
Learning Dynamical Systems from Noisy Data with
Inverse-Explicit Integrators

Anonymous Author(s)
Affiliation
Address
email

Abstract

We introduce the mean inverse integrator (MII), a novel approach to increase the1

accuracy when training neural networks to approximate vector fields of dynamical2

systems from noisy data. This method can be used to average multiple trajectories3

obtained by numerical integrators such as Runge–Kutta methods. We show that the4

class of mono-implicit Runge–Kutta methods (MIRK) has particular advantages5

when used in connection with MII. When training vector field approximations,6

explicit expressions for the loss functions are obtained when inserting the training7

data in the MIRK formulae, unlocking symmetric and high order integrators that8

would otherwise be implicit for initial value problems. The combined approach9

of applying MIRK within MII yields a significantly lower error compared to the10

plain use of the numerical integrator without averaging the trajectories. This is11

demonstrated with experiments using data from several (chaotic) Hamiltonian12

systems. Additionally, we perform a sensitivity analysis of the loss functions under13

normally distributed perturbations, supporting the favourable performance of MII.14

1 Introduction15

Recently, many deep learning methodologies have been introduced to increase the efficiency and16

quality of scientific computations [1, 2, 3, 4]. In physics-informed machine learning, deep neural17

networks are purposely built so to enforce physical laws. As an example, Hamiltonian neural networks18

(HNNs) [5] aim at learning the Hamiltonian function from temporal observations. The Hamiltonian19

formalism was derived within classical mechanics for modelling a wide variety of physical systems.20

The temporal evolution of such systems is fully determined when the Hamiltonian function is known,21

and it is characterized by geometric properties such as the preservation of energy, the symplectic22

structure and the time-reversal symmetry of the flow [6, 7].23

Numerical integrators that compute solutions preserving such properties are studied in the field of24

geometric numerical integration [7, 8]. Thus, deep learning, classical mechanics and geometric25

numerical integration are all relevant to the development of HNNs. In this work, we try to identify26

the optimal strategy for using numerical integrators when constructing loss functions for HNNs that27

are trained on noisy and sparse data.28

Generally, we aim at learning autonomous systems of first-order ordinary differential equations29

(ODE)30
d

dt
y = f(y(t)), y : [0, T] ! Rn

. (1)

In the traditional setting, solving an initial value problem (IVP) means computing approximated31

solutions yn ⇡ y(tn) when the vector field f(y) and an initial value y(t0) = y0 are known. The32

focus of our study is the corresponding inverse problem; assuming knowledge of multiple noisy33

samples of the solution, SN = {ỹn}
N
n=0, the aim is to approximate the vector field f with a neural34

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

network model f✓. We will assume that the observations originate from a (canonical) Hamiltonian35

system, with a Hamiltonian H : R2d
! R, where the vector field is given by36

f(y) = JrH(y(t)), J :=

0 I

�I 0

�
2 R2d⇥2d

. (2)

This allows for learning the Hamiltonian function directly by setting f✓(y) = JrH✓(y), as proposed37

initially in [5].38

Recently, many works highlight the benefit of using symplectic integrators when learning Hamiltonian39

neural networks [9, 10, 11, 12]. Here, we study what happens if, instead of using symplectic methods,40

efficient and higher-order MIRK methods are applied for inverse problems. We develop different41

approaches and apply them to learn highly oscillatory and chaotic dynamical systems from noisy data.42

The methods are general, they are not limited to separable Hamiltonian systems, and could indeed be43

used to learn any first-order ODE. However we focus our study on Hamiltonian systems, in order to44

build on the latest research on HNNs. Specifically, we compare our methods to the use of symplectic45

integrators to train Hamiltonian neural networks. Our contributions can be summarized as follows:46

• We introduce the mean inverse integrator (MII), which efficiently averages trajectories of47

MIRK methods in order to increase accuracy when learning vector fields from noisy data48

(Definition 5.1).49

• We present an analysis of the sensitivity of the loss function to perturbations giving insight50

into when the MII method yields improvement over a standard one-step scheme (Theorem51

5.2).52

• We show that symplectic MIRK methods have at most order p = 2 (Theorem 4.4). Par-53

ticularly, the second-order implicit midpoint method is the symplectic MIRK method with54

minimal number of stages.55

Finally, numerical experiments on several Hamiltonian systems benchmark MII against one-step56

training and symplectic recurrent neural networks (SRNN) [10], which rely on the Störmer–Verlet57

integrator. The structural difference between these three approached is presented in Figure 2. Ad-58

ditionally, we demonstrate that substituting Störmer–Verlet with the classic Runge–Kutta method59

(RK4) in the SRNN framework yields significant reduction in error and allows accurate learning of60

non-separable Hamiltonian systems.61

2 Related work62

Hamiltonian neural networks was introduced in [5]. The numerical integration of Hamiltonian ODEs63

and the preservation of the symplectic structure of the ODE flow under numerical discretization64

have been widely studied over several decades [8, 7]. The symplecticity property is key and could65

inform the neural network architecture [13] or guide the choice of numerical integrator, yielding a66

theoretical guarantee that the learning target is actually a (modified) Hamiltonian vector field [14, 9],67

building on the backward error analysis framework [8]. Discrete gradients is an approach to numerical68

integration that guarantees exact preservation of the (learned) Hamiltonian, and an algorithm for69

training Hamiltonian neural networks using discrete gradient integrators is developed in [15] and70

extended to higher order in [16].71

Since we for the inverse problem want to approximate the time-derivative of the solution, f , using72

only ỹn, we need to use a numerical integrator when specifying the neural network loss function.73

