1)− Ŷ −(x, 0) < Ŷ −(x, 0)− Y (1) (20)

We note that the condition in 20 never holds when CAPO bounds are valid, and therefore, with probability 1− δ,
it holds that π̃(x) = 1, and Y (π̃ = (x)) = Y (1), That is, Y (π̃(x)) = Y (πexp(x))

The expert is wrong:

When the expert is wrong, i.e. πexp(x) = 0, and Y (πexp(x)) = Y (0), then, from the same considerations above,
our policy is wrong when:

min{C(x, 0), C⊥(x, a = 0, y = Y (0))} < C(x, 1) (21)

That is:

min{Ŷ +(x, 1)− Ŷ −(x, 0), Ŷ −(x, 1)− Y (0)} < Ŷ +(x, 0)− Ŷ −(x, 1) (22)

We note that it holds that:

Ŷ −(x, 1)− Y (0) ≤
Ŷ −(x,0)≤Y (0)

Ŷ −(x, 1)− Ŷ −(x, 0) ≤
Ŷ +(x,1)≥Ŷ −(x,1)

Ŷ +(x, 1)− Ŷ −(x, 0)

⇒ min{Ŷ +(x, 1)− Ŷ −(x, 0), Ŷ −(x, 1)− Y (0)} = Ŷ −(x, 1)− Y (0)

Thus, π̃(x) is wrong when:

Ŷ −(x, 1)− Y (0) < Ŷ +(x, 0)− Ŷ −(x, 1) (23)

When this happens, we have that π̃(x) = 0, and Y (π̃(x)) = Y (0), that is, Y (π̃(xi)) = Y (πexp(xi)), otherwise,
when this condition does not hold, we have that Y (π̃(x)) > Y

(
πexp(x)

)
Comparison Against the Bounds Policy

We analyze the cases where each policy makes mistakes. We note that π̃ is always right when CAPO intervals
don’t overlap as proved in Appendix A. This holds for the πbounds policy as well, as this implies directly from
its definition. On the other hand, when the CAPO bounds overlap, both policies can make mistakes

Thus, we distinguish between two cases:

CAPO bounds don’t overlap In this case, both policies recommend the right action, thus it holds that,
Y (π̃(x)) = Y (πbounds(x)) = Y (1).

CAPO Bounds don’t Overlap In this case, πbounds defer the decision to the expert. As for π̃, as shown above,
the policy π̃ is wrong when the expert is wrong and the condition 23 holds. Therefore, if condition 23 holds, and
the expert is wrong, then both policies will go wrong, and thus we have that Y (π̃(x)) = Y (πbounds(x)) = Y (0).

On the other hand, if CAPO intervals overlap, but Condition 23 doesn’t hold, then π̃ give the right recommenda-
tion with Y (π̃(x)) = Y (1), but πbounds still give the wrong recommendation with Y (πbounds(x)) = Y (0),
that is Y (π̃(x)) > Y (πbounds(x)).
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B.2 Generalization Bound
We now prove Theorem 2.

Corollary 3 (Bounded log-Softmax). Let π ∈ Π be a learner that satisfies Assumption 3. Then, the term
exp(πj(x))∑

k∈{0,1,⊥} exp(πk(x))
is bounded.

Proof of Corollary 3. π is a policy satisfying Assumption 3, that is for each j ∈ {0, 1,⊥} we have that
|πj(·)| ≤ Cπ , where K is the number of classes. That is, it holds that

−Cπ ≤πj(·) ≤ Cπ

⇔ exp(−Cπ) ≤ exp(πj) ≤ exp(Cπ)

As a result, we have,
exp(πj(x))∑

k∈{0,1,⊥} exp(πk(x))
≤ exp(Cπ)∑

k∈{0,1,⊥} exp(−Cπ)

≤ exp(Cπ)

3 · exp(−Cπ)

≤ 1

3
· exp(2 · Cπ)

Similarly, we can show that
exp(πj(x))∑

k∈{0,1,⊥} exp(πk(x))
≥ 1

3
· exp(−2 · Cπ)

Lemma 1 (Bounded loss function). Let Π be a class of policy learners satisfying Assumption 3 with a constant
Cπ , and suppose Assumption 4 holds with a constant CY . Then

∣∣∣LCE(π, z; Q̂)
∣∣∣ ≤ 8 · Cπ · CY .

