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Abstract
This paper investigates low-rank structure in the gradients of the training loss for two-layer neural
networks while relaxing the usual isotropy assumptions on the training data and parameters. We
consider a spiked data model in which the bulk can be anisotropic and ill-conditioned, we do not
require independent data and weight matrices and we also analyze both the mean-field and neural-
tangent-kernel scalings. We show that the gradient with respect to the input weights is approximately
low rank and is dominated by two rank-one terms: one aligned with the bulk data–residue, and
another aligned with the rank one spike in the input data. We characterize how properties of the
training data, the scaling regime and the activation function govern the balance between these two
components. Additionally, we also demonstrate that standard regularizers, such as weight decay,
input noise and Jacobian penalties, also selectively modulate these components. Experiments on
synthetic and real data corroborate our theoretical predictions.

1. Introduction
Feature learning is a critical driver behind the success of deep learning. Despite this, a theoretical

characterization of it remains elusive. In order to drive understanding, a line of research [2, 9–
11, 20, 30] has emerged studying two-layer networks whose inner weights are trained or updated
via one step of gradient descent. In this context, feature learning can be characterized through the
emergence of a low-rank structure in the network weights. Ba et al. [2] proved that a ridge estimator
trained on such features can outperform random feature models and other kernel methods. However,
these prior investigations require idealized conditions, for example isotropic data or weights, which
diverge from real-world scenarios where data typically exhibits anisotropy or an ill-conditioned
covariance. In addition, the effects of regularization in this context have also been underexplored.

This paper addresses two questions: 1) how do low-rank gradient phenomena arise and behave
under more general conditions of anisotropy and ill-conditioning? and 2) what impact do common
regularizers have on feature learning in this context? Our analysis accommodates spiked data with
an anisotropic ill-conditioned bulk. This allows us to explore the effect of the size of the data spike,
controlled by a parameter ν ≥ 0, as well as spectral decay profiles of the bulk, controlled by a
parameter α ≥ 0. Our central finding is that the gradient of the inner-layer weights is generically
well approximated by a rank-two matrix. This structure arises from the interplay of two primary
rank-one components: S1, driven by the input bulk and target residue, and S2, driven by the
leading eigenvector of the data covariance. The relative prominence of these components, and
consequently the direction of feature learning, is determined by the interplay of data properties, the
scale of the network parametrization, the choice of loss and activation function as well as the use
of regularization. We corroborate our theoretical findings with experiments on both synthetic data
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(Section 3 and appendix D) and real data (MNIST, CIFAR-10 embeddings).1 A summary of our key
contributions is:
• Generalized Theory of Low-Rank Gradients: We provide a theoretical framework (Section 3,

Theorems 1 and 3) characterizing the low-rank structure of the gradient under significantly relaxed
assumptions on data and weight matrices (anisotropy, ill-conditioning; Section 2).

• Identification of a Dominant Rank-Two Structure: We show (Theorems 1 and 3) that the
gradient is often better approximated by a rank-two matrix than the rank-one structures identified in
prior specialized settings. We provide conditions under which each of these components dominates.

• Modulation by Activation Function and Regularization: We show how activation functions and
common regularizers selectively modulate the components of the gradient. We reveal that ReLU
can suppress the contribution from the residue S1 (Section 3), while input noise and a Jacobian
penalty can promote the residue component and data spike component (Appendix D) respectively.

• Mean Field (MF) versus Neural Tangent Kernel (NTK) scaling: We demonstrate differences in
dominant spike alignments, S1 ∼ XT

By in MF vs. S1 ∼ XT
Br in NTK, at initialization (Section 3)

and the subsequent impact during training.

2. Setup and Assumptions
In this section, we provide the technical details required for analysis. A summary of notation and

discussion of examples of when the assumptions hold can be found in Table 1 and Appendix A. We
consider shallow networks with d input dimensions, m hidden neurons, and n training data points.

Assumption 1 (Proportional scaling) Let ψ1, ψ2 ∈ R>0 be fixed constants. We consider m, n as
functions of d such that n/d→ ψ1 < 1 and m/d→ ψ2 as d→ ∞.

Data: We consider random input data xi ∈ Rd for i ∈ [n], sampled i.i.d. These are stored row-wise
in a matrix X ∈ Rn×d. For each xi, the corresponding label is yi ∈ R, and labels stored as y ∈ Rn.

Assumption 2 (Input features distribution) Let Σ̂ ∈ Rd×d for which there exists an α ≥ 0 such
that the k-th eigenvalue satisfies λk(Σ̂) = k−α for k = 1, . . . , d. Let q ∈ Sd−1 and define ζ = nν

for some ν ≥ 0. We assume each input data point xi is sampled i.i.d. from a multivariate Gaussian
distribution N(0,Σ), where the full covariance Σ ∈ Rd×d is given by Σ = Σ̂ + ζ2qqT .

Network: We consider a two-layer neural network with input-output map f : Rd → R defined
as f(x) = γma

Tσ(Wx) ∈ R. The parameter γm ∈ R>0 is a non-trainable scaling constant that
depends on the network width m.

Assumption 3 (Network parameters) We assume the following for W,a and γm. Outer weights:
aj are sampled i.i.d. from Uniform({−1, 1}). Inner weights: Rows wj of W have unit length,
wj ∈ Sd−1. Scaling parameter: γm = Θ(1/

√
m) (NTK scaling) or γm = Θ(1/m) (MF scaling).

Assumption 4 (Activation function) The activation function σ : R → R satisfies the follow-
ing. Smoothness: σ′ and σ′′, first and second derivatives of σ, exist almost everywhere on R.
Lipschitzness: σ and σ′ are L-Lipschitz for some constant L > 0. Non-trivial expected deriva-
tive: For x ∼ N(0,Σ) and W , let µj = Ex[σ

′(wT
j x)]. We assume µj = Ω(1) for all j. Let

µ = [µ1, . . . , µm]T . We define σ′⊥(Wx)j = σ′(wT
j x)− µj .

Parameter update via GD: Let ℓ : R× R → R≥0 be a function which measures the loss between a
label and a prediction. We define the loss given a dataset (X, y) = (xi, yi)i∈[n] with respect to the

1. All code is available at the anonymous Github repository: Link
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Figure 1: Singular value distribution of the gradient G for varying activation, loss and ν and weight
distribution. Red, and blue lines show the singular value of S1, and S2 respectively.

inner-layer weights W as L(W ) = 1
n

∑n
i=1 ℓ(f(xi), yi). We consider an update to W arising from

one step of GD with step size η > 0. We define the residue:

r = [∂ℓ(f(x1), y1)/∂f(x1), . . . , ∂ℓ(f(xn), yn)/∂f(xn)]
T ∈ Rn. (1)

To motivate this terminology, consider that for the Mean Squared Error (MSE) loss, r corresponds to
the vector of residues [f(xi)− yi]i. More generally, for many losses r can typically be interpreted as
the component of the targets not captured by the predictions of the model (see Appendix A.3). For
our results to hold we require the following technical assumption on the residues.
Assumption 5 (Residue concentration) Under the proportional scaling regime (Assumption 1),
with probability 1− o(1) over the training data (X, y), the residue r satisfies ∥r∥∞

∥r∥2 = O
(
logn√

n

)
.

We emphasize that Assumption 5 is a mild condition: it ensures that no single component of
the residue vector disproportionately dominates its overall ℓ2 norm. Our analysis also depends on
the alignment between the residue r and specific structural components of the input data X . From
Assumption 2 we have the following decomposition of the input features,

X = XB +XS = XB + ζzqT ∈ Rn×d, (2)

where XB has rows sampled i.i.d. from N (0, Σ̂), z ∼ N (0, I), and q is a unit vector. For sufficiently
large ζ, z is approximately the principal eigenvector of XXT . We will consider the degree of
alignment between the residue vector r and the spike component z of the input data. The projection
of the residue r onto the principal eigenvector of XXT is a natural statistic of interest and has been
considered in prior works [14, 25]. In Appendix A.5 we provide β estimates for 192 scenarios.

Assumption 6 (Residue alignment) With probability 1− o(1),
∣∣∣ 1√

n∥r∥2
zT r

∣∣∣ = Θ(d−β/2).

3. Spiked Data Leads to a Low-Rank Gradient
We demonstrate that for a spiked data covariance the gradient G is either approximately rank

one or rank two, depending primarily on the size of the spike. To demonstrate this we define the
following three rank-one matrices, where Ξ =

[
z⊤
(
(ra⊤)◦σ′⊥(XW⊤)

)]
:

S1 :=
γm
n

(X⊤
Br) (a◦µ)⊤︸ ︷︷ ︸

Residue Spike

, S2 :=
γmζ

n
qΞ︸ ︷︷ ︸

Data Spike

, S12 := γmζ
z⊤r

n
q (a◦µ)⊤︸ ︷︷ ︸

Interpolant

.
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(d) Softplus

Figure 2: ReLU suppresses the residue spike (S1) compared to smooth activations. Fixed parameters:
ν = 1/8, α = 5/9, n = 750, d = 1000, and m = 1250.

The key contribution of this section is Theorem 1, which characterizes the approximate low rank
structure of the gradient for small-to-moderate spike sizes. For large data spikes (ν ≥ 0.5), we note
that the C2 smoothness of the activation function and independence between W and X are no longer
required and is discussed in Appendix C.

We also note that Theorem 1 generalizes [2, Proposition 2] by covering a broader range of
covariance structures, loss functions and initialization scalings2. In the small spike setting, ν ∈
[0, 1/4), the gradient is approximately rank one and aligns with the residue plus interpolant S1+S12.
By contrast, in the moderate spike setting, ν ∈ [1/4, 1/2), the gradient becomes rank two. We
empirically verify these our theoretical results (Figures 1) across a range of activation and loss
functions under the NTK scaling.
Theorem 1 (Gradient approximation) Suppose Assumptions 1, 2, 3, 4, 5, 6 are satisfied, X and
W are independent, and σ is a C2 function. DefineE = G−S1−S12−S2. Then, for all ν, α ∈ R≥0,

∥G− S1 − S12∥2√
mγm∥r∥∞

= O
(
∥W∥2n2ν−

1
2

)
,

∥G− S1 − S12 − S2∥2√
mγm∥r∥∞

= O
(
∥W∥2nν−

1
2

)
(3)

with probability 1− o(1) as d, n,m→ ∞. Moreover, if ν < 1
2 then with the same probability

∥S1∥2
∥E∥2

= Ω

(
n

1
2
−ν−α

2

log n∥W∥2

)
,

∥S2∥2
∥E∥2

= Ω

(
nν

log n

∥(z ◦ r)Tσ′⊥(XW T )∥2
∥σ′⊥(XW T )∥2

)
, (4)

∥S12∥2
∥E∥2

= Ω

(
n

1
2
−β

2

log n∥W∥2

)
, Ω(nν−

β
2 ) ≤ ∥S12∥2

∥S1∥2
≤ O(nν−

β
2
+α

2 ). (5)

Observe that for ν < 1/4, if ∥W∥2 log n = o(n
1
2
−ν−α

2 ) then G is approximately equal to the
rank-one matrix S1 +S12. Further, if β > 2ν +α then the gradient is dominated by S1 and the spike
is aligned with the data-residue term XT

Br. However, if β < 2ν then the gradient term is dominated
by S12, which is aligned with the data spike q. In addition, for ν ∈ [1/4, 1/2), if ∥W∥2 log n =

o(n
1
2
−ν−α

2 ) and nν = ω
(
log n

∥σ′
⊥(XWT )∥2

∥(z◦r)T σ′
⊥(XWT )∥2

)
, then the gradient is approximately the rank-two

matrix S1 + S12 + S2. Note this is distinct from prior works [2, 3, 11, 30] where the gradient is only
ever approximately rank one.

Theorem 1 requires the activation to be C2. As detailed in the proof, this is needed to estab-
lish that ∥σ′⊥(XW T )∥2 ≤ O(∥W∥nν+

1
2 ). Indeed, when ∥W∥2 = Θ(1) and ν < 1

2 we have
∥σ′⊥(XW T )∥2 = o(n), which is key for S1 to separate from the bulk spectrum. However, ReLU is
not C2. To understand, the effect of using ReLU we provide Proposition 2.