For learning dynamical systems from data, explicit methods such as RK4 are much used [5, 17, 18].74

However, explicit methods cannot in general preserve time-symmetry or symplecticity, and they often75

have worse stability properties compared to implicit methods [19]. Assuming that the underlying76

Hamiltonian is separable allows for explicit integration with the symplectic Störmer–Verlet method,77

which is exploited in [10, 20]. Symplecticity could be achieved without the limiting assumption78

of separability by training using the implicit midpoint method [12]. As pointed out in [12], this79

integrator could be turned into an explicit method in training by inserting sequential training data ỹn80

and ỹn+1. In fact, the MIRK class [21, 22] contains all Runge–Kutta (RK) methods (including the81

midpoint method) that could be turned into explicit schemes when inserting the training data. This82

is exploited in [23], where high-order MIRK methods are used to train HNNs, achieving accurate83

2

interpolation and extrapolation of a single trajectory with large step size, few samples and assuming84

zero noise.85

The assumption of noise-free data limits the potential of learning from physical measurements86

or applications on data sets from industry. This issue is addressed in [10], presenting symplectic87

recurrent neural networks (SRNN). Here, Störmer–Verlet is used to integrate multiple steps and is88

combined with initial state optimization (ISO) before computing the loss. ISO is applied after training89

f✓ a given number of epochs and aims at finding the optimal initial value ŷ0, such that the distance90

to the subsequent observed points ỹ1, . . . , ỹN is minimized when integrating over f✓. While [10] is91

limited by only considering separable systems, [24] aims at identifying the optimal combination of92

third order polynomial basis functions to approximate a cubic non-separable Hamiltonian from noisy93

data, using a Bayesian framework.94

3 Background on numerical integration95

Some necessary and fundamental concepts on numerical integration and the geometry of Hamiltonian96

systems are presented below to inform the discussion on which integrators to use in inverse problems.97

Further details could be found in Appendix C.98

Fundamental concepts: An important subclass of the general first-order ODEs (1) is the class of99

Hamiltonian systems, as given by (2). Often, the solution is partitioned into the coordinates y(t) =100

[q(t), p(t)]T , with q(t), p(t) 2 Rd. A separable Hamiltonian system is one where the Hamiltonian101

could be written as the sum of two scalar functions, often representing the kinetic and potential102

energy, that depend only on q and p respectively, this means we have H(q, p) = H1(q) +H2(p).103

The h flow of an ODE is a map 'h,f : Rn
! Rn sending an initial value y(t0) to the solution104

of the ODE at time t0 + h, given by 'h,f (y(t0)) := y(t0 + h). A numerical integration method105

�h,f : Rn
! Rn is a map approximating the exact flow of the ODE, so that106

y(t1) ⇡ y1 = �h,f (y0).

Here, y(tn) represents the exact solution and we denote with yn the approximation at time tn =107

t0 + nh. It should be noted that the flow map satisfies the following group property:108

'h1,f � 'h2,f

�
y(t0)

�
= 'h1,f

�
y(t0 + h2)

�
= 'h1+h2,f (y(t0)). (3)

In other words, a composition of two flows with step sizes h1, h2 is equivalent to the flow map over f109

with step size h1 + h2. This property is not shared by numerical integrators for general vector fields.110

The order of a numerical integrator �h,f characterizes how the error after one step depends on the111

step size h and is given by the integer p such that the following holds:112

ky1 � y(t0 + h)k = k�h,f (y0) � 'h,f (y(t0))k = O(hp+1).

Mono-implicit Runge–Kutta methods: Given vectors b, v 2 Rs and a strictly lower triangular113

matrix D 2 Rs⇥s, a MIRK method is a Runge–Kutta method where A = D + vb
T [25, 26] and we114

assume that [A]ij = aij is the stage-coefficient matrix. This implies that the MIRK method can be115

written on the form116

yn+1 = yn + h

sX

i=1

biki,

ki = f
�
yn + vi(yn+1 � yn) + h

sX

j=1

dijkj

�
.

(4)

Specific MIRK methods and further details on Runge–Kutta schemes is discussed in Appendix C.2.117

Symplectic methods: The flow map of a Hamiltonian system is symplectic, meaning that its Jacobian118

⌥' := @
@y'h,f (y) satisfies⌥T

'J⌥' = J , where J is the same matrix as in (2). As explained in [8, Ch.119

VI.2], this is equivalent to the preservation of a projected area in the phase space of [q, p]T . Similarly,120

a numerical integrator is symplectic if its Jacobian ⌥� := @
@yn
�h,f (yn) satisfies ⌥T

�J⌥� = J . It is121

possible to prove [8, Ch. VI.4] that a Runge–Kutta method is symplectic if and only if the coeffients122

satisfy123

biaij + bjaji � bibj = 0, i, j = 1, . . . , s. (5)

3

4 Numerical integration schemes for solving inverse problems124

We will now consider different ways to use numerical integrators when training Hamiltonian neural125

networks and present important properties of MIRK methods, a key component of the MII that is126

presented in Chapter 5.127

Inverse ODE problems in Hamiltonian form: We assume to have potentially noisy samples128

SN = {ỹ}
N
n=0 of the solution of an ODE with vector field f . The inverse problem can be formulated129

as the following optimization problem:130

argmin
✓

N�1X

n=0

����ỹn+1 � �h,f✓ (ỹn)

����, (6)

where f✓ = JrH✓ is a neural network approximation with parameters ✓ of a Hamil-131

tonian vector field f , and �h,f✓ is a one-step integration method with step length h.132

ERKERK

RK

MIRK

SympRK

SymRK

I. Euler, MIRK3, MIRK5

E. Euler, RK4

GL4, GL6

MIRK4, MIRK6

Midpoint

Figure 1: Venn diagram of Runge–Kutta (RK)
subclasses: explicit RK (ERK), symplectic
RK (SympRK), mono-implicit RK (MIRK)
and symmetric RK (SymRK).