Proof of Lemma 1. Let Π be a class of policy learners satisfying Assumption 3, then the loss function
LCE(π, zi; Q̂(xi)) is bounded:

|LCE(π, z;Q)| =

∣∣∣∣∣∣
∑

j∈{0,1,⊥}

−wj(z,Q(x)) log

Ç
exp(πj(x))∑

k∈{0,1,⊥} exp(πk(x))

å∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

j∈{0,1,⊥}

wj(z,Q(x)) log

Ç
exp(πj(x))∑

k∈{0,1,⊥} exp(πk(x))

å∣∣∣∣∣∣
≤
(a)

∣∣∣∣∣∣
∑

j∈{0,1,⊥}

wj(z,Q(x)) log

Å
1

3
· exp(2 · Cπ)

ã∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

j∈{0,1,⊥}

wj(z,Q(x)) · 2 · Cπ

∣∣∣∣∣∣
≤ 2 · Cπ ·

∑
j∈{0,1,⊥}

∣∣∣wj(z,Q(x))
∣∣∣

≤
(b)

2 · Cπ · |4 · CY | = 8 · Cπ · CY

Where step (a) follows from Corollary 3, and (b) follows from the boundedness of Y in Assumption 4.

Lemma 2 (L2 Consistency of the max(·, ·) Estimator). Let For estimators Ân, B̂n of A,B based on n samples
respectively, where there exists a function f(n) such that:

∥Ân −A∥ ≲ Op (f(n))

∥B̂n −B∥ ≲ Op (f(n))
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Then,

∥max(Ân, B̂n)−max(A,B)∥ ≲ Op (f(n))

Proof. We prove this Lemma in two steps: first we show convergence in probability of max(Ân, B̂n) to
max(A,B). Then we show the convergence rate.

Convergence Ân and B̂n converge in probability to A and B respectively as n tends to infinity, that is:

Ân
P−−−−→

n→∞
A

B̂n
P−−−−→

n→∞
B

Then,

max(Ân, B̂n) =
1

2

(
Ân + B̂n +

∣∣∣Ân − B̂n

∣∣∣) P−−−−→
n→∞

1

2
(A+B + |A−B|) = max(A,B)

Convergence Rate The convergence rate of max(Ân, B̂n) is determined by the slower convergence rate of Ân

and B̂n, which is max(f(n), f(n)) = f(n)

Corollary 4 (Bounded weights). The weights wj(z, Q̂(x)) for j ∈ {0, 1,⊥} of the weighted surrogate loss
function 4 based on the costs we define in Section 5.2 satisfy:

(i)
∣∣wj(z,Q(x)

∣∣ ≤ 4 · CY

(ii) ∥wj(z,Q(x))− wj(z, Q̂(x))∥ ≲ 4 ·Op

Ä
n−1/(2+r)

ä
Proof. We recall that for j ∈ {0, 1,⊥}, a cost c(j) is of the form c(j) = A − B, where A,B ∈
{Ŷ +(x, 0), Ŷ −(x, 0), Ŷ +(x, 1)), Ŷ −(x, 1), yi}.

As for maxk∈{0,1,⊥} c(k) is also of the form maxk∈[K+1] c(k) = C − D, where C,D ∈
{Ŷ +(x, 0), Ŷ −(x, 0), Ŷ +(x, 1)), Ŷ −(x, 1), yi}. Then,

(i)
∣∣wj(z,Q(x))

∣∣ = |(A−B)− (C −D)| ≤ |A|+ |B|+ |C|+ |D| ≤
(a)

4 · CY .

where (a) follows from the boundedness of the outcomes (Assumption 4 with a constant CY ).