2. [2, Proposition 2] requires ν = α = 0, isotropic data and MSE loss with MF scaling.
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Proposition 2 (ReLU gradient) If 2ν > 1− α, and the row of W are i.i.d. from the unit sphere,
then with probability 1− o(1) we have that σ′⊥(XW

T ) = 1
2 sign(zi) sign(Wq)T .

From Proposition 2 we see that for ReLU the operator norm of σ′⊥(XW
T ) is Θ(n). This is a

significant increase compared to the o(n) scaling for C2 activations and suggests that the norm of
E and S2 are larger for ReLU. The increased size of E,S2 results in the relative suppression of the
contribution of S1 and an enhancement of the contribution of S2 to the spectrum of the gradient. We
empirically verify this phenomenon in Figure 2 where we compare ReLU to its C2 activations ELU,
Swish, and Softplus. We see that, for ReLU the relative residue contribution (S1) is significantly
smaller when compared with its smooth approximations.

Impact of the Scale Parameter: MF vs. NTK Scaling We consider the implications of our results
for the two scaling regimes and highlight three important distinctions. As with prior work, we
consider the large step-size regime. Specifically, we use a step size of γ−1

m . To avoid exploding
gradients deploy Weight Normalization (WN) [24]. We limit our focus to the MSE loss. See
Appendix E for a discussion of which assumptions hold during training and a deeper discussion.
In particular, we show that the spike in the gradient for the NTK and MF scaling are qualitatively
different. In particular, in the MF the scaling the residue aligns with the targets y and for NTK aligns
with the residual r. See Figure 7. Next the spike direction for MF is stable during training, while the
spike direction for NTK is not stable (Figure 8).

Effect of Regularization We analyze three regularization techniques: ℓ2 weight decay, isotropic
input noise, and Jacobian penalization. We show that ℓ2 can suppress both spikes. On the other
hand, isotropic gaussian noise only suppresses the data spike while promoting the residue spike.
Contrastingly, the Jacobian penalty only suppress the residue spike and promotes the data spike. The
complete theoretical discussion can be found in Appendix D along with validation on real data.

4. Conclusion
This work shows that in two-layer neural networks, the hidden-layer gradient is approximately

rank-two, driven by data-residual (S1) and data-spike (S2) components connected by an interpolant
(S12). We show that activation function choice, scaling, and regularization can result in qualitatively
different gradients. In particular, we have the following rule of thumb for the number of spikes.

Gradient-spike rule-of-thumb: Which spike dominates at initialization?

S1 (residue spike) ↔ 2ν < min{1
2 , β − α, 1− α} or Large isotropic input noise

S12 + S2 + S3 (data spike) ↔
{

(i) 2ν > min{1, β}, or (ii) Strong Jacobian penalty,
or (iii) ReLU and 2ν > 1− α

If none of the above holds, both spikes remain, and the gradient is typically rank-two.

The coexistence and interplay of the two spike components offer a nuanced understanding of
the gradient. We believe that the residue-aligned part propels the network towards fitting the current
errors for the specific task, while the data-aligned part reflects the network’s adaptation to or influence
by the inherent structure and biases present in the input data distribution. This dual influence provides
a potential mechanism for reconciling how networks can be both task-specific and data-adaptive.
This is an interesting avenue for future work.
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Table 1: Notation

Symbol Meaning Where first defined / used

d Input dimension Assumption 1
n Number of samples Assumption 1
m Hidden-layer width Assumption 1
ψ1 = n/d, ψ2 = m/d Proportional-scaling ratios Assumption 1
Σ̂ Bulk covariance matrix Assumption 2
Σ = Σ̂ + ζ2qq⊤ Full covariance (bulk + spike) Assumption 2
λk = k−α Bulk eigen-spectrum Assumption 2
α≥0 Spectral-decay exponent Assumption 2
ζ = nν , ν≥0 Spike magnitude Assumption 2
q ∈ Sd−1 Spike direction Assumption 2
z ∈ Rn Latent coordinates of the spike Equation (2)
X = XB +XS Data split bulk + spike Equation (2)
XB Bulk part (N (0, Σ̂) rows) Equation (2)
XS = ζzq⊤ Rank-1 spike part Equation (2)
W ∈ Rm×d Inner-layer weight matrix Assumption 3
a ∈ {±1}m Outer weights (fixed) Assumption 3
γm Width scale (NTK = 1/

√
m, MF = 1/m) Assumption 3:

σ, σ′, σ′′ Activation and derivatives Assumption 4
µ = Ex[σ

′(Wx)] Mean derivative vector Assumption 4
σ′
⊥ = σ′ − µ Centered derivative Assumption 4
r Residue vector Equation (1)
β Alignment exponent ( 1√

n ∥r∥2
z⊤r) Assumption 6

S1 Residue-aligned rank-1 term Section 3
S2 Data-spike-aligned rank-1 term Section 3
S12 Interpolant rank-1 term Section 3
G = ∇WL Full gradient wrt W Prop. 12
E Error term G− S1 − S12 − S2 Thm. 1
EL Error term G− S12 − S2 (large-spike version) Thm. 3
E2 Bulk error from Jacobian-penalty gradient Prop. 6
S3 Data-aligned rank-1 term induced by Jacobian penalty Prop. 6
λ, Lreg Reg. strength and Jacobian penalty Appendix D
τ2 Variance of isotropic Gaussian noise Appendix D
◦, ⊗ Hadamard / outer products
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Appendix A. Assumption Discussion
A.1. Data and Network Assumptions

Assumption 2 models a bulk component via Σ̂ and a spike component via q (magnitude ζ) and
allows general forms of ill-conditioning with λd(Σ̂) → 0 if α > 0, and λ1(Σ) → ∞ if ν > 0. This
generalizes typical data distribution assumptions like isotropic Gaussian (Σ = Id) or uniform on
a sphere [2, 11, 20, 22, 30], anisotropic data with a bounded condition number [12, 13], divergent
largest eigenvalue and bounded smallest eigenvalue [3, 15, 17, 21, 27], or bounded largest eigenvalue
and decaying smallest eigenvalue [4, 6, 29].

he assumption on a is standard. The assumption on W (unit-norm rows) relaxes typical literature
requirements (e.g., isotropic Gaussian or uniformly spherical wj). This allows modeling anisotropic
weights, possibly dependent on X , to analyze updates throughout training, not just at initialization.
The scaling parameter γm defines two common regimes: NTK (γm ∼ 1/

√
m) [1, 14, 16, 18],

associated with lazy training where inner weights vary little [8, 18], and MF (γm ∼ 1/m), asso-
ciated with feature learning [7, 19, 23, 26]. These scalings yield different initial output variances
(Var(f(x)) = Θ(1) in NTK vs. o(1) in MF), impacting dynamics.

A.2. Activation Function Properties
We verify the smoothness and lipschitzness conditions for several common activation functions.

A.2.1. SIGMOID FUNCTION

Let σ(u) = (1 + e−u)−1.
Smoothness: The Sigmoid function is infinitely differentiable (C∞) for all u ∈ R.

σ′(u) = σ(u)(1− σ(u))

σ′′(u) = σ′(u)(1− 2σ(u)) = σ(u)(1− σ(u))(1− 2σ(u))

Both σ′(u) and σ′′(u) exist for all u ∈ R.

Lipschitzness: Since Sigmoid is bounded and all derivatives of the sigmoid can be written as a
polynomial of sigmoid, we see that the derivatives are bounded and hence lipschitz.

Non-Vanishing Derivative Here we show that if the weight vector wj is drawn uniformly from the
unit sphere Sd−1, then the expected derivative µj = Ex[σ

′(wT
j x)] is Ω(1) when ν < 1/2.

The derivative σ′(u) = σ(u)(1 − σ(u)) is bounded. We can see that the argument uj = wT
j x

is Gaussian N(0, σ2uj
), with variance σ2uj

= wT
j Σ̂wj + n2ν(wT

j q)
2. Then the behavior of µj is

such that if σ2uj
= O(1), then µj = Ω(1). Specifically, if σ2uj

→ 0, then µj → σ′(0) = 0.25. If
σ2uj

→ ∞, then µj → 0.
Spike Contribution VS = n2ν(wT

j q)
2: For a fixed q ∈ Sd−1 and random wj ∈ Sd−1, the term (wT

j q)
2

concentrates around its mean E[(wT
j q)

2] = 1/d. With high probability for large d, (wT
j q)

2 = Θ(1/d).
Then in proportional regime, we have that, VS = n2ν · Θ(1/n) = Θ(n2ν−1). Since ν < 1/2,
2ν − 1 < 0, so VS = o(1) as n→ ∞.
Bulk Contribution VB = wT

j Σ̂wj : For randomwj ∈ Sd−1,wT
j Σ̂wj concentrates around E[wT

j Σ̂wj ] =
1
dTr(Σ̂). The eigenvalues λk(Σ̂) ∼ k−α.

• If α = 0: Tr(Σ̂) = Θ(d), so VB = Θ(1).

11
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• If 0 < α < 1: Tr(Σ̂) = Θ(d1−α), so VB = Θ(d−α) = Θ(n−α) = o(1).

• If α = 1: Tr(Σ̂) = Θ(log d), so VB = Θ((log d)/d) = Θ((log n)/n) = o(1).

• If α > 1: Tr(Σ̂) = Θ(1), so VB = Θ(1/d) = Θ(1/n) = o(1).

Thus, VB is either Θ(1) (for α = 0) or o(1) (for α > 0).

A.2.2. HYPERBOLIC TANGENT (TANH) FUNCTION

Let σ(u) = tanh(u).
Smoothness: The Tanh function is C∞ for all u ∈ R.

σ′(u) = 1− tanh2(u) = sech2(u)

σ′′(u) = −2 tanh(u)sech2(u)

Both σ′(u) and σ′′(u) exist for all u ∈ R.

Lipschitzness:

• For σ(u): max |σ′(u)| = σ′(0) = 1. Thus, σ(u) is 1-Lipschitz.

• For σ′(u): max |σ′′(u)| occurs at u = arctanh(±1/
√
3), giving |σ′′(u)| = 4

3
√
3
≈ 0.7698.

Thus, σ′(u) is Lipschitz with L ≈ 0.77 (or L = 1 as a looser bound).

L = 2 serves as a common upper bound.

Non-vanishing Derivative: Let σ(u) = tanh(u). Its derivative is σ′(u) = sech2(u). This derivative
is always positive, 0 < σ′(u) ≤ 1, with a maximum of σ′(0) = 1, and σ′(u) → 0 as |u| → ∞. The
analysis of the expected derivative µj = Ex[σ

′(wT
j x)] parallels that of the Sigmoid function.

A.2.3. RECTIFIED LINEAR UNIT (RELU) FUNCTION

Let σ(u) = max(0, u).
Smoothness: Here we see that the derivatives for u ̸= 0 are as follows

σ′(u) =

{
0 if u < 0

1 if u > 0
, σ′′(u) = 0 for u ̸= 0

Lipschitzness:

• For σ(u): |σ′(u)| ≤ 1 a.e. Thus, σ(u) is 1-Lipschitz.

• For σ′(u): σ′(u) is a step function. It is bounded, but not Lipschitz over R due to the
discontinuity at u = 0. However, its values are 0 or 1.

Non-vanishing Derivative: Since Wx is symmetric, we get that the mean is 0.5.

12
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A.2.4. EXPONENTIAL LINEAR UNIT (ELU) FUNCTION

Let σ(u) =

{
u if u > 0

eu − 1 if u ≤ 0
.

Smoothness: The derivatives are as follows.

σ′(u) =

{
1 if u > 0

eu if u ≤ 0
σ′′(u) =

{
0 if u > 0

eu if u < 0

Here we have that σ′ is continuous, and σ′′ is defined everywhere except for 0.

Lipschitzness:

• For σ(u): For u > 0, σ′(u) = 1. For u ≤ 0, σ′(u) = eu ∈ (0, 1]. Thus |σ′(u)| ≤ 1. So σ(u)
is 1-Lipschitz.

• For σ′(u): For u > 0, σ′′(u) = 0. For u < 0, σ′′(u) = eu ∈ (0, 1). On [−1, 1], the function
is continuous. Hence lipschitz. Thus, we have global lipschitzness.

Non-vanishing Derivative: The derivative dominates the ReLU case. Hence µj is at least 0.5.

A.2.5. SWISH FUNCTION

Let σ(u) = u · sigmoid(u) = u(1 + e−u)−1.
Smoothness: This follows from smoothness of Sigmoid.