In the setting of inverse ODE problems, the availabil-133

ity of sequential points SN could be exploited when134

a numerical method is used to form interpolation135

conditions, for f✓ ⇡ f for each n in the optimiza-136

tion problem (6). For example, ỹn and ỹn+1 could137

be inserted in the implicit midpoint method, turning138

a method that is implicit for IVPs into an explicit139

method for inverse problems:140

�h,f✓ (ỹn, ỹn+1) = ỹn + hf✓

� ỹn + ỹn+1

2

�
. (7)

We denote this as the inverse injection, which defines141

an inverse explicit property for numerical integrators.142

Definition 4.1 (Inverse injection). Assume that
ỹn, ỹn+1 2 SN . Let the inverse injection for the
integrator �h,f (yn, yn+1) be given by the substitu-
tion (ỹn, ỹn+1) ! (yn, yn+1) such that

ŷn+1 = �h,f (ỹn, ỹn+1).

Definition 4.2 (Inverse explicit). A numerical one-step method � is called inverse explicit if it is143

explicit under the inverse injection.144

This procedure is utilized successfully by several authors when learning dynamical systems from145

data, see e.g. [12, 27]. However, this work is the first attempt at systematically exploring numerical146

integrators under the inverse injection, by identifying the MIRK methods as the class consisting of147

inverse explicit Runge–Kutta methods.148

Proposition 4.3. MIRK-methods are inverse explicit.149

Proof. Since the matrix D in (4) is strictly lower triangular, the stages are given by150

k1 = f(yn + vi(yn+1 � yn))

k2 = f(yn + vi(yn+1 � yn) + hd21k1)

...

ks = f(yn + vi(yn+1 � yn) + h

s�1X

j=1

dsjkj)

meaning that if yn and yn+1 are known, all stages, and thus the next step ŷn+1 = yn + h
Ps

i=1 biki,151

could be computed explicitly.152

Because of their explicit nature when applied to inverse ODE problems, MIRK methods are an153

attractive alternative to explicit Runge–Kutta methods; in contrast to explicit RK methods, they154

can be symplectic or symmetric, or both, without requiring the solution of systems of nonlinear155

4

ỹ0 ỹ1

ŷ1

ỹ2

ŷ2

(a) ERK, one-step.

ỹ0 ỹ1

ŷ1

ỹ2

ŷ2

(b) MIRK, one-step.

ŷ0 ỹ1

ŷ1

ỹ2

ŷ2

(c) SRNN with ISO.

Figure 2: Differences of observation dependency, assuming N = 2 for explicit and mono-implicit
one-step training, and explicit multi-step training with initial state optimization (green node ŷ0).

equations, even when the Hamiltonian is non-separable. Figure 1 illustrates the relation between156

various subclasses and the specific methods are described in Table 1 in Appendix C. In addition,157

for s-stage MIRK methods, it is possible to construct methods of order p = s + 1 [22]. This is158

in general higher order than what is possible to obtain with s-stage explicit Runge–Kutta methods.159

Further computational gains could also be made by reusing evaluations of the vector field between160

multiple steps, which using MIRK methods allow for, as explained in Appendix I. The dependency161

structure on the data SN of explicit RK (ERK) methods, MIRK methods and the SRNN method [10]162

is illustrated in Figure 2.163

Maximal order of symplectic MIRK methods: From the preceding discussion, it is clear that164

symplectic MIRK methods are of interest when learning Hamiltonian systems from data, since they165

combine computational efficiency with the ability to preserve useful, geometric properties. Indeed,166

symplectic integrators in the training of HNNs have been considered in [9, 10, 11, 12, 13]. The167

subclass of symplectic MIRK methods is represented by the middle, dark blue field in the Venn168

diagram of Figure 1. The next result gives an order barrier for symplectic MIRK methods that was, to169

the best of our knowledge, not known up to this point.170

Theorem 4.4. The maximum order of a symplectic MIRK method is p = 2.171

Proof. This is a shortened version of the full proof, which can be found in Appendix F. A MIRK172

method is a Runge–Kutta method with coefficients aij = dij + vibj . Requiring dij , bi and vi to173

satisfy the symplecticity conditions of (5) in addition to D being strictly lower triangular, yields the174

following restrictions175

bidij + bibj(vj + vi � 1) = 0, if i 6= j,

bi = 0 or vi =
1

2
, if i = j,

dij = 0, if i > j.