(ii) For A,B,C,D ∈ {Y +(x, 0), Y −(x, 0), Y +(x, 1)), Y −(x, 1), yi}, we denote Â, B̂, Ĉ, D̂ to be their
estimators, respectively. Then,

∥wj(z,Q(x))− wj(z, Q̂(x))∥ = ∥(A− Â)− (B − B̂)− (C − Ĉ) + (D − D̂)∥

≤ ∥A− Â∥+ ∥B − B̂∥+ ∥C − Ĉ∥+ ∥D − D̂∥

≲
(a)

4 ·Op

Ä
n−1/(2+r)

ä
where (a) follows from Assumption 5, and Lemma 2.

Proof of Theorem 2. Let π ∈ Π be a policy where the policy class Π satisfies Assumption 2, for a policy
π ∈ Π, and Q, Q̂ the CAPOs bounds and the estimated CAPOs bounds respectively. Given our loss function
LCE(π, z;Q) which satisfies Assumption 3, and Lemma 1. We are interested in bounding the term

LD(π;Q)− LS(π; Q̂) =
Ä
LD(π;Q)− LD(π; Q̂)

ä
︸ ︷︷ ︸

A

+
Ä
LD(π; Q̂)− LS(π; Q̂)

ä
︸ ︷︷ ︸

B

(24)

We get the upper bound for Term B by applying Theorem 26.5 from Shalev-Shwartz and Ben-David [2014], that
is, with probability at least 1− δ we have:

LD(π; Q̂)− LS(π; Q̂) ≤ 2Rn(Π) + 24 · Cπ · CY

…
2 ln(4/δ)

n

where Rn(Π) is the Rademacher Complexity of the policy class Π we have from Assumption 2, Cπ , and CY

are the constants we have from Assumption 3, and Assumption 4 respectively.
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We now show the upper bound for Term A:

LD(π;Q)− LD(π; Q̂) = Ez=(x,a,y)∼p(z) [LCE(π, z;Q(x))]− Ez=(x,a,y)∼p(z)

î
LCE(π, z; Q̂(x))

ó
= Ez=(x,a,y)∼p(z)

 ∑
j∈{0,1,⊥}

wj(z,Q(x)) · − log

Ç
exp(πj(x))∑

k∈{0,1,⊥} exp(πk(x))

å
− Ez=(x,a,y)∼p(z)

 ∑
j∈{0,1,⊥}

wj(z, Q̂(x)) · − log

Ç
exp(πj(x))∑

k∈{0,1,⊥} exp(πk(x))

å
= Ez=(x,a,y)∼p(z)

 ∑
j∈{0,1,⊥}

Ä
wj(z,Q(x))− wj(z, Q̂(x))

ä
·

− log

Ç
exp(πj(x))∑

k∈{0,1,⊥} exp(πk(x))

åô
≤
(a)

Ez=(x,a,y)∼p(z)

 ∑
j∈{0,1,⊥}

Ä
wj(z,Q(x))− wj(z, Q̂(x))

ä
· (2 · Cπ)


≤ 2 · Cπ · Ez=(x,a,y)∼p(z)

 ∑
j∈{0,1,⊥}

Ä
wj(z,Q(x))− wj(z, Q̂(x))

ä
≤
(b)

2 · Cπ ·
∑

j∈{0,1,⊥}

Ez=(x,a,y)∼p(z)

î
wj(z,Q(x))− wj(z, Q̂(x))

ó
≤
(c)

2 · Cπ ·
∑

j∈{0,1,⊥}

∣∣∣Ez=(x,a,y)∼p(z)

î
wj(z,Q(x))− wj(z, Q̂(x))

ó∣∣∣
=
(d)