Lipschitzness: Let S(u) = sigmoid(u) = (1 + e−u)−1. Then σ(u) = uS(u).

• For σ(u): The first derivative is:

σ′(u) = S(u) + uS′(u) = S(u) + uS(u)(1− S(u))

This is a continuous function that decays to zero. Hence is bounded.

• For σ′(u): The second derivative of σ(u) is:

σ′′(u) =
d

du
(S(u) + uS′(u)) = S′(u) + (S′(u) + uS′′(u))

= 2S′(u) + uS′′(u)

This is a continuous function that decays to zero. Hence is bounded.

• For σ′′(u): The third derivative of σ(u) is:

σ′′′(u) =
d

du
(2S′(u) + uS′′(u)) = 2S′′(u) + (S′′(u) + uS′′′(u))

= 3S′′(u) + uS′′′(u)

This is a continuous function that decays to zero. Hence is bounded.

13
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Therefore, σ(u), σ′(u), and σ′′(u) are all Lipschitz for Swish with β = 1.

Non-vanishing Derivative: The expected derivative µj is:

µj = E[σ′(uj)] = E[S(uj) + ujS
′(uj)]

= E[S(uj)] + E[ujS′(uj)]

We evaluate each term:
For E[S(uj)]: The function g(u) = S(u)− 1/2 is an odd function. Since uj ∼ N(0, σ2uj

) has a
probability density function symmetric about 0, the expectation of any odd function of uj is 0. Thus,
E[S(uj)− 1/2] = 0, which implies E[S(uj)] = 1/2.

For E[ujS′(uj)]: The derivative of sigmoid, S′(u) = S(u)(1 − S(u)), is an even function:
S′(−u) = S(−u)(1 − S(−u)) = (1 − S(u))S(u) = S′(u). The product h(u) = uS′(u) is
an odd function, being the product of an odd function (u) and an even function (S′(u)). Since
uj ∼ N(0, σ2uj

) has a symmetric PDF about 0, E[ujS′(uj)] = 0.

Combining these results:

µj = 1/2 + 0 = 1/2

The value 1/2 is a positive constant, independent of other parameters such as d, n,m, ν, α, or the
specifics of Σ (provided it is positive definite) and wj (provided wj ∈ Sd−1).

A.2.6. SOFTPLUS FUNCTION

Let σ(u) = log(1 + eu).

Smoothness: The Softplus function is C∞ for all u ∈ R.

σ′(u) =
eu

1 + eu
= sigmoid(u)

σ′′(u) =
eu

(1 + eu)2
= sigmoid(u)(1− sigmoid(u))

Both σ′(u) and σ′′(u) exist for all u ∈ R.
Lipschitzness: The lipschitzness follows from the boundedness and lipschitzness of sigmoid.

Non-vanishing Derivative: Following the argument presented for the Swish activation function, the
mean is 0.5.

A.3. Loss Function Derivatives
Let us see what this is for some common loss functions.

• For the Mean Squared Error (MSE) loss,

L(f(X)) =
1

2
∥f(X)− y∥2 = 1

2

n∑
i=1

(f(xi)− yi)
2 and L′(f(x)) = f(x)− y.

14
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• For the Binary Cross Entropy (BCE) loss, we assume the network produces logits z = f(X) ∈ Rn

with associated class-one probabilities p = sigmoid(z) = 1
1+e−z ∈ Rn computed component wise.

Then, for given output data y ∈ {0, 1}n,

L(f(X)) = −
n∑

i=1

[
yi ln(pi)+ (1− yi) ln(1− pi)

]
, L′(f(X)) = p− y = sigmoid(f(X))− y.

• For the Hinge loss for binary classification with output data y ∈ {−1, 1}n, f(X) ∈ Rn and

L(f(X)) =
n∑

i=1

max (0, 1− yi f(xi)) .

Then L′(f(X)) is the vector whose ith entry is given by the subgradient

∂L

∂f(xi)
=

{
0, if yi f(xi) ≥ 1,

−yi, if yi f(xi) < 1.

A.4. Residue Concentration
1. Suppose the training labels satisfy yi = f∗(xi) + ξi, where f∗ is Lipschitz and ξi are i.i.d.

subgaussian random variables. Then, for independent W and X , lipschitz activation functions
and for either the MSE or Binary Cross Entropy (BCE) loss the residues are subgaussian variables
and satisfy this assumption.

2. For binary classification with the hinge loss, then since ai ∼ Unif(±1) we have with probability
1− o(1) that at least a constant fraction of the data points satisfy 1− yif(xi) ≥ 0, and therefore
ri = ±1. As a result the assumption holds at initialization.

A.5. β Alignment
Here we consider Sigmoid, ReLU, Tanh, ELU, Softplus, and Swish activation functions.

For each activation function, we consider three different loss functions - MSE, BCE, and Hinge.
Then for for each activation and loss function combination, we consider (ν, α) ∈ {1/8, 3/8, 5/8} ×
{0, 1/2}. This gives us 96 scenarios. We do each each scenario for the Mean Field and NTK scalings.
For each scenario we let ψ1 = 0.75 and ψ2 = 1.25. We consider n ∈ {750, 1500, 2250, 3000, 3750}.
We use triple index targets

f(x) = sigmoid(βT1 x) + tanh(βT2 x) + relu(βT3 x)

for three unit vectors β1, β2, β3. For each value we do 50 trials to get the mean inner product
| 1√

n∥r∥z
T r|. Then we then estimate beta using linear regression.

Figure 3, presents the estimates βs. Here we see that β has a mode around 1. Recall if z1, z2
are independent uniformly unit norm vectors. Then zT1 z2 ∼ d−1. Figure 3, however, that many βs
are bigger than 1. This suggest z, r are rapidly becoming orthogonal. Note that negative βs are
cases, where the alignment improves, so z, r are becoming parallel. Eventually, the inner product
will saturate at 1 and β should be close to zero. The reason we get negative βs is due to the limited
range of n used for the experiments.
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Figure 3: Estimated β values

Appendix B. Empirical Details
All code for the experiments can be found at Link.

The following details are common for all experiments.

Hardware: All experiments were run on Google Colab using an A100.

Data X: We sampled q uniformly randomly from the unit sphere and we used a diagonal Σ̂.

µ Estimation: We estimate µ using 10000 samples.

Targets: The triple index model we used is as follows.

f(x) = sigmod(βT1 x) + tanh(βT2 x) + relu(βT3 x)

For three unit vectors β1, β2, β3.

When using MSE loss, we let
y = f(x) + ε

for standard gaussian noise ε.

When using BCE loss, we use
y = f(x).

Note that these y are not necessarily in [0, 1]. However, the BCE loss is still well defined.

When using Hinge loss,
y = sign(f(x)− 0.5).

Note this dataset can be imbalanced.
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Alignment determination: To plot the red and blue lines in Figures 1,2,3,7,8, we use the following
procedure. We let B = S1 + S12 + S2 (+ S3 for the gradient penalty). Then we compute its leading
left singular vectors for B. We then check if with q and XT

Br. Thus, how we get the associated
singular value and we plot the corresponding lines.

B.1. Figure 1
For non-isotropic W , we generate WS by sampling the rows i.i.d. from the unit sphere. We then
introduce anisotropy, by adding n−1/41qT to WS and then renormalizing to unit norm. This results
in the weight concentrating around q.

B.2. Figure 4
For Figure (b), we generate WS by sampling the rows i.i.d. from the unit sphere. We then introduce
anisotropy, by adding n1/21qT to WS and then renormalizing to unit norm. This results in the weight
concentrating around q.

For Figure (c), we generate WS by sampling the rows i.i.d. from the unit sphere. Then we project
onto the ortho-complement of q and renormalize the rows.

For Figure (d), we generate WS by sampling the rows i.i.d. from the unit sphere. We then let
W =WSX

TX and renormalize the rows. This results in a W that is highly dependent on X .

B.3. Figure 7
Here we use ζ = 0, α = 0. Hence applies for prior work from [2, 20].

We let n ∈ {100, 200, 300, 400, 500, 600, 700, 800} and use d = n/2 and m = n/3.

B.4. Later in Training Experiments
Here both network are initialized with the same weight matrix for both the inner and outer layers.

We use a step size of η = γ−1
m . Additionally, after each iteration, we re-normalize the rows of W to

have unit norm.

For Figure 8(c), the mean principal angle in the following quantity. Given orthonormal basis
u1, . . . , uk and v1, . . . , vk for two subspaces, we form the matrix A via

Aij = uTi vj

We the compute cos(σi(A)). These are the principal angles between the subspaces. We then report
the mean of angels.

B.5. Real Data Experiments
MNIST Dataset: We load the standard MNIST dataset, divide by 256 to have all entries in
[0, 1]. We use 1000 centered and flattened MNIST images to form X ∈ R1000×784. We estimate
ν ≈ 0.784 > 1/2. The data is highly ill-conditioned, suggesting a large effective α.

CIFAR Dataset: We use n = 1000 CIFAR-10 training images, processed through a pretrained
ResNet-18 (on ImageNet) to extract 512-dimensional penultimate-layer activations, forming X ∈
R1000×512. We estimate ν ≈ 0.3572 < 1/2 and α ≈ 0.6.
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Specifically, the code for the transformations are as follows.

resnet18(weights=ResNet18_Weights.DEFAULT)

transform = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], # ResNet defaults

std=[0.229, 0.224, 0.225])
])

Appendix C. Large Spike (ν ≥ 0.5): Non C2 Activations and Dependence between W
and X

Theorem 3 (Large data-spike gradient approximation) Suppose Assumptions 1, 2, 3, 4, 5, and
6 are satisfied, and define EL = G− S12 − S2. Then, with probability 1− o(1) for ν ≥ 1

2 we have

∥EL∥2√
mγm∥r∥∞

= O (1) ,
∥S12∥2
∥EL∥2

= Ω

(
nν−

β
2

log n

)
,
∥S2∥2
∥EL∥2

= Ω

(
nν

log n

∥(z ◦ r)Tσ′⊥(XW T )∥2
∥σ′⊥(XW T )∥2

)
.

(6)

Note this is a generalization of [3], which required alignment between the targets y and the spike
q. Theorem 3 shows that if ν > β

2 , or if

nν = ω

(
log n

∥σ′⊥(XW T )∥2
∥(z ◦ r)Tσ′⊥(XW T )∥2

)
, (7)

holds, then the gradient is approximately rank one. In contrast to the ν < 1
4 case, this rank-one

gradient aligns closely with the data spike plus interpolant S12 + S2 rather than the residue S1. This
is empirically verified in Figure 4 for non-C2 activations ReLU, as well as dependent and independent
W and X .
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(a) ReLU, Isotropic W

0 200 400 600 800 1000
Singular Index

0

5000

10000

15000

20000

25000

30000

35000

Si
ng

ul
ar

 V
al

ue

Data S2
Residue S1

(b) Swish, WS +
√
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(c) Sigmoid, WS⊥q
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(d) ELU, WSX
TX

Figure 4: Singular value distributions of the gradientG under various activation functions and weight
matrix initializations and structures, with a large data spike ν = 3/4. WS denotes the random matrix
with rows drawn mutually i.i.d. uniformly from the unit sphere. The rows of WS⊥q are uniform on
the sphere and orthogonal to q. All weight matrices are subsequently normalized to have unit norm
rows. Fixed parameters: bulk decay exponent α = 0, n = 750, d = 1000, m = 1250, NTK-like
scaling (γm = 1/

√
m), MSE loss, and triple-index model targets.
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Appendix D. Regularization
For what follows let G(0) denote the un-regularized gradient matrix derived in Proposition 12.

ℓ2 weight decay. Adding the term λ
2∥W∥2F to the loss function modifies the gradient to G(λ) =

G(0) + λW . Theorem 4 implies that if λ∥W∥2 = o(
√
mγm) it cannot suppress S1 or S2, however,

if λ∥W∥2 = ω(
√
mγnn

ν) then it suppresses both spikes.

Proposition 4 Given Assumptions 1, 2, 3, 4, and 6. If ∥r∥2 = O(
√
n), then with probability 1−o(1)

we have that ∥S1∥2 ≤ O(
√
mγm), ∥S12∥2 ≤ O(

√
mγmn

ν−β
2 ), and ∥S2∥2 ≤ O(

√
mγmn

ν).