(8)

These restrictions result in an RK method that could be reduced to choosing a coefficient vector176

b 2 Rs and choosing stages on the form ki = f
�
yn + h

2

Ps
j bjkj

�
for i = 1, . . . , s. It is then trivial177

to check that this method can only be of up to order p = 2. Note that for s = 1 and b1 = 1 we get the178

midpoint method.179

Numerical integrators outside the RK class: While this paper is mainly concerned with MIRK180

methods, several other types of numerical integrators could be of interest for inverse problems.181

Partitioned Runge–Kutta methods are an extension and not a subclass of RK methods, and can182

be symplectic and symmetric, while also being explicit for separable Hamiltonian systems. The183

Störmer–Verlet integrator of order p = 2 is one example. Higher order methods of this type are184

derived in [28] and used for learning Hamiltonian systems in [29, 30]. Discrete gradient methods185

[31, 32] are inverse explicit and well suited to train Hamiltonian neural networks using a modified186

automatic differentiation algorithm [15]. This method could be extended to higher order methods as187

shown in [16]. In contrast to symplectic methods, discrete gradient methods preserve the Hamiltonian188

exactly up to machine precision. A third option is elementary differential Runge–Kutta methods [33],189

where for instance [34] show how to use backward error analysis to construct higher order methods190

from modifications to the midpoint method. This topic is discussed further in Appendix H, where we191

also present a novel, symmetric discrete gradient method of order p = 4.192

5 Mean inverse integrator for handling noisy data193

Noisy ODE sample: It is often the case that the samples SN are not exact measurements of the194

system, but perturbed by noise. In this paper, we model the noise as independent, normally distributed195

5

perturbations196

ỹn = y(tn) + �n, �n ⇠ N (0,�2
I), (9)

where N (0,�2
I) represents the multivariate normal distribution. With this assumption, a standard197

result from statistics tells us that the variance of a sample-mean estimator with N samples converges198

to zero at the rate of 1
N . That is, assuming that we have N samples ỹ(1)n , . . . , ỹ

(N)
n , then199

Var[yn] = Var

1

N

NX

j=1

ỹ
(j)
n

�
=

�
2

N
.

Using the inverse injection with the midpoint method, the vector field is evaluated in the average of200

ỹn and ỹn+1, reducing the variance of the perturbation by a factor of two, compared to evaluating the201

vector field in ỹn, as is done in all explicit RK methods. Furthermore, considering the whole data202

trajectory SN , multiple independent approximations to the same point y(tn) can enable an even more203

accurate estimate. This is demonstrated in the analysis presented in Theorem 5.2 and in Figure 4.204

Averaging multiple trajectories: In the inverse ODE problem, we assume that there exists an exact205

vector field f whose flow interpolates the discrete trajectories SN , and the flow of this vector field206

satisfies the group property (3). The numerical flow �h,f for a method of order p satisfies this207

property only up to an error O(hp+1) over one step. In the presence of noisy data, compositions of208

one-step methods can be used to obtain multiple different approximations to the same point y(tn),209

by following the numerical flow from different nearby initial values ỹj , j 6= n, and thus reduce the210

noise by averaging over these multiple approximations. Accumulation of the local truncation error is211

expected when relying on points further away from tn. However, for sufficiently small step sizes h212

compared to the size of the noise �, one can expect increased accuracy when averaging over multiple213

noisy samples.214

As an example, assume that we know the points {ỹ0, ỹ1, ỹ2, ỹ3}. Then y(t2) can be approximated by215

computing the mean of the numerical flows �h,f starting from different initial values:216

y2 =
1

3

�
�h,f (ỹ1) + �h,f � �h,f (ỹ0) + �

⇤
�h,f (ỹ3)

�

⇡
1

3

�
ỹ0 + ỹ1 + ỹ3 + h(0,1 + 2 1,2 � 2,3)

�
,

(10)

where we by �⇤ mean the adjoint method of �, as defined in [8, Ch. V], and we let n,n+1 be the217

increment of an inverse-explicit numerical integrator, so that218

�h,f (ỹn, ỹn+1) = ỹn + h n,n+1.

For example, for the midpoint method, we have that n,n+1 = f(ỹn+ỹn+1

2). When stepping in219

negative time in (10), we use the adjoint method in order to minimize the number of vector field220

evaluations, also when non-symmetric methods are used (which implies that we always use e.g. 1,2221

and not 2,1). Note that in order to derive the approximation in (10), repeated use of the inverse222

injection allows the known points ỹn to form an explicit integration procedure, where composition223

of integration steps are approximated by summation over increments n,n+1. This approximation224

procedure is presented in greater detail in Appendix D.225

Mean inverse integrator: The mean approximation over the whole trajectory yn, for n = 0, . . . , N ,226

could be computed simultaneously, reusing multiple vector field evaluations in an efficient manner.227

This leads to what we call the mean inverse integrator. For example, when N = 3 we get228

2

64

y0
y1
y2
y3

3

75=
1

3

2

64

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

3

75

2

64

ỹ0

ỹ1

ỹ2

ỹ3

3

75+
h

3

2

64

�3 �2 �1
1 �2 �1
1 2 �1
1 2 3

3

75

"
 0,1

 1,2

 2,3

#
,

and the same structure is illustrated in Figure 3.229

Definition 5.1 (Mean inverse integrator). For a sample SN and an inverse-explicit integrator n,n+1,230

the mean inverse integrator is given by231

Y =
1

N

✓
UỸ + hW

◆
(11)

6

where Ỹ := [ỹ0, . . . , ỹN]T 2 R(N+1)⇥m, := [0,1, . . . , N�1,N]T 2 RN⇥m.232

Finally, U 2 R(N+1)⇥(N+1) and W 2 R(N+1)⇥N are given by233

[U]ij :=

⇢
0 if i = j

1 else
and [W]ij :=

⇢
j � 1 � N if j � i

j else
.