2 · Cπ ·
∑

j∈{0,1,⊥}

…
Ez=(x,a,y)∼p(z)

î
wj(z,Q(x))− wj(z, Q̂(x))

ó2
≤
(e)

2 · Cπ ·
∑

j∈{0,1,⊥}

…
Ez=(x,a,y)∼p(z)

[Ä
wj(z,Q(x))− wj(z, Q̂(x))

ä2]
≲
(f)

2 · Cπ · 3 · 4 ·Op

Ä
n−1/(2+r)

ä
≤
(g)

24 · Cπ · C ·
Ä
n−1/(2+r)

ä
where:

(a) : Corollary 3.

(b) : Linearity of Expectation.
(c) : E[X] ≤ |E[X]|.

(d) : |E[X]| =
»

E[X]2.

(e) : Jensen’s Inequality: E[X]2 ≤ E[X2].

(f) : Assumption 5.

(g) : Corollary 4, and Definition of Op(·) with constant C > 0.

Putting it all together, we have:

LD(π;Q)− LS(π; Q̂) =
Ä
LD(π;Q)− LD(π; Q̂)

ä
+
Ä
LD(π; Q̂)− LS(π; Q̂)

ä
≤ 2Rn(Π) + 24 · Cπ ·

Ç
CY

…
2 ln(4/δ)

n
+ C ·

Ä
n−1/(2+r)

äå
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C Additional Experimental Detail
The experiments in this paper were conducted using a PowerEdge R750XA Server with 2 CPUs and 4 NVIDIA
A40 GPUs. Here we provide all the details required to replicate the paper results. In addition, we provide
replication code at https://github.com/marahgh/CARED.

C.1 Synthetic Data
In this experiment, We used the synthetic dataset from Gao and Yin [2023]The CAPO bounds were estimated
using XGBRegressor from xgboost as the base learners for the B-Learner [Oprescu et al., 2023] estimator,
and a LogisticRegression from scikit-learn as the propensity score estimator. We show in Table 1 the
hyper-parameter choices for each model. As for the policy model, we use a logistic regression model imple-
mented as a one-layer MLP using several functions from pytorch, The policy model was implemented using
pytorch_lightning model as a wrapper model that can receive any policy model as the base model for learning
the policy. Moreover, the hyper-parameters we use for the policy model are as follows: learning_rate= 0.001,
optimizer= Adam, patience= 3, and max_epochs= 100.

We replicate the experiment from Gao and Yin [2023] where they generate 10 instances of the synthetic dataset
according to the Data Generation Process they mention in their paper, where lower outcomes are assumed to be
better in this dataset. For each instance, they vary the level of allowed hidden confounding and compare the
methods by their regret related to the baseline no-treat policy, i.e. π0(x) = 0.

Table 1: Hyper-parameters for model choices in the synthetic data experiment

Model Hyper-parameter Value

XGBRegressor (xgboost) learning_rate 0.1
min_child_weight 3
max_depth 5
n_estimators 200

Logistic Regression (scikit-learn) C 1
penalty elasticnet
solver saga
l1_ratio 0.7
max_iter 100

C.2 IHDP Dataset
In this experiment, we use the hidden confounding version of IHDP [Hill, 2011] which was introduced by Jesson
et al. [2021]. The CAPO bounds were estimated using XGBRegressor from xgboost as the base learners for the
B-Learner [Oprescu et al., 2023] estimator, and a LogisticRegression from scikit-learn as the propensity
score estimator. We show in Table 2 see the hyper-parameter choices for each model. As for the policy model,
we use a logistic regression model implemented as a single-layer MLP using several functions from pytorch,
The policy model was implemented using pytorch_lightning model as a wrapper model that can receive any
policy model as the base model for learning the policy. Moreover, the hyper-parameters were tuned for each
uncertainty level Λ using the ray.tune over the search space of the hyper-parameters: The search spaces used is
learning_rate ∈ [1e−4, 0.1] ,optimizer ∈ [SGD,Adam,AdamW ], weight_decay∈ [1e−10, 1e−3],
patience ∈ [5, 20], and max_epochs∈ [30, 50].