Isotropic Gaussian input noise. This regularization technique involves adding independent isotropic
Gaussian noise ξi ∼ N (0, τ2I) to each input xi without changing the corresponding labels yi. [5]
showed that training with input noise is equivalent under certain conditions to adding a Tikhonov
regularizer to the loss, often related to

∑n
i=1 ∥∇xf(xi)∥22. More recent work [31] connects adding

isotropic noise to the data to controlling the trace of the Hessian of the loss function.
Let us define x′i = xi + ξi. This changes the input data distribution, effectively modifying the

bulk covariance from Σ̂ to Σ̂′ = Σ̂ + τ2I . Consequently, derived quantities such as the residue
vector r′, the alignment parameter β′, the gradient components S′

1, S
′
2, S

′
12, the error term E′, and

the effective bulk spectral decay α′ are denoted with primes.

Proposition 5 (Isotropic Gaussian noise) Assume the setup of Assumptions 1, 2, 3 with indepen-
dent X and W . Assume σ satisfies Assumption 4 for the noisy data X ′. Additionally, suppose the
modified residues satisfy r′i = Θ(1) with probability 1− o(1), and Assumption 6 holds for r′ with
scaling parameter β′. If τ2 = nρ and ∥σ′⊥(X ′W T )∥2 = o(n), then with high probability:

∥S′
1∥2

∥E′∥2
≥ ω(1),

∥S′
2∥2

∥E′∥2
≤ O(nν−

ρ
2 ),

∥S′
12∥2

∥E′∥2
≤ o(nν−

ρ
2
−β′

2 ).

Proposition 5 analyzes the effect of input noise. It indicates that the residue spike S′
1 remains

prominent relative to the error term E′. Conversely, if the noise is sufficiently strong, the data
spike components S′

2 and S′
12 become suppressed relative to E′. Intuitively, adding noise with

variance τ2 = nρ increases the variance of the bulk data component. This boosts the overall scale of
terms involving (X ′

B)
T . Simultaneously, the added noise tends to make the pre-activations W TX ′

more isotropic, which can reduce the operator norm ∥σ′⊥(X ′W T )∥2 relative to its Frobenius norm,
potentially limiting the growth rate of ∥E′∥2, ∥S′

2∥. This predicted relative enhancement of S′
1 and

suppression of S′
2 is verified empirically. As discussed in Section 3 (cf. Proposition 2), ReLU can

hinder residue spike S1. However, Figure 5 shows that with small amount of input noise τ2 = 0.25,
an initially suppressed S′

1 re-emerges, while S′
2 is diminished relative to S′

1 and the bulk.

Jacobian penalization. Another form of regularization penalizes the sensitivity of the network output
to changes in the inner weights. We consider the Jacobian penalty Lreg = λ 1

2n

∑n
i=1 ∥∂W f(xi)∥22.

To analyze this effect of Lreg on the gradient, we derive the gradient of Lreg with respect to W .

Proposition 6 (Gradient penalty) Let Diag(∥xi∥2) be the n× n diagonal matrix, whose entries
are ∥xi∥2. If σ is twice differentiable, then

∇WLreg =
1

n
λγ2m

(
σ′(WXT )⊙ σ′′(WXT )

)
Diag(∥xi∥2)X.
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(a) τ2 = 0. ReLU sup-
presses the residue spike.
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(b) τ2 = 0.25. The
residue spike re-appears.
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(c) λ = 0. Residue spike
is dominant.
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(d) λ = 100. Data spike is
dominant.

Figure 5: Effect of regularization. Panels (a), (b) are for isotropic Gaussian noise. Parameters:
n = 750, d = 1000,m = 1250, ν = 1/8, α = 8/9 (for original data), triple-index targets, ReLU
activation, MSE loss. Panels (c), (d) are for Jacobian norm penalization. As λ increases, the size
of S1 does change, size of the bulk E2 grows, and the size of the data spike S3 grows. Parameters:
NTK, ν = 3/8, α = 0, Sigmoid and MSE, and triple-index model targets.

The gradient of the regularizer factorizes into a data-aligned rank-one spike S3 and error E2:

S3 =
1

n
γ2mX

T
SΨ, E2 =

1

n
γ2mX

T
BΨ, Ψ = Diag(∥xi∥2)

(
σ′(XW T )⊙ σ′′(XW T )

)
.

Proposition 7 Given Assumptions 1, 2, 3, 4, and 6. If ∥r∥2 = Θ(
√
n), α < 1, and a constant

fraction of the entries of σ′(XW T )⊙ σ′′(XW T ) are bounded away from 0, then

λ
(
n2ν−

α
2
− 1

2 + n
1−3α

2

)
≥

√
mγm

∥λE2∥2
∥S1∥2

≥ λ
(
n2ν−

α
2
−1 + n−

3
2
α
)
.

If ν > 1
2 + α

2 , then we have that asymptotically the residue spike does not escape the bulk for
any λ = Θ(1). If ν < 1

2 , we see that increasing λ suppresses the residue spike. For the data spike,
we have that λS3 will grow as λ grows. Hence this enhances the data spike. We empirically verify
that increasing λ kills the residue spike while promoting the data spike (Figure 5).

Real-Data validation. The identified low-rank spike-plus-bulk gradient structure and the dis-
cussed regularization effects are observable in two standard vision datasets - MNIST and CIFAR10.
For MNIST, we estimate ν ≈ 0.784 > 1/2 and the data is highly ill-conditioned, suggesting a
large effective α. Theorem 3 predicts a gradient dominated by data-aligned components (Panel (c)
of Figure 6). Adding isotropic Gaussian noise with σ2 = 100 (Panel (d)) suppresses the original
data-aligned spike and enhances the residue-aligned spike S1, consistent with the analysis in Sec-
tion D. For CIFAR-10 we use a pretrained ResNet-18 (on ImageNet) to extract 512-dimensional
embedding. We estimate ν ≈ 0.3572 < 1/2 and α ≈ 0.6. For these parameters Theorem 1 suggests
S1 (residue-aligned) can be prominent. Panel (a) of Figure 6 shows a dominant S1. Applying
Jacobian regularization with λ = 105 (Panel (b)) suppresses S1 and promotes a data-aligned spike
(akin to S2), consistent with the behavior analyzed for Jacobian penalization in Section D.

Appendix E. Later in Training
1) Alignment at initialization: residue r versus target vector y. Recall from Theorem 1 that

in the small spike regime the gradient is dominated by S1. Further, for the MF scaling the residue r
is approximately equal to the target y, while for the NTK scaling the residue can be quite distinct
from y. This implies the alignment of the gradient may differ significantly depending on whether an
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(a) CIFAR, λ = 0
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(b) CIFAR, λ = 105
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(c) MNIST, σ2 = 0
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(d) MNIST, σ2 = 100

Figure 6: Gradient singular value spectra on real datasets. Each panel displays the singular values of
the gradient matrix G under the specified conditions.

(a) MF Scaling (b) NTK Scaling

Figure 7: Empirical alignment (normalized inner product) of the top singular vector of the gradient
G with XT

By, XT
Br and ω for data from a single-index model y = Sigmoid(ωTx) + noise. We use

isotropic X , ReLU activation, and MSE loss. We average over 500 samples of a,W,X, y. The error
bars are the 25th and 75th percentile.

MF or NTK scaling is used. Suppose y = sigmoid(ωTx) + ε, then Figure 7 presents the normalized
inner products between the leading left singular vector of G and three candidate directions XT

By,
XT

Br, and ω. For the MF scaling, we see that the gradient’s dominant direction aligns well with
XT

Br,X
T
By, consistent with Theorem 1 and [2]. For the NTK scaling, consistent with Theorem 1,

the gradient exhibits strong alignment with XT
Br. This differs notably from both XT

By and the ω
alignment directions predicted in [20] which we believe to be erroneous.

2) Stability of the gradient during early training. LetGt denote the gradient after t iterations of
GD. In Figure 8 we plot the alignment between the leading left singular vector of G0 and subsequent
leading left singular vectors of Gt under both MF and NTK scalings. The following is quite striking:
the dominant gradient direction under the MF scaling remains stable throughout training while for
the NTK scaling it evolves significantly. This leads to a divergence in the trajectories of the weight
matrix even with identical initialization and training data.

Towards explaining this, suppose the conditions of Theorem 1 hold at least approximately up
to some iteration t ≤ T . Then under an MF scaling the gradient is approximated by a rank-one
matrix whose left singular vector is nearly constant XT

Brt ≈ XT
By. Therefore it remains stable over a

number of iterations. If the NTK scaling is used instead, then as S1 is proportional to XT
Brt ̸≈ XT

By
and the gradient depends on the residuals rt which evolve throughout training.

3) Phase transitions both by epoch and data spike size. In Figure 9 we observe the evolution
of the alignment of the gradient versus the data spike and the residue under the MF scaling. Moving
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(a) MF scaling
(notice the small range)

(b) NTK scaling
(oscillatory)

(c) Mean principal angle in degrees
between W for the NTK and MF.

Figure 8: Evolution of the gradient direction and weight matrix during training under GD with
Weight Normalization (WN) for the MF and NTK scalings. Fixed parameters are ν = 0, α = 0
while using the Sigmoid activation function and the MSE loss. Plots (a) and (b) show the alignment
(normalized inner product) between the leading left singular vector of the initial gradient G0 (epoch
0) and that of Gt (epoch t). Plot (c) shows the mean principal angle between the weight matrices
learned under the MF and NTK scalings with identical initialization and training data.
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(b) Medium ν : ν = 0.4375

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Residue - XT
Br

Data - q

(c) Large ν : ν = 0.75

Figure 9: Evolution of the alignment of the leading left singular vector of Gt with data spike q and
residue (XT

Brt) during training. Fixed parameters: MF scaling, Tanh activation, MSE loss, α = 0.

from small to large spike sizes we observe a transition in the gradient alignment from the residue
XT

Br to the data spike q. We remark that this is as predicted by Theorem 1 and Theorem 3 at
initialization. Of particular interest is the middle spike size setting, where we witness a phase
transition during training of the gradient alignment from residue to data spike. We only pause to
highlight this interesting phenomenon here and leave a more thorough analysis to future work.

E.1. Assumption Satisfactions
For Theorem 1 and Theorem 3 to apply beyond initialization, during training we require certain

assumptions to hold. We begin by considering the common assumptions needed for both theorems.

1. Assumption 1 concerns the proportional regime and hence holds during training.

2. Assumption 2 concerns the data generation process and hence also holds during training.

3. Assumption 3 concerns the network initialization, and scaling, hence the assumptions on a and
γm continue to hold during training. Moreover, through the use of weight normalization the
assumption that the rows of W are on the unit sphere also holds.

4. Assumption 4 concerns the activation function, namely its smoothness and Lipschitzness which of
course also hold during training. However, it is not clear that the assumption on the non-vanishing
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Figure 10: Evolution of µmin and µmax during training. Fixed parameters: MF scaling, Tanh
activation, MSE loss, α = 0.
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(b) Medium ν : ν = 0.4375
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(c) Large ν : ν = 0.75

Figure 11: Evolution of ∥r∥∞/∥r∥2 during training. Fixed parameters: MF scaling, Tanh activation,
MSE loss, α = 0.
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(a) Small ν : ν = 0.125
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(b) Medium ν : ν = 0.4375
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(c) Large ν : ν = 0.75

Figure 12: Evolution of |zT r/(
√
n∥r∥2) during training. Fixed parameters: MF scaling, Tanh

activation, MSE loss, α = 0.
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gradient is satisfied. Despite this, we empirically verify as per Figure 10 that it does hold during
training at least for small ν. For moderate ν = 7/16 we observe that µmin appears to decrease,
hence later in training this assumption may be violated. For large ν = 3/4,the assumption only
appears to hold for the first iteration. We remark that this results in the suppression of S1 and S12
but does not effect S2 or E. As a result, we suspect that the data spike q remains dominant.

5. Assumption 5. This is the assumption that

∥r∥∞
∥r∥2

= O

(
log n√
n

)
.

Figure 11 shows that while this ratio grows, the change is very small. Hence, we believe that this
assumptions holds.

6. Assumption 6. This is about the alignment between z and r. Figure 12 shows that while this ratio
grows, the change is very small. Hence, we believe that this assumptions holds.

For the additional assumptions required for Theorem 1, clearly if the activation is C2 at initializa-
tion then it is also C2 throughout training. Finally, although clearly the independence of Wt and X
is violated, due to the near constant gradient direction, (at least for the MF scaling) the correlation
between W and X remains small.