By substituting the known vector field f with a neural network f✓ and denoting the matrix containing234

vector field evaluations by ✓ such that Y ✓ := 1
N (UỸ + hW ✓), we can formulate an analogue to235

the inverse problem (6) by236

argmin
✓

��Ỹ � Y ✓

��. (12)

y0 y1 y2 y3

�h 2,3
�2h 1,2

�3h 0,1

y0 y1 y2 y3

h 0,1
�2h 1,2 �h 2,3

y0 y1 y2 y3

h 0,1
2h 1,2 �h 2,3

y0 y1 y2 y3

h 0,1
2h 1,2

3h 2,3

Figure 3: Illustration of the structure of
the mean inverse integrator for N = 3.

Analysis of sensitivity to noise: Consider the optimiza-237

tion problems using integrators either as one-step methods238

or MII by (6) resp. (12). We want to investigate how239

uncertainty in the data ỹn introduces uncertainty in the op-240

timization problem. Assume, for the purpose of analysis,241

that the underlying vector field f(y) is known. Let242

T
OS
n := ỹn � �h,f (ỹn�1, ỹn),

T
MII
n := ỹn � [Y]n

be the optimization target or the expression one aims to243

minimize using a one-step method (OS) and the MII,244

where Y is given by Definition 5.1. For a matrix A245

with eigenvalues �i(A), the spectral radius is given by246

⇢(A) := maxi |�i(A)|. An analytic expression that approximates ⇢(T OS
n) and ⇢(T MII

n) by lineariza-247

tion of f for a general MIRK method is provided below.248

Theorem 5.2. Let SN = {ỹn}
N
n=0 be a set of noisy samples, equidistant in time with step size h,249

with Gaussian perturbations as defined by (9) with variance �
2. Assume that a MIRK integrator250

�h,f is used as a one-step method. Then the spectral radius is approximated by251

⇢
OS
n := ⇢

✓
Var

⇥
T

OS
n

⇤◆
⇡ �

2

����2I + hb
T (� 2v)

�
f
0+f

0T �+ h
2
Q

OS
����
2

, (13)

⇢
MII
n := ⇢

✓
Var

⇥
T

MII
n

⇤◆
⇡

�
2

N

����(1 +N)I + hPnn +
h

N

sX

j=0
j 6=n

Pnj +
h
2

N
Q

MII
����
2

, (14)

where f 0 := f
0(yn) and Pnj , Q

OS and Q
MII (defined in (24) in Appendix G) are matrices independent252

of the step size h.253

0.10 0.22 0.34 0.48 0.60 0.80

Step size h

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
p
ec

tr
al

ra
d
iu

s
�

⇥10�2
Propagation of noise, Double pendulum

RK4 OS

MIRK4 OS

MIRK4 MII

Figure 4: Average of ⇢ over 10 trajecto-
ries. Shaded area represent one standard
deviation.

The proof is found in Appendix G. Let ↵ := b
T (�254

2v) denote the coefficients of the first order term in h255

of Equation (13). For any explicit RK method we have256

that v = 0 and since b
T = 1 (method of at least order257

one) we find that ↵ERK = 1. Considering the Butcher258

tableau of MIRK4 in Figure 9 we find that ↵MIRK4 = 0.259

Thus, as h ! 0 we would expect quadratic convergence260

of MIRK4 and linear convergence of RK4 for ⇢OS
n to 2�2.261

Considering MII (14) one would expect linear convergence262

for ⇢MII
n to �

2 if N is large, as h ! 0.263

A numerical approximation of ⇢OS
n and ⇢

MII
n could be real-264

ized by a Monte-Carlo estimate. We compute the spectral265

radius ⇢̂n of the empirical covariance matrix of T
OS
n and266

T
MII
n by sampling 5·103 normally distributed perturbations267

�n with �
2 = 2.5 · 10�3 to each point yn in a trajectory268

of N + 1 points and step size h. We then compute the269

7

trajectory average ⇢ = 1
N+1

PN
n=0 ⇢̂n, fix the end time T = 2.4, repeat the approximations for270

decreasing step sizes h and increasing N and compute the average of ⇢ for 10 randomly sampled271

trajectories SN from the double pendulum system. The plot in Figure 4 corresponds well with what272

one would expect from Theorem 5.2 and confirms that first MIRK (with v 6= 0) and secondly MII273

reduces the sensitivity to noise in the optimization target.274

6 Experiments275

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t

�0.4

�0.2

0.0

0.2

0.4

y 1

Flow roll-out Double pendulum h = 0.8, � = 0.05

Midpoint

ISO Stormer

RK4

ISO RK4

MIRK4

MII MIRK4

Exact flow

Given data

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t

�0.4

�0.2

0.0

0.2

0.4

y 1

Flow roll-out Double pendulum h = 0.1, � = 0.05

Midpoint

ISO Stormer

RK4

ISO RK4

MIRK4

MII MIRK4

Exact flow

Given data

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t

�0.2

0.0

0.2

y 1

Flow roll-out Hénon-Heiles h = 0.1, � = 0.05

Midpoint

ISO Stormer

RK4

ISO RK4

MIRK4

MII MIRK4

Exact flow

Given data
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t

�0.2

0.0

0.2

y 1

Flow roll-out Hénon-Heiles h = 0.1, � = 0.05

Midpoint

ISO Stormer

RK4

ISO RK4

MIRK4

MII MIRK4

Exact flow

Given data
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t

�0.2

0.0

0.2

y 1

Flow roll-out Hénon-Heiles h = 0.1, � = 0.05

Midpoint

ISO Stormer

RK4

ISO RK4

MIRK4

MII MIRK4

Exact flow

Given data

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t

�0.6

�0.4

�0.2

0.0

0.2

0.4

y 0

Flow roll-out FPUT h = 0.8, � = 0.05

Midpoint

MIRK4

Ground truth

Given data

Figure 5: Roll-out in time obtained by inte-
grating over the learned vector fields when
training on data from the double pendulum
Hamiltonian.