As for Gao and Yin [2023]’s method, we train a logistic policy with the hyper-parameters: learning_rate
= 0.01, batch_size = 32, max_epochs = 100. The hyper-parameters were tuned using a grid search over a
set of possible values for each parameter, and the set with the most reasonable loss was chosen. In addition, we
set C(X) = 0 which represents the additional cost of deferral used in Gao and Yin [2023]’s objective for cases
where the outcome of deferral is Y + C(X). In this experiment, the outcome of deferral to the expert is solely
based on the result of the treatment prescribed by the expert, which is Y .

We generate 1111 instances of the Hidden Confounding IHDP [Jesson et al., 2021], each consists of training
(n = 470), validation (n = 202), and test (n = 75) subsets, where for each instance the seed runs over 0, 1, ...,
which is the number of the trial/instance.

We filter the 1111 instances by the value σCATE =
√

V ar(CATEtest(X)) by excluding trials with high
σCATE , as instances with high σCATE are unrealistic and does not match the results of the original study
[Brooks-Gunn et al., 1992], as explained in Curth et al. [2021]. In our case, based on the histogram of σCATE

for the 1111 instances of the dataset, we exclude those with σCATE > 15 and remain with 1000 instances.

Table 2: Hyper-parameters for model choices in IHDP experiment
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Model Hyper-parameter Value

XGBRegressor (xgboost) learning_rate 0.05
min_child_weight 5
max_depth 3
n_estimators 500

Logistic Regression (scikit-learn) C 1
penalty elasticnet
solver saga
l1_ratio 0.7
max_iter 10000

C.2.1 Semi-Synthetic Expert
In this experiment, we design a semi-synthetic expert, based on the original observed expert’s policy, and
the outcomes observed under this policy. The actions and outcomes under this policy are denoted A and Y ,
respectively, as they are (trivially) exactly the observed actions and outcomes. Let A′ and Y ′ denote the new
actions by the new expert’s policy and the observed outcomes under this new policy respectively. We recall that
the actions and the outcomes generated by the Oracle policy are denoted by A∗, and Y ∗ respectively. Then, for
i ∈ [n], the new expert policy is given by:

A′
i =

®
A∗

i , if x17
i = 1

Ai, otherwise

Y ′
i =

®
Y (0)i, if A′

i = 0

Y (1)i, otherwise.

The new expert A′ is defined based on the covariate x17 - “worked during pregnancy”, which is a binary covariate
that indicates whether the mother worked during the pregnancy or not. This covariate receives a value of 1 with
a probability of 0.59. We build the new expert A′ to be equal to the oracle policy when x17 = 1, and equal to
the original policy A otherwise. Thus this expert is perfect when x17 = 1. This is an aspect of the expert that
ideally we would want the model to learn. The choice of covariate x17 was according to the covariate table
shown in Jesson et al. [2021], where they show an analysis of the relationship between each covariate and both
the treatment and the outcome. We choose the covariate x17 as it is one of the features that is correlated with
both the treatment and the outcome, and thus, an important feature that we are interested in testing our model on
its ability to learn it.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the work in Section 8.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]
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Justification: We state all the assumptions and theoretical guarantees in Section 6. All the proofs are
provided in Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explain the main details of the experiments in Section 7. More details are given in
Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
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Answer: [Yes]

Justification: We include in Appendix C the link for results replication. We provide instructions for
running and replicating the results as well.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All the relevant details are given in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: Each experiment in this paper was conducted on several trials, and all the results were
reported with error bars and confidence intervals.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer:[Yes]

Justification: we mention the compute resources information of the machine we used for running all
the experiments in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work does not violate any aspect of the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: Discussed briefly in the introduction and discussion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All assets used in the paper, properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
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Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: No new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: No IRB.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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