Appendix F. Proofs
Notation In the appendix, we shall use f ≲ g to mean that f = O(g) with probability 1− o(1).

F.1. Regularization Proofs
Proposition 8 Given Assumptions 1, 2, 3, 4, and 6. If ∥r∥2 = O(

√
n), then with probability 1−o(1)

we have that ∥S1∥2 ≤ O(
√
mγm), ∥S12∥2 ≤ O(

√
mγmn

ν−β
2 ), and ∥S2∥2 ≤ O(

√
mγmn

ν).

Proof These bound immediately follow from Theorem 13, Theorem 14, and Theorem 15.

Proposition 9 (Isotropic Gaussian noise) Assume the setup of Assumptions 1, 2, 3 with indepen-
dent X and W . Assume σ satisfies Assumption 4 for the noisy data X ′. Additionally, suppose the
modified residues satisfy r′i = Θ(1) with probability 1− o(1), and Assumption 6 holds for r′ with
scaling parameter β′. If τ2 = nρ and ∥σ′⊥(X ′W T )∥2 = o(n), then with high probability:

∥S′
1∥2

∥E′∥2
≥ ω(1),

∥S′
2∥2

∥E′∥2
≤ O(nν−

ρ
2 ),

∥S′
12∥2

∥E′∥2
≤ o(nν−

ρ
2
−β′

2 ).

Proof We prove each bound in turn.

S′
1 Bound: Recall that S′

1 =
γm
n (X ′

B)
T r′(a ◦ µ′)T . Since d > n, and X ′

B ∈ Rn×d is full rank
with probability 1, we have that with probability 1, for any vector v

∥(X ′
B)

T v∥2 ≥ σmin(X)∥v∥2

Since the smallest eigenvalue of Σ̂′ is nρ, with probability 1− o(1), we have that

σmin(X
′
B) ≥ n

1
2
+ ρ

2 .
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Applying to S′
1, we get

∥S′
1∥2 ≳ γmn

ρ/2∥a ◦ µ′∥2
∥r∥2√
n

Then using Assumption 4, the fact that the entries of a are ±1, and r′i = Θ(1), we get

∥S′
1∥2 ≳ γmn

ρ/2√m

E Bound: Next, we have that E′ = γm
n (X ′

B)
T ((r′aT ) ◦ σ′⊥(X ′W T )). Using the fact that with

probability 1− o(1), r′i = Θ(1) and ai = ±1, we have that with probability 1− o(1)

∥(r′aT ) ◦ σ′⊥(X ′W T )∥2 = ∥σ′⊥(X ′W T )∥2.

Thus, we have that

∥E′∥2 ≲
γm
n

∥X ′
B∥2∥σ′⊥(X ′W T )∥2

≲
γm
n

√
nnρ/2∥σ′⊥(X ′W T )∥2

Since d > n and X ′
B if full rank with probability 1, we have that with probability 1,

∥(X ′
B)

T ((r′aT ) ◦ σ′⊥(X ′W T ))∥2 ≥ σmin(X
′
B)∥((r′aT ) ◦ σ′⊥(X ′W T ))∥2

= σmin(X
′
B)∥σ′⊥(X ′W T ))∥2

Hence we get

∥E′∥2 ≳
γm
n

√
nnρ/2∥σ′⊥(X ′W T )∥2

S′
2 Bound: Recall that

S′
2 =

γm
n
nνqzT ((r′aT ) ◦ σ′⊥(X ′W T ))

Hence we get that

∥S′
2∥2 =

γm
n
nν∥q∥2∥zT ((r′aT ) ◦ σ′⊥(X ′W T ))∥2

≤ γm
n
nν∥z∥2∥((r′aT ) ◦ σ′⊥(X ′W T ))∥2

≲
γm
n
nν+

1
2 ∥σ′⊥(X ′W T ))∥2

S′
12 Bound: Recall that

S′
12 =

γm
n
nnuqzT r′(a ◦ µ′)T
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Thus, we have that

∥S′
12∥2 =

γm
n
nnu∥zT r(a ◦ µ′)∥2

=
γm
n
nnu∥zT r∥2∥(a ◦ µ′)∥2

≲
γm
n
nnu−β′/2∥r′∥2∥z∥2∥(a ◦ µ′)∥2

≲
√
mγmn

ν−β′
2

Relative Bounds: Thus, we have that using ∥σ′⊥(X ′W T )∥2 = o(n)

∥S′
1∥2

∥E′∥2
≳

n

∥σ′⊥(X ′W T )∥2
= ω(1)

For the upper bounds we see that

∥S′
2∥2

∥E′∥2
≲ nν−

ρ
2 ,

∥S′
12∥2

∥E′∥2
≲ nν−

β′
2
− ρ

2 ·
∥σ′⊥(X ′W T )∥2

n
= nν−

β′
2
− ρ

2 o(1).

Proposition 10 (Gradient penalty) Let Diag(∥xi∥2) be the n× n diagonal matrix, whose entries
are ∥xi∥2. If σ is twice differentiable, then

∇WLreg =
1

n
λγ2m

(
σ′(WXT )⊙ σ′′(WXT )

)
Diag(∥xi∥2)X.

Proof Letting Z =WXT and fi = f(xi) then note

fi = aTσ(Wxi) = aThi, and ∂hi
fi = a.

It follows that

∂zifi = ∂hi
fi ⊙ σ′(zi) = a⊙ σ′(zi).

Recall
∂Zrc

∂Wkj
= 1{c=k}Xrj ,

then

∂fi
∂Wkj

=

m∑
c=1

∂fi
∂Zic

∂Zic

∂Wkj
=
∂fi
Zik

Xij

and therefore

∂W fi = (a⊙ σ′(Wxi))x
T
i
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Let gi = a⊙ σ′(hi), then

∥∂W fi∥2F = ∥gixTi ∥2F =
∑
j,k

g2ijx
2
ik = ∥gi∥22∥xi∥22.

Now

∂

∂Wrc
∥gi∥22 =

∂

∂Wrc

∑
j=1

a2j
∂

∂Wrc
σ′(wT

j xi)
2

=
(
2a2rσ

′(wT
j xi)σ

′′(wT
j xi)

)
xic.

The term inside the brackets is independent of c while the term outside the brackets is independent of
r. As a result this is an outer product and

∂W ∥gi∥22 = 2
(
a◦2 ⊙ σ′(Wxi)⊙ σ′′(Wxi)

)
xTi .

Note above a◦2 refers squaring operation being applied elementwise to the vector a. Therefore

∂WR =
1

2

n∑
i=1

∂W ∥∂W fi∥2F (8)

=
1

2

n∑
i=1

∥xi∥22∂W ∥gi∥22 (9)

=
n∑

i=1

∥xi∥22
(
a◦2 ⊙ σ′(Wxi)⊙ σ′′(Wxi)

)
xTi . (10)

=
(
a◦21T ◦ σ′(WXT ) ◦ σ′′(WXT )

)
Diag(∥xi∥2)X (11)

=
(
σ′(WXT ) ◦ σ′′(WXT )

)
Diag(∥xi∥2)X (12)

Proposition 11 Given Assumptions 1, 2, 3, 4, and 6. If ∥r∥2 = Θ(
√
n), α < 1, and a constant

fraction of the entries of σ′(XW T )⊙ σ′′(XW T ) are bounded away from 0, then

λ
(
n2ν−

α
2
− 1

2 + n
1−3α

2

)
≥

√
mγm

∥λE2∥2
∥S1∥2

≥ λ
(
n2ν−

α
2
−1 + n−

3
2
α
)
.

Proof We begin by noting that since σ, σ′ are lipschitz, we have that σ′, σ′′ are bounded. Hence

σ′(XW T )⊙ σ′′(XW T )

has an operator norm that is at most O(n). Since a constant fraction p of the entries are at least some
universal constant c, then in the proportional regime, we have that

∥σ′(XW T )⊙ σ′′(XW T )∥2 ≥
1√
n
∥σ′(XW T )⊙ σ′′(XW T )∥F ≳

√
mc = Ω(

√
n)
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Recall that
E2 =

1

n
γ2mX

T
B Diag(∥xi∥2)

(
σ′(XW T )⊙ σ′′(XW T )

)
.

Then since d > n, XT
B Diag(∥xi∥2) is full rank with probability 1, we have that

1

n
γ2mσmin

(
XT

B Diag(∥xi∥2)
)
∥σ′(XW T )⊙ σ′′(XW T )∥2 ≲ ∥E2∥2

and
∥E2∥2 ≲

1

n
γ2mσmax

(
XT

B Diag(∥xi∥2)
)
∥σ′(XW T )⊙ σ′′(XW T )∥2

Due to Assumption 2, with high probability 1− o(1), we have that

σmax(XB) ≲
√
n and σmin(XB) ≳ n

1−α
2

Then since ∥xi∥2 concentrates to n2ν + n1−α (for α < 1), we have that

∥E2∥2 ≲
γ2m
n

√
n(n2ν + n1−α)∥σ′(XW T )⊙ σ′′(XW T )∥2

and

∥E2∥2 ≳
γ2m
n
n

1−α
2 (n2ν + n1−α)∥σ′(XW T )⊙ σ′′(XW T )∥2

Then using the O(n) upper bound on ∥σ′(XW T )⊙ σ′′(XW T )∥2, in the proportional regime, with
high probability 1− o(1), we get that

∥E2∥2 ≲ mγ2m(n2ν−
1
2 + n

1
2
−α)

Using our Ω(
√
n) lower bound on ∥σ′(XW T )⊙ σ′′(XW T )∥2, we get

∥E2∥2 ≳ mγ2m(n2ν−
α
2
−1 + n−

3α
2 )

On the other hand, if ∥r∥2 = Θ(
√
n) we have that
√
mγmn

−α
2 ≲ ∥S1∥2 ≲

√
mγm

For the NTK regime, we have that

n2ν−
α
2
− 1

2 + n
1−3α

2 ≳
√
mγm

∥E2∥2
∥S1∥2

≳ n2ν−
α
2
−1 + n−

3
2
α
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F.2. Spikey Gradient Proof
Proposition 12 (Gradient of the loss) If Assumption 4 holds and R is differentiable, then

G := ∇WTL = XT
[
(raT ) ◦ σ′(XW T )

]
+ λ∇WTR(W ) ∈ Rd×m

exists for almost every W in Rm×d.

Proof The first thing we need to do is to compute the gradient. To begin, we compute

f(xi) =

m∑
j=1

ajσ

(
d∑

k=1

wjk(xi)k

)

Thus, we see that

∂

∂wrs
L(f(x)) =

1

n

n∑
i=1

ℓ′(f(xi))
∂

∂wrs

 m∑
j=1

ajσ

(
d∑

k=1

wjk(xi)k

)
=

1

n

n∑
i=1

ℓ′(f(xi))

m∑
j=1

aj
∂

∂wrs

(
σ

(
d∑

k=1

wjk(xi)k

))

=
1

n

n∑
i=1

ℓ′(f(xi))

m∑
j=1

ajσ
′ (wT

j xi
) ∂

∂wrs

(
d∑

k=1

wjk(xi)k

)

=
1

n

n∑
i=1

ℓ′(f(xi))arσ
′ (wT

r xi
)
(xi)s

=
1

n

n∑
i=1

(L′(f(X))a)irσ
′(XW T )irXis

=
1

n
(XT [(L′(f(X))a) ◦ σ′(XW T )])sr

We begin by decomposing the gradient

G =
γm
n
XT

(
(raT ) ◦ σ′(XW T )

)
.

This algebraic decomposition holds for the current state (X,W, r, a), irrespective of any statistical
dependence between W and X . Recall the data decomposition

X = XB +XS = XB + ζzqT ∈ Rn×d

where rows of XB are from N (0, Σ̂), z ∼ N (0, I), ∥q∥ = 1 and the activation derivative de-
composition σ′(XW T ) = 1nµ

T + σ′⊥(XW
T ), where µ = Ex[σ

′(Wx)] depends on the current
W .
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Substituting these into the gradient expression yields:

G =
γm
n
XT

(
(raT ) ◦

[
1nµ

T + σ′⊥(XW
T )
])

=
γm
n
XT

(
r(a ◦ µ)T + (raT ) ◦ σ′⊥(XW T )

)
=
γm
n

(XT
B +XT

S )
(
r(a ◦ µ)T

)
+
γm
n

(XT
B +XT

S )
(
(raT ) ◦ σ′⊥(XW T )

)
=
γm
n
XT

Br(a ◦ µ)T︸ ︷︷ ︸
S1

+
γm
n
XT

S r(a ◦ µ)T︸ ︷︷ ︸
S12

+
γm
n
XT

S ((ra
T ) ◦ σ′⊥(XW T ))︸ ︷︷ ︸
S2

+
γm
n
XT

B((ra
T ) ◦ σ′⊥(XW T ))︸ ︷︷ ︸

E

.