Methods and test problems: We train HNNs us-276

ing different integrators and methods in the inverse277

problem (6). We use MIRK4 together with the MII278

method and compare to the implicit midpoint method,279

RK4 and MIRK4 applied as one-step methods, as280

well as ISO followed by Störmer–Verlet and RK4281

integrated over multiple time-steps. The latter strat-282

egy, illustrated in Figure 2, was suggested in [10],283

where Störmer–Verlet is used. Separable networks284

H✓(q, p) = H1,✓(q) + H2,✓(p) are trained on data285

from the Fermi–Pasta–Ulam–Tsingou (FPUT) prob-286

lem and the Hénon–Heiles system. For the double287

pendulum, which is non-separable, a fully connected288

network is used for all methods except Störmer–289

Verlet, which requires separability in order to be ex-290

plicit. The Hamiltonians are described in Appendix291

A and all systems have solutions y(t) 2 R4.292

After using the specified integrators in training, ap-293

proximated solutions are computed for each learned294

vector field f✓ using the Scikit-learn implementation295

of DOP853 [35], which is also used to generate the296

training data. The error is averaged over M = 10297

points and we find what we call the flow error by298

e(f✓) =
1

M

MX

n=1

kŷn � y(tn)k2, y(tn) 2 S
test
M ,

ŷn+1 = �h,f✓ (yn).

(15)

Training data: Training data is generated by sampling N2 = 300 random initial values y0 requiring299

that 0.3 ky0k2 0.6. The data SN1,N2 = {ỹ
(j)
n }

N1,N2
n=0,j=0 is found by integrating the initial values300

with DOP853 with a tolerance of 10�15 for the following step sizes and number of steps: (h,N1) =301

(0.4, 4), (0.2, 8), (0.1, 16). The points in the flow are perturbed by noise where � 2 {0, 0.05}. Error302

is measured in M = 10 random points in the flow, within the same domain as the initial values.303

Furthermore, experiments are repeated with a new random seed for the generation of data and304

initialization of neural network parameters five times in order to compute the standard deviation of305

the flow error. The flow error is shown in Figure 6. Additional results are presented in Appendix B.306

Neural network architecture and optimization: For all test problems, the neural networks have 3307

layers with a width of 200 neurons and tanh(·) as the activation function. The algorithms are imple-308

mented using PyTorch [36] and the code for performing ISO is a modification of the implementation309

by [10]1. Training is done using the quasi-Newton L-BFGS algorithm [37] for 20 epochs without310

batching. This optimization algorithm is often used to train physics-informed neural networks [1]311

and in this setting it proved to yield superior results in comparison to the often used Adam optimizer.312

Further details are provided in Appendix E.313

Results: As observed in Figure 6 and supported by the analytical result illustrated in Figure 4, the MII314

approach facilitates more accurate training from from noisy data than one-step methods. However,315

training with multiple integration steps in combination with ISO yields lower error when RK4 is used316

1https://github.com/zhengdao-chen/SRNN (CC-BY-NC 4.0 License)

8

ttps://github.com/zhengdao-chen/SRNN

10�2

10�1

100

e(
f �

)

Flow error

FPUT, � = 0.05

Time and accuracy

10�2

6 ⇥ 10�3

2 ⇥ 10�2

3 ⇥ 10�2

4 ⇥ 10�2

e(
f �

)

Hénon-Heiles, � = 0.05

h = 0.8, N1 = 3 h = 0.4, N1 = 6 h = 0.2, N1 = 12 h = 0.1, N1 = 24

10�2

2 ⇥ 10�2

3 ⇥ 10�2

4 ⇥ 10�2

e(
f �

)

Double pendulum, � = 0.05

0 50 100 150 200 250 300 350

Training time

Midpoint

ISO Störmer

RK4

ISO RK4

MIRK4

MII MIRK4

Figure 6: The flow error when learning vector fields using one-step methods directly (Midpoint, RK4
and MIRK4), ISO and multiple time-steps (ISO Störmer and ISO RK4) and MII (MII MIRK4). The
error bars display the standard deviation after rerunning 5 experiments on data with � = 0.05. The
right subplot shows the computational time used in training against the flow error.

for the Hénon–Heiles problem and similar performance as MII on the double pendulum. We notice317

that the SRNN approach, i.e. ISO with Störmer–Verlet, is improved when switching to RK4, which318

means sacrificing symplecticity to achieve higher order. The results for FPUT stand out in Figure 6,319

since both ISO methods have large errors here. The roll-out in time of the learned vector fields is320

presented in Figure 8 in Appendix B, where the same can be observed. As also could be seen here,321

the FPUT Hamiltonian gives rise to highly oscillatory trajectories, and the errors observed in Figure322

6 might indicate that ISO is ill-suited for this kind of dynamical systems.323

Two observations could be made regarding the one-step methods without averaging or ISO. First,324

it is likely that the midpoint method has weaker performance for large step sizes due to its lower325

order, compared to both RK4 and MIRK4, despite the fact that it is a symplectic method. The same is326

clear from Figure 7 in Appendix B, which display the flow error when training on data without noise.327