Using XS = ζzqT , we identify the components explicitly:

S1 = γm
XT

Br

n
(a ◦ µ)T

S12 = γmζ

(
zT r

n

)
q(a ◦ µ)T

S2 =
γmζ

n
q
(
zT ((raT ) ◦ σ′⊥(XW T ))

)
E =

γm
n
XT

B((ra
T ) ◦ σ′⊥(XW T )).

Note that S12 shares its right singular vector (a ◦ µ) with S1 (up to scaling) and its left singular
vector q with S2. Understanding the gradient structure requires bounding the norms of these terms,
which depends on the properties of the current W, r, µ, and the data statistics.

F.2.1. UPPER AND LOWER BOUNDS

Given our helper results, we now provide bounds for the S1, S12, S2, and E appearing in Section 3.

Lemma 13 (S1 Bound) Let W be the weight matrix (e.g., at step t) with unit norm rows, and let
S1 = γm

XT
Br
n (a ◦ µ)T . Suppose XB is from Assumption 2, a has fixed ±1 entries (Assumption 3), r

is the current residual, and µ = Ex[σ
′(Wx)] satisfies µk = Θ(1) for all k (Assumption 4). Assume

d > n. Then with high probability:
√
mγmµmin∥r∥2n−

α+1
2 ≲ ∥S1∥2 ≲

√
mγmµmax∥r∥2n−

1
2 ,

where µmin = mink |µk| = Ω(1) and µmax = maxk |µk| = O(1).

Proof The operator norm is
∥S1∥2 =

γm
n

∥XT
Br∥2∥a ◦ µ∥2.

First, consider a ◦ µ, where ak = ±1 and µk = Ex[σ
′(wT

k x)]. By assumption, µmin = mink |µk| =
Ω(1) and µmax = maxk |µk| = O(1) (since σ′ is bounded). We have:

∥a ◦ µ∥22 =
m∑
k=1

a2kµ
2
k =

m∑
k=1

µ2k.
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Thus, we see that
µmin

√
m ≤ ∥a ◦ µ∥2 ≤ µmax

√
m.

By Assumption 2, if d > n we have that with high probability

n
1−α
2 ∥r∥2 ≲ ∥XT

Br∥2 ≲ n
1
2 ∥r∥2.

Substituting the bounds for ∥XT
Br∥2 and ∥a ◦ µ∥2 into the expression for ∥S1∥2 = γm

n ∥XT
Br∥2∥a ◦

µ∥2:

Lower: ∥S1∥2 ≳
γm
n

(n
1−α
2 ∥r∥2)(

√
mµmin) = γm

√
mµmin∥r∥2n−

α+1
2

Upper: ∥S1∥2 ≲
γm
n

(n
1
2 ∥r∥2)(

√
mµmax) = γm

√
mµmax∥r∥2n−

1
2 .

This completes the proof.

Lemma 14 (S12 Bound) Let W be the weight matrix (e.g., at step t) with unit norm rows. Let
S12 = γmζ(

zT r
n )q(a ◦ µ)T . Suppose z, q, ζ = nν are from Assumption 2, a has fixed ±1 entries

(Assumption 3), µ = Ex[σ
′(Wx)] satisfies µk = Θ(1) (Assumption 4), and the current residual r

satisfies | zT r
n | = Θ(∥r∥2n−β/2−1/2) (Assumption 6). Assume d > n. Then w.h.p.:

∥S12∥2 = Θ
(√

mγm∥r∥2nν−
β
2
− 1

2

)
.

Proof Since S12 is a rank-1 matrix and ∥q∥2 = 1, its operator norm is:

∥S12∥2 =
∣∣∣∣γmζ (zT rn

)∣∣∣∣ ∥q∥2∥a ◦ µ∥2 = γmn
ν

∣∣∣∣zT rn
∣∣∣∣ ∥a ◦ µ∥2.

By Assumption 6 applied to the current residual r, we have∣∣∣∣zT rn
∣∣∣∣ = Θ

(
∥r∥2n−

β
2
− 1

2

)
.

Substituting this scaling, we get

∥S12∥2 = γmn
νΘ
(
∥r∥2n−

β
2
− 1

2

)
∥a ◦ µ∥2 = Θ

(
γmn

ν−β+1
2 ∥r∥2∥a ◦ µ∥2

)
.

As established in the proof of Theorem 13, using the assumptions on a and µ (specifically µk = Θ(1)),
we have ∥a ◦ µ∥2 = Θ(

√
m). Combining these gives the final result:

∥S12∥2 = Θ
(
γmn

ν−β+1
2 ∥r∥2Θ(

√
m)
)
= Θ

(√
mγm∥r∥2nν−

β
2
− 1

2

)
.
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Lemma 15 (S2 Bound) Let W be the weight matrix (e.g., at step t) with unit norm rows. Let

S2 =
γmζ

n
qzT

[
(raT ) ◦ σ′⊥(XW T )

]
. Suppose z, q, ζ = nν are from Assumption 2, a has fixed

±1 entries (Assumption 3), µ = Ex[σ
′(Wx)] satisfies µk = Θ(1) (Assumption 4), and the current

residual r satisfies | zT r
n | = Θ(∥r∥2n−β/2−1/2) (Assumption 6).Then, w.h.p.:

γmn
ν−β

2
−1∥r∥2σmin(σ

′
⊥(XW

T )) ≲ ∥S2∥2 ≲ γm
√
m ∥r∥∞ min(nν , ∥W∥2n2ν−

1
2 ).

Where ≲ hides universal constants C1, C2.

Proof The operator norm is

∥S2∥2 =
γmn

ν

n
∥zT ((raT ) ◦ σ′⊥(XW T ))∥2.

Upper Bound: Using Theorem 20 and Assumption 3 that ai ∼ Unif(±1), we have the upper
bound

∥zT ((raT ) ◦ σ′⊥(XW T ))∥2 ≲ ∥z∥2∥r∥∞∥a∥∞∥σ′⊥(XW T ))∥2
≲ ∥z∥2∥r∥∞∥σ′⊥(XW T ))∥2.

Then with probability 1− o(1), since z ∼ N (0, I), we have that ∥z∥2 ≲ C
√
n. Hence we get that

∥zT ((raT ) ◦ σ′⊥(XW T ))∥2 ≲ C∥r∥∞∥σ′⊥(XW T ))∥2
√
n.

Then since we have Assumption 4, we can use Theorem 19 to bound the norm ∥σ′⊥(XW T )∥2, which
gives us that with probability 1− o(1),

∥zT ((raT ) ◦ σ′⊥(XW T ))∥2 ≲ C∥r∥∞
√
nmin

(
n,

√
n∥WΣ1/2∥2

)
= C∥r∥∞

√
nmin(n, ∥W∥2nν+1/2).

Thus, we get that

∥S2∥2 ≲
γm
n
nνC∥r∥∞

√
nmin(n, ∥W∥2nν+1/2)

= C
√
mγm ∥r∥∞ min(nν , ∥W∥2n2ν−

1
2 ),

where we used the proportional scaling of n and m, Assumption 1, in the second line.

Lower Bound: For a lower bound, we start by writing

(raT ) ◦ σ′⊥(XW T ) = Diag(r)σ′⊥(XW
T ) Diag(a).

Thus, we have that

qzT
(
(raT ) ◦ σ′⊥(XW T )

)
= q

(
zT Diag(r)

)
σ′⊥(XW

T ) Diag(a)

= q(z ◦ r)T σ′⊥(XW T ) Diag(a).
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Taking the norm and recalling that ζ = nν , we get

∥ζqzT
(
(raT ) ◦ σ′⊥(XW T )

)
∥2 = nν∥q∥

∥∥(z ◦ r)T σ′⊥(XW T ) Diag(a)
∥∥ .

Since the entries of a are ±1 and q has unit norm, we have that this is the same as

nν∥q∥
∥∥(z ◦ r)T σ′⊥(XW T )

∥∥ = nν
∥∥(z ◦ r)T σ′⊥(XW T )

∥∥ .
By Cauchy-Schwarz, we have using Assumption 6 |zT r/

√
n∥r∥2| = Θ(d−β/2) that

∥z ◦ r∥ =

√√√√ n∑
i=1

(ziri)2 ≥
|
∑n

i=1 ziri|√∑n
i=1 1

=
|zT r|∥r∥2√
n∥r∥2

= Ω(n−
β
2 ∥r∥2).

Thus, we get that for some constant C

∥S2∥ ≳ Cγm
1

n
nν−

β
2 ∥r∥2σmin(σ

′
⊥(XW

T )).

Lemma 16 (Upper Bound on E) Assuming Assumption 1], Assumption 3, Assumption 2, and
Assumption 4, we have that with probability at least 1− o(1)

∥E∥2 ≲ C
√
mγm∥r∥∞min

(
1, nν−

1
2 ∥W∥2

)
.

Proof Recall E = γm
n X

T
B((ra

T ) ◦ σ′⊥(XW T )). Using Theorem 20, we have that

n

γm
∥E∥2 ≲ ∥XB∥2∥r∥∞∥a∥∞∥σ′⊥(XW T )∥2.

Then using Assumption 2, whereby the rows of XB are iid from N (0, Σ̂), we have with probability
1− o(1) that

∥XB∥2 ≲ C
√
n,

and using Assumption 3, we trivially have that

∥a∥∞ = 1.

Thus, we have that
n

γm
∥E∥2 ≲ C

√
n∥r∥∞∥σ′⊥(XW T )∥2.

Then using Theorem 19, we have that with probability 1− o(1)

∥σ′⊥(XW T )∥2 ≲ Cmin
(
n,

√
n∥WΣ1/2∥2

)
.

Since ∥Σ1/2∥ = nν , we get the result in the proportional scaling of Assumption 1.
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Theorem 1 (Gradient approximation) Suppose Assumptions 1, 2, 3, 4, 5, 6 are satisfied, X and
W are independent, and σ is a C2 function. DefineE = G−S1−S12−S2. Then, for all ν, α ∈ R≥0,

∥G− S1 − S12∥2√
mγm∥r∥∞

= O
(
∥W∥2n2ν−

1
2

)
,

∥G− S1 − S12 − S2∥2√
mγm∥r∥∞

= O
(
∥W∥2nν−

1
2

)
(3)

with probability 1− o(1) as d, n,m→ ∞. Moreover, if ν < 1
2 then with the same probability

∥S1∥2
∥E∥2

= Ω

(
n

1
2
−ν−α

2

log n∥W∥2

)
,

∥S2∥2
∥E∥2

= Ω

(
nν

log n

∥(z ◦ r)Tσ′⊥(XW T )∥2
∥σ′⊥(XW T )∥2

)
, (4)

∥S12∥2
∥E∥2

= Ω

(
n

1
2
−β

2

log n∥W∥2

)
, Ω(nν−

β
2 ) ≤ ∥S12∥2

∥S1∥2
≤ O(nν−

β
2
+α

2 ). (5)

Proof We start with the gradient decomposition derived in Section 3:

G = S1 + S12 + S2 + E

where

S1 = γm
XT

Br

n
(a ◦ µ)T

S12 = γmζ

(
zT r

n

)
q(a ◦ µ)T

S2 =
γmζ

n
q
(
zT ((raT ) ◦ σ′⊥(XW T ))

)
E =

γm
n
XT

B((ra
T ) ◦ σ′⊥(XW T )).

We assume the conditions of the theorem hold, including the scaling
√
mγm = O(1) and the residual

concentration ∥r∥2/∥r∥∞ = Θ(
√
n/ log n) (Assumption 5).

Proof of Upper Bounds:
For the first upper bound, we have G− S1 − S12 − S2 = E. Using the upper bound on ∥E∥2

from Theorem 16 and the assumption
√
mγm = O(1):

∥G− S1 − S12 − S2∥2
∥r∥∞

=
∥E∥2
∥r∥∞

≲
C
√
mγmmin

(
1, nν−

1
2 ∥W∥2

)
∥r∥∞

= O
(
min(1, ∥W∥2nν−

1
2 )
)
.