Secondly, building on the sensitivity analysis, we observe that MIRK4 consistently attains higher328

accuracy than RK4, as expected from the Monte-Carlo simulation found in Figure 4.329

7 Conclusion330

In this work we present the mean inverse integrator, which allows both chaotic and oscillatory331

dynamical systems to be learned with high accuracy from noisy data. Within this method, integrators332

of the MIRK class are a key component. To analyse how noise is propagated when training with333

MII and MIRK, compared to much used explicit methods such as RK4, we developed a sensitivity334

analysis that is verified both by a Monte-Carlo approximation and reflected in the error of the335

learned vector fields. Finally, we build on the SRNN [10] by replacing Störmer–Verlet with RK4,336

and observer increased performance. When also considering the weak performance of the implicit337

midpoint method, this tells us that order might be of greater importance than preserving the symplectic338

structure when training HNNs. Both the MIRK methods, the mean inverse integrator and initial state339

optimization form building blocks that could be combined to form novel approaches for solving340

inverse problems and learning from noisy data.341

Limitations: The experiments presented here assume that both the generalized coordinates qn and342

the generalized momenta pn could be observed. In a setting where HNNs are to model real and not343

simulated data, the observations might lack generalized momenta [38] or follow Cartesian coordinates,344

requiring the enforcement of constraints [17, 39]. Combining approaches that are suitable for data345

that is both noisy and follow less trivial coordinate systems is a subject for future research.346

9

References347

[1] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:348

A deep learning framework for solving forward and inverse problems involving nonlinear partial349

differential equations. Journal of Computational physics, 378:686–707, 2019.350

[2] Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit351

Supekar, Dominic Skinner, Ali Ramadhan, and Alan Edelman. Universal differential equations352

for scientific machine learning. Aug 2020.353

[3] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary354

differential equations. Advances in neural information processing systems, 31, 2018.355

[4] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,356

Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differen-357

tial equations. arXiv preprint arXiv:2010.08895, 2020.358

[5] Sam Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. CoRR,359

abs/1906.01563, 2019.360

[6] Herbert Goldstein, Charles Poole, and John Safko. Classical Mechanics. Addison Wesley, 3361

edition, 2001.362

[7] Benedict Leimkuhler and Sebastian Reich. Simulating Hamiltonian Dynamics. Cambridge363

Monographs on Applied and Computational Mathematics. Cambridge University Press, 2005.364

[8] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric Numerical Integration:365

Structure-Preserving Algorithms for Ordinary Differential Equations; 2nd ed. Springer, Dor-366

drecht, 2006.367

[9] Christian Offen and Sina Ober-Blöbaum. Symplectic integration of learned Hamiltonian systems.368

Chaos: An Interdisciplinary Journal of Nonlinear Science, 32(1):013122, 2022.369

[10] Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent neural370

networks. In International Conference on Learning Representations, 2020.371

[11] Aiqing Zhu, Pengzhan Jin, and Yifa Tang. Deep Hamiltonian networks based on symplectic372

integrators. arXiv preprint arXiv:2004.13830, 2020.373

[12] Marco David and Florian Méhats. Symplectic learning for Hamiltonian neural networks. arXiv374

preprint arXiv:2106.11753, 2021.375

[13] Pengzhan Jin, Zhen Zhang, Aiqing Zhu, Yifa Tang, and George Em Karniadakis. SympNets:376

Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems. Neural377

Networks, 132:166–179, 2020.378

[14] Aiqing Zhu, Pengzhan Jin, Beibei Zhu, and Yifa Tang. Inverse modified differential equations379

for discovery of dynamics. arXiv preprint arXiv:2009.01058, 2020.380

[15] Takashi Matsubara, Ai Ishikawa, and Takaharu Yaguchi. Deep energy-based modeling of381

discrete-time physics. Advances in Neural Information Processing Systems, 33:13100–13111,382

2020.383

[16] Sølve Eidnes. Order theory for discrete gradient methods. BIT, 62(4):1207–1255, 2022.384

[17] Elena Celledoni, Andrea Leone, Davide Murari, and Brynjulf Owren. Learning Hamiltonians385

of constrained mechanical systems. J. Comput. Appl. Math., 417:Paper No. 114608, 12, 2023.386

[18] Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter Battaglia. Hamiltonian Graph387

Networks with ODE Integrators.388

[19] Gerhard Wanner and Ernst Hairer. Solving ordinary differential equations II, volume 375.389

Springer Berlin Heidelberg, 1996.390

[20] Senwei Liang, Zhongzhan Huang, and Hong Zhang. Stiffness-aware neural network for learning391

Hamiltonian systems. 2022.392

10

[21] Jeff R Cash. A class of implicit Runge–Kutta methods for the numerical integration of stiff393

ordinary differential equations. Journal of the ACM (JACM), 22(4):504–511, 1975.394

[22] K Burrage, FH Chipman, and Paul H Muir. Order results for mono-implicit Runge–Kutta395

methods. SIAM journal on numerical analysis, 31(3):876–891, 1994.396

[23] Håkon Noren. Learning Hamiltonian systems with mono-implicit Runge–Kutta methods. arXiv397

preprint, arXiv:2303.03769, 2023.398

[24] Harsh Sharma, Nicholas Galioto, Alex A Gorodetsky, and Boris Kramer. Bayesian identification399

of nonseparable Hamiltonian systems using stochastic dynamic models. In 2022 IEEE 61st400