For the second upper bound, we haveG−S1−S12 = S2+E. Using the triangle inequality and the
upper bounds on ∥S2∥2 from Theorem 15 and ∥E∥2 from Theorem 16, along with

√
mγm = O(1):

∥G− S1 − S12∥2
∥r∥∞

≤ ∥S2∥2 + ∥E∥2
∥r∥∞

≲

√
mγm∥r∥∞ min(nν , ∥W∥2n2ν−

1
2 ) +

√
mγm∥r∥∞min

(
1, nν−

1
2 ∥W∥2

)
∥r∥∞

= O
(
min(nν , ∥W∥2n2ν−

1
2 ) + min(1, ∥W∥2nν−

1
2 )
)
.
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Proof of Lower Bounds:
We establish lower bounds for the ratios ∥S1∥/∥E∥, ∥S12∥/∥E∥, and ∥S2∥/∥E∥. These rely

on the lower bounds for ∥S1∥, ∥S12∥, ∥S2∥ and the upper bound for ∥E∥. We use the result
∥r∥2/∥r∥∞ = Θ(

√
n/ log n).

Ratio ∥S1∥/∥E∥: Using Theorem 13 (lower bound) and Theorem 16 (upper bound), we have
that

∥S1∥2
∥E∥2

≳

√
mγmµmin∥r∥2n−

α+1
2

√
mγm∥r∥∞min

(
1, nν−

1
2 ∥W∥2

)
≳

∥r∥2
∥r∥∞

n−(α+1)/2

min(1, ∥W∥2nν−1/2)

=

√
n

log n

n−(α+1)/2

min(1, ∥W∥2nν−1/2)

=
n−α/2

log nmin(1, ∥W∥2nν−1/2)
.

If ν < 1/2 and we assume ∥W∥2nν−1/2 = O(1) is the dominant term in the minimum, the ratio
is

Ω

(
n1/2−ν−α/2

log n∥W∥2

)
.

If ν ≥ 1/2 and assume ∥W∥2nν−1/2 ≥ Ω(1), the minimum is O(1). The ratio is

Ω

(
n−α/2

log n

)
.

Ratio ∥S12∥/∥E∥: Using Theorem 14 (lower bound) and Theorem 16 (upper bound):

∥S12∥2
∥E∥2

≳

√
mγm∥r∥2nν−β/2−1/2

√
mγm∥r∥∞min(1, ∥W∥2nν−1/2)

≳
∥r∥2
∥r∥∞

nν−β/2−1/2

min(1, ∥W∥2nν−1/2)

=

√
n

log n

nν−β/2−1/2

min(1, ∥W∥2nν−1/2)

=
nν−β/2

log nmin(1, ∥W∥2nν−1/2)
.

If ν < 1/2 and assume ∥W∥2nν−1/2 = O(1) dominates the minimum, the ratio is

Ω

(
n1/2−β/2

log n∥W∥2

)
.

If ν ≥ 1/2 and assume ∥W∥2nν−1/2 ≥ Ω(1), the minimum is O(1). The ratio is

Ω

(
nν−β/2

log n

)
.
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Ratio ∥S2∥/∥E∥: We have that

∥S2∥
∥E∥

≳
γm
n n

ν∥(z ◦ r)Tσ′⊥(XW T )∥
γm
n ∥XB∥2∥r∥∞∥σ′⊥(XW T )∥

≳ nν−
1
2
∥z ◦ r∥
∥r∥∞

κ
(
σ′⊥(XW

T )
)

≳ nν−
1
2
−β

2
∥r∥2
∥r∥∞

κ
(
σ′⊥(XW

T )
)

≳
nν−

β
2

log n
κ
(
σ′⊥(XW

T )
)

Relative Sizes Next, we prove the relative bounds. First, we have that

∥S12∥
∥S1∥

=
∥XT

S r∥∥a ◦ µ∥
∥XT

Br∥∥a ◦ µ∥
=
nν+

1
2
−β

2 ∥r∥2
∥XT

Br∥

Then since
n−

α
2
+ 1

2 ∥r∥2 ≲ ∥XT
Br∥2 ≲

√
n∥r∥2,

we get that

nν−
β
2 ≲

∥S12∥
∥S1∥

≲ nν−
β
2
+α

2

For the second relative bound, we have that

∥S12∥
∥S2∥

=
nν+

1
2
−β

2 ∥r∥2∥a ◦ µ∥
nν∥(z ◦ r)Tσ′⊥(XW T )∥

= Θ

(
n1−

β
2 ∥r∥2

∥(z ◦ r)Tσ′⊥(XW T )∥

)
For a lower bound, we get that

∥S12∥
∥S2∥

≳ C
∥r∥2

∥z∥2∥r∥2
n1−

β
2

nν+
1
2

=
1

nν+
β
2

For an upper bound, we have that

∥S12∥
∥S2∥

≲
n1−

β
2 ∥r∥2

n−
β
2 ∥r∥2σmin(σ′⊥(XW

T ))
=

n

σmin(σ′⊥(XW
T ))

Theorem 3 (Large data-spike gradient approximation) Suppose Assumptions 1, 2, 3, 4, 5, and
6 are satisfied, and define EL = G− S12 − S2. Then, with probability 1− o(1) for ν ≥ 1

2 we have

∥EL∥2√
mγm∥r∥∞

= O (1) ,
∥S12∥2
∥EL∥2

= Ω

(
nν−

β
2

log n

)
,
∥S2∥2
∥EL∥2

= Ω

(
nν

log n

∥(z ◦ r)Tσ′⊥(XW T )∥2
∥σ′⊥(XW T )∥2

)
.

(6)
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Proof This proof is exactly the same as Theorem 1. Except we use the following upper bounds.
Data Spike: The operator norm is

∥S2∥2 =
γmn

ν

n
∥zT ((raT ) ◦ σ′⊥(XW T ))∥2.

Using Theorem 20 and Assumption 3 that ai ∼ Unif(±1), we have the upper bound

∥zT ((raT ) ◦ σ′⊥(XW T ))∥2 ≲ ∥z∥2∥r∥∞∥a∥∞∥σ′⊥(XW T ))∥2
≲ ∥z∥2∥r∥∞∥σ′⊥(XW T ))∥2.

Then with probability 1− o(1), since z ∼ N (0, I), we have that ∥z∥2 ≲ C
√
n. Hence we get that

∥zT ((raT ) ◦ σ′⊥(XW T ))∥2 ≲ C∥r∥∞∥σ′⊥(XW T ))∥2
√
n.

Then since we have Assumption 4, we can bound the norm ∥σ′⊥(XW T )∥2 by O(n)

∥zT ((raT ) ◦ σ′⊥(XW T ))∥2 ≲ C∥r∥∞
√
nn

Thus, we get that

∥S2∥2 ≲ C
√
mγm ∥r∥∞ nν ,

where we used the proportional scaling of n and m, Assumption 1, in the second line.
Error Term: Recall E = γm

n X
T
B((ra

T ) ◦ σ′⊥(XW T )). Using Theorem 20, we have that

n

γm
∥E∥2 ≲ ∥XB∥2∥r∥∞∥a∥∞∥σ′⊥(XW T )∥2.

Then using Assumption 2, whereby the rows of XB are iid from N (0, Σ̂), we have with probability
1− o(1) that

∥XB∥2 ≲ C
√
n,

and using Assumption 3, we trivially have that

∥a∥∞ = 1.

Thus, we have that
n

γm
∥E∥2 ≲ C

√
n∥r∥∞∥σ′⊥(XW T )∥2.

Then
∥σ′⊥(XW T )∥2 ≤ O(n).

Since ∥Σ1/2∥ = nν , we get the result in the proportional scaling of Assumption 1.
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F.2.2. HELPER RESULTS: SUBGAUSSIANITY AND CONCENTRATION

Lemma 17 Let Z ∈ Rn×d be a matrix with standard normal IID entries. If n < d, then as
n/d→ c ∈ (0, 1), we have that with probability 1, the eigenvalues of 1

dZZ
T are Θ(1). Further,

σmin(Z) = Θ(
√
d−

√
n), σmax(Z) = Θ(

√
d+

√
n).

Proof As 1
dZZ

T is a Wishart matrix, the limiting empirical spectral distribution almost surely weakly
converges to the Marchenko-Pastur distribution supported on [(1−

√
c)2, (1 +

√
c)2].

Lemma 18 LetXB ∈ Rn×d have IID rows from N (0, Σ̂), where λk(Σ̂) ∼ k−α as per Assumption 2.
Then with probability 1− 2 exp(−cn) for positive universal constants c, we have that

Ω
(
n

1−α
2

)
≤ ∥XB∥2 ≤ O

(
n

1
2

)
Proof We can write XB = Σ̂1/2Z where Z ∈ Rn×d has IID standard normal entries. Using
Theorem 17, we have that in the proportional regime (Assumption 1), ∥Z∥2 = Θ(

√
n). The result

follows using the fact that

σmin(Σ̂
1/2)∥Z∥2 ≤ ∥XB∥2 = ∥Σ̂1/2Z∥2 ≤ σmax(Σ̂

1/2)∥Z∥2,

and noting that
σmin(Σ

1/2) = Θ(n−α/2) and σmax(Σ
1/2) = Θ(1).

Lemma 19 Let W be a given fixed matrix indepedent of X . If Assumption 4 is satisfied and σ is C2,
then we have with probability 1− C exp(−cn) for positive universal constants c, C, that

∥σ′⊥(XW T )∥2 ≲ C ′min
(
n,

√
n∥WΣ1/2∥2

)
.

for some constant C ′ > 0. Here Σ = Σ̂ + ζ2qqT is the full data covariance from Assumption 2.

Proof Since σ is L-Lipschitz (Assumption 4), its derivative σ′ is bounded by L. As µ = Ex[σ
′(Wx)],

the centered term σ′⊥(XW
T ) = σ′(XW T )−1nµ

T has entries bounded by someM (e.g., M = 2L).
Thus, using the relation between operator and Frobenius norms:

∥σ′⊥(XW T )∥22 ≤ ∥σ′⊥(XW T )∥2F ≤Mnm.

Thus, we have that in the proportional regime

∥σ′⊥(XW T )∥2 = O(n).

On the other hand, σ′⊥(XW
T ) represents mean-centered features and is Lipschitz, using Corol-

lary 25, with probability 1− C exp(−cn), we have that

∥σ′⊥(XW T )∥2 = O
(√

n∥WΣ1/2∥2
)
.

The overall bound follows by taking the minimum of the two derived bounds.
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Lemma 20 For any vectors u, v and matrix A, we have that

min
i

|ui|min
j

|vj |∥A∥2 ≤ ∥(uvT ) ◦A∥2 ≤ ∥u∥∞∥v∥∞∥A∥2.

Proof This follows from the observation that

(uvT ) ◦A = diag(u)Adiag(v),

where diag(u) is the diagonal matrix with u in the diagonal. Then using the fact that

σmin(B)∥A∥2 ≤ ∥AB∥2 ≤ σmax(B)∥A∥2,

where σmin is allowed to be zero and noticing that

σmax(diag(u)) = ∥u∥∞ and σmin(diag(u)) = min
i

|ui|.

The bounds follow from applying the matrix norm inequality twice.

Lemma 21 (Sub-Gaussianity) For x ∼ N (0,Σ), a fixed vector w ∈ Rd, and an Lf -Lipschitz
function f : R → R, the random variable f(wTx) is sub-gaussian with subgaussian norm at most
CL2

f∥wTΣ1/2∥22 for some constant C. Furthermore,

E[|f(wTx)|] = |f(0)|+O
(
Lf∥wTΣ1/2∥2

)
= O(1 + Lf∥wTΣ1/2∥2).

Proof Using Lipschitzness,∣∣f(xTw)− f(0Tw)
∣∣ ≤ Lf |xTw − 0| = Lf |xTw|.

The variable wTx ∼ N (0, σ2w) where σ2w = ∥wTΣ1/2∥22. Thus, wTx is (σ2w)-sub-gaussian. For
t ≥ 0,

Pr
[
|f(xTw)− f(0)| ≥ t

]
≤ Pr

[
Lf |xTw| ≥ t

]
≤ 2 exp

(
− t2

2L2
f∥wTΣ1/2∥22

)
.