Conference on Decision and Control (CDC), pages 6742–6749. IEEE, 2022.401

[25] W. M. G. van Bokhoven. Efficient higher order implicit one-step methods for integration of402

stiff differential equations. BIT, 20(1):34–43, 1980.403

[26] J. R. Cash and A. Singhal. Mono-implicit Runge–Kutta formulae for the numerical integration404

of stiff differential systems. IMA J. Numer. Anal., 2(2):211–227, 1982.405

[27] Sølve Eidnes, Alexander J Stasik, Camilla Sterud, Eivind Bøhn, and Signe Riemer-Sørensen.406

Pseudo-Hamiltonian neural networks with state-dependent external forces. arXiv preprint,407

arXiv:2206.02660, 2022.408

[28] Haruo Yoshida. Construction of higher order symplectic integrators. Physics letters A, 150(5-409

7):262–268, 1990.410

[29] Shaan A Desai, Marios Mattheakis, and Stephen J Roberts. Variational integrator graph networks411

for learning energy-conserving dynamical systems. Physical Review E, 104(3):035310, 2021.412

[30] Daniel DiPietro, Shiying Xiong, and Bo Zhu. Sparse symplectically integrated neural networks.413

Advances in Neural Information Processing Systems, 33:6074–6085, 2020.414

[31] GRW Quispel and Grant S Turner. Discrete gradient methods for solving ODEs numerically415

while preserving a first integral. Journal of Physics A: Mathematical and General, 29(13):L341,416

1996.417

[32] Robert I McLachlan, G Reinout W Quispel, and Nicolas Robidoux. Geometric integration418

using discrete gradients. Philosophical Transactions of the Royal Society of London. Series A:419

Mathematical, Physical and Engineering Sciences, 357(1754):1021–1045, 1999.420

[33] Ander Murua. Métodos simplécticos desarrollables en P-series. PhD thesis, PhD thesis.421

Valladolid: Universidad de Valladolid, 1995.422

[34] Philippe Chartier, Ernst Hairer, and Gilles Vilmart. Numerical integrators based on modified423

differential equations. Mathematics of Computation, 76(260):1941–1953, October 2007.424

[35] J.R. Dormand and P.J. Prince. A family of embedded Runge–Kutta formulae. Journal of425

Computational and Applied Mathematics, 6(1):19–26, 1980.426

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,427

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative428

style, high-performance deep learning library. Advances in neural information processing429

systems, 32:8026–8037, 2019.430

[37] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.431

[38] Yuhan Chen, Takashi Matsubara, and Takaharu Yaguchi. Neural symplectic form: learn-432

ing hamiltonian equations on general coordinate systems. Advances in Neural Information433

Processing Systems, 34:16659–16670, 2021.434

[39] Marc Finzi, Ke Alexander Wang, and Andrew Gordon Wilson. Simplifying Hamiltonian and435

Lagrangian neural networks via explicit constraints. arXiv preprint arXiv:2010.13581, 2020.436

[40] Enrico Fermi, P Pasta, Stanislaw Ulam, and Mary Tsingou. Studies of the nonlinear problems.437

Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 1955.438

11

[41] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential equations. I, volume 8 of439

Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 1993.440

Nonstiff problems.441

[42] P. H. Muir. Optimal discrete and continuous mono-implicit Runge-Kutta schemes for BVODEs.442

Adv. Comput. Math., 10(2):135–167, 1999.443

[43] J. R. Cash and D. R. Moore. A high order method for the numerical solution of two-point444

boundary value problems. BIT, 20(1):44–52, 1980.445

[44] Philippe Chartier. Symmetric Methods. In Björn Engquist, editor, Encyclopedia of Applied and446

Computational Mathematics, pages 1439–1448. Springer, Berlin, Heidelberg, 2015.447

[45] J. R. Cash and A. Singhal. High order methods for the numerical solution of two-point boundary448

value problems. BIT, 22(2):184–199, 1982.449

[46] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David450

Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.451

van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew452

R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.453

Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.454

Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul455

van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific456

Computing in Python. Nature Methods, 17:261–272, 2020.457

[47] Philippe Chartier, Ernst Hairer, and Gilles Vilmart. Numerical integrators based on modified458

differential equations. Math. Comp., 76(260):1941–1953, 2007.459

[48] Ge Zhong and Jerrold E. Marsden. Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson460

integrators. Phys. Lett. A, 133(3):134–139, 1988.461

[49] Takashi Matsubara and Takaharu Yaguchi. FINDE: Neural differential equations for finding462

and preserving invariant quantities. arXiv preprint, arXiv:2210.00272, 2022.463

12

	Introduction
	Related work
	Background on numerical integration
	Numerical integration schemes for solving inverse problems
	Mean inverse integrator for handling noisy data
	Experiments
	Conclusion
	Test problems
	Additional numerical results
	More on numerical integration
	Runge–Kutta methods
	Mono-Implicit Runge–Kutta methods
	Symmetric methods:

	Details on the inverse injection in MII
	Details on neural network training
	Proof of Theorem 4.4
	Proof of Theorem 5.2
	Higher-order inverse-explicit invariant-preserving symmetric non-partitioned integrators
	Symplectic elementary differential Runge–Kutta methods
	Discrete gradient methods
	Numerical comparison of fourth-order integrators

	Computational cost