Thus, we see that

Pr[|f(xTw)| ≥ t] ≤ 2 exp

(
− (t− c)2

2L2
f∥wTΣ1/2∥22

)
,

where c = |f(0)|. For the expectations, taking expectations, we get that

E
[
|f(xTw)− f(0)|

]
≤ E

[
Lf |xTw|

]
= Lf

√
2

π
∥wTΣ1/2∥22.

Using |f(wTx)| ≤ |f(wTx)−f(0)|+|f(0)| and the triangle inequality for expectations, E[|f(wTx)|] ≤
E[|f(wTx)− f(0)|] + |f(0)| = |f(0)|+O(Lfσw), giving the result.
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Lemma 22 (Covariance Operator Norm Bound) Let W ∈ Rm×d be a fixed matrix whose rows
have unit norm and let x ∼ N (0,Σ). Suppose that f : R → R is Lf Lipschitz respectively. Define
the population second moment matrix

Φ = Ex[f(Wx)f(Wx)T ],

where f is applied element-wise to the vector Wx ∈ Rm. Then

∥Φ∥2 ≤ ∥Ex [f(Wx)]∥22 + ∥WΣ1/2∥22L2
f

for some universal constants C1, C2.

Proof We note that Φ is the uncentered covariance matrix. However, to bound the operator norm of
Φ we need to consider the centered covariance matrix Φ̌

Φ̌ = E
[
f(Wx)f(Wx)T

]︸ ︷︷ ︸
Φ

−E [f(Wx)]E [f(Wx)]T

Then we see that∥∥Φ̌∥∥
2
= sup

∥v∥=1
vT Φ̌v

= sup
∥v∥=1

vTΦv −
(
E
[
vT f(Wx)

])2
= sup

∥v∥=1
E
[(
vT f(Wx)

) (
vT f(Wx)

)T ]− (E [vT f(Wx)
])2

= sup
∥v∥=1

Var
(
vT f(Wx)

)
We want to bound this using the Gaussian Poincare inequality. Which we recall here (Link). Let
g : Rd → R be a C1 function then

Varz∼N (0,I)(g(z)) ≤ Ez∼N (0,I)

[
∥∇g(z)∥2

]
Since x ∼ N (0,Σ), we can write it as x = Σ1/2z. Thus, define the function

g(z) := f(Wx) = vT f
(
WΣ1/2x

)
=

m∑
k=1

vkf
(
wT
k Σ

1/2x
)
.

Let us then define
u =

[
v1f

′ (wT
1 Σ

1/2x
)

. . . vmf
′ (wT

mΣ1/2x
)]T

Then we see that

∇g(z)T =
m∑
k=1

vkf
′
(
wT
k Σ

1/2x
)(

wT
k Σ

1/2
)
= uTWΣ1/2

Thus, we see that

Ez

[
∥∇zg(z)∥2

]
≤ Ex

[
∥WΣ1/2∥22∥u∥2

]
≤ ∥WΣ1/2∥22Ex

[
∥u∥2

]
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Then using Lemma 21 and noting that f ′ is bounded by Lf , we get that

Ex

[
m∑
k=1

u2k

]
=

m∑
k=1

v2kEx

[(
f ′(wT

k x)
)2]

≤
m∑
k=1

v2kL2
f ≤ L2

f

Thus, we have that
E
[
∥∇g(z)∥2

]
≤ ∥WΣ1/2∥22L2

f

Thus, using the Gaussian Poincare inequality, we see that∥∥Φ̌∥∥
2
≤ ∥WΣ1/2∥22L2

f

Thus, we see that
∥Φ∥2 ≤ ∥Φ̌− Φ∥2 + ∥WΣ1/2∥22L2

f

Finally, we see that ∥∥Φ̌− Φ
∥∥
2
=
∥∥∥E [f(Wx)]E [f(Wx)]T

∥∥∥
2

= ∥E [f(Wx)]∥22

Thus,
∥Φ∥2 ≤ ∥E [f(Wx)]∥22 + ∥WΣ1/2∥22 · L2

f

We are going to instantiate a few corollaries for cases that we care about. Specifically, we shall
f = σ′⊥ as the non-linearity. In this case we have that E [f(Wx)] = 0.

Corollary 23 If E [f(Wx)] = 0, we have that

∥Φ∥2 ≤ ∥WΣ1/2∥22L2
f .

We shall also need to bound the norm of the expectation. In the case, when σ is bounded, we get
that the expectation

Lemma 24 (Feature Norm Bound) Let xi ∼ N (0,Σ) be IID for i = 1 . . . n, forming rows of
X . Let W ∈ Rm×d be a fixed matrix whose rows wj have norm ∥wj∥2 = 1. Let f : R → R be
Lf -Lipschitz. Define the population second moment matrix

Φ = Ex[f(Wx)f(Wx)T ]

(as in Theorem 22). Then with probability 1− 2e−cn for some universal constant c > 0,∥∥∥∥ 1√
n
f(XW T )

∥∥∥∥
2

≤
(
1 + C ′

√
m

n

)√
∥Φ∥2

for some universal constant C ′.
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Proof Since xi are IID, we have the rows of f(XW T ) ∈ Rn×m are IID. Additionally, by Lemma 21
the entries are L2

f∥wT
i Σ

1/2∥22 sub-gaussian entries. Thus, we have that

X̌ =
1

Lf maxi=1...m ∥wT
i Σ

1/2∥2
f(XW T )

has IID rows whose sub-Gaussian norm is at most a universal constant. Let

Φ̌ =
1

n
E
[
X̌T X̌

]
=

1

L2
f maxi=1...m ∥wT

i Σ
1/2∥22

Φ

Then using Equation 5.26 from [28], there exists universal constant C, c such that

Pr

[∥∥∥∥ 1nX̌T X̌ − Φ̌

∥∥∥∥
2

≥ max(δ, δ2)∥Φ̌∥2
]
< 2e−ct2 , δ = C

√
m

n
+

t√
n

Thus, with probability 1− 2e−ct2 , we have that∥∥∥∥ 1nX̌T X̌ − Φ̌

∥∥∥∥
2

≤ max(δ, δ2)∥Φ̌∥2

Using the reverse triangle inequality, we have that

1

n
∥X̌T X̌∥2 ≤

∥∥∥∥ 1nX̌T X̌ − Φ̌

∥∥∥∥
2

+ ∥Φ̌∥2

Thus, with probability at least 1− 2e−ct2 , we have that

1

n
∥X̌T X̌∥2 ≤ ∥Φ̌∥2 +max(δ, δ2)∥Φ̌∥2

Thus, we get that
1√
n
∥X̌∥2 ≤

√
∥Φ̌∥2 +max(δ, δ2)∥Φ̌∥2

Multiplying both sides by Lf maxi=1...m ∥wT
i Σ

1/2∥2, we see that∥∥∥∥ 1√
n
f(W0X̃

T )

∥∥∥∥
2

≤ Lf max
i=1...m

∥wT
i Σ

1/2∥2(1 + C ′δ)

√
∥Φ̌∥2

≤ (1 + C ′δ)

√
L2
f max
i=1...m

∥wT
i Σ

1/2∥22∥Φ̌∥2

≤
(
1 + C ′δ

)√
∥Φ∥2

Using t =
√
m, we see that with probability 1− 2e−cm,∥∥∥∥ 1√

n
f(W0X̃

T )

∥∥∥∥
2

≤
(
1 + C ′

√
m

n

)√
∥Φ∥2

Hence, we can again instantiate some simple corollaries.
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Corollary 25 If E [f(Wx)] = 0, we have that∥∥∥f(W0X̃
T )
∥∥∥
2
≤ LfC∥WΣ1/2∥2

√
n

Another important case, if f is uniformly bounded. This is the case, when we apply it for σ′, σ′′.
Here we either have the expectation is zero. In which Corollary 25 applies. If the mean in non-zero
then we get the following.

Corollary 26 If |E[f(z)]| =M , we have that∥∥∥f(W0X̃
T )
∥∥∥
2
≤ C

[
n+ Lf∥WΣ1/2∥2

√
n
]
.

F.3. ReLU Data Alignment
Lemma 27 Let M = uvT be a non-zero rank 1 matrix, where u ∈ Rm and v ∈ Rn. Assume that
all entries of u and v are non-zero, i.e., ui ̸= 0 for all i = 1, . . . ,m and vj ̸= 0 for all j = 1, . . . , n.
Let M̃ be the matrix with entries M̃ij = δuivj>0. Let M̂ = M̃ − 0.5J , where J is the m× n matrix
of all ones. Then, rank(M̂) = 1.

Proof Let u′, u′′ ∈ {0, 1}m and v′, v′′ ∈ {0, 1}n be indicator vectors defined as follows:

• u′i = δui>0

• u′′i = δui<0

• v′j = δvj>0

• v′′j = δvj<0

Since we assume ui ̸= 0 and vj ̸= 0 for all i, j, every entry in u is either positive or negative, and
similarly for v. This means 1m = u′ + u′′ and 1n = v′ + v′′, where 1 denotes a vector of all ones of
the appropriate dimension.

The entry M̃ij = δuivj>0 is 1 if and only if (ui > 0 and vj > 0) or (ui < 0 and vj < 0). This
can be written as:

M̃ = u′(v′)T + u′′(v′′)T

The all-ones matrix J can be written as J = 1m1Tn . Using the property that 1 = u′ + u′′ and
1 = v′ + v′′:

J = (u′ + u′′)(v′ + v′′)T

= u′(v′)T + u′(v′′)T + u′′(v′)T + u′′(v′′)T

Now we compute M̂ = M̃ − 0.5J :

M̂ = (u′(v′)T + u′′(v′′)T )− 0.5(u′(v′)T + u′(v′′)T + u′′(v′)T + u′′(v′′)T )

= 0.5u′(v′)T + 0.5u′′(v′′)T − 0.5u′(v′′)T − 0.5u′′(v′)T

= 0.5
[
u′(v′)T − u′(v′′)T − u′′(v′)T + u′′(v′′)T

]
= 0.5

[
u′((v′)T − (v′′)T )− u′′((v′)T − (v′′)T )

]
= 0.5(u′ − u′′)((v′)T − (v′′)T )

= 0.5(u′ − u′′)(v′ − v′′)T
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Let sign(u) denote the vector with entries sign(ui), where sign(x) = 1 if x > 0 and sign(x) = −1 if
x < 0. Since no ui is zero, (u′−u′′)i = δui>0−δui<0 = sign(ui). Similarly, (v′−v′′)j = sign(vj).
Thus, we have shown:

M̂ = 0.5 · sign(u) · sign(v)T

Since M = uvT is non-zero, both u and v must be non-zero vectors. Because we assumed no
zero entries, the vectors sign(u) (containing only ±1) and sign(v) (containing only ±1) are non-
zero vectors. The matrix M̂ is expressed as the outer product of two non-zero vectors. Therefore,
rank(M̂) = 1.

Proposition 28 (ReLU gradient) If 2ν > 1− α, and the row of W are i.i.d. from the unit sphere,
then with probability 1− o(1) we have that σ′⊥(XW

T ) = 1
2 sign(zi) sign(Wq)T .

Proof Recall the data decomposition xi = ζziq + xb,i, where the spike direction q∈Rd is unit-norm,
zi ∼ N (0, 1), the bulk component xb,i has spectrum exponent α, and the spike magnitude scales
as ζ = nν . Since each row wT

k of W is uniform on Sd−1, ∥Wq∥2 ≈
√
m/d with high probability.

Using standard concentration for random projections, with probability 1− o(1),

∥Wxb,i∥22 ≤ C ∥xb,i∥22 = C
d∑

j=1

j−α =


Θ
(
d1−α

)
α < 1,

Θ(log d) α = 1,

O(1) α > 1.

(13)

For the spike term ∥W (ζziq)∥2 = |zi| ζ ∥Wq∥2 ≳ nν
√

m
d |zi| ≥ nν , since |zi| ≥ c with

probability 1− o(1) for some universal c > 0. Hence, whenever 2ν > 1− α, the spike contribution
W (ζziq) dominates the bulk, so that sign(Wxi) = sign

(
W (ζziq)

)
. Then Lemma 27 then implies

for ReLU that
σ′⊥(XW

T ) = 1
2 sign(zi) sign(Wq)T .
